Blockseminar über Mathematische Relativitätstheorie
Vorläufiges Programm
The block seminar on measure theory will take place in the week of September 22, 2025 in room M102. Further information and registration at
- Shane Farnsworth <shane.farnsworth@aei.mpg.de>
Generally, each presentation is scheduled to last one hour, followed by a discussion of approximately 30 minutes. Here is the preliminary schedule:
Montag | Dienstag | Mittwoch | Donnerstag | Freitag | |
---|---|---|---|---|---|
9-11 | Vortrag 4 | Vortrag 6 | Vortrag 9 | ||
11-13 | Vortrag 5 | Vortrag 8 | Vortrag 10 | ||
14-16 | Vortrag 1 | Vortrag 16 | |||
16-18 | Vortrag 3 |
Vorläufige Planung der Vorträge:
[W: 1; SSch: 2.1, 2.2, 5.1, 5.5, 6, 7, 9]The presentations not in bold are optional. Those in bold are essential. If we can’t find speakers for them, the lecturers will present them.
- Physical Concepts I [W: 1; SSch: 2.1, 2.2, 5.1, 5.5, 6, 7, 9]:
Shane Farnsworth- Constancy of the speed of light, causality
- Equivalence principle, the “Einstein elevator”
- Effects of special relativity [W: 1, 2.3, 4.1,4.2, 8; S: 2.I; SSch: 5.4, 7, 9]:
- Minkowski space, causal structure
- Relativistic dynamics, the energy-momentum vector, $E=mc^2$
- The twin paradox
- Fundamentals of classical differential geometry I [W: 2, ; ON: 1, 2; N: 5, 7.1, 7.4; HE: 2]:
Felix Finster- Riemannian and Lorentzian metrics
- Geodesics, Levi-Civita connection
- Fundamentals of Classical Differential Geometry II [W: 3.2; ON: 3; N: 7.3; S: 2.II.1; HE]:
Sebastian Heiß- Riemann curvature tensor, Ricci tensor, scalar curvature
- The Bianchi identities
- The Einstein field equations and the Einstein-Hilbert action [W: 4.3, E ; HE: 3; S: 2.II ; BEE: 2.6]:
Vincent Bäuml- Einstein’s field equations
- Some basics of the calculus of variations
- Derivation of Einstein’s field equations from the Einstein-Hilbert action
- Special Solutions I: Schwarzschild Metric [W: 6; HE: 5.5 ;S: 2.III ;ON: 13 ; BE: 5.2]:
Felix Finster- Schwarzschild metric
- Event horizon, black holes
- Redshift on the horizon
- Penrose diagrams [HE; BEE]:
- of Minkowski space
- of Schwarzschild spacetime
- optional: the Kruskal extension
- Cosmological Spacetimes [W: 5 ; HE: 5.1-5.4 ; ON: 12 ; BEE: 5.4]:
Anis Mokni- the Big Bang
- The FLRW metric
- Special Solutions II: Gravitational Waves [W: 4.4 ; S: 2.IV; BE]:
Shane Farnsworth- Alternatively linearized gravity or as an exact solution
- Killing vectors [W:C; N: 7.7; HE: 2; ON: 9]: Alexander Koller
- Symmetries of the metric, the Killing equation
- Conservation quantities for geodesics and for the energy-momentum tensor
- Special Solutions III: Kerr Metric [W: 12; HE: 5.6; BE: 5; S: 3.vii]:
- rotating black holes,
- the Penrose process
- Other physical field equations in curved spacetime:
- scalar wave equation
- Maxwell’s equations
- Kaluza-Klein theory as a precursor to gauge theories
- Global hyperbolic spacetimes [BEE; W; HE]:
- normal-hyperbolic equations
- The singularity theorems of Hawking and Penrose [W: 9; HE: 8; BE: 12]:
- Spinors in curved spacetime: ZB [FKT: 4; W: 13; N: 7.10]
Jan Herzberg
Literatur:
- [BEE] J.K. Beem, P. Ehrlich, K. Easley, “Global Lorentzian Geometry”, Marcel Dekker, 1996
- [FKT] F. Finster, S. Kindermann, J.-H. Treude, Causal Fermion Systems: An Introduction to Fundamental Structures, Methods and Applications, arXiv, Cambridge University Press, 2025
- [HE] S. Hawking, G.F.R. Ellis, “The Large Scale Structure of Spacetime”, Cambridge University Press, 1973
- [N] M. Nakahara, “Geometry, Topology and Physics”, IOP Publishing, 2003
- [ON] B. O’Neill, “Semi-Riemannian geometry”, Academic Press, 1983
- [S] N. Straumann, “Allgemeine Relativitätstheorie und relativistische Astrophysik” oder “General Relativity”, Springer Verlag, 2004
- [SSch] R. Sexl, H.K. Schmidt, “Raum, Zeit Relativität”, Vieweg, 1978
- [W] R.M. Wald, “General Relativity”, Chicago University Press, 1984
Die bei den Vorträgen angegebenen Referenzen sind nur Beispiele. Natürlich können Sie auch andere Bücher verwenden.
Näheres besprechen Sie am besten direkt mit Shane Farnsworth.