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Preface

The theory of causal fermion systems is an approach to fundamental physics. In dif-
ferent limiting cases, causal fermion systems give rise to the standard model of particle
physics and gravity on the level of classical field theory [45] as well as to quantum field
theory [62, 23]. In view of these results, causal fermion systems are a promising candi-
date for a unified physical theory. The dynamics of a causal fermion system is described
by a novel variational principle: the causal action principle. From the mathematical per-
spective, causal fermion systems provide a general framework for describing non-smooth
geometries and for formulating and analyzing dynamical equations in this non-smooth
setting.

This book is intended as an easily accessible introduction to the theory of causal
fermion systems. After giving the physical and mathematical background (Part 1), the
theory of causal fermion systems is introduced (Part 2). We proceed by providing mathe-
matical methods which can be regarded as a toolbox for analyzing causal fermion systems
(Part 3). We conclude with an outlook on the applications (Part 4).

In order to address as large an audience as possible, the book contains extensive
preliminaries which cover both physical and mathematical aspects. We have two typical
audiences in mind when writing these preliminaries: physicists with only basic knowledge
of mathematics and mathematicians without physical background.

The book is based on three main resources: First, the lecture notes of the spring
school “Relativistic Fermion Systems” held in Regensburg in April 2013, adapted for the
spring school “Causal Fermion Systems” held in Regensburg in March 2016. Second,
the lecture “Causal Variational Principles” given at the University of Regensburg in the
summer semester 2017. Finally, the online course “An Introduction to Causal Fermion
Systems” held in the summer semester 2021.

We would like to thank the participants of the spring schools and the students in the
above lectures for valuable feedback. In particular, we are grateful to Jonas Bierler, David
Cherney, Franz Gmeineder, Stefan Lippoldt, Marcin Napiórkowski, Simon Reinhardt,
Julien Sabin and Andrea Schätzl for valuable feedback. Moreover, we are grateful to
Sami Abdallah, Marvin Becker, Shane Farnsworth, Patrick Fischer, Christoph Krpoun,
Magdalena Lottner, Valter Moretti, Heiko von der Mosel, Marco van den Beld Serrano
and Johannes Wurm for helpful comments on the manuscript. A special thanks goes to
Johannes Kleiner and Marco Oppio for helping with the lecture notes and providing many
exercises. We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial
support. Finally, we would like to thank Nicholas Gibbons and the publishing team of
Cambridge University Press for the excellent collaboration.

November 2024
Felix Finster, Sebastian Kindermann and Jan-Hendrik Treude
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How to use this book

This book is addressed to both mathematicians and physicists interested in the sub-
ject. We want to address young students and researchers on the master or graduate level.
But the book should be helpful to the senior researcher as well.

The book is divided into four parts, each consisting of several chapters. Part 1
provides the necessary physical and mathematical preliminaries. Here the presentation
is quite brief, and we refer to the standard textbooks for more details. We selected the
material with the focus on what is most essential for causal fermion systems. We also
introduce the conventions and notation which will be used later in the book. The content
of Chapter 4 can be omitted by a reader who wants to concentrate on systems without
gravity in Minkowski space.

Part 2 introduces the main concepts and structures. In Chapter 5 we motivate and
define causal fermion systems and explain the fundamental structures. This chapter is
essential for all the later parts of the book and should be read first. In the following
Chapters of Part 2 the structures of a causal fermion system are explained in more detail,
also setting the state for the later analysis.

In Part 3 we introduce the mathematical methods for the analysis of causal fermion
systems. The different methods can be understood as a toolbox, from which the reader
may choose depending on her interests and needs. The chapters in this part are self-
contained, except for obvious dependencies (for example, the energy methods for the
linearized field equations in Chapter 14 build on similar methods for symmetric hyperbolic
systems in Chapter 13). We note that the methods presented in this book are by no means
exhaustive; we concentrate on the main methods which have been fruitful so far.

Part 4 provides additional examples and gives an outlook on the physical applications.
Here the presentation is a bit more sketchy than in Parts 2 and 3. The reason is that,
after being familiar with Parts 2 and 3 of the present book, the reader should be well-
prepared for delving into the research articles. Moreover, the content of Chapter 21 is
covered in detail in the textbook [45]. Therefore, the purpose of this chapter merely is to
give a non-technical overview. The content of Chapter 22, on the other hand, is a field
of active research. Therefore, it seems preferable to present this material systematically
and in more detail at a later stage in a separate textbook.

Every chapter is supplemented by a section with exercises. Studying these exercises
is important for getting familiar and deepening the understanding of the material. Hints
on how to solve the problems should simplify the self-study.

We finally note that part of the material of this book is complemented by videos of
an online course, which are available on the website

www.causal-fermion-system.com/online course
We hope that the reader will enjoy reading and learning from this book. Feedback is
always welcome.
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Physical and Mathematical Background





CHAPTER 1

Physical Preliminaries

In this chapter we summarize some basics on quantum mechanics and relativity theory
as needed in order to understand the physical content and context of the theory of causal
fermion systems. We also fix our conventions and introduce the notation which will be
used consistently throughout this book. Clearly, reading this summary cannot replace
studying quantum mechanics and relativity theory in detail. To this end, we will cite
various standard physics textbooks along the way.

1.1. The Schrödinger Equation

We begin by recalling a few basics of non-relativistic quantum mechanics. For more
details, we refer to standard textbooks like [139, 141, 111].

The state of a quantum mechanical particle without spin is described by its wave
function ψ : R × R3 → C, (t, x⃗) 7→ ψ(t, x⃗), where t ∈ R describes time and x⃗ ∈ R3

position. Its absolute square |ψ(t, x⃗)|2 has the interpretation as the probability density
of the particle to be located at the position x⃗ at time t. For this interpretation to be
sensible, the integral over the probability density must be equal to one,ˆ

R3

|ψ(t, x⃗)|2 d3x = 1 . (1.1.1)

This equation must hold at any time t ∈ R. This entails that the dynamical equations
must preserve the integral in (1.1.1), as will be discussed in more detail shortly.

A basic tenet of quantum mechanics is the superposition principle. It states that for
any wave functions ψ and ϕ, also their complex linear combination

ψ̃ = αψ + βϕ with α, β ∈ C (1.1.2)

(defined pointwise by ψ̃(t, x⃗) = αψ(t, x⃗) + βϕ(t, x⃗)) is a physically admissible wave func-
tion. Thus, in more mathematical terms, the physical wave functions form a complex
vector space. Evaluating (1.1.1) for the wave function ψ̃ and using that the probability
integral must be preserved in time for all α and β, one concludes that the integralˆ

R3

ϕ(t, x⃗)ψ(t, x⃗) d3x (1.1.3)

must be time independent for any wave functions ψ and ϕ. The procedure to de-
duce (1.1.3) from (1.1.1) is sometimes referred to as polarization. The integral (1.1.3)
defines a scalar product on the wave functions, which we denote by

⟨ϕ|ψ⟩H :=

ˆ
R3

ϕ(t, x⃗)ψ(t, x⃗) d3x . (1.1.4)

From the mathematical point of view, the most natural complex vector space for this
scalar product is the Hilbert space L2(R3,C) of square-integrable functions, which we
also denote by (H, ⟨.|.⟩H) (for basics on Hilbert spaces see Section 2.2 below). This
Hilbert space contains for instance all smooth functions with compact support (i.e. which

3



4 1. PHYSICAL PRELIMINARIES

vanish outside a compact set; here smooth means that the function is differentiable to
every order).

The dynamics of the wave function is described by a linear evolution equation on H,
the Schrödinger equation, which is first-order in time and whose general form is

i∂tψ = Hψ . (1.1.5)

Here H, the so-called Hamiltonian, is a linear operator acting on the Hilbert space H.
The linearity of the Schrödinger equation is essential in order to ensure that the time
evolution is compatible with the superposition principle. The requirement that the scalar
product (1.1.4) must be time independent implies that

0 = ∂t⟨ϕ|ψ⟩H = −i
(
⟨Hϕ|ψ⟩H − ⟨ϕ|Hψ⟩H

)
(1.1.6)

for all wave functions ψ, ϕ. In other words, the Hamiltonian must be a symmetric op-
erator on the Hilbert space H (for mathematical basics see Definition 2.2.5 below; all
mathematical issues like domains and the distinction between symmetric and selfadjoint
operators are postponed to Section 3.2).

In the simplest setting (more precisely, for a particle without spin), the Hamiltonian
has the form

H = − 1

2m
∆+ V ,

where we chose units where Planck’s constant and the speed or light are equal to one,

ℏ = c = 1

(we will do so throughout this book). Here, ∆ = ∂21 + ∂22 + ∂23 is the Laplacian on R3,
and V (t, x⃗) is a real-valued potential which acts on wave functions by multiplication. The
parameter m > 0 is the rest mass of the particle.

The Schrödinger equation can be analyzed using various methods. If the potential is
time independent, it can be solved by exponentiating,

ψ(t) = e−iHt ψ(0) ,

where the exponential may be defined using the spectral theorem (for details see Sec-
tion 3.2 below). In this case the dynamics of ψ can be related to spectral properties
of the Hamiltonian. Another method, which has the advantage that it also applies if
the potential depends on time, is to make use of the fact that the time evolution forms
a strongly continuous semigroup of operators (see for example [116, Section 34]). Al-
ternatively, one can analyze the Schrödinger equation as a parabolic partial differential
equation. Since our focus are the relativistic equations, these methods are not covered in
this book. But we refer the interested reader to the textbooks [143, Chapter 6] or [32,
Section II.7.1].

1.2. Special Relativity and Minkowski Space

We now give a brief introduction to special relativity. For more details, in particular
on the physical background, we recommend the textbooks [134, 121, 112].

In special relativity, space and time are combined into a four-dimensional space-
time. Mathematically, this four-dimensional spacetime is described by Minkowski space
(M, ⟨., .⟩), a real four-dimensional vector space endowed with an inner product ⟨., .⟩ of sig-
nature (+−−−). For M one may always choose a basis (ei)i=0,...,3 satisfying ⟨e0, e0⟩ = 1
and ⟨ei, ei⟩ = −1 for i = 1, 2, 3. Such a basis is called pseudo-orthonormal basis or refer-
ence frame, since the corresponding coordinate system (xi) describes time and space for
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an observer in a system of inertia. We also refer to t := x0 as time and denote spatial
coordinates by x⃗ = (x1, x2, x3). Representing two vectors ξ, η ∈ M in such a basis as

ξ =
∑3

i=0 ξ
iei and η =

∑3
i=0 η

iei, the inner product takes the form

⟨ξ, η⟩ =
3∑

j,k=0

gjk ξ
j ηk , (1.2.1)

where gjk, the Minkowski metric, is the diagonal matrix g = diag (1,−1,−1,−1). We
note that the origin of Minkowski space is not distinguished (apart from the fact that it
can be regarded as the origin of the observer). This could be formalized mathematically
by regarding M as an affine vector space. Here we prefer to regard M simply as a vector
space, noting that the translation M → M + u by a vector u ∈ M corresponds to a
symmetry of spacetime.

In what follows we usually use Einstein’s summation convention, according to which
one omits the sign for sums and always sums over any pair of indices appearing twice,
one being an upper and one a lower index. For instance, with this convention, the
relation (1.2.1) is written simply as ⟨ξ, η⟩ = gjkξ

jηk. By gij we denote the inverse
of the Minkowski metric, which in a pseudo-orthonormal basis is again the diagonal
matrix diag(1,−1,−1,−1). We raise and lower indices using the Minkowski metric and
its inverse, meaning that for a vector ξ = ξiei we set ξi := gijξ

j for any i = 0, . . . , 3, and

we also write ∂j = gjk∂k. Finally, we sometimes abbreviate the Minkowski inner product
by writing ξη := ⟨ξ, η⟩ and ξ2 := ⟨ξ, ξ⟩.

The sign of the Minkowski metric encodes the causal structure of spacetime. Namely,
a vector ξ ∈ M is said to be timelike if ⟨ξ, ξ⟩ > 0

spacelike if ⟨ξ, ξ⟩ < 0
lightlike if ⟨ξ, ξ⟩ = 0 .

(1.2.2)

Lightlike vectors are also referred to as null vectors. Moreover, the term non-spacelike
refers to timelike or lightlike vectors. The timelike and null vectors form a double cone.
Its boundary

L := {ξ ∈ M | ⟨ξ, ξ⟩ = 0}
is referred to as the light cone. Physically speaking, the light cone is formed of all light
rays through the origin of M. Similarly, the timelike vectors correspond to velocities
slower than the speed of light; they form the

interior light cone I := {ξ ∈ M | ⟨ξ, ξ⟩ > 0} .
Likewise, the non-spacelike vectors form the

closed light cone J := {ξ ∈ M | ⟨ξ, ξ⟩ ≥ 0} = I ∪ L .
We denote the future and past light cones by superscripts ∨ and ∧, i.e.

J∨ := {ξ ∈ M | ⟨ξ, ξ⟩ ≥ 0, ξ0 ≥ 0}
J∧ := {ξ ∈ M | ⟨ξ, ξ⟩ ≥ 0, ξ0 ≤ 0} ,

and similarly for I. These notions are illustrated in Figure 1.1.
The spacetime trajectory of a moving object is described by a curve q(τ) in Minkowski

space (with τ an arbitrary parameter). We always assume that the parametrization is
regular, meaning that the tangent vector dq/dτ to the spacetime curve is non-zero for
all τ . We say that the curve q(τ) is timelike if its tangent vector is everywhere timelike.
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0

I∨

I∧

ξ0

|~ξ|

L

Figure 1.1. The causal structure of Minkowski space.

Spacelike, null, and non-spacelike curves are defined analogously. The usual statement
of causality, which says that no information can travel faster than the speed of light, can
then be expressed as follows:

Causality: Information can be transmitted only along non-spacelike
curves.

In view of this notion, a non-spacelike curve is also referred to as a causal curve. The set
of all points which can be joined to a given spacetime point x by a non-spacelike curve is
precisely the closed light cone centered at x, denoted by Jx := J − x. It is the union of
the two single cones

J∨
x = {y ∈ M | (y − x)2 ≥ 0, (y0 − x0) ≥ 0}
J∧
x = {y ∈ M | (y − x)2 ≥ 0, (y0 − x0) ≤ 0} ,

interpreted as the points in the causal future and past of x, respectively. Therefore, we
refer to J∨

x and J∧
x as the closed future and past light cones centered at x, respectively.

The sets I∨x , I
∧
x and L∨

x , L
∧
x are introduced similarly. We remark that the resulting

relations like “lies in the timelike future of” or “lies in the causal future of” are transitive
(see Exercise 1.1).

Special relativity demands that physical equations be Lorentz invariant. Qualitatively
speaking, this means that they must be formulated in a manner independent of the choice
of reference frame. More concretely, this independence can be formulated in terms of
transformation laws: Recall that a reference frame is an orthonormal basis of Minkowski
space. Any two reference frames (ei)i=0,...,3 and (ẽi)i=0,...,3 are related to each other by
a linear transformation Λ ∈ L(M) (here L(M) are the linear transformations on M;
clearly, Λ can be written as a 4× 4-matrix with real-valued entries) which preserves the
Minkowski metric, i.e. one has (again using the Einstein summation convention)

ẽi = Λji ej and Λℓj Λ
m
k gℓm = gjk . (1.2.3)

The coordinates in the old and new reference frames and the corresponding partial deriva-
tives are related to each other by

x̃i = Λij x
j and

∂

∂x̃i
= Λji

∂

∂xj
. (1.2.4)

The Lorentz transformations form a group (with the group operation being the com-
position of the linear transformations or, equivalently, matrix multiplication of the cor-
responding matrices), the so-called Lorentz group. The Lorentz transformations which
preserve both the time direction and the spatial orientation form a subgroup of the
Lorentz group, the orthochronous proper Lorentz group.
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If one wants to formulate a physical equation, the principle of Lorentz invariance
demands that its explicit form must be invariant under the joint transformations (1.2.3)
and (1.2.4). The simplest example is the Klein-Gordon equation

(−□−m2) ψ = 0 , (1.2.5)

where □ := ∂j∂
j = gjk∂k∂j is the scalar wave operator and ψ : M → C.

Using (1.2.4), one verifies by a short computation that this equation takes the same
form in any reference frame. The Klein-Gordon equation describes a scalar particle (i.e.
a particle without spin) of mass m. If the particle has an electric charge e, one also has
to take into account the interaction with the electromagnet field. One finds empirically
that the correct equation to describe the influence of the field on the particle is

−(∂k − ieAk)(∂
k − ieAk) ψ = m2ψ , (1.2.6)

where A is the electromagnetic potential.

1.3. The Dirac Equation

The Schrödinger equation 1.1.5 is not Lorentz invariant. Therefore, it is not suitable
to describe a relativistic quantum particle. Although being Lorentz-invariant, the Klein-
Gordon equation is also not suitable for this purpose because the interpretation of the
absolute value of its solutions as probability density is not sensible (for example because
for general solutions of (1.2.6), the spatial integral of |ψ(t, x⃗)|2 is not conserved in time).
The correct relativistic generalization of the Schrödinger equation is the so-called Dirac
equation, which will now be introduced. More on its physical background can be found
for example in the classic textbooks [14, 112, 128].

In order to describe a relativistic particle with spin, Dirac had the idea to work with
a first order differential operator γj∂j whose square is the wave operator. The coefficients
of this operator are the Dirac matrices γj , which are 4× 4-matrices characterized by the
anti-commutation relations

2 gjk 1
!
= {γj , γk} := γjγk + γkγj . (1.3.1)

Using these relations, one finds that the square of the operator γj∂j indeed gives the wave
operator,

(γj∂j)
2 = γjγk ∂j∂k =

1

2
{γj , γk} ∂jk = □ (1.3.2)

(of course, here the operator γj∂j acts on wave functions with four components, also
called spinorial wave functions, and the wave operator has to be understood as acting
on each component separately). There are different possible choices for 4× 4-matrices γj

satisfying (1.3.1) which are all related by a change of spinor basis. For convenience, we
shall always work in the Dirac representation, i.e. we choose (see Exercise 1.4)

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (1.3.3)

where σi are the three Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.3.4)
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Including the massm ≥ 0, the Dirac equation in the vacuum (i.e. without any interaction)
reads (

iγk
∂

∂xk
−m

)
ψ(x) = 0 , (1.3.5)

where the Dirac spinor ψ : M → C4 has four complex components. If we multiply (1.3.5)
by the operator (iγj∂j +m) and use (1.3.2), we find that each component of ψ satisfies
the Klein-Gordon equation (1.2.5).

Following the standard conventions in physics, we denote contractions with Dirac
matrices by a slash, i.e. /u = γjuj for u a vector of Minkowski space and ∂/ = γj∂j . The
action of the matrix /u on a spinor ψ as described by the mapping u 7→ /uψ is often referred
to as Clifford multiplication by the vector u.

A quantum particle described by a solution of the Dirac equation is called Dirac
particle. The leptons and quarks in the standard model are Dirac particles. Thus, on the
fundamental level, all matter is described by the Dirac equation.

In the presence of an electromagnetic field with electromagnetic potential A, the Dirac
equation is modified to

iγk(∂k − iAk)ψ = mψ (1.3.6)

(here for convenience we absorbed the electromagnetic coupling constant into the po-
tential). Similar as mentioned for the Klein-Gordon equation after (1.2.6), the coupling
to the electromagnetic field can again be understood from the compatibility with local
gauge transformations of electrodynamics (see Exercise 1.3). Multiplying by the opera-
tor (i γj(∂j − iAj) +m) and using again the anti-commutation relations, we obtain the
equation (

− (∂k − iAk)(∂
k − iAk) +

i

2
Fjkγ

jγk −m2
)
ψ = 0 ,

where Fjk = ∂jAk − ∂kAk (see Exercise 1.6). This differs from the Klein-Gordon equa-

tion (1.2.6) by the extra term i
2Fjkγ

jγk, which describes the coupling of the spin to the
electromagnetic field.

A Dirac spinor takes value in C4. This four-dimensional complex vector space is also
referred to as the spinor space, and its elements are referred to as spinors. An important
structure on the spinor space is an indefinite inner product of signature (2, 2), which we
call spin inner product and denote by

≺ψ|ϕ≻ :=

4∑
α=1

sα (ψα)† ϕα , s1 = s2 = 1, s3 = s4 = −1 , (1.3.7)

where for a spinor ψ ∈ C4 we denote by ψ† the componentwise complex conjugate. In
physics textbooks, the spin inner product is often written as ψϕ with the so-called adjoint
spinor ψ := ψ†γ0. By the adjoint A∗ of an operator A acting on spinors we always mean
the adjoint with respect to the spin inner product. Thus it is defined by the relation

≺A∗ψ |ϕ≻ = ≺ψ |Aϕ≻ for all ψ, ϕ ∈ C4.

In an obvious way, this definition of the adjoint gives rise to the the notions of a sym-
metric, anti-symmetric and unitary operator. With these notions, the Dirac matrices are
symmetric, meaning that

≺γlψ |ϕ≻ = ≺ψ | γlϕ≻ for all ψ, ϕ ∈ C4 . (1.3.8)

From this it follows that also Clifford multiplication /u by a vector u ∈ M is symmetric.
We note for clarity that, in the setting of finite-dimensional matrices considered here,



1.3. THE DIRAC EQUATION 9

symmetric operators can be referred to equivalently as selfadjoint operators. We usually
prefer the notion of a symmetric operator, leaving the notion of a selfadjoint operator to
the setting of densely defined operators on infinite-dimensional Hilbert spaces.

To every solution ψ of the Dirac equation we can associate a vector field Jk by

Jk = ≺ψ | γk ψ≻ , (1.3.9)

referred to as the Dirac current. It is either timelike or lightlike (see Exercise 1.7).
Moreover, it is divergence-free, as the following computation shows,

∂kJ
k = ∂k ≺ψ | γk ψ≻ = ≺∂kψ | γk ψ≻+≺ψ | γk∂k ψ≻
= i (≺i∂/ψ |ψ≻−≺ψ | i∂/ψ≻)

= i
(
≺(i∂/+ /A−m)ψ |ψ≻−≺ψ | (i∂/+ /A−m)ψ≻

)
= 0 .

(1.3.10)

This property is referred to as current conservation.
Current conservation is closely related to the probabilistic interpretation of the Dirac

wave function, as we now explain. Suppose that ψ is a smooth solution of the Dirac
equation with suitable decay at spatial infinity (for example of spatially compact support;
see Section 1.4). Then current conservation allows us to apply the Gauß divergence
theorem in a spacetime-region [t1, t2]× R3 to obtain

0 =

ˆ t2

t1

dt

ˆ
R3

d3x ∂k≺ψ | γkψ≻(t, x⃗)

=

ˆ
R3

≺ψ | γ0ψ≻(t2, x⃗) d
3x−

ˆ
R3

≺ψ | γ0ψ≻(t1, x⃗) d
3x

(1.3.11)

We remark that this argument works similarly on a region Ω ⊂ M whose boundary
consists of two space-like hypersurfaces. Polarizing similar as explained after (1.1.2), we
conclude that for any two solutions ϕ, ψ of the Dirac equation, the spatial integral

(ϕ|ψ) :=
ˆ
R3

≺ϕ | γ0ψ≻(t, x⃗) d3x (1.3.12)

is time independent. Since the inner product ≺.|γ0.≻ is positive definite, the inte-
gral (1.3.12) defines a scalar product. We denote the Hilbert space corresponding to
this scalar product by H = L2(R3)4. In analogy to the integrand in (1.1.4) in non-
relativistic quantum mechanics, the quantity ≺ψ|γ0ψ≻(t, x⃗) can be interpreted as the
probability density of the particle being located at the spacetime point (t, x⃗). Current
conservation (1.3.11) ensures that the probability integral is time independent.

The previous considerations generalize immediately to the situation in the presence of
an external potential. To this end, we replace the operator /A in the Dirac equation (1.3.6)
by a multiplication operator B : M → C4×4, which may even depend (smoothly) on the
spacetime coordinates and which we assume to be symmetric with respect to the spin
inner product, i.e.

≺B(x)ψ|ϕ≻ = ≺ψ|B(x)ϕ≻ for all ψ, ϕ ∈ C4, x ∈ M. (1.3.13)

We then write the Dirac equation with a Dirac operator D as

(D −m)ψ = 0 where D := i∂/+B . (1.3.14)

The symmetry assumption (1.3.13) is needed for current conservation to hold (as one sees
immediately if in (1.3.10) one replaces /A by B).
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Similar as the Schrödinger equation (1.1.5), also the Dirac equation can be rewritten
with a symmetric operator H acting on the Hilbert space H. To this end, we multiply
equation (1.3.14) by γ0 and isolate the t-derivative on one side of the equation,

i∂tψ = Hψ where H := −γ0(i γ⃗∇⃗+B−m) (1.3.15)

Note here that γj∂j = γ0∂0 + γ⃗∇⃗. We refer to (1.3.15) as the Dirac equation in the
Hamiltonian form. Now we can again apply (1.1.6) to conclude that the Hamiltonian is
a symmetric operator on H.

We remark that in the Hamiltonian formulation, one often absorbs the prefactor γ0

in (1.3.15) into the other Dirac matrices and instead works with the new matrices

β := γ0 and α⃗ := γ0γ⃗ .

This is convenient because these new matrices are Hermitian with respect to the standard

scalar product on C4. In this book however, we shall not work with α and β⃗. We prefer
the notation (1.3.15), because it is more visible which parts of the operators are Lorentz
invariant. For calculations using β and α⃗ we refer for example to the monograph [146].

In addition to integrating over space (1.3.12), one can also introduce an inner product
on spinorial wave functions by integrating the spin inner product over all of spacetime,

<ψ|ϕ> =

ˆ
M

≺ψ|ϕ≻x dµM . (1.3.16)

This inner product will in general not be well-defined on solutions of the Dirac equation,
because (even for “normalized” solutions for which the spatial integrals are finite) the time
integral may diverge. But the inner product can be considered for example on spinorial
wave functions which are compactly supported in spacetime (but are no solutions of the
Dirac equation). This spacetime inner product will be important for the constructions in
Chapter 15. In this context, it is very useful that the Dirac operator is symmetric with
respect to the spacetime inner product, meaning that

<Dψ|ϕ> = <ψ|Dϕ> (1.3.17)

for all spinorial wave functions which decay sufficiently fast at spatial infinity and for
large times. Indeed, the symmetry property (1.3.17) holds in curved spacetime as well
(see the explanation after (4.2.33) below).

So far, Dirac spinors were introduced in a given reference frame. Let us verify that
our definitions are in fact independent of the choice of reference frame. To this end we
consider two reference frames (xj) and (x̃l) with the same orientation of time and space.
Then the reference frames are related to each other by an orthochronous proper Lorentz
transformation Λ, i.e. in components

x̃l = Λlj x
j ,

∂

∂xj
=
∂x̃l

∂xj
∂

∂x̃l
= Λlj

∂

∂x̃l
,

and Λ leaves the Minkowski metric invariant,

Λlj Λ
m
k glm = gjk . (1.3.18)

Under this change of spacetime coordinates, the Dirac operator iγj( ∂
∂x̃j

− iAj) transforms
to

iγ̃l
(
∂

∂x̃l
− iÃl

)
with γ̃l = Λljγ

j and Ãl = Λkl Ak . (1.3.19)
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This transformed Dirac operator does not coincide with the Dirac operator iγl( ∂
∂x̃l

− iÃl)

as defined in the reference frame (x̃l) because the new Dirac matrices have a different
form. However, the next lemma shows that the two Dirac operators do coincide after a
suitable unitary transformation of the spinors.

Lemma 1.3.1. For any orthochronous proper Lorentz transformation Λ there is a
unitary matrix U(Λ) (unitary with respect to the spin inner product (1.3.7)) such that

U(Λ) Λljγ
j U(Λ)−1 = γl .

Proof. Since Λ is orthochronous and proper, we can write it in the form Λ = exp(λ),
where λ is a suitable generator of a rotation and/or a Lorentz boost. Then Λ(s) :=
exp(sλ) with s ∈ R, is a family of Lorentz transformations, and differentiating (1.3.18)
with respect to s as s = 0, we find that

λlj glk = −gjm λmk

(note that Λ(s)lj = δlj + s λlj + · · · ). Using this identity together with the fact that the
Dirac matrices are symmetric, it is straightforward to verify that the matrix

u :=
1

4
λlk γl γ

k

is anti-symmetric. As a consequence, the family of matrices

U(s) := exp (su)

is unitary. We now consider for a fixed index l the family of matrices

A(s) := U(s) Λ(s)lj γ
j U(s)−1 .

Clearly, A(0) = γl. Furthermore, differentiating with respect to s gives

d

ds
A(s) = U Λlj

{
u γj − γj u+ λjkγ

k
}
U−1 ,

and a short calculation using the commutation relations (see Exercise 1.8)[
γl γ

k, γj
]
= 2

(
γl g

kj − δjl γ
k
)

(1.3.20)

shows that the curly brackets vanish. We conclude that A(1) = A(0), proving the lemma.
□

Applying this lemma to the Dirac operator in (1.3.19), one sees that the Dirac operator
is invariant under the joint transformation of the spacetime coordinates and the spinors

xj −→ Λjkx
k , ψ −→ U(Λ) ψ .

Moreover, since the matrix U(Λ) is unitary, the representation of the spin inner prod-
uct (1.3.7) is valid in any reference frame. We conclude that our definition of spinors is
indeed Lorentz invariant.

For what follows, it is important to keep in mind that, in contrast to the spin inner
product, the combination ψ†ϕ = ≺ψ|γ0ϕ≻ is not Lorentz invariant. Instead, it is the
zero component of a Minkowski vector. Consequently, the integrand in (1.3.12) is not a
scalar. Its spatial integral, on the other hand, is again Lorentz invariant due to current
conservation.

As a combination of all the Dirac matrices one can form the so-called pseudo-scalar
matrix Γ by

Γ =
i

4!
ϵjklmγ

jγkγlγm = iγ0γ1γ2γ3 . (1.3.21)
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(In the physics literature, this matrix is usually denoted by γ5). Here ϵjklm is the totally
anti-symmetric symbol (i.e. ϵjklm is equal to ±1 if (j, k, l,m) is an even and odd per-
mutation of (0, 1, 2, 3), respectively, and vanishes otherwise). A short calculation shows
that the pseudo-scalar matrix is anti-symmetric and that Γ2 = 1 (see Exercise 1.8). As
a consequence, the matrices

χL =
1

2
(1− Γ) , χR =

1

2
(1+ Γ) (1.3.22)

satisfy the relations (see again Exercise 1.8)

χ2
L/R = χL/R , Γ χL = −χL , Γ χR = χR ,

χ∗
L = χR , χL + χR = 1 .

(1.3.23)

They can be regarded as the spectral projectors of the matrix Γ and are called the
chiral projectors. The projections χLψ and χRψ are referred to as the left- and right-
handed components of the spinor, respectively. A matrix is said to be even and odd if it
commutes or anti-commutes with Γ, respectively. It is straightforward to verify that the
Dirac matrices are odd, and therefore

γj χL/R = χR/L γ
j . (1.3.24)

By multiplying the Dirac equation (1.3.6) from the left by χL/R, one can rewrite it as a
system of equations for the left- and right-handed components of ψ,

iγk(∂k − iAk) χLψ = mχRψ , iγk(∂k − iAk) χRψ = mχLψ .

If m = 0, these two equations decouple, and we get separate equations for the left- and
right-handed components of ψ. This observation is the starting point of the 2-component
Weyl spinor formalism. Here we shall not use this formalism. Instead, we will describe
chiral massless particles (like massless neutrinos) by the left- or right-handed components
of a Dirac spinor.

1.4. The Hilbert Space of Dirac Solutions

We now express the structures of Dirac theory in a convenient notation, which har-
monizes with the structures of causal fermion systems to be introduced later on (in
Chapter 5) and also generalizes to curved spacetime (in Chapter 4). In Minkowski space,
the Dirac wave functions are four-component complex wave functions. More generally,
one can consider them as sections of a vector bundle. In view of these general concepts
(which will be introduced in Section 2.5 below), we denote the Cartesian product

SM := M × C4 ,

as the spinor bundle of M. For every x ∈ M, the subset SxM := {x} × C4 is referred
to as the spinor space at the spacetime point x. Clearly, the spinor bundle is the disjoint
union of all the spinor spaces,

SM =
⋃
x∈M

SxM ,

and in the more general language of vector bundles the spinor spaces at the individual
spacetime points are referred to as fibers of the spinor bundles. The spin inner prod-
uct (1.3.7) can now be regarded as an inner product on each fiber SxM, as we often
clarify by an additional subscript x (although here the inner product does not actually
depend on x),

≺.|.≻x : SxM × SxM → C .
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Figure 1.2. A spatially compact Dirac solution.

A Dirac wave function can be considered as a mapping ψ : M → SM with the property
that for every x ∈ M one has

ψ(x) ∈ SxM ≃ C4 .

Such a mapping is referred to as a section of the spinor bundle.
We next highlight the obtained analytic structures, again anticipating concepts and

results to be introduced later in this book. The scalar product (1.3.12) on the Dirac
solutions gives rise to a Hilbert space structure on an appropriate class of solutions (for
a mathematical introduction to Hilbert spaces see Section 2.2 below). In order to con-
struct this appropriate class of solutions, one can begin by solving the Cauchy problem for
smooth initial data ψ0 of compact support given for example on the hypersurface {t = 0}.
Rewriting the Dirac equation as a linear symmetric hyperbolic system (see Chapter 13
below), one sees that this Cauchy problem has a unique global solution in Minkowski
space. Moreover, this solution is smooth and, due to finite propagation speed, has com-
pact support on any other hypersurface {t = const} (see Figure 1.2). One says that the
solution has spatially compact support. More generally, the set of all smooth and spa-
tially compact sections of the spinor bundle (not necessarily being solutions of the Dirac
equation) is denoted by C∞

sc (M, SM). Clearly, for spatially compact solutions, the scalar
product (1.3.12) is well-defined and finite. Taking the completion of the set of all spa-
tially compact solutions with respect to the scalar product (1.3.12), one obtains a Hilbert
space denoted by (Hm, (.|.)), where m denotes the mass parameter of the Dirac equation
(for details on the completion and Hilbert spaces see Section 2.2 and Exercise 2.6). By
construction, we know that

C∞
sc (M, SM) ∩Hm is dense in Hm .

We note for clarity that the wave functions in the completion Hm are not necessarily
differentiable. Therefore, they do not satisfy the Dirac equations. But they are weak
solutions in the sense that the Dirac equation holds after taking the spacetime inner
product (1.3.16) with a test wave function ϕ and formally integrating by parts, i.e.ˆ

M
≺(D −m)ϕ |ψ≻ dµM = 0 for all ϕ ∈ C∞

0 (M, SM) ,

where C∞
0 (M, SM) denotes the space of smooth wave functions with compact support.

For the reader familiar with the theory of partial differential equations, we finally re-
mark that the solutions in Hm can also be characterized in terms of Sobolev spaces (see
for example [32, Section II.5]). More precisely, the vectors in Hm are weak solutions

in H1,2
loc (M, SM). By the trace theorem (see for example [32, Section II.5.2]), their re-

striction to a hypersurface {t = const} is in L2
loc(R3,C4). As a consequence, the integrand
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Figure 1.3. The Dirac sea with particles and anti-particles.

of the spatial integral in (1.3.12) is locally integrable. The solutions in Hm have the addi-
tional property that their restriction to the hypersurfaces are even in L2(R3,C4), so that
the integral in (1.3.12) exists and is finite.

1.5. Dirac’s Hole Theory and the Dirac Sea

The Dirac theory gives rise to anti-matter and pair creation, as we now briefly explain.
For the present purposes, it suffices to consider the Dirac equation in the vacuum (1.3.5).
It can be solved by the plane wave ansatz (for more details see for example [14, Sec-
tion 3.1], [128, Section 3.3] or [146, Section 1.4.1])

ψ(x) = χ(k) e−ikx ,

where k ∈ M is the four-momentum, and kx = ⟨k, x⟩ is the Minkowski inner product
(for a mathematically precise treatment in terms of the Fourier transform see Section 2.4
below). Using this ansatz in (1.3.5) yields the (zeroth order) linear system

(/k −m) χ(k) = 0 (1.5.1)

for the vector χ(k) ∈ C4. Multiplying by the matrix /k+m and using the anti-commutation
relations (1.3.1) gives the necessary condition

k2 = m2 . (1.5.2)

If this condition is satisfied, the matrix /k−m has a two-dimensional kernel, which coincides
with the image of the matrix /k +m. Thus the general solution of (1.5.1) can be written
as

χ(k) = (/k +m) ϕ with ϕ ∈ C4 .

The zero component ω := k0 of the four-momentum is physically interpreted as 2π
times the frequency of the wave. Equation (1.5.2), also referred to as the dispersion
relation, can then be written as

ω2 =
∣∣⃗k∣∣2 +m2 or ω = ±

√∣∣⃗k∣∣2 +m2 .

Here the plus and the minus sign correspond to positive and negative frequency, respec-
tively. The corresponding solutions are said to be on the upper and lower mass shell
(see Figure 1.3). Using Planck’s relation E = ℏω, the frequency can be related to the
energy of the solution. Thus the solutions on the upper and lower mass shell have positive
respectively negative energy.

At first sight, the occurrence of solutions of negative energy seems problematic, be-
cause particles of negative energy have never been observed. Moreover, at least in a naive
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consideration, solutions of arbitrarily large negative energy should make the physical sys-
tem unstable, because by bringing a particle into a state of larger and larger negative
energy, one could extract more and more positive energy from the system by the principle
of conservation of energy. This problem was resolved by Dirac in 1930 [28] and led to the
prediction of particle creation and anti-matter, as we now outline (an excellent and more
detailed explanation can be found in [14, Section 5.1]). We work in the setting of non-
interacting many-particle quantum mechanics, where the many-particle wave function
is described by a product of one-particle wave functions. In other words, the quantum
state is described by occupying many one-particle states. Dirac’s concept is that in the
vacuum, all the states of negative energy should be occupied, forming the so-called Dirac
sea. According to the Pauli exclusion principle, each state may be occupied by at most
one electron. Therefore, adding particles to the system, the additional particles must oc-
cupy states of positive energy, giving rise to electrons. By convention, the electrons have
negative electric charge. Moreover, one can create “holes” in the Dirac sea. The resulting
“hole in a sea of negative energy” appears as a particle of again positive energy, but with
the opposite and thus positive electric charge. These “holes” can be observed as positrons.
Furthermore, starting from the completely filled Dirac sea, one can “excite” a particle of
the sea by a transition from a state of negative energy to a state of positive energy. As
a result, one obtains a particle (=electron) plus a hole (=positron). This explains why
matter and anti-matter can be created in pairs in a process called pair creation.

The above intuitive picture of the Dirac sea has important observable consequences,
because it explains fundamental physical phenomena like anti-matter and pair creation.
Nevertheless, the naive picture suffers from the problems that the Dirac sea has an in-
finite negative charge density and an infinite energy density. In modern quantum field
theory, these problems are bypassed by introducing a suitable vacuum state and working
“relative” to this vacuum state. Here we shall not enter these constructions. Instead, we
shall take Dirac’s concept of a “sea of interacting particles” seriously, as will be explained
in more detail in Section 5.9.

1.6. Exercises

Exercise 1.1. Show that the relations “lies in the timelike future of” and “lies in
the causal future of” are transitive in the following sense,

y ∈ I∨x and z ∈ I∨y =⇒ z ∈ I∨x

y ∈ J∨
x and z ∈ J∨

y =⇒ z ∈ J∨
x .

Exercise 1.2. (Local gauge transformations I) Show that the Klein-Gordon equa-
tion (1.2.6) is invariant under joint transformations of the electromagnetic potential and
the wave function according to

Aj(x) → Aj(x) + ∂jΛ(x) , ψ(x) → e−iΛ(x) ψ(x) . (1.6.1)

Moreover, show that the electromagnetic field tensor Fjk := ∂jAk − ∂kAj remains un-
changed under these transformations.

We remark that the transformations (1.6.1) are the classical gauge transformations of
electrodynamics. They give rise to local phase transformations of the quantum mechanical
wave functions, which have no physical significance because all measurable quantities
involve the product of the wave function with its complex conjugate.
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Exercise 1.3. (Local gauge transformations II) Show that the Dirac equation 1.3.6
is invariant under joint transformations (1.6.1) of the electromagnetic potential and the
Dirac wave function.

Exercise 1.4. (Anti-commutation relations)

(a) Verify by direct computation that the Dirac matrices (1.3.3) satisfy the anti-commu-
tation relations (1.3.1).

(b) Why is it not possible to satisfy these anti-commutation relations with 2×2- or 3×3-
matrices? Hints: The case of odd-dimensional matrices can be ruled out by com-
puting the square and the trace of the matrix γ0γ1. For 2 × 2-matrices, a similar
argument shows that the matrix γ0γ1 is diagonalizable, making it possible to proceed
in an eigenvector basis.

Exercise 1.5. Show that the Dirac matrices in the Dirac representation (1.3.3) are
symmetric with respect to the spin inner product (1.3.7). Show that this symmetry
property is equivalent to the statement that the matrices γ0γj are Hermitian.

Exercise 1.6. Show that, multiplying the Dirac equation (1.3.6) by the operator
(iγj(∂j − iAj) +m) and using the anti-commutation relations, we obtain the equation(

− (∂k − iAk)(∂
k − iAk) +

i

2
Fjkγ

jγk −m2
)
ψ = 0 .

This differs from the Klein-Gordon equation (1.2.6) by the extra term i
2Fjkγ

jγk, which
describes the coupling of the spin to the electromagnetic field.

Exercise 1.7. In this exercise, we shall verify that for any non-zero spinor ψ, the
corresponding Dirac current vector Jk = ≺ψ|γkψ≻ is non-spacelike.

(a) Show that the matrix γ0γ1 is Hermitian and has eigenvalues ±1. Deduce that

⟨ψ, γ0γ1ψ⟩C4 ≤ ∥ψ∥2C4 .

(b) Show that the last inequality implies that |J1| ≤ J0.

(c) Use the rotational symmetry of the Dirac equation to conclude that J0 ≥ |J⃗ |
(where J⃗ = (J1, J2, J3) ∈ R3).

Exercise 1.8. This exercise has the purpose of getting more familiar with the com-
putation rules for Dirac matrices.

(a) Derive (1.3.20) from the anti-commutation relations.
(b) Derive from the anti-commutation relations and the symmetry of the Dirac matrices

that the pseudo-scalar matrix Γ in (1.3.21) is anti-symmetric and that Γ2 = 1.
(c) Show that the chiral projectors χL and χR defined by (1.3.22) satisfy the rela-

tions (1.3.23) and (1.3.24). Show that the Dirac equation in the presence of an
external field (1.3.6) can be rewritten as a system of equations for the left- and
right-handed components of ψ,

iγk(∂k − iAk)χLψ = mχRψ , iγk(∂k − iAk)χRψ = mχLψ .

What happens in the limiting case m = 0?

Exercise 1.9. This exercise explains how the causal structure of Minkowski space
is encoded in the Dirac matrices. This method generalizes to partial differential equa-
tions of so-called symmetric hyperbolic type as will be introduced later in this book (see
Chapter 13). For this exercise no knowledge on symmetric hyperbolic systems is needed.
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But we use the same notions to be introduced in Chapter 13. Show that the Dirac equa-
tion (i/∂ −m)ψ = 0 can be rewritten as a so-called symmetric hyperbolic system, i.e. in
the form(

A0(x) ∂0 +Aα(x) ∂α +B(x)
)
ψ = 0, with (Ai)† = Ai and A0(x) ≥ c1

with a constant c > 0 (where the dagger means transposition and complex conjugation).
For such systems a notion of causality can be introduced as follows. A vector ξ ∈ R4 is
said to be time-like or light-like at x ∈ R4, if the matrix A(x, ξ) := Ai(x) ξi is definite
(either positive or negative) or singular, respectively.

Find the matrices Ai and B for the Dirac equation and show that the above notions
of time-like and light-like vectors coincide with the corresponding notions in Minkowski
space. Hint: Do not be surprised if the naive choice Aj = γj does not work.

Exercise 1.10. (Decomposition of Dirac solutions into positive and negative energy)

For a momentum k⃗ ∈ R3 we define the energy ω(k⃗) :=
√
k⃗2 +m2 and the matrices

p±(k⃗) :=
/k +m

2 k0
γ0

∣∣∣∣
k0=±ω(k⃗)

∈ Mat(4,C) (with /k := k0γ0 − k⃗ · γ⃗).

(i) Referring to the standard scalar product of C4, show that the matrices p±(k⃗) are
symmetric, idempotent, add up to the identity and have orthogonal images. Con-
clude that the spinor space C4 can be decomposed into the orthogonal direct sum

C4 =W+

k⃗
⊕W−

k⃗
, with W±

k⃗
:= Im p±(k⃗).

(ii) Let φ ∈ C∞
sc (R4,C4) be a smooth solution of the Dirac equation with spatially

compact support, i.e.

(iγ0∂0 + iγα∂α −m)φ = 0, with φ(t, · ) ∈ C∞
0 (R3,C4) for all t ∈ R.

Let φ̂ be the smooth function on R4 defined by taking the Fourier transform of φ in
the spatial variables only. Find h ∈ C∞(R3,Mat(4,C)) such that

i∂t φ̂(t, k⃗) = h(k⃗) · φ̂(t, k⃗) for all t ∈ R, k⃗ ∈ R3.

Show that h(k⃗) is also symmetric with respect to the standard scalar product of C4

and satisfies
h(k⃗)p±(k⃗) = ±ω(k⃗)p±(k⃗).

In particular, ±ω(k⃗) form the spectrum of h(k⃗).
(iii) Referring to point (ii), conclude that

φ(t, x⃗) =

ˆ
R3

d3k⃗

(2π)3/2

(
p−(k⃗)φ̂(0, k⃗) e

iω(k⃗)t + p+(k⃗)φ̂(0, k⃗) e
−iω(k⃗)t

)
ei k⃗·x⃗

Hint: You can use the fact that the Cauchy problem admits unique smooth solutions.

From a mathematical point of view, the Dirac sea is described by the Hilbert space
generated by all the smooth solutions with spatially compact support and the property

that p−(k⃗) φ̂(0, k⃗) = φ̂(0, k⃗).





CHAPTER 2

Mathematical Preliminaries

In this chapter we summarize some mathematical preliminaries which we believe are
important for studying causal fermion systems. In particular, the basic definitions of
measure theory and functional analysis are needed already for the very definition of a
causal fermion system. For mathematicians, the material covered in this chapter will
probably be rather familiar. For physicists, depending on ones background, this might
be different, and we hope that this chapter helps to make the core contents of this book
accessible. The presentation is mostly a summary without detailed proofs, but we do
provide explanations, examples and exercises to get acquainted with the material. For
a more thorough coverage, we again provide references to various standard textbooks
throughout the chapter.

2.1. Basics on Topology

We here recall a few basic concepts from topology. A more systematic treatment
can be found in many good elementary textbooks like for example [140] or [106]. In a
topological space the fundamental concept is that of an open set. Since topological spaces
are a rather abstract concepts, we prefer to begin with metric spaces.

Definition 2.1.1. Let E be a set. A mapping

d : E × E → R+
0

is called metric on E if it has the following properties:

(i) Positivity: For all x, y ∈ E,

d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y .

(ii) Symmetry: For all x, y ∈ E,

d(x, y) = d(y, x) .

(iii) Triangle inequality: For all x, y, z ∈ E,

d(x, y) ≤ d(x, z) + d(z, y) .

If d is a metric on E, then the pair (E, d) is called a metric space.

A simple example of a metric space is E = R3 with the Euclidean distance function

d(x, y) = ∥x− y∥ :=

( 3∑
α=1

∣∣xα − yα
∣∣2) 1

2

,

or also Rn with the analogously defined distance function. In view of this example, d(x, y)
is sometimes also referred to as the distance between x and y. More examples of metric
spaces will be given in the following section.

A metric gives rise to a corresponding topology:

19
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E

Ω

x
r

Figure 2.1. An open set Ω ⊂ E.

Definition 2.1.2. Let (E, d) be a metric space. For any x ∈ E and r > 0, the set

Br(x) :=
{
y ∈ E

∣∣ d(x, y) < r
}

is referred to as the open ball of radius r centered at x. A subset Ω ⊂ E is open
if for every x ∈ Ω there is some radius r > 0 such that Br(x) ⊂ Ω (see Figure 2.1). The
metric topology O of (E, d) is defined as the family of all open subsets,

O :=
{
Ω ⊂ E | Ω is open

}
⊂ P(E)

(here P(E) denotes the power set of E, i.e. the set of all subsets of E).

The open sets in a metric space satisfy certain properties (we omit the proof, which is an
easy exercise and can also be found in many textbooks):

Lemma 2.1.3. Given a metric space (E, d), the corresponding metric topology O has
the following properties:

(i) ∅, E ∈ O

(ii) Closedness under finite intersections: For any n ∈ N and Ω1, . . . ,Ωn ⊂ E,

Ω1, . . . ,Ωn ∈ O =⇒ Ω1 ∩ · · · ∩ Ωn ∈ O .

(iii) Closedness under arbitrary unions: For any (possibly infinite) family (Ωλ)λ∈Λ of
subsets of E,

Ωλ ∈ O for all λ ∈ Λ =⇒
⋃
λ∈Λ

Ωλ ∈ O .

A topological space is now defined by turning exactly these properties into a definition.

Definition 2.1.4. A set E together with a distinguished family of subset O ⊂ P(E)
satisfying the properties (i)–(iii) in Lemma 2.1.3 is referred to as a topological space.
The family of subsets O is called the topology of E. The sets in O are called open
subsets of E (with respect to O). A topology O on E with the additional property that
for any distinct point x, y ∈ E, there are disjoint open sets U, V ∈ O with x ∈ U and y ∈ V
is called Hausdorff (see Figure 2.2).

Clearly, topological spaces are a general and abstract concept. In particular, the
topology of a topological space does not necessarily need to come from an underlying
metric. Note that the topology coming from a metric is always Hausdorff, as one sees
immediately by choosing U = Br(x) and V = Br(y) with r = d(x, y)/3.

The significance of the definition of a topological space lies in the fact that many
notions from analysis can be formulated purely in topological terms and thus be gener-
alized to arbitrary topological space. We conclude by recalling a few of such topological
definitions:
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x
y

U V

Figure 2.2. The Hausdorff property.

A set A ⊂ E is called closed if its complement E \ A is open. The properties in
Lemma 2.1.3 can be restated for closed sets by saying that the empty set and E are
closed, and that finite unions as well as arbitrary intersections of closed sets are again
closed (see Exercise 2.1). The closure A of a subset A ⊂ E is defined by

A :=
⋂{

B ⊂ E | A ⊂ B and B is closed} .

It is by definition the smallest closed set containing A. Similarly, the interior
◦
A of a

set A ⊂ E is defined as the largest open set contained in A, i.e.
◦
A :=

⋃{
B ⊂ E | B ⊂ A and B is open} .

A subset K ⊂ E is called compact if for every collection {Ui}i∈I of open sets of E
with K ⊂

⋃
i∈I Ui there exist finitely many i1, . . . , in ∈ I such that still K ⊂

⋃n
k=1 Uik

(every open cover of K has a finite subcover).
A sequence (xn)n∈N in E converges to a point x ∈ E if for any open set U ⊂ E

with x ∈ E there is some N ∈ N with xn ∈ U for all n ≥ N . In this notion of convergence
the Hausdorff property is important because it guarantees uniqueness of the limit point x
(if it exists).

The support of a function f : E → R (or, more generally, mapping to a vector space)
is defined as the closure of the set where it is non-zero,

supp f := {x ∈ E | f(x) ̸= 0} . (2.1.1)

In the applications one often encounters functions with compact support. Finally, a map-
ping f : E → F between two topological spaces (E,OE) and (F,OF ) is continuous if the
pre-image of any open set is open, i.e. if for any Ω ⊂ F

Ω ∈ OF =⇒ f−1(Ω) ∈ OE . (2.1.2)

A continuous mapping which is invertible and whose inverse is also continuous is referred
to as a homeomorphism.

In metric spaces, this definition of continuity is equivalent to the usual ε-δ-criterion
(see Exercise 2.2). The topological definition has the advantage that in proofs it fits to-
gether nicely with other topological notions. Many important theorems from real analysis
have topological generalizations. For example, every real-valued continuous function on
a compact topological space attains its maximum (see Exercise 2.3).

2.2. Banach Spaces, Hilbert Spaces and Linear Operators

In this section, we consider complex vector spaces equipped with additional structures
like a norm and a scalar product (most definitions can be adapted in a straightforward
way to real vector spaces). We also recall the notion of completeness and introduce linear
operators. For more details and further reading we recommend the textbooks [136, 131,
116].
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Definition 2.2.1. Let V be a complex vector space. A norm on V is a mapping

∥ · ∥ : V → R+
0

with the following properties:

(i) Homogeneity: For all x ∈ V and λ ∈ C,∥∥λx∥∥ = |λ| ∥x∥ .
(ii) Definiteness: For all x ∈ V ,

∥x∥ = 0 ⇐⇒ x = 0 .

(iii) Triangle inequality: For all x, y ∈ V ,

∥x+ y∥ ≤ ∥x∥+ ∥y∥ .
If || · ∥ is a norm on V , then the pair (V, ∥ · ∥) is called a normed space.

Every normed space is naturally a metric space (see Definition 2.1.1) with the metric
defined by d(x, y) := ∥x− y∥ for all x, y ∈ V .

To give a concrete example, on Cn for any p ∈ [1,∞)∪{∞} one obtains a norm ∥ · ∥p
as

∥x∥p :=
( n∑
i=1

|xi|p
) 1

p

for p <∞ and ∥x∥∞ := max{|x1|, . . . |xp|} . (2.2.1)

The same norms can be considered on Rn instead of Cn, and in the case p = 2, this gives
the Euclidean length of a vector x ∈ Rn. As a related, but infinite-dimensional example,
on the vector space of compactly supported continuous functions C0

0 (Rn) one defines the
integral norms

∥f∥p :=
(ˆ

Rn

|f(x)|pdx
) 1

p

for p <∞ and ∥f∥∞ := sup
x∈Rn

|f(x)| . (2.2.2)

For more details on these examples see Exercise 2.4. The norm ∥.|∥p will be introduced
on an abstract measure space in Section 2.3.

We next recall the notion of completeness, which is a property about convergence of
sequences. First recall that a sequence (xn)n∈N in a metric space E converges to a point
x ∈ E if for any ε > 0 there is N ∈ N such that d(xn, x) < ε for all n ≥ N . Similarly, a
sequence (xn)n∈N in E is a Cauchy sequence if for any ε > 0 there is some N ∈ N such
that d(xn, xm) < ε for all m,n ≥ N . Any sequence converging to a point of E is a Cauchy
sequence. If conversely also any Cauchy sequence converges to a point of E, one calls E a
complete metric space. A normed space which as metric space is complete is referred to as
a Banach space. A few examples of Banach spaces are given in Exercise 2.5. Completeness
is an important and very useful property. Therefore, we would like to restrict attention
to complete metric spaces. This is no major restriction because any non-complete metric
space can be regarded as subset of a corresponding complete metric space, its so-called
completion (for details see Exercise 2.6).

We next specialize the setting by turning from a norm to a scalar product.

Definition 2.2.2. Let V be a complex vector space. A scalar product on V is a
mapping

⟨.|.⟩ : V × V → C
with the following properties:
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(i) Linearity in the second argument: For all u, v, w ∈ V and α, β ∈ C,

⟨u |αv + βw⟩ = α ⟨u|v⟩+ β ⟨u|w⟩ .

(ii) Hermitian symmetry: For all u, v ∈ V ,

⟨u|v⟩ = ⟨v|u⟩ .

(iii) Positive definiteness: For all u ∈ V ,

⟨u|u⟩ ≥ 0 and ⟨u|u⟩ = 0 ⇐⇒ u = 0 .

If ⟨.|.⟩ is a scalar product on V , the pair (V, ⟨.|.⟩) is a scalar product space.

Every scalar product space (V, ⟨.|.⟩) is also a normed space with the norm being defined

by ∥u∥ :=
√
⟨u|u⟩ for all u ∈ V (see Exercise 2.7). The Cauchy-Schwarz inequality∣∣⟨u|u⟩∣∣ ≤ ∥u∥ ∥v∥

bounds the scalar product in terms of the corresponding norms; it is a direct consequence
of the above properties of a scalar product. A scalar product space which is a Banach
space, i.e. which is complete, is called a Hilbert space. We usually denote a Hilbert space
by H or (H, ⟨.|.⟩).

A simple example of a scalar product space is Cn with the scalar product defined by

⟨u|v⟩ :=
n∑
i=1

ui vi .

An infinite-dimensional example is the space C0(Rn,C) of complex-valued test functions
with the scalar product

⟨f |g⟩L2 :=

ˆ
Rn

f(x) g(x)dx .

The corresponding norms give us back (2.2.1) or (2.2.2), respectively, in the case p = 2.
Throughout this book, all Hilbert spaces will be separable, meaning that there is a

countable subset D ⊂ H which is dense in the sense that its closure is the whole Hilbert
space, D = H. In a separable Hilbert space, one can choose an orthonormal Hilbert space
basis (ei)i∈I characterized by the following properties:

(i) The index set I is at most countable.
(ii) The system (ei)i∈I is orthonormal, i.e.

⟨ei|ej⟩ = δij ,

where δij is the Kronecker delta defined by

δij =

{
1 if i = j
0 otherwise .

(iii) The system (ei)i∈I is complete, meaning that every vector u ∈ H has the represen-
tation as a (possibly infinite) linear combination

u =
∑
i∈I

ci ei with ci ∈ C ,

where the series converges in H.
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Using property (ii), the coefficients ci in the representation in (iii) can be computed
by ci = ⟨ei|u⟩. Thus every vector u ∈ H can be written as

u =
∑
i∈I

⟨ei|u⟩ ei .

The convergence of this series is guaranteed by Bessel’s inequality∑
i∈I

∣∣⟨ei|u⟩∣∣2 ≤ ∥u∥ ,

which holds for any orthonormal system (ei)i∈I (even if not complete) as a direct conse-
quence of the properties of the scalar product. Moreover, the cardinality of the index set I
does not depend on the choice of the basis, making it possible to define the dimension of
the Hilbert space

dimH := #I ∈ N0 ∪ {∞} .

Now we turn our attention to linear operators.

Definition 2.2.3. Let (V, ∥ · ∥V ) and (W, ∥ · ∥W ) be normed spaces. A mapping

A : V →W

is a bounded linear operator from V to W if it has the following properties:

(i) Linearity: For all u, v ∈ V and α, β ∈ C,
A
(
αu+ βv

)
= αA(u) + β A(v) .

(ii) Boundedness: There is a constant c > 0 such that for all u ∈ V ,∥∥A(u)∥∥
W

≤ c ∥u∥V .

Usually, one also writes A(u) simply as Au. We remark that for linear operators, bound-
edness is equivalent to continuity (see Exercise 2.8).

The set of all bounded linear operators between two complex vector spaces V and W
forms again a complex vector space with the vector operations defined pointwise. Thus
for any bounded linear operators A,B : V → W and α, β ∈ C, the operator αA + βB :
V →W is defined by(

αA+ βB
)
(u) := αAu+ β Bu for any u ∈ V .

The resulting vector space of bounded linear operators from V toW is denoted by L(V,W ).
One obtains a norm on this vector space by setting

∥A∥ := sup
u∈V,∥u∥V =1

∥∥Au∥∥
W
,

referred to as the sup-norm or the operator norm. With this norm, the space L(V,W ) is
complete if and only if W is. For details we refer to Exercise 2.9.

We will be concerned mainly with bounded linear operators acting on a Hilbert
space (H, ⟨.|.⟩). Two cases are of specific interest: mappings from H to the complex
numbers, and mappings from H back to itself. In the first case, the resulting operator
is also referred to as a bounded linear form. These operators form the so-called dual
space H∗,

H∗ := L(H,C) .
An example of a bounded linear form is the mapping H ∋ u 7→ ⟨v|u⟩ ∈ C obtained by
taking the scalar product with a fixed vector v ∈ H. In fact, every bounded linear form
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can be written in this way, making it possible to canonically identify the dual space of a
Hilbert space with the Hilbert space itself:

Theorem 2.2.4. (Fréchet-Riesz) Let H be a Hilbert space. Then for any bounded
linear functional ϕ ∈ H∗ there is a unique vector v ∈ H such that

ϕ(u) = ⟨v|u⟩ for all u ∈ H . (2.2.3)

In the case of a separable Hilbert space of interest here, this theorem can be understood in
simple terms by expanding vectors in an orthonormal Hilbert space basis (ei)i∈I . Writing
a vector u ∈ H as u =

∑
i∈I⟨ei|u⟩ ei we have

ϕ(u) =
∑
i∈I

⟨ei|u⟩ ϕ(ei) ,

where in the infinite-dimensional case we have to use continuity (boundedness) of ϕ to
see that we can pull out the (infinite) sum. Now the idea is to rewrite the last term as∑

i∈I
⟨ei|u⟩ ϕ(ei) =

〈∑
i∈I

ϕ(ei) ei

∣∣∣u〉
(where we used linearity and continuity of the scalar product), and then simply define
the vector v ∈ H we are looking for by

v =
∑
i∈I

ϕ
(
ei
)
ei . (2.2.4)

In finite dimensions, this computation is fine. In infinite dimensions, however, one must
show that the series defining v converges in H before one can compute as above. Fortu-
nately, with a little trick this convergence is not hard to see: Let I = N and note first
that for vn :=

∑n
i=1 ϕ(ei) ei we get

n∑
i=1

∣∣ϕ(ei)∣∣2 = |ϕ(vn)| ≤ ∥ϕ∥ · ∥vn∥ = ∥ϕ∥ ·
( n∑
i=1

|ϕ(ei)|2
) 1

2
,

and therefore
∑n

i=1 |ϕ(ei)|2 < ∥ϕ∥2. Using completeness of H, one readily finds that the
series in (2.2.4) also converges as desired. It is also straightforward to verify that ∥v∥ =
∥ϕ∥.

The Fréchet-Riesz theorem is the mathematical justification for the bra/ket notation
commonly used in quantum mechanics. In this notation elements of H are denoted by |v⟩
and referred to as kets, and elements of the dual space H∗ are denoted by ⟨v| and referred
to as bras. As a consequence of the Fréchet-Riesz theorem, for any ket |v⟩ one may form
the corresponding bra ⟨v| and vice-versa. This notation resembles the role of the inner
product ⟨·|·⟩, as for any bra ⟨v| and any ket |w⟩ one may form the bra-(c)ket ⟨v|w⟩.

Another application of the Fréchet-Riesz theorem is to define the adjoint of a bounded
linear operator: Given two Hilbert spaces (H1, ⟨.|.⟩H1) and (H2, ⟨.|.⟩H2) as well as an
operator A ∈ L(H1,H2), for every u ∈ H2 we can the define the linear functional on H1

ϕ : H1 → C , v 7→ ⟨u |Av⟩2 .

The estimate |ϕ(v)| ≤ ∥u∥H2 ∥A∥ ∥v∥H1 shows that this functional is bounded, making it
possible to represent it uniquely by a vector w ∈ H1, i.e.

⟨u|Av⟩H2 = ⟨w|v⟩H1 for all v ∈ H1 .
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By direct computation one verifies that the resulting mapping v 7→ w is linear and
bounded. The resulting operator A∗ ∈ L(H2,H1), referred to as the adjoint of A,
satisfies and is uniquely determined by the relation

⟨u|Av⟩H2 = ⟨A∗u|v⟩H1 for all u ∈ H2 and v ∈ H1 . (2.2.5)

We finally consider the space L(H,H) of bounded linear endomorphisms. For brevity,
this space is also denoted by L(H). In the context of such linear endomorphisms, the
following additional notions are important.

Definition 2.2.5. A bounded linear operator A ∈ L(H) is symmetric if

⟨Au | v⟩ = ⟨u |Av⟩ for all u, v ∈ H .

An operator U ∈ L(H) is unitary if it has a bounded inverse and if

⟨Uu |Uv⟩ = ⟨u | v⟩ for all u, v ∈ H .

It has finite rank if its image A(H) is a finite-dimensional subspace of H.

For clarity, we mention that there is also the notion of an operator being selfadjoint.
For bounded linear operators, this is equivalent to being symmetric. For unbounded
operators, however, being selfadjoint is a stronger property than being symmetric. Self-
adjointness is required for instance in the proof of the spectral theorem (see Section 3.2).
With this in mind, when talking about bounded operators, in this book we usually prefer
the notion of a symmetric operator.

If the Hilbert space H is finite-dimensional, symmetric and unitary operators can be
diagonalized by choosing an orthonormal basis of eigenvectors (for details see standard
textbooks on linear algebra like [100, 142]). The eigenvalues of a symmetric operator are
all real, whereas the eigenvalues of a unitary operator have modulus one. The generaliza-
tion of this result to the infinite-dimensional setting is provided by the spectral theorem.
The general spectral theorem for bounded symmetric operators, which will be needed
mainly in Section 15, will be treated in Section 3.2 below. In large parts of this book,
however, we only deal with symmetric operators having finite rank (on possibly infinite-
dimensional Hilbert spaces). For such operators the results of linear algebra carry over
in a straight-forward manner, as we now explain.

Thus let A ∈ L(H) be a symmetric bounded operator of finite rank. Then by definition
its image I := A(H) is finite-dimensional. Its orthogonal complement

I⊥ :=
{
v ∈ H | ⟨v, u⟩ = 0 for all u ∈ I

}
(2.2.6)

is a closed subspace of H, and every vector u ∈ H can be decomposed uniquely as

u = u|| + u⊥ with u|| ∈ I, u⊥ ∈ I⊥ (2.2.7)

(see Exercise 2.12). Moreover, for any u ∈ I⊥ the computation

0 = ⟨A2u | u⟩ = ⟨Au |Au⟩

shows that Au = 0. Therefore, A vanishes identically on I⊥ and so it suffices to consider
the restriction A|I : I → I. Being an operator on a finite-dimensional vector space, it
can be diagonalized as in linear algebra.

When taking products of symmetric operators A1, . . . , An of finite rank, one chooses I
as the finite-dimensional vector space spanned by the images of all the operators. Then
the restrictions Ak|I with k = 1, . . . , n all map I to itself, making it possible to work
again in a finite-dimensional subspace of H.
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2.3. Basics on Abstract Measure Theory

The basic object of a causal fermion system is a measure. For this reason, we now
provide the necessary basics on abstract measure theory. For more details we refer to
good standard textbooks like [136, 101, 15, 87, 8].

Let F be a set. A measure is a mapping which to a subset of F associates a non-
negative number, which can be thought of as the “volume” of the set. In order to get
into a mathematically sensible setting, one cannot define the measure on any subset, but
only on a distinguished family of subsets of F. This family must form a σ-algebra, which
we now define.

Definition 2.3.1. A system M of subsets of F is a σ-algebra if it has the following
properties:

(i) ∅ ∈ M
(ii) M is closed under taking complements: For any subset A ⊂ F,

A ∈ M =⇒ F \A ∈ M .

(iii) M is closed under at most countable unions: For any sequence (An)n∈N of subsets
of F,

An ∈ M for all n ∈ N =⇒
⋃
n∈N

An ∈ M .

The sets in M are also referred to as the measurable sets.

Using De Morgan’s laws, it follows that a σ-algebra is closed even under at most countable
intersections and, more generally, under at most countable set operations.

We next introduce a measure as a mapping which to every measurable set associates
its “volume.” This mapping is compatible with at most countable set operations, as is
made precise by the notion of σ-additivity.

Definition 2.3.2. A measure ρ is a mapping from a σ-algebra to the non-negative
numbers or infinity,

ρ : M → R+
0 ∪ {∞} ,

which has the following properties:

(i) ρ(∅) = 0
(ii) ρ is σ-additive: For any sequence (An)n∈N of pairwise disjoint measurable sets,

ρ
( ⋃
n∈N

An

)
=

∞∑
n=1

ρ
(
An

)
.

The structure (F,M, ρ) is a measure space.

By choosing almost all of the sets An in (ii) as empty sets, one sees that σ-additivity
implies finite additivity. In particular ρ(A∪B) = ρ(A)+ρ(B) for any disjoint measurable
sets A and B. As a consequence, a measure is monotone in the sense that ρ(A) ≤ ρ(B)
for any measurable sets A ⊂ B (see Exercise 2.15).

A set of measure zero is also referred to as a null set. By monotonicity, every mea-
surable subset of a null set is again a null set. If every subset of a null set is measurable,
then the measure is called complete.

On a measure space (F,M, ρ) a notion of integration is introduced as follows. We
begin with complex-valued functions which take only a finite number of values, also
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referred to as step functions. A step function f : F → C can be written as

f =
N∑
n=1

cnχAn

withN ∈ N, coefficients cn ∈ C and measurable sets An ∈ M (here χA is the characteristic
function defined by χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise). Its integral is defined
in the natural way by

ˆ
F

f dρ :=

N∑
n=1

cn ρ
(
An

)
.

This integral can be extended to more general functions as follows. A function f : F → C
ismeasurable if the pre-image of any open set is measurable. For a measurable function f :
F → [0,∞] taking real, nonnegative values or the value plus infinity, one defines

ˆ
F

f dρ := sup

{ˆ
F

s dρ

∣∣∣∣ s : F → [0,∞) is a step function with s ≤ f

}
∈ R+

0 ∪ {∞} .

This expression is allowed to be infinite. If it is finite, one calls f integrable. From here
on the further generalization is straightforward: For a measurable function f : F → R
one defines its positive and negative f+, f− : F → [0,∞) by f+(x) := max{f(x), 0}
and f−(x) := max{−f(x), 0}. Then clearly f = f+ − f− and one can show that f+, f−

are again measurable. If at least one of them is integrable, one defines

ˆ
F

fdρ :=

ˆ
F

f+dρ−
ˆ
F

f−dρ ∈ R ∪ {−∞,∞} .

Again, f is defined to be integrable if this integral is finite (note that no cancellation
between positive and negative terms can happen, as positive and negative part of f are
considered separately). Finally, for a complex-valued measurable function f : F → C
whose real and imaginary part are both integrable (they are always measurable), one
defines ˆ

F

fdρ :=

ˆ
F
Re(f)dρ+ i

ˆ
F

Im(f)dρ ∈ C .

A complex-valued measurable function on F whose real and imaginary part are both
integrable is again called integrable. One can combine all these notions of integrability
by demanding that the absolute value is integrable,

ˆ
F

|f(x)| dρ(x) ∈ R+
0 ∪ {∞} . (2.3.1)

This condition can be understood immediately from the requirement that in integrals one
must always avoid expressions of the form “∞−∞.”

The integrable functions form a vector space denoted by L1(F, dρ). Similarly, the
measurable functions f whose power |f |p with p ∈ (1,∞) is integrable, form a vec-
tor space Lp(F, dρ). Finally, the space L∞(F,dρ) is defined as the functions which
are essentially bounded in the sense that there is a number c > 0 such that the pre-
image |f |−1((c,∞]) has ρ-measure zero. The spaces Lp(F, dρ) with p ∈ [1,∞] are almost
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normed spaces if endowed with the corresponding norms

∥f∥p :=
( ˆ

F

|f |p dρ
) 1

p

if p ∈ [0,∞)

∥f∥∞ := inf

{
c ≥ 0

∣∣∣ ρ(|f |−1
(
(c,∞]

))
= 0

}
.

The only issue here is that functions which vanish almost everywhere (i.e. which are
non-zero only on a set of ρ-measure zero) have norm zero. In order to resolve this
issue, in the Lp-spaces one quotients out these functions. We thus obtains a normed
space denoted by Lp(F, dρ), which even turn out to be Banach spaces. Although the
vectors in these Lp-spaces are equivalence classes of functions which differ on sets of
measure zero, for simplicity one usually refers to vectors in Lp(F, dρ) as functions and
understands implicitly that they may be changed arbitrarily on sets of measure zero. The
space L2(F, dρ) is even a Hilbert space, endowed with the scalar product

⟨f |g⟩L2(F,dρ) :=

ˆ
F

f(x) g(x) dρ(x) . (2.3.2)

We remark that these constructions generalize immediately to functions taking values in
a Banach or Hilbert spaces, if one simply replaces the absolute value in (2.3.1) by the
norm on the Banach space and the inner product fg in (2.3.2) by the Hilbert space scalar
product. Finally, we remark that integration over a subset A ⊂ F is defined asˆ

A
f dρ :=

ˆ
F

fχA dρ ,

where χA is the characteristic function of A (defined by χA(x) = 1 if x ∈ A and χA(x) = 0
otherwise).

We now specialize the setting by considering a class of measures which will be of major
importance in this book, namely Borel measures. To this end, we assume that (F,O) is
a topological space. Then the Borel algebra is defined as the smallest σ-algebra which
contains all the open sets (see Exercise 2.16). An element of the Borel algebra is a Borel
set. A measure on the Borel algebra is referred to as a Borel measure. The Borel measures
of relevance to us will typically harmonize with the topology in the following sense.

Definition 2.3.3. A Borel measure ρ on F is called regular if for any measurable
set A,

ρ(A) = sup
K⊂A compact

ρ(K) = inf
Ω⊃A open

ρ(Ω) .

It is locally finite if every point of F has an open neighborhood Ω with ρ(Ω) < ∞.
Regular, locally finite Borel measures are also referred to as Radon measures.

The Lebesgue measure on Rn is a Radon measure. We remark that a Borel measure
in general is not complete, because a Borel null set may have subsets which are not
Borel sets. One could improve the situation by forming the completion of the measure
(see Exercise 2.17). However, completeness of the measure is not important for most
applications, and is will often be more convenient to work with Borel measures.

One of the advantages of the notion of integration introduced above (compared to for
example the Riemann integral) is that various (easy to use and prove) results regarding
convergence of integrals hold. For instance, for a sequence (fn)n∈N of measurable func-
tions fn : F → C which converge pointwise to a function f : F → C, the function f is
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again measurable and one has ˆ
F

fn dρ→
ˆ
F

f dρ

if all functions only take nonnegative values and fn ≤ fn+1 for all n ∈ N (Lebesgue’s
monotone convergence theorem), or if there exists an integrable function g : F → [0,∞)
with |fn| ≤ g for all n ∈ N (Lebesgue’s dominated convergence theorem). Another im-
portant result in integration theory is Fubini’s theorem, which is about iterated integrals.
If (F,M, ρ) and (G,N, ν) are two measure spaces, then on the product space F×G there
is a natural σ-algebra containing all product sets M × N with M ∈ M, N ∈ N, and a
measure ρ× ν on this σ-algebra such that (ρ× ν)(M ×N) = ρ(M)ν(N) for all M ∈ M,
N ∈ N. Now Fubini’s theorem now states that if f : F×G → C is integrable with respect
to this measure, thenˆ

F×G
f d(ρ× ν) =

ˆ
G

(ˆ
F

f(x, y) dρ(x)

)
dν(y) =

ˆ
F

(ˆ
G
f(x, y) dν(y)

)
dρ(x) . (2.3.3)

A variant of Fubini’s theorem, referred to as Tonelli’s theorem, states that if f is mea-
surable and non-negative (but not necessarily integrable), then again (2.3.3) holds, but
now the integrals could take the value plus infinity.

We conclude this section by introducing a few other notions which will be needed
later on. The first notion is the support of a measure.

Definition 2.3.4. Let (ρ,M) be a measure on the topological space (F,O). The
support of ρ is defined as the complement of the largest open set of measure zero, i.e.

supp ρ := F \
⋃{

Ω ⊂ F
∣∣ Ω is open and ρ(Ω) = 0

}
. (2.3.4)

Note that the support is by definition a closed subset of F. In integrals, one can always
restrict to the support of a measure in the sense that the identityˆ

F

f dρ =

ˆ
supp ρ

f dρ

holds for any integrable function f on F.
Suppose we want to compare two Radon measures ρ and ρ̃ on F. A natural idea is

to consider the difference of the measures ρ − ρ̃. The difficulty is that for a measurable
set A ⊂ F, its measures ρ(A) and ρ̃(A) could both take the value +∞, in which case their
difference would be ill-defined. In order to avoid this problem, we use the regularity of a
Radon measure and exhaust by compact sets. Assuming that F is locally compact, the
fact that Radon measures are locally finite implies that Radon measures of compact sets
are always finite. This leads us to the following definition:

Definition 2.3.5. Given two Radon measures ρ and ρ̃ on a locally compact topological
space F, we define the Borel measures µ± by

µ+(A) = sup
K⊂A compact

(
ρ̃(K)− ρ(K)

)
µ−(A) = sup

K⊂A compact

(
ρ(K)− ρ̃(K)

)
for any Borel subset A ⊂ F. The difference of measures ρ− ρ̃ is said to have bounded
total variation if the measures µ± are finite, i.e. if

µ+(F), µ−(F) <∞ .
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If this is the case, the total variation measure |ρ− ρ̃| is defined by

|ρ− ρ̃| = µ+ + µ− .

We remark that ρ− ρ̃ can also be defined in the context of signed measures; we refer the
interested reader to [101, §28] or [136, Section 6.1].

Another notion of measure theory which we will use frequently is the push-forward
measure, which we now define (for more details see for example [15, Section 3.6] or
Exercise 2.18). To this end, let (F,M, ρ) be a measure space, and suppose we are given
a mapping f : F → X, where X is any set. Then f induces a measure on X as
follows: Let MX be the set of all subsets Ω ⊂ X whose pre-image f−1(Ω) is ρ-measurable.
Using the elementary identities for inverse images of unions and complements, one verifies
that MX is indeed a σ-algebra on X. On this σ-algebra, the push-forward measure f∗ρ
is defined by

(f∗ρ)(Ω) := ρ
(
f−1(Ω)

)
.

Using again the above-mentioned identities for inverse images, one verifies that f∗ρ is
indeed a measure.

2.4. Distributions and Fourier Transform

We now recall a few basics on distribution theory and the Fourier transform. For
more details, we recommend the textbook [89], [131, Sections V.3 and IX] or [130, §2.1,
§2.2 and Appendix A].

The theory of distributions describes a generalization of the concept of a function
on Rn (or, similarly, on a bounded domain or smooth manifold). Moreover, the differ-
ential calculus for smooth functions is extended to objects which are more singular than
functions. The desire for such objects can be motivated for instance by the classical
problem in electrostatics to determine the electric field generated by a distribution of
charges. In the continuum formulation, a distribution of charges is described by a charge
density ρ : R3 → R (typically compactly supported) having the interpretation that for
any domain Ω ⊂ R3 the integral

´
Ω ρ(x)d

3x describes the total charge contained inside

of Ω. The electromagnetic field E : R3 → R3 generated by ρ can then be computed
as E = −∇ϕ, where ϕ is a (suitable) solution of Poisson’s equation ∆ϕ = −ρ. Now
suppose that in this formulation one wants to deal with a point particle whose com-
plete charge Q is concentrated at a single point, say the origin. Then the corresponding
density ρ would need to satisfy

ˆ
Ω
ρ(x) d3x =

{
Q 0 ∈ Ω ,

0 0 /∈ Ω
for any Ω ⊂ R3 . (2.4.1)

It is not difficult to see that such a function ρ cannot exist (see Exercise 2.19). Intuitively
speaking, this function would need to vanish outside of the origin. At the origin, however,
its value would have to be “so (infinitely) large” that an integral over a region containing
the origin still gives a nonzero contribution. The most common way to rigorously deal
with such singular objects is to understand them as linear functionals on certain spaces of
smooth functions on R3, referred to as test functions. In order to motivate this functional,
we write (2.4.1) more generally asˆ

R3

ρ(x) f(x) d3x = Qf(0) .
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Indeed, choosing f as the characteristic function f = χΩ (defined by χΩ(x) = 1 if x ∈
Ω and χΩ(x) = 0 otherwise), we recover (2.4.1). But now f can be a more general
function. Restricting to smooth function gives rise to Dirac’s δ distribution (or simply
δ distribution), as is explained in more detail in the next example (for simplicity in one
dimension).

Example 2.4.1. (The δ distribution) The prime example of a distribution is
Dirac’s δ distribution which in physics textbook is introduced as a “function” δ(x) which is
zero everywhere except at the origin, where it takes the value∞. The infinite contribution
at the origin is “normalized” by demanding that its integral is equal to one. These
properties can be summarized by saying thatˆ ∞

−∞
f(x) δ(x) dx = f(0) . (2.4.2)

There are various ways to make mathematical sense of this equation. One method is to
regard the combination δ(x) dx as a measure δ0 supported at the origin of total volume
one, i.e. δ0(R) = 1. In this way, the equation (2.4.2) makes sense if f is any continuous
function. An alternative method is to take (2.4.2) as the definition of a linear functional
on a space of suitable test functions f . The latter method has the advantage that it
makes it possible to even define the derivative of the δ distribution byˆ ∞

−∞
f(x) δ′(x) dx = −f ′(0) . (2.4.3)

In order to allow for distributions to include an arbitrary number of derivatives, we choose
a space of smooth test functions. Distributions will be defined as linear functionals on this
space of test functions. Derivatives of distributions can be defined similar as in (2.4.3)
by “formally integrating by parts.” Since a function g defines a linear functional Tg by
integrating,

Tg(f) :=

ˆ ∞

−∞
g(x) f(x) dx , (2.4.4)

every function gives rise to a corresponding distribution. In this sense, distributions are
generalized functions. In order to make sure that the integral in (2.4.4) exists and is
finite, it is a good idea to assume that the test function f has suitable decay properties
at infinity.

In order to make these ideas mathematically precise, we need to specify the space
of test functions. Moreover, we need to endow this space of test function with a topol-
ogy. Then we can introduce distributions as the space of linear functionals on the test
functions. As we shall see, working with the right space of test functions, one can make
mathematical sense of the Fourier transform for distributions. ♢

After this motivation, we now turn to the mathematical definition of distributions. In
preparation of our constructions, we recall the multi-index notation in Rn. A multi-index
is an n-tuple α = (α1, . . . , αn) ∈ Nn0 of non-negative integers. For such a multi-index α
we define the corresponding monomial xα and combination of partial derivatives ∂α by

xα :=
(
x1

)α1 · · ·
(
xn

)αn and ∂α := ∂αx :=
( ∂

∂x1

)α1

· · ·
( ∂

∂xn

)αn

.

The order |α| of the multi-index α is defined by

|α| := α1 + · · ·+ αn .
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We say that a function f : Rn → C is smooth if all its partial derivatives exist to every
order. The space of smooth, complex-valued functions is denoted by C∞(Rn,C). For a
smooth function f ∈ C∞(Rn,C) we define its Schwartz norms ∥f∥p,q with p, q ∈ N0 by

∥f∥p,q := max
α∈Nn

0
|α|≤p

max
β∈Nn

0
|β|≤q

sup
x∈Rn

∣∣xα ∂βf(x)∣∣ .
The Schwartz space S(Rn) is formed of all smooth functions for which all the Schwartz
norms are finite, i.e.

S(Rn) :=
{
f ∈ C∞(

Rn,C
) ∣∣∣ ∥f∥p,q <∞ for all p, q ∈ N0

}
.

We always consider complex-valued functions, but the constructions work similarly for
real-valued functions. Defining the vector operators pointwise, S(Rn) is a complex vector
space. The functions in S(Rn) are referred to as Schwartz functions. These functions
have the property that they as well as all their partial derivatives have rapid decay in
the sense that multiplying them by a polynomial of arbitrary order still gives a bounded
function. In particular, one has C∞

0 (Rn) ⊂ S(Rn) ⊂ C∞(Rn), where both inclusions are
strict. An example of a Schwartz function without compact support is a Gaussian f :

Rn → R, x 7→ e−x
2
.

The Schwartz norms induce a topology on S(Rn) as follows. We say a set Ω ⊂ S(Rn)
is open if for every f ∈ Ω there exists p, q ∈ N0 and r > 0 such that the open r-ball
corresponding to the norm ∥.∥p,q is contained in Ω, i.e.{

g ∈ S(Rn)
∣∣ ∥f − g∥p,q < r

}
⊂ Ω . (2.4.5)

For many purposes, it is sufficient to have in mind how convergence is expressed concretely
by the Schwartz norms. For a sequence (fn)n∈N in S(Rn) and f ∈ S(Rn) one has (see
Exercise 2.20)

fn → f in S(Rn) ⇐⇒ ∥fn − f∥p,q → 0 for all p, q ∈ N0 . (2.4.6)

Here we point out that for a set Ω ⊂ S(Rn) to be an open neighborhood of f ∈ S(Rn),
it suffices that condition (2.4.5) is satisfied for some p, q ∈ N0. If instead one uses the
stronger condition that (2.4.5) must hold for all p, q ∈ N0, one obtains a coarser topology
on S(Rn), meaning that there are fewer open sets. In contrast, demanding (2.4.5) merely
for some p, q ∈ N0 gives a finer topology. Working with a finer topology has the following
purpose: For a finer topology, fewer sequences converge (as is obvious in (2.4.6), where
the sequence must converge for all Schwartz norms). As a consequence, there are more
continuous linear functionals, simply because sequential continuity must be verified for
fewer sequences. In other words, choosing a finer topology on a vector space has the
effect that its dual space becomes larger (where the dual space is defined as the space
of all continuous linear functionals). Since distributions will now be defined as such a
dual space, this is desirable because it will ensure a sufficiently rich and general class of
objects.

Definition 2.4.2. The space of tempered distributions denoted by S ′(Rn) is de-
fined as the dual space of the Schwartz space,

S ′(Rn) := S∗(Rn) = L
(
S(Rn),C

)
.

For a linear functional T : S(Rn) → R continuity means that there are p, q ∈ N0 and a
constant c > 0 such that (see again Exercise 2.20)∣∣T (f)∣∣ ≤ c ∥f∥p,q for all f ∈ S(Rn) . (2.4.7)
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As first example we return to the δ distribution from our motivating Example 2.4.1.
It is the tempered distribution δ ∈ S ′(Rn) given by δ(f) := f(0). Linearity of δ is obvious
and the estimate

|δ(f)| = |f(0)| ≤ ∥f∥0,0
shows that δ is continuous.

Next we explain how any (bounded, measurable) function can be naturally viewed as
a distribution, thus explaining why tempered distributions can be regarded as generalized
functions. To this end, let g ∈ L∞(Rn) be a bounded, measurable function. We define a
linear functional Tg on S(Rn) by

Tg(f) :=

ˆ
Rn

g(x)f(x)dnx .

This functional is continuous because∣∣Tg(f)∣∣ ≤ ˆ
Rn

|g(x)f(x)|dnx =

ˆ
Rn

|g(x)|(
1 + |x|2

)n+1
2

|f(x)|
(
1 + |x|2

)n+1
2 dnx

≤ C(n) ∥g∥L∞(Rn) ∥f∥n+1,0

ˆ
Rn

dnx(
1 + |x|2

)n+1
2

≤ C ′(n) ∥g∥L∞(Rn) ∥f∥n+1,0 .

(2.4.8)

Since the remaining integral is finite, it follows that the inequality (2.4.7) holds for a
suitable constant c > 0, p = n + 1 and q = 0. Therefore, Tg ∈ S ′(Rn) is a tempered
distribution.

In this way, every function g ∈ L∞(Rn) gives rise to a corresponding tempered dis-
tribution Tg. Let us verify that the corresponding linear mapping

T : L∞(Rn) → S ′(Rn) , g 7→ Tg is injective . (2.4.9)

(Note that strictly speaking we are dealing with equivalence classes, identifying two func-
tions which differ only on a set of measure zero.) To this end, let g ∈ L∞(Rn) be
non-zero. Then A := {x ∈ Rn | |g(x)| ≥ ∥g∥∞/2} has nonzero measure. By inner regu-
larity of the Lebesgue measure, the same is true for A∩BR(0) for R > 0 sufficiently large.
Choose η ∈ C∞

0 (Rn) with η|BR(0) ≡ 1. Then ηf is bounded and compactly supported,
hence square integrable, and one easily checks that ∥ηg∥L2 ̸= 0. Using that C∞

0 (Rn) is
dense in L2(Rn), we conclude that there is a function f ∈ C∞

0 (Rn) with

0 ̸= ⟨f, ηg⟩L2(Rn) =

ˆ
Rn

f(x)
(
ηg)(x)dnx = Tg(ηf) .

Hence Tg ̸= 0, and we conclude that the mapping T in (2.4.9) is indeed injective.
The fact that the mapping (2.4.9) is an embedding means that distributions can

be regarded as “generalized functions.” Distributions which can be represented in the
form Tg with g ∈ L∞(Rn) are referred to as regular distributions. We finally remark
that Tg can be defined more generally for functions g which increase at most polynomially
at infinity. But we do not need this generalization here.

In order to speak about convergence of distributions and related things, one needs
to endow the space S ′(Rn) with a topology. Being defined as a dual space of functionals
on S(Rn), the usual choice is the so-called weak*-topology, which is the coarsest topology
such that for every f ∈ S(Rn) the evaluation map S ′(Rn) ∋ T 7→ T (f) ∈ C is continuous.
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This means that for a sequence (Tn)n∈N in S ′(Rn) and T ∈ S ′(Rn) one has

Tn → T in S ′(Rn) ⇐⇒ Tn(f) → T (f) for all f ∈ S(Rn) .
With respect to this topology, the map (2.4.9) is continuous.

In the applications, it is important to differentiate distributions. For example, one
wants to construct distributional solutions of partial differential equations (like the Pois-
son equation with a δ distribution or the Green’s kernels of the Dirac equation to be
considered in Chapters 14 and 16.1). It turns out that distributions can always be dif-
ferentiated, as we now explain. The idea behind the definition of the derivative of a
distribution is to generalize the integration-by-parts formula, which for two Schwartz
functions f, g ∈ S(Rn) states that

T∂αf (g) =

ˆ
Rn

(∂αf)(x) g(x) dnx = (−1)|α|
ˆ
Rn

f(x) (∂αg(x)) dnx = (−1)|α| Tf (∂
αg)

(note that there are no boundary terms due to the rapid decay of f and g at infinity).

Definition 2.4.3. For a tempered distribution T ∈ S ′(Rn) and multi-index α ∈ Nn0 ,
we define the distributional derivative ∂αT ∈ S ′(Rn) by(

∂αT
)
(f) := (−1)|α| T

(
∂αf

)
for all f ∈ S(Rn) .

Using the continuity estimate (2.4.7) for T we have∣∣(∂αT )(f)∣∣ = ∣∣T (∂αf)∣∣ ≤ c
∥∥∂αf∥∥

p,q
≤ c

∥∥f∥∥
p,q+|α| for all f ∈ S(Rn) ,

which shows that ∂αT is indeed a continuous linear functional again.
We now come to the Fourier transformation. We first introduce it for Schwartz

functions.

Definition 2.4.4. For f ∈ S(Rn), we define the Fourier transform (Ff) : Rn → C
and the adjoint Fourier transform (F∗f) : Rn → C by

(Ff)(p) =
ˆ
Rn

f(x) eipx dnx (2.4.10)

(F∗f)(x) =

ˆ
Rn

f(p) e−ipx dnp

(2π)n
, (2.4.11)

where x, p ∈ M, and px = ⟨p, x⟩ denotes the Minkowski inner product.

Lemma 2.4.5. The Fourier transform and its adjoint map Schwartz functions to
Schwartz functions and yield continuous linear maps

F ,F∗ : S(Rn) → S(Rn) . (2.4.12)

Proof. In order to prove (2.4.12), we differentiate (2.4.10) to obtain

pα ∂βp (Ff)(p) = pα
ˆ
Rn

f(x) xβ eipx dnx = (−i)|α|
ˆ
Rn

f(x) xβ
(
∂αx e

ipx
)
dnx

= i|α|
ˆ
Rn

(
∂αx f(x)

)
xβ eipx dnx ,

where in the last step we integrated by parts (to justify differentiation under the integral
one can use the dominated convergence theorem). Taking the absolute value, we obtain
the estimate∣∣pα ∂βp (Ff)(p)∣∣ ≤ ˆ

Rn

∣∣∂αf(x)∣∣ ∣∣xβ∣∣ dnx (⋆)

≤ C(n) · ∥∂αf∥|β|+n+1,0 ≤ ∥f∥|β|+n+1,|α| ,
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where in (⋆) the integral can be estimated similar as in (2.4.8). This estimate shows that
the Fourier transform of a Schwartz function is again a Schwartz function. It also follows
directly from this estimate that F : S(Rn) → S(Rn) is continuous (as linearity clearly
holds). The estimate for the inverse Fourier transform is similar. □

Theorem 2.4.6. (Fourier inversion formula) The Fourier transform and its ad-
joint on Schwartz functions are inverses of each other,

F ◦ F∗ = F∗ ◦ F = 1S(Rn) .

A detailed proof of this lemma can be found in [130, Theorem 2.2.4] or [89, The-
orem 8.2.2]. With this in mind, we only give a sketch of the proof in one dimension.
Writing everything out explicitly, for f ∈ S(Rn) we get

F∗(Ff)(x) = ˆ ∞

−∞

(ˆ ∞

−∞
f(y)eipydy

)
e−ipx dp

2π
.

The basic idea is to exchange the order of integration. However, the problem is that the
resulting function is not integrable in the p-variable. One way to make this mathemat-

ically sound is by inserting a convergence-generating factor e−εp
2
. More precisely, using

dominated convergence and Fubini one computes

F∗(Ff)(x) = lim
ε↘0

ˆ ∞

−∞

(
Ff

)
(p) e−εp

2
e−ipx dp

2π

= lim
ε↘0

ˆ ∞

−∞

(ˆ ∞

−∞
f(y) eipy dy

)
e−εp

2
e−ipx dp

2π

= lim
ε↘0

ˆ ∞

−∞
f(y)

{ˆ ∞

−∞
eip(y−x)−εp

2 dp

2π

}
dy . (2.4.13)

The integral inside the curly brackets is Gaussian and can be computed explicitly. The
resulting family of Gaussians tends to the δ distribution δ(x− y) (see Exercise 2.22, and
thus altogether one obtains f(x) in the limit ε↘ 0 as desired.

Having given the proof of the Fourier inversion formula, we return once more to the
formal computation from the beginning,

F∗(Ff)(x) = ˆ ∞

−∞

(ˆ ∞

−∞
f(y)eipydy

)
e−ipx dp

2π
=

ˆ ∞

−∞
f(y)

(ˆ ∞

−∞
eip(y−x)

dp

2π

)
dx .

Although the right-hand side is ill-defined as an integral, knowing that F∗(Ff)(x) = f(x)
holds, one may interpret it as the distributional identityˆ ∞

−∞
eip(x−y) dp = 2π δ(x− y) . (2.4.14)

Having the Fourier transform for Schwartz functions at our disposal, we can now
introduce the Fourier transform of tempered distributions. Similar as in the definition of
the distributional derivative, the idea is to let the Fourier transform act on the test func-
tion. To see how to do this concretely, we again first consider a regular distribution TFg
corresponding to the Fourier transform of a Schwartz function g. Then for any f ∈ S(Rn),
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using Fubini we have

TFg(f) =

ˆ
Rn

(Fg)(p) f(p) dnp =
ˆ
Rn

( ˆ
Rn

g(x) eipx dnx

)
f(p) dnp

=

ˆ
Rn

g(x)

( ˆ
Rn

eipx f(p) dnp

)
dnx = Tg

(
Ff

)
.

The right side can now be used to define the Fourier transform of a tempered distribution.

Definition 2.4.7. The Fourier transform and the adjoint Fourier transform of a
tempered distribution T ∈ S ′(Rn) are defined by

F ,F∗ : S ′(Rn) → S ′(Rn) ,
(
FT

)
(f) = T

(
Ff) ,

(
F∗T

)
(f) = T

(
F∗f) .

Note that for a tempered distribution T , the maps FT = T ◦ F and F∗T = T ◦ F∗

are again linear and continuous as composition of two linear and continuous maps. Hence
they are tempered distributions again. A direct computation shows that F∗ is the inverse
of F (see Exercise 2.21). Examples for how to compute Fourier transforms of distributions
can be found in the exercises (see Exercise 2.25).

We now come to an operation on functions and distributions which we will use a
few times in this book: the convolution. For two Schwartz functions f, g ∈ S(Rn), the
convolution f ∗ g ∈ S(Rn) is defined by (see Exercise 2.34)

(f ∗ g)(x) :=
ˆ
Rn

f(x− y) g(y) dy . (2.4.15)

One immediately notes that convolution is commutative, i.e. f ∗ g = g ∗ f (it is also
associative). Interestingly, taking the Fourier transform, the convolution goes over to
multiplication, i.e.

F
(
f ∗ g

)
(p) = (Ff)(p) (Fg)(p) (2.4.16)

(for the derivation see Exercise 2.35). Conversely, the Fourier transform of a product is the
convolution of the individual Fourier transforms. The convolution can be extended to an
operation involving tempered distributions by interpreting the right hand side of (2.4.15)
as the action of a regular distribution Tg. Namely, given T ∈ S ′(Rn) and f ∈ S(Rn), one
defines (

f ∗ T
)
(x) := T (fx) with fx(y) := f(y − x) . (2.4.17)

This is even a smooth function (see Exercise 2.37). With this in mind, a convolution
can be used to “smoothen” or “mollify” functions and distributions. More details and
examples can be found for example in [89, Chapter 5].

We close with two remarks. First, it is often very useful to consider the Fourier
transform on L2-functions, where the Fourier transform is unitary:

Theorem 2.4.8. (Plancherel) For any f ∈ S(Rn),

∥Ff∥L2(Rn) = (2π)
n
2 ∥f∥L2(Rn) .

Furthermore, the Fourier transform and the adjoint Fourier transform extend to isomor-
phisms F ,F∗ : L2(Rn) → L2(Rn) which are inverse to each other.

We again omit the proof, which can be found in [130, Theorem 2.3.4] or [89, Theo-
rem 9.2.2]. On a formal level, Plancherel’s formula is obtained by a direct computation
using again (2.4.14). Similar to (2.4.13), this computation can be made mathematically
sound by introducing a convergence-generating factor. The extension to L2(Rn) then
simply follows using that S(Rn) ⊂ L2(Rn) is dense.
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x
U φ(U)

φ : U → φ(U)

φ−1 : φ(U) → U

M R
n

Figure 2.3. A chart (ϕ,U) around a point x ∈ M.

Finally, we remark that in some applications (for example when working in local
charts on a manifold or in a bounded domain), it is not feasible to work with functions
defined in all of Rn having suitable decay properties. In this case, instead of the Schwartz
functions, one considers the space of test functions, i.e. smooth functions with compact
support, denoted by

D(Rn) = C∞
0 (Rn) ,

endowed with the topology induced by the family of norms ∥.∥q with q ∈ N0 given by

∥f∥q := max
β∈Nn

0
|β|≤q

sup
x∈Rn

∣∣∂βf(x)∥∥ .
Its dual space D′(Rn) is referred to as the space of distributions. Here the dual space
is again defined as the space of all continuous linear functionals, where continuity of a
linear functional T : D(Rn) → C means in analogy to (2.4.7) that there is q ∈ N0 and a
constant c > 0 such that ∣∣T (f)∣∣ ≤ c ∥f∥q for all f ∈ D(Rn) .
Differentiation of distributions can be defined similarly as for tempered distributions.
However, the Fourier transform cannot be be defined on all of D′(Rn) since the Fourier
transform of a test function need not be compactly supported again. Test functions and
distributions can also be defined on any open subset U ⊂ Rn instead of all of Rn (and
with a little bit of extra work also on manifolds).

2.5. Manifolds and Vector Bundles

We now recall the basic definitions of a manifold and a vector bundle. Since the
machinery of differential geometry is loaded with many definitions and quite subtle (no-
tational) conventions, we must restrict to the very basics. For more details we refer to
good textbooks like [113, 118] or to the basic definitions in [120, §1 and §2].

Definition 2.5.1. A topological manifold of dimension n ∈ N is a Hausdorff
topological space M which is σ-compact (i.e. which can be written as an at most count-
able union of compact subsets) and has the property that every point in M has an open
neighborhood which is homeomorphic to an open subset of Rn.

More specifically, for every p ∈ M there is an open neighborhood U ⊂ M of p and a map

ϕ : U → Rn

such that the image ϕ(U) is an open subset of Rn and the mapping ϕ : U → ϕ(U) is a
homeomorphism (i.e. it is continuous, invertible, and its inverse is also continuous). We
refer to (ϕ,U) as a chart around p (see Figure 2.3). A collection of charts is an atlas A.
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We always assume that the atlas is complete in the sense that every point of M lies in
the domain of a chart of the atlas.

A chart (ϕ,U) can be seen as an identification of the open subset U ⊂ M with the
open subset ϕ(U) ⊂ Rn, any p ∈ U being identified with the coordinates of its image

ϕ(p) = (x1, . . . , xn) ∈ Rn . (2.5.1)

In this way a chart introduces local coordinates x1, . . . , xn on U ⊂M . Note that by (2.5.1)
the coordinates can be understood as the component functions of the map ϕ and thus
as functions on U . Also maps between manifolds can locally be identified with maps
between open subset of Euclidean spaces. Concretely, if F : M → N is a map between
two manifolds M and N , and if (ϕ,U) and (ψ, V ) are charts on M and N , respectively,
with F (U) ⊂ V , then we can consider the map

ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(V ) , (2.5.2)

called coordinate representation of F .
One would like to use these local identifications to carry over the machinery of dif-

ferential calculus to maps between manifolds. To this end, the structure of a topological
manifold alone is not sufficient. Rather, one needs additional compatibility conditions on
the transition maps between charts: Given two charts (ϕ,U) and (ϕ̃, Ũ) on a manifold M
with U ∩ Ũ ̸= ∅, the two mappings

ϕ|U∩Ũ , ϕ̃|U∩U ′ : U ∩ Ũ → Rn

are both homeomorphism onto open subsets of Rn. We define the transition map by (see
Figure 2.4)

ϕ̃|U∩Ũ ◦
(
ϕ|U∩Ũ )

−1 : ϕ
(
U ∩ Ũ

)
→ ϕ̃

(
U ∩ Ũ

)
.

Being a mapping between two open subsets of Rn, it is clear what “differentiability” of
this mapping means. A differentiable manifold is a topological manifold together with a
complete atlas with the property that all transition maps are differentiable. Likewise, a
smooth manifold is defined by the requirement that all transition maps are smooth.

The differentiability of all transition maps now allows us to introduce a notion of
differentiable maps: A map F : M → N between two differentiable manifolds M and N
is called differentiable map if all of its coordinate representations (2.5.2) are differentiable
maps between open subsets of Euclidean spaces. It turns out that this is actually a local
condition, and in order to prove differentiability of F in a point p ∈ M it suffices to verify
that one coordinate representation around p is differentiable.

Having introduced the notion of a differentiable map, the next question is how to
compute its derivative. We begin with the case of a real-valued differentiable function f :
M → R. If (ϕ,U) is a chart of M, then by definition the coordinate representation f◦ϕ−1 :
ϕ(U) ⊂ Rn → R is differentiable. (Note that we take the identity as chart of R.) We can

therefore take partial derivatives ∂(f◦ϕ−1)
∂xi

(x) or also the total derivative Dx(f ◦ ϕ−1) in a

point x ∈ ϕ(U). These, of course, depend on the chart ϕ, and if (ϕ̃, U) is another chart
with the same domain, then by the chain rule we have

Dx(f ◦ ϕ−1) = Dx(f ◦ ϕ̃−1 ◦ ϕ̃ ◦ ϕ−1) = Dϕ̃(ϕ−1(x)(f ◦ ϕ̃−1) ·Dx(ϕ̃ ◦ ϕ−1) ,

or, written in terms of partial derivatives (note that we are using the Einstein summation
convention),

∂(f ◦ ϕ−1)

∂xi
=
∂(f ◦ ϕ̃−1 ◦ ϕ̃ ◦ ϕ−1)

∂xi
=
∂(f ◦ ϕ̃−1)

∂xj
· ∂(ϕ̃ ◦ ϕ−1)j

∂xi
.
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This shows that the partial derivatives with respect to the two charts are linearly related
via the Jacobian matrix of the transition map between the two charts.

It is desirable to introduce a notion of derivative which is independent of the choice
of local charts. There are different approaches one can take, and here we only sketch the
approach which geometrically seems the most intuitive. To this end, let again f : M → R
be a differentiable function and let p ∈ M. If c : (−ε, ε) → M is a differentiable curve
with c(0) = p, then it is easy to check that the composition f ◦ c : (−ε, ε) → R is
differentiable, so one can take the derivative (f ◦ c)′(0). For M = Rn this would yield
precisely the directional derivative of f in p in direction c′(0), but in the general case
such an interpretation is not possible yet (as we have not defined c′(0) for a curve in a
manifold). However, if (ϕ,U) is a local chart around p, then we can write

(f ◦ c)′(0) = (f ◦ ϕ−1 ◦ ϕ ◦ c)′(0) = Dϕ(p)(f ◦ ϕ−1)((ϕ ◦ c)′(0)) . (2.5.3)

From this it follows that for any other differentiable curve c̃ : (−ε̃, ε̃) → M with c̃(0) = p
we will have (f ◦ c)′(0) = (f ◦ c̃)(0) if we have (ϕ ◦ c)′(0) = (ϕ ◦ c̃)′(0). It is easy to check
that the latter condition on the two curves c and c̃ is actually independent of the chart in
the sense that if it holds in one chart, then it also holds in any other chart. Moreover, it
is clear that it defines an equivalence relation on the set of differentiable curves passing
through p. The corresponding equivalence classes are called tangent vectors to M in p,
and the set of all equivalence classes is called the tangent space to M in p and is denoted
by TpM. Any chart (ϕ,U) around p defines a map

ϕ∗,p : TpM → Rn , ϕ∗,p([c]) := (ϕ ◦ c)′(0) .
It is not difficult to verify that this map is a bijection, so it can be used to pull back the
vector space structure of Rn to TpM by

[c1] + [c2] := ϕ−1
∗,p

(
(ϕ ◦ c1)′(0) + (ϕ ◦ c2)′(0)

)
,

and similarly for scalar multiplication. The induced vector space structure on TpM is
actually independent of the chart ϕ, as follows from the observation that for any other
chart (ϕ̃, U) around p we have

ϕ̃∗,p ◦ ϕ−1
∗,p = Dϕ(p)(ϕ̃ ◦ ϕ−1) ∈ GL(Rn) . (2.5.4)

Having defined the tangent space, we can finally define the derivative in a point p ∈ M
of a differentiable map f : M → R as the map

Dpf : TpM → R , Dpf([c]) := (f ◦ c)′(0) . (2.5.5)

One easily verifies that this is indeed a linear map.
We note that, for any local chart (ϕ,U), by (2.5.3) the derivative can be expressed in

terms of the Jacobian of the coordinate representation f ◦ ϕ−1. This can be understood
a bit more systematically by defining the particular tangent vectors

∂

∂xi

∣∣∣
p
:= ϕ−1

∗,p(ei) = [t 7→ ϕ−1(ϕ(p) + tei)] ∈ TpM . (2.5.6)

They form a basis of TpM. (As will be considered in more detail below, they do depend
on ϕ, even though the notation does not seem to reflect this directly.) Now observe that

Dpf
( ∂

∂xi

∣∣∣
p

)
=

d

dt

∣∣∣
t=0

(f ◦ ϕ−1)(ϕ(p) + tei) = Dϕ(p)(f ◦ ϕ−1)(ei) =
∂(f ◦ ϕ−1)

∂xi
(ϕ(p)) .

This shows that the Jacobian of f ◦ ϕ−1 is precisely the matrix representation of Dpf in

the basis ∂
∂x1

|p, . . . , ∂
∂xn |p. We now come back to the point that the basis vectors (2.5.6)
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depend on the chart ϕ, and to how one usually resembles this in the notation. To this
end, recall that one says that the chart ϕ introduces local coordinates x1, . . . , xn on its
domain. A different chart ϕ̃ on the same domain introduces different coordinates. One
usually denotes these by x̃1, . . . , x̃n, and denotes the basis of TpM induced by ϕ̃ by

∂

∂x̃1

∣∣∣
p
, . . . ,

∂

∂x̃n

∣∣∣
p
.

Thus the reference to the chart in the notation is done via the symbols for the coordinates.
The relation between the two different bases follows from the following computation,
which makes use of (2.5.4) (note Einstein’s summation convention again):

∂

∂xi

∣∣∣
p
= ϕ−1

∗,p(ei) =
(
ϕ̃−1
∗,p ◦ ϕ̃−1

∗,p
)(
ϕ−1
∗,p(ei)

)
= ϕ̃−1

∗,p
(
(ϕ̃−1

∗,p ◦ ϕ−1
∗,p)(ei)

)
(2.5.4)
= ϕ̃−1

∗,p
(
Dϕ(p)(ϕ̃ ◦ ϕ)(ei)

)
= ϕ̃−1

∗,p

(∂(ϕ̃ ◦ ϕ)j

∂xi
(ϕ(p)) · ej

)
=
∂(ϕ̃ ◦ ϕ)j

∂xi
(ϕ(p)) · ϕ̃−1

∗,p(ej) =
∂(ϕ̃j ◦ ϕ)
∂xi

(ϕ(p)) · ∂

∂x̃j

∣∣∣
p
.

Recalling that the coordinates induced by a chart can be understood as the component
functions of the chart, and dropping all reference to the points where one evaluates, this
relation can be recast in the shorter and easier to memorize the “reduction rule”

∂

∂xi
=
∂x̃j

∂xi
· ∂

∂x̃j
,

which might be familiar from the use of “curvilinear coordinates” in vector calculus (which
are of course nothing else but different local coordinate systems in Rn).

So far, we only considered real-valued functions, i.e. maps f : M → R. For a differ-
entiable map F : M → N between two differentiable manifolds M and N , the derivative
of F in a point p ∈ M is defined as the map

DpF : TpM → TF (p)N , DpF ([c]) := [F ◦ c] .

One can check that this is map is well-defined and linear. Further, if (ϕ,U) is a chart
around p ∈ M with coordinates x1, . . . , xn, and (ψ, V ) a chart around F (p) ∈ N with
coordinates y1, . . . , ym, then one easily checks that

DpF
( ∂

∂xi

∣∣∣
p

)
=
∂(ψ ◦ F ◦ ϕ−1)j

∂xi
(ϕ(p)) · ∂

∂yj

∣∣∣
F (p)

. (2.5.7)

This shows that, with respect to the bases induced by the two charts ϕ and ψ, the linear
map DpF is represented by the Jacobian of the coordinate representation ψ ◦ F ◦ ϕ−1.
Note that for a coordinate chart ϕ : U → Rn we have Dpϕ = ϕ∗,p. For this reason, some
authors denote the derivative of a smooth map F also by F∗ instead of DF .

We remark that there are different but equivalent ways to define tangent vectors and
thus also derivatives of smooth maps between smooth manifolds. One commonly used
approach is via so-called derivations, which is an axiomatization of the product rule for
(directional) derivatives (for details, see for example [118, Chapter 3]).

The collection of all tangent spaces to a differentiable manifold M as (disjoint)
union TM :=

⋃
p∈M TpM is called the tangent bundle of M. It turns out that the

tangent bundle is again a smooth manifold with certain additional structures. First note
that we can define a map π : TM → M by mapping any tangent vector to its base point,
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i.e. to the point of M to whose tangent space it belongs. Next, given a chart (ϕ,U) on M,
we can consider the map

Tϕ : π−1(U) → ϕ(U)× Rn ⊂ R2n , v 7→ (ϕ(π(v)), ϕ∗,π(v)(v)) .

This map is bijective onto the open subset ϕ(U) × Rn ⊂ R2n. One verifies immediately
that all sets of the form Tϕ−1(V ), where ϕ is a chart on M and V ⊂ R2n is an open subset,
form what is called a basis for a topology on TM, which is Hausdorff and σ-compact. In
particular, all these sets are open subsets of TM, so the maps Tϕ are local charts. (This
is indeed the unique topology on TM with these properties; see [118, Chapter 3] for
details.) Thus TM is a topological manifold. Furthermore, if (ϕ,U) and (ψ,U) are two
charts on M, then by (2.5.4) the transition map is between the two charts Tϕ and Tψ
on TM is given by

Tψ ◦ Tϕ−1(x, v) =
(
x,Dx(ψ ◦ ϕ−1)(v)

)
.

If M is a smooth manifold, then this is again a smooth map, showing that TM is also a
smooth manifold.

Locally, the tangent bundle has a particular product structure which is already visible
from the construction of the charts above. More precisely, note that any chart (ϕ,U) on M
induces a local diffeomorphism

ϕ̂ : π−1(U) → U × Rn , v 7→ (π(v), ϕ∗,π(v)(v)) ,

called a local trivialization of the tangent bundle. These local trivializations are com-

patible with the base point projection π : TM → M in the sense that pr1 ◦ ϕ̂ = π,
where pr1 : U × Rn → U denotes the projection to the first component. Moreover, they
are also compatible with the vector space structures on the tangent spaces in the sense
that for another chart (ψ, V ) on M with U ∩ V ̸= ∅, we have

ψ̂ ◦ ϕ̂−1(p, v) = (p,Dϕ(p)(ψ ◦ ϕ−1)(v)) ,

and in the second component we have a smooth map

U ∩ V ∋ p 7→ Dϕ(p)(ψ ◦ ϕ−1) ∈ GL(Rn) .

So the transition between two local trivialization simply amounts to a (pointwise fixed)
linear transformation on Rn.

The local structure of the tangent bundle just described can be generalized to the
notion of a vector bundle. This notion is helpful for the understanding of causal fermion
systems because, under suitable regularity assumptions, a causal fermion system will give
rise to a vector bundle over spacetime with the spin spaces as fibers (see Section 11.1).
We begin with the notion of a topological vector bundle and explain the differentiable
structure afterward.

Definition 2.5.2. Let B and M be topological spaces and π : B → M a continuous
surjective map. Moreover, let Y be a (real or complex) vector space and G ⊂ GL(Y )
a group acting on Y . Then B is a topological vector bundle with fiber Y and
structure group G if there exists an open covering U of M and for every U ∈ U a
homeomorphism ϕU : π−1(U) → U × Y , called a local trivialization or bundle chart,
such that the following two properties are satisfied:
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φ(U)

φ′(U ′)

(φ|U∩U ′)−1

φ′|U∩U ′

Figure 2.4. A transition map.

(i) For any U ∈ U , the diagram

π−1(U) U × Y

U
π

ϕU

pr1
(2.5.8)

commutes, where pr1 : U × Y → U denotes the projection onto the first component.
(ii) For all U, V ∈ U with U ∩ V ̸= ∅ we have

ϕU ◦ ϕ−1
V (x, v) = (x, gUV (x)v) for all x ∈ U ∩ V, v ∈ Y , (2.5.9)

where gUV : U ∩ V → G is a continuous transition function.

In the special case G = GL(Y ), one simply speaks of a vector bundle (i.e., without
explicitly mentioning the structure group).

Similar as for the tangent bundle, by the condition (2.5.9) the local trivializations
allow to pull back the vector space structure of Y to the so-called fibers Bx := π−1({x}) ⊆
B of a vector bundle. So one may think of a vector bundle π : B → M as a collection of
vector spaces which are parametrized by M.

A simple example of a vector bundle is the Cartesian product

B = M × Y .

This vector bundle is globally trivialized, i.e. of product form. According to (2.5.8), a
vector bundle has this product structure “locally” in π−1(U), but in general not globally.
As we have already seen, the tangent bundle TM of a smooth manifold M is another
example. Here the structure group will in general be GL(Rn), but could possibly be taken
a smaller group in special circumstances.

A differentiable (or smooth) vector bundle is a topological vector bundle where the
base M is a differentiable (or smooth) manifold together with an atlas of bundle charts
such that all transition maps are differentiable (or smooth, respectively). In this case,
also the total space B is a differentiable (smooth) manifold and the projection map π is
differentiable (smooth), as the local trivializations provide a differentiable atlas.

2.6. Exercises

Exercise 2.1. (Closed sets) Show that the closed sets of a topological space E
(defined as the complements of the open sets) have the following properties:

(i) The sets ∅ and E are closed.
(ii) Closedness under finite unions: For any A1, . . . , An ⊂ E,

A1, . . . , An closed =⇒ A1 ∪ · · · ∪An closed .
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(iii) Closedness under arbitrary intersections: For any family {Aλ}λ∈Λ of subsets of E,

Aλ closed for all λ ∈ Λ =⇒
⋂
λ∈Λ

Aλ closed .

Exercise 2.2. (Notions of continuity) Let E = F = R with the standard topology
inherited from the metric d(x, y) = |x−y|. Show that a real-valued function f : E → F is
continuous in the topological sense (2.1.2) if and only if for every x ∈ R and for every ε > 0
there is δ > 0 such that∣∣f(x)− f(y)

∣∣ < ε for all y ∈ R with |y − x| < δ .

Exercise 2.3. (Extreme value theorem) Let (E,O) be a non-empty compact topolog-
ical space and f : E → R a continuous, real-valued function on E. Show that f attains
its maximum, i.e. there is a point x ∈ E with

f(x) ≥ inf
E
f .

Hint: First show using basic definitions that a continuous function maps compact sets to
compact sets. Then use what you know about compact subsets of R.

Alternatively, one can use that a compact space is sequentially compact in the sense
that every sequence has a convergent subsequence. If you are not familiar with these
connections, try to prove them starting from the basic definitions.

Exercise 2.4. (Examples of norms)

(a) Show that the examples (2.2.1) and similarly (2.2.2) satisfy all properties of a norm.
Hint: In the case p <∞, the triangle inequality is also referred to as the Minkowski
inequality. Its proof can be found for example in [136, Theorem 3.5].

(b) We let X be the vector space of all complex-valued finite sequences (xn)n∈N (by a
finite sequence we mean a sequences for which only a finite number of members are
non-zero). Show that

∥∥(xn)n∈N∥∥p := ( ∞∑
i=1

|xi|p
) 1

p

for p <∞ and ∥x∥∞ := sup
n∈N

|xn|

defines a norm X. Show that the resulting normed space is infinite-dimensional.

Exercise 2.5. (Examples of Banach spaces)

(a) Show that Cn with the norm (2.2.1) is complete.
(b) Show that the space (X, ∥.∥p) considered in Exercise 2.4 (b) is not complete. Let lp

be the space of all complex sequences (not necessarily finite) for which the norm ∥.∥p
is finite. Show that lp is a Banach space.

(c) Show that the space C0
0 (Rn) with the norm (2.2.2) is not complete. Hint: construct

a Cauchy sequences which has not limit in C0
0 (Rn). We remark that the completion

of these spaces gives the Banach spaces Lp(Rn); details can be found for example
in [136, Chapter 3].

Exercise 2.6. (Completion of a metric space) Let (E, d) be a metric space.

(a) Show that for two Cauchy sequences (xn)n∈N, (yn)n∈N in E, the limit

d′
((
xn

)
n∈N,

(
yn

)
n∈N

)
:= lim

n→∞
d(xn, yn)
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exists. Show further that the function d′ defined on the set of all Cauchy sequences
of E in this way has the properties (ii) and (iii) in Definition 2.1.1, but will never
satisfy property (i) unless E has only one element.

(b) Verify that (
xn

)
n∈N ≃

(
yn

)
n∈N if d′

((
xn

)
n∈N,

(
yn

)
n∈N

)
= 0

defines an equivalence relation on the set of all Cauchy sequences of E. Show further
that the function d′ induces a well-defined function d′′ on the set Ẽ of all equivalence
classes. Verify that d′′ has property (i) in Definition 2.1.1 and still satisfies (ii) and
(iii).

(c) Show that (Ẽ, d′′) is a complete metric space. Show furthermore that the map E →
Ẽ, sending each x ∈ E to the constant sequence (x)n∈N, is distance-preserving (and
therefore injective).

(d) Modify the construction in order to form the completion of a scalar product space.

Exercise 2.7. (Norm of a scalar product space) Given a scalar product space (V, ⟨.|.⟩),
show that ∥u∥ :=

√
⟨u|u⟩ defines a norm (see Definitions 2.2.2 and 2.2.1).

Exercise 2.8. (Boundedness and continuity of linear operators) Let A : V →W be
a linear operator between normed spaces V and W . Show that A is bounded if and only
if it is continuous. Hint: Write down the usual condition for continuity of A and try to
simplify it using linearity.

Exercise 2.9. (Completeness of L(V,W ))

(a) Show that the operator norm on L(V,W ) is indeed a norm, i.e. verify that it has all
the properties in Definition 2.2.1.

(b) Show that L(V,W ) is complete if and only if W is complete.

Exercise 2.10. (Orthogonal projection to closed subspaces of a Hilbert space) Let H
be a Hilbert space and V ⊂ H a closed subspace.

(a) Show the parallelogram identity: For all u, v ∈ H,

∥u+ v∥2 + ∥u− v∥2 = 2 ∥u∥2 + 2 ∥v∥2 .
(b) Given u ∈ H, let (vn)n∈N be a sequence in V which is a minimizing sequence of the

distance to u, i.e.
∥u− vn∥ → inf

v∈V
∥u− v∥ .

Prove that the sequence (vn)n∈N converges. Hint: Apply the parallelogram identity
to show that the sequence is Cauchy. Then make use of the completeness of the
Hilbert space.

(c) Show that the limit vector v := limn→∞ vn has the property

⟨u− v, w⟩ = 0 for all w ∈ V .

In view of this equation, the vector v is also referred to as the orthogonal projection
of u to V .

In the finite-dimensional setting, the orthogonal projection can be given more explicitly
as explained in Exercise 2.12.

Exercise 2.11. (Proof of the Fréchet-Riesz theorem) Let H be a Hilbert space and
let ϕ ∈ H∗ be non-zero.

(a) Show that the kernel of ϕ is a closed subspace of H.
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(b) Apply the result of Exercise 2.10 to construct a nonzero vector v which is orthogonal
to kerϕ. Show that this vector is unique up to scaling.

(c) Show that, after a suitable scaling, the vector v satisfies (2.2.3).
(d) Show that the vector v satisfying (2.2.3) is unique.

Exercise 2.12. (Orthogonal complement of a finite-dimensional subspace)

(a) Let I be a finite-dimensional subspace of a Hilbert space (H, ⟨.|.⟩). Show that its
orthogonal complement I⊥ defined by (2.2.6) is again a complex vector space.

(b) Show that restricting the scalar product to I, one again gets a Hilbert space. In
particular, why is it complete again?

(c) Show that every vector u ∈ H has a unique decomposition of the form (2.2.7).

Hint: Choosing an orthonormal basis e1, . . . , en of I, a good ansatz for u|| is

u|| =
n∑
k=1

⟨ek|u⟩ ek .

Exercise 2.13. (Multiplication operators) Let f ∈ C0(R,C) be a continuous, com-
plex-valued function. Assume that it is bounded, i.e. that supR |f | < ∞. We consider
the multiplication operator Tf on the Hilbert space H = L2(R), i.e.

Tf : H → H , (Tf ϕ)(x) = f(x) ϕ(x) .

(a) Show that Tf is a (well-defined) bounded operator whose operator norm is given by∥∥Tf∥ = sup
R

|f | .

(b) Show that Tf is symmetric if and only if f is real-valued. Under which assumptions
on f is Tf unitary?

Exercise 2.14. (Examples of measures) Let F be a set and M a σ-algebra on F.

(a) Let f : F → [0,∞) be a function which is nonzero only at finitely many points of F.
Show that ρ : M → [0,∞), A 7→

∑
x∈A f(x) defines a measure.

(b) Show that any linear combination of measures on F with nonnegative coefficients is
again a measure on F.

Exercise 2.15. (Basic properties of measures) Let (F,M, ρ) be a measure space.

(a) Show that ρ(A ∪B) = ρ(A) + ρ(B)− ρ(A ∩B) holds for any A,B ∈ M.
(b) Show that for any A,B ∈ M with A ⊂ B, the inequality ρ(A) ≤ ρ(B) holds.
(c) Show that for any sequence (An)n∈N of measurable sets (not necessarily pairwise

disjoint), the inequality ρ(
⋃
n∈NAn) ≤

∑
n∈N ρ(An) holds.

Exercise 2.16. (Borel algebra) Let F be a set.

(a) Show that the power set of F (i.e. the set of all subsets) forms a σ-algebra.
(b) Show that the intersection of σ-algebras is again a σ-algebra.
(c) Assume in addition that F is a topological space. Combine (a) and (b) to conclude

that there is a smallest σ-algebra which contains all open subsets of F.

Exercise 2.17. (Completion of a measure) Let (F,M, ρ) be a measure space. We
introduce the family of sets

M̃ := {A ⊂ F | there exist B,N ∈ M with (A \B) ∪ (B \A) ⊂ N and ρ(N) = 0} .

(a) Show that M̃ is again a σ-algebra.
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(b) Show that the prescription ρ̃(A) := ρ(B) defines a measure on M̃. (Where for A ∈ M̃

the set B ∈ M is a set chosen as in the defining property of M̃.)
(c) Show that the measure ρ̃ is complete.

Exercise 2.18. (Understanding the push-forward measure) The purpose of this ex-
ercise is to introduce the so-called push-forward measure, which will be used later for the
construction of causal fermion systems. Let M ⊂ R3 be a smooth surface described by a
parametrization Φ. More precisely, given an open subset Ω ⊂ R2, we consider a smooth
injective map

Φ : Ω → R3

with the property that DΦ|p : R2 → R3 has rank two for all p ∈ Ω. Then the surface M is
defined as the image Φ(Ω) ⊂ R3. We now introduce a measure ρ on R3 as the push-forward
measure of the Lebesgue measure on R2 through Φ: Let µ be the Lebesgue measure on R2.
We define a set U ⊂ R3 to be ρ-measurable if and only if its pre-image Φ−1(U) ⊂ R2

is µ-measurable. On the ρ-measurable sets we define the measure ρ by

ρ(U) = µ
(
Φ−1(U)

)
.

Verify that the ρ-measurable sets form a σ-algebra, and that ρ is a measure. What are
the sets of ρ-measure zero? What is the support of the measure ρ?

Suppose that Φ is no longer assumed to be injective. Is ρ still a well-defined measure?
Is ρ well-defined if Φ is only assumed to be continuous? What are the minimal regularity
assumptions on Φ needed for the push-forward measure to be well-defined? What is the
support of ρ in this general setting?

Exercise 2.19. (a) Let f ∈ C0(Rn,R) be continuous. Show that

lim
r↘0

ˆ
Br(0)

f(x) dnx = 0 . (2.6.1)

Hint: Use that a continuous function is locally bounded.
(b) Let f : Rn → R be a Lebesgue-integrable function. Show that (2.6.1) again holds.

Hint: Use Lebesgue’s monotone convergence theorem.

Exercise 2.20. (Topology on the Schwartz space)

(a) Show that the topology on S(Rn) defined by (2.4.5) gives rise to the notion of con-
vergence (2.4.6).

(b) Show that a linear functional T : S(Rn) → R is continuous if and only if there
are p, q ∈ N0 and c > 0 such that the inequality (2.4.7) holds.

(c) Show that for any i ∈ {1, . . . , n}, the partial derivative Di : f 7→ ∂if is a continuous
linear mapping from S(Rn) to itself.

Exercise 2.21. Prove the Fourier inversion formula for tempered distributions

F ◦ F∗ = F∗ ◦ F = 1S′(Rn) : S ′(Rn) → S ′(Rn) .
Hint: Use Lemma 2.4.6 together with the definition of the Fourier transform of a tempered
distribution.

Exercise 2.22. (Dirac sequence) Given ε > 0, consider the Gaussian ηε : R → R
with

ηε(x) :=
1√
4πε

e−x
2/(4ε) .

(a) Show that ηε is a Schwartz function.
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(b) Show that in the limit ε ↘ 0, the corresponding regular distribution converges to
the δ distribution in the sense that for all f ∈ S(R),

lim
ε↘0

Tηε(f) = δ(f) .

(We recall that the δ distribution as introduced informally in Example 2.4.1 is defined
by δ(f) = f(0) for all f ∈ S(R)).

Exercise 2.23. This exercise is devoted to a clean proof of the distributional rela-
tion (16.5.2) in one dimension. More precisely, we want to prove the slightly more general
statement that for any function η ∈ C1(R) ∩ L1(R),

lim
ε↘0

ˆ
R
η(x)

(
1

x− iε
− 1

x+ iε

)
dx = 2πi η(0) . (2.6.2)

(a) Let η ∈ C1(R) ∩ L1(R) with η(0) = 0. Use Lebesgue’s dominated convergence
theorem to show that (2.6.2) holds.

(b) Use the residue theorem to show that (2.6.2) holds for the function η(x) = 1/(x2+1).
(c) Combine the results of (a) and (b) to prove (2.6.2) for general η ∈ C1(R) ∩ L1(R).

Exercise 2.24. Let Θ := χ(0,∞) : R → R be the Heaviside function defined by

Θ(x) =

{
0 if x ≤ 0
1 if x > 0 .

Show that Θ′ = δ holds in S ′(R).

Exercise 2.25. (Fourier transform of δ distribution) Let T ∈ S ′(R) be the regular
distribution corresponding to the constant function with value one, i.e.

T (f) :=

ˆ ∞

−∞
f(x) dx .

(a) Show that T (f) = 2π(F∗f)(0).
(b) Use the Fourier inversion theorem for tempered distributions to conclude that FT =

2π δ (where δ is again the δ distribution).
(c) Apply the Fourier inversion theorem again to compute the Fourier transform of the

δ distribution.
(d) Alternatively, one can compute these Fourier transforms directly working with con-

vergence-generating factors in the style of (2.4.13). Do this carefully step by step,
making sure that every computation step is mathematically well-defined.

Exercise 2.26. (Schwartz space)

(a) Show that Schwartz functions decay faster than polynomially at infinity together
with all their partial derivatives. More precisely, show that for every multi-index α
and for every N ∈ N there exists Cα,N ≥ 0 such that

|Dαf(x)| ≤
Cα,N

1 + |x|N
for all x ∈ Rn.

(b) Which of the following functions belongs to S(R)? Motivate your answers!

f1(x) := e−x
2
, f2(x) :=

1

1 + x4
, f3(x) :=

e−x
2

2 + sin(ex2)
.
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Exercise 2.27. (The principal value integral) For every f ∈ S(R) we define

A(f) := lim
ε↘0

ˆ
R\(−ε,ε)

f(x)

x
dx .

Does the limit exist? In fact, A is a tempered distribution. Show it.

Exercise 2.28. (Multiplication operators) Let n ∈ N.
(a) Let g be a (not necessarily continuous) function g : Rn → R with the property that

the mapping x 7→ g(x)/(1 + |x|r) belongs to L1(Rn) for some r > 0. Show that the
map f 7→ Tg(f) :=

´
Rn f(x) g(x) dx defines a tempered distribution, Tg ∈ S(Rn)′.

(b) Find a smooth function g ∈ L1(Rn) which is not pointwise bounded by any polyno-
mial, i.e. there is no polynomial p such that

|g(x)| ≤ p(|x|) for all x ∈ Rn .

But the corresponding functional

Tg : S(Rn) ∋ f 7→
ˆ
Rn

g(x)f(x) dnx (2.6.3)

still yields a well-defined tempered distribution.

Exercise 2.29. (Approximating the δ distribution) Not all distributions can be writ-
ten as in (2.6.3). Nevertheless, it can be shown that every tempered distribution can be
approximated by such functionals. Let us verify this statement in the concrete example
of the δ distribution. Let φ ∈ C∞

0 (Rn) fulfill φ ≥ 0, suppφ ⊂ B1(0) and ∥φ∥L1 = 1.
Define, for every ε > 0,

φε(x) :=
1

εn
φ
(x
ε

)
∈ C∞

0 (Rn) and δε := Tφε (defined as in (2.6.3))

Each functional δε is a tempered distribution (why?). Show that, for every f ∈ S(Rn),
δε(f) → δ(f) = f(0) as ε↘ 0.

Remark: The more general statement that any tempered distribution can be approxi-
mated by a sequence of regular distributions can be shown using the method of convolu-
tion. We refer to [89, Chapter 5] for details.

Exercise 2.30. (Another regular tempered distribution) Let n, k ∈ N with n > k.
Show that the mapping

S(Rn) ∋ f 7→
ˆ
Rn

f(x)

|x|k
dnx ∈ C

is a well-defined tempered distribution.

Exercise 2.31. (Fourier transform on S(Rn) and S ′(Rn)) Compute the Fourier
transform of the following functions and tempered distributions.

(a) f ∈ S(Rn) defined by f(x) := e−λx
2
for λ ≥ 0;

(b) Tg ∈ S ′(Rn) for the functions g ∈ L1(R) defined by

g(x) = e−|x| and g(x) =
1

1 + x2
.

Exercise 2.32. (Fourier transform on L1(Rn)) The functions in L1(Rn) define tem-
pered distributions by means of the identification g 7→ Tg. As distributions they admit
Fourier transform. However, for these functions the Fourier transform can also be defined



50 2. MATHEMATICAL PRELIMINARIES

directly via the usual integral form. The goal of this exercise is to show that this is indeed
true and that the two definitions coincide.

(a) Show that the Fourier transform

(Fg)(p) := 1

(2π)n/2

ˆ
Rn

e−ipxg(x) dnx

defines a map

F : L1(Rn) → C0(Rn) ∩ L∞(Rn).
Moreover, show that there exits a constant Cn such that

∥Fg∥∞ ≤ Cn∥g∥L1 for all g ∈ L1(Rn).

(b) Let g ∈ L1(Rn). Show that the Fourier transform of the distribution Tg ∈ S ′(Rn)
satisfies the relation

F(Tg) = TFg.

Hint: You may use that S(Rn) is dense in L1(Rn).

Exercise 2.33. (On the topology of S(Rn)) Consider the Schwartz space S(Rn)
equipped with the family of norms ∥·∥p,q, where p, q ∈ N0. Show the following statements.

(a) For any f, g ∈ S(Rn) the following series converges:

d(f, g) :=
∑

p,q,∈N0

1

2p+q
∥f − g∥p,q

1 + ∥f − g∥p,q
.

Moreover it defines a metric on S(Rn).
(b) The metric space (S(Rn), d) is complete.
(c) Show that if a topology on a vector space is induced by a norm, then there is a

neighborhood U of 0 such that for every other neighborhood V of 0, there is a
positive number r such that U ⊂ r · V . Can the topology of S(Rn) be induced by a
norm?

Exercise 2.34. (Convolution of Schwartz functions)

(a) Show that for two Schwartz functions f, g ∈ S(Rn), the integral (2.4.15) defines a
smooth function (f ∗ g)(x).

(b) Show that this function has rapid decay.

Exercise 2.35. (Convolution and Fourier transform) Prove the relation (2.4.16) on
the Fourier transform of a convolution.
Hint: Use the definition of the Fourier transform (2.4.10) and rewrite the resulting double
integral.

Exercise 2.36. (Convolution with the δ distribution) Let δ ∈ S ′(Rn) be the δ dis-
tribution (at the origin). Show that f ∗ δ = f holds for any f ∈ S(Rn).

Exercise 2.37. (Smoothing a distribution by convolution) Let T ∈ S ′(Rn) and f ∈
S(R)n).
(a) Show that the convolution f ∗ T as defined in (2.4.17) defines a smooth function.
(b) Show by a counter example that the function f ∗ T in general does not decay at

infinity.
(c) Let n ≥ 1, α ∈ Nn, f ∈ S(Rn) and T ∈ S ′(Rn). Prove that Dα(f ∗ T ) = f ∗ (DαT ).
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Exercise 2.38. (A simple manifold) Let M = S1 ⊂ C be the unit circle (considered
as a subset of the complex plane). We choose the charts (ϕ1, U1) and (ϕ2, U2) with

U1 =
{
eiα

∣∣∣ α ∈
(
− 3π

2
,
3π

2

)}
, ϕ1

(
eiα

)
= α

U2 =
{
− eiα

∣∣∣ α ∈
(
− 3π

2
,
3π

2

)}
, ϕ1

(
− eiα

)
= α .

Show that these two charts define a smooth atlas of M.

Exercise 2.39. Let M,N be smooth manifolds and F : M → N a map. Show that F
is smooth if and only if for any p ∈ M there exist charts (ϕ,U) around p and (ψ, V )
around F (p) with F (U) ⊂ V and such that ψ ◦F ◦ ϕ−1 is smooth (as map between open
subsets of Euclidean spaces).

Exercise 2.40. Unwind the definitions to verify formula (2.5.7) for the derivative of
a smooth map F : M → N between two smooth manifolds M,N in local coordinates.

Exercise 2.41. (A simple vector bundle) Let B = R × S1 be the two-dimensional
cylinder, M = S1 and

π : B → M , (t, eiα) 7→ eiα .

Show that B is a smooth vector bundle with fiber Y = R.

Exercise 2.42. (Another vector bundle) Use the mapping

F : R× S2 → R3 \ {0} , (t, x) 7→ et x

(where we consider S2 as the unit sphere embedded in R3) in order to give B = R3 \ {0}
the structure of a vector bundle on S2 with fiber Y = R.

Exercise 2.43. (The Möbius bundle) Represent the circle S1 as S1 = [0, 1]/(0 ∼ 1),
i.e. as the unit interval with its end points being identified. Moreover, consider the
space X := ([0, 1] × R)/ ∼, where ∼ is the equivalence relation generated by (0, v) ∼
(1,−v) for all v ∈ R. Show that the map π : X → S1, [(x, v)] 7→ [x] is well-defined and
defines a vector bundle.





CHAPTER 3

Elements of Operator Theory

In this chapter we introduce some material from functional analysis which will be
needed later in this book. More precisely, in Section 3.1 we explain the concept that
linear operators with certain properties form a submanifold of the space of all linear
operators. This concept will be useful when generalizing the causal action principle to
causal variational principles in Chapter 6. In Section 3.2 we recall the spectral calculus
for selfadjoint operators. Although this material is covered in most functional analysis
lectures, in this book we do not expect that the reader is already familiar with this topic.
The spectral theorem will be used only when developing functional analytic methods in
spacetime in Chapter 15.

3.1. Manifolds of Operators

In this book, it is sometimes useful to observe that certain sets of operators on a
Hilbert space form a smooth manifold. For the purposes in this book, it suffices to work
out this concept in the case of a finite-dimensional Hilbert space (the generalization to
the infinite-dimensional case is a bit more technical; for details see [76]).

We begin with a simple example which illustrates the basic concept.

Example 3.1.1. (Grassmann manifold) Given f ∈ N, we consider Cf with the
canonical scalar product ⟨., .⟩Cf . Let G be the set of all orthogonal projection operators
to one-dimensional subspaces of Cf ,

G :=
{
πV orthogonal projection to a one-dimensional subspace V ⊂ Cf

}
.

Let us verify that G is a smooth manifold of dimension

dimG = 2f − 2 .

To this end, let πV be such a projection operator. We choose a unit vector v which
spans V . Next we let V ⊥ be the orthogonal complement of V and W = B1(0) ∩ V ⊥ its
unit ball. We consider the mapping

F : W → G , u 7→ πspan(v+u) .

It is verified by direct computation that F is injective and that its image is an open
neighborhood of πV in G. Also, one easily verifies that it is a local homeomorphism and
thus defines a chart

ϕ = F |−1
F (W ) : F (W ) →W ⊂ V ⊥ ≃ Cf−1 ≃ R2f−2 .

Moreover, one verifies directly that all the charts obtained in this way form a smooth
atlas (a more explicit method for constructing charts is explained in Exercise 3.1). This
manifold is called Grassmann manifold. ♢

This concept can be generalized to so-called flag manifolds (see for example [104,
page 142]):

53
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Definition 3.1.2. Given r ∈ N, we choose r integers

0 < d1 < · · · < dr < f .

Consider a sequence (L1, . . . , Lr) of nested subspaces

L1 ⊂ · · · ⊂ Lr ⊂ Cf with dimLi = di

for i = 1, . . . , r. Then the set of such sequences (L1, . . . , Lr) is referred to as the flag
manifold Fd1,...,dr .

Here we do not need to verify that a flag manifold is indeed a manifold. Instead, it
suffices to consider a specific set of operators which is related to a flag manifold. Namely,
choosing again H = Cf as well as integers p, q with p+ q ≤ f , we let Fp,q be the set

Fp,q = {A ∈ L(H) |A is symmetric and has p positive and q negative eigenvalues} ,
where we count the eigenvalues with multiplicities. Taking L1 as the subspace spanned
by the eigenvectors corresponding to the positive eigenvalues and L2 as the image of A,
one gets a corresponding flag manifold with r = 2 and d1 = p, d2 = p + q. But the
operators in Fp,q contain more information, namely the eigenvalues and the corresponding
eigenspaces. Therefore the set Fp,q can be regarded as a flag manifold with additional
structures. We now prove that this set is again a smooth manifold, following the method
in [69, Section 3].

Proposition 3.1.3. The set Fp,q is a smooth manifold of dimension

dimFp,q = 2f (p+ q)− (p+ q)2 .

Proof. Let x ∈ Fp,q. We denote its image by I and set J = I⊥. Thus, using a block
matrix representation in Cf = I ⊕ J , the matrix x has the representation

x =

(
X 0
0 0

)
. (3.1.1)

The goal is to find a parametrization of operators of Fp,q in a small neighborhood of x.
We first note that varying X by a sufficiently small symmetric matrix A, the resulting
matrix X + A has again p positive and q negative eigenvalues. In order to also vary the
off-diagonal entries in (3.1.1), we make the ansatz

M = (1+ C)

(
X +A 0

0 0

)
(1+ C)∗

with an f × f -matrix C. This ansatz has the advantage that M is obviously symmetric
and, for C sufficiently small, has again p positive and q negative eigenvalues (for details
see Exercise 3.2). We want to choose C such that the upper right block matrix entry
of M has a particularly simple form. This leads us to the parametrization matrix

M :=

(
1 0

B∗(X +A)−1 1

)(
X +A 0

0 0

)(
1 (X +A)−1B
0 1

)
(3.1.2)

=

(
X +A B
B∗ B∗(X +A)−1B

)
(3.1.3)

with a linear operator B : J → I. We also see that for (A,B) = (0, 0) the parametrization
matrix equals x, which is necessary for building a chart around x.

Thus, for sufficiently small ε, we obtain the mapping

Λ :
(
Symm(I)⊕ L(I, J)

)
∩Bε(0) → Fp,q , (A,B) 7→M (3.1.4)
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(where Symm(I) denotes the symmetric linear operators). Let us verify that (again
for sufficiently small ε) this mapping is a homeomorphism to an open neighborhood
of x ∈ Fp,q. It is obvious from (3.1.3) that Λ is injective. In order to verify that it maps
to an open neighborhood of x, we let y ∈ F p,q with ∥x − y∥ < δ (with δ > 0 to be
specified below). Diagonalizing y with a unitary matrix U , we obtain the block matrix
representation

y =

(
U11 U12

U21 U22

)(
X + C 0

0 0

)(
U∗
11 U∗

21

U∗
12 U∗

22

)
,

where C is a symmetric linear operator on I. In the limit y → x, the image of y
converges to the image of x, implying that the matrix U11 becomes unitary. Therefore,
for sufficiently small δ > 0, the matrix U11 is invertible, giving rise to the representation

y =

(
1 0

U21 U
−1
11 1

)(
U11 (X + C)U∗

11 0
0 0

)(
1 (U∗

11)
−1 U∗

21

0 1

)
.

This is of the form (3.1.2), and one can even read off A and B,

A = U11 (X + C)U∗
11 −X

B =
(
U11 (X + C)U∗

11

) (
U∗
11)

−1 U∗
21

)
.

We conclude that Λ is a bijection to an open neighborhood of x ∈ Fp,q. The continuity
of Λ and of its inverse are obvious. We have thus constructed a chart around x.

Performing the above construction around every point x ∈ Fp,q gives an atlas. By
direct computation one verifies that the transition maps are smooth. We conclude that,
with the above atlas, Fp,q is indeed a smooth manifold.

We finally determine its dimension. The linear operator B is represented by a (p+q)×
(f−p−q)-matrix, giving rise to 2(p+q)(f−p−q) real degrees of freedom. The symmetric
linear operator A, on the other hand, is represented by a Hermitian (p+q)×(p+q)-matrix,
described by (p+ q)2 real parameters. Adding these dimensions gives the result. □

We finally remark that the mapping Λ in (3.1.4) gives rise to distinguished charts,
referred to as symmetric wave charts. They have the nice property that they are Gauss-
ian normal coordinates with respect to the Riemannian metric induced by the Hilbert-
Schmidt norm (for details see [69]).

3.2. The Spectral Theorem for Selfadjoint Operators

In this book, we will mainly encounter operators of finite rank (see Definition 2.2.5).
In this case, a symmetric operator A on a Hilbert space (H, ⟨.|.⟩H) (see again Defini-
tion 2.2.5) has real eigenvalues, and there is an orthonormal basis of eigenvectors. Given
an eigenvalue λ, we refer to the dimension of the eigenspace as its multiplicity. Choosing
an orthogonal basis e1, . . . , ek of this eigenspace, we can form the orthogonal projection
operator Eλ to this eigenspace as

Eλ : H → H , Eλ u :=

k∑
i=1

ei ⟨ei|u⟩ .

Denoting the set of eigenvalues by σ(A) ⊂ R, the operator A has the spectral decomposi-
tion

A =
∑

λ∈σ(A)

λEλ . (3.2.1)
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We now briefly outline how the spectral decomposition can be generalized to operators
of infinite rank and unbounded operators. In this book, these results will be needed only
in Chapters 15–18 and a few times implicitly in order to justify that for example the
unitary time evolution in (4.6.2) is well-defined. With this in mind, the reader may skip
the remainder of this section in a first reading. More details on the spectral theorem can
be found in textbooks on functional analysis like for example [131, 137, 116]. We begin
with the case that A is a bounded and symmetric linear operator (see Definitions 2.2.3
and 2.2.5). The resolvent set ρ(A) ⊂ C is defined as the set of all λ for which the
operator A − λ has a bounded inverse, the so-called resolvent Rλ := (A − λ)−1 ∈ L(H).
The spectrum σ(A) := C \ ρ(A) is defined as the complement of the resolvent set. The
spectrum of a symmetric operator is always real, σ(A) ⊂ R (see Exercise 3.4). Given a
complex polynomial p(λ), we can form the operator p(A) by replacing λ by the operator A
(and monomials by powers of the operator). Clearly, this operation is compatible with
taking adjoints and multiplications, i.e.

p(A)∗ = p(A) and p(A) q(A) = (pq)(A) (3.2.2)

for any polynomials p and q. Moreover, the spectrum and norm of the operator p(A) can
be expressed easily in terms of the polynomial. Namely, the spectral mapping theorem
states that (for details see Exercise 3.5)

σ
(
p(A)

)
= p

(
σ(A)

)
. (3.2.3)

Moreover, the norm of p(A) is given by the C0-norm of the polynomial on the spectrum
of A, ∥∥p(A)∥∥ = sup

λ∈σ(A)

∣∣p(λ)∣∣ . (3.2.4)

These two properties make it possible to make sense of p(A) for more general functions p.
Namely, using the Stone-Weierstraß approximation theorem, the continuous functional
calculus makes it possible to define p(A) for continuous functions p ∈ C0(R). Next,
measure-theoretic methods (more precisely, the Riesz representation theorem to be in-
troduced in Section 12.2) make it possible to define p(A) for any bounded Borel function
(a function is called Borel if the pre-image of every open set is a Borel set). The re-
lations (3.2.2), (3.2.3) remain valid, whereas (3.2.4) becomes an inequality, ∥p(A)∥ ≤
supλ∈σ(A) |p(λ)|.

The functional calculus for bounded Borel functions makes it possible to choose the
function p in particular as the characteristic function of a Borel set Ω ⊂ R. We use the
notation

EΩ := χΩ(A) .

The mapping which to a Borel set Ω associates the operator EΩ is a projection-valued mea-
sure. This means that for every Borel set Ω, the operator EΩ is an orthogonal projection
operator in the sense that E∗

Ω = EΩ = E2
Ω. Moreover, for any Borel sets U and V , these

operators have the properties that EUEV = EU∩V . Finally, similar to Definition 2.3.2, a
spectral measure has the property that E∅ = 0 and ER = 1, whereas σ-additivity means
that for any sequence of pairwise disjoint Borel sets (Ωn)n∈N and every vector u ∈ H,

E∪nΩnu =

∞∑
n=1

(
EΩnu

)
(where the series converges in the Hilbert space H; in other words, the series of opera-
tors converges strongly in L(H)). Being in the measure-theoretic setting has the major
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advantage that one can express the functional calculus as an integral, i.e.

f(A) =

ˆ
R
f(λ) dEλ (3.2.5)

for any real-valued bounded Borel function f . In particular, the operator A has the
spectral decomposition

A =

ˆ
R
λ dEλ . (3.2.6)

In the case that the spectral measure is supported at a finite number of points, the integral
in (3.2.6) reduces to a sum, giving us back the spectral decomposition 3.2.1. However,
in general the integral (3.2.6) does not reduce to a sum or series. Instead, the support of
the spectral measure coincides with the spectrum,

σ(A) = suppE , (3.2.7)

but the spectrum may contain open sets, giving rise to the so-called continuous spectrum.
We remark that the equality in (3.2.4) again holds for bounded Borel functions if the
supremum is replaced by the essential supremum (with respect to the spectral measure).
In Exercise 3.7, the spectral theorem is illustrated in the example of a multiplication
operator.

The above spectral theorem for bounded symmetric operators can be generalized to
bounded normal operators. An operator A ∈ L(H) is called normal if it commutes with
its adjoint,

[A,A∗] = 0 .

The spectrum of a normal operator is in general complex. The spectral calculus reads

f(A) =

ˆ
C
f(λ) dEλ , (3.2.8)

where f is a complex-valued bounded Borel function on C and E a spectral measure
supported in the complex plane. The formulas (3.2.3), (3.2.4) and (3.2.7) continue to
hold. A typical example of a normal operator is a unitary operator (see Definition 2.2.5),
in which case the spectrum lies on the unit circle (see Exercise 3.6).

Finally, the spectral theorem also applies to unbounded selfadjoint operators, as we
now recall. An unbounded operator A is not defined on the whole Hilbert space, but only
on a dense subspace D(A) ⊂ H. Thus it is a linear mapping

A : D(A) ⊂ H → H .

The notion of a symmetric operator from Definition 2.2.5 extends to unbounded operators
by imposing it only for vectors u and v in the domain, i.e.

⟨Au | v⟩ = ⟨u |Av⟩ for all u, v ∈ D(A) .

The operator A is selfadjoint if the following implication holds,

⟨Au | v⟩ = ⟨u |w⟩ for all u ∈ D(A) =⇒ v ∈ D(A) and Av = w . (3.2.9)

Clearly, a selfadjoint operator is symmetric. However, the converse is in general not
true. Indeed, in order to obtain a selfadjoint operator one must construct a dense domain
which must be balanced (i.e. not too large and not too small) such that the condition on
the left of (3.2.9) implies that v lies in this domain. In this book, we shall not enter the
methods for the construction of selfadjoint domains. Instead, we assume that a selfadjoint
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operator A is given. Then the spectral theorem yields a spectral measure E on R such
that (3.2.6) again holds, but with pointwise convergence on the domain, i.e.

Au =

ˆ
R
λ d

(
Eλu

)
for all u ∈ D(A) .

Given a bounded Borel function f on R, the spectral calculus is again defined by (3.2.5),
giving a bounded operator. If f is an unbounded Borel function, the spectral calcu-
lus (3.2.5) gives an in general unbounded function with dense domain

D
(
f(A)

)
=

{
u ∈ H

∣∣∣ ˆ
R
|f(λ)|2 d⟨u|Eλu⟩ <∞

}
.

If f is real-valued, then the operator f(A) is again selfadjoint.

Example 3.2.1. (An unbounded multiplication operator) Generalizing the
setting of Exercises 2.13 and 3.7, we let g ∈ C0(R,R) be a possibly unbounded, real-
valued function. We consider the corresponding multiplication operator A on the Hilbert
space H = L2(R), i.e.

A := Tg : H → H , (Aϕ)(x) := g(x) ϕ(x) .

In order to make mathematical sense of this operator, we need to specify a domain. In
the first step, we choose D(A) = C∞

0 (R) as all smooth test functions. With this domain,
the operator is clearly symmetric, but it is not selfadjoint. In order to make A into a
selfadjoint operator, we need to choose the domain as

D(A) := {ϕ ∈ L2(R) | gϕ ∈ L2(R)} . (3.2.10)

Namely, with this choice, the condition on the left of (3.2.9) implies that ⟨u|gv⟩ = ⟨u|w⟩
for all u ∈ D(A). Using that the domain is dense, it follows that w = gv, so that the
implication in (3.2.9) holds.

Using the relation A2 = Tg2 inductively, one sees that p(A) = Tp◦g. Consequently,
the functional calculus for the operator A can be written as f(A) = Tf◦g. Choosing
characteristic functions, one sees that the spectral measure is given by

EΩ = Th with h(x) :=

{
1 if f(x) ∈ Ω
0 otherwise .

The support of this spectral measure coincides with the spectrum,

σ(A) = suppE = g(R) .

If g is equal to λ on a set of positive Lebesgue-measure, i.e. if

µ
(
g−1(λ)

)
> 0 ,

then λ is an eigenvalue, and the corresponding eigenspace is given by

ker(A− λ) = {ϕ ∈ L2(R) | ϕ|R\g−1(λ) = 0} .

If λ is in the image of g, but the value λ is attained only on a set of measure zero, then λ
lies in the continuous spectrum of A. More precisely, in this case the operator A− λ has
no kernel (i.e. λ is not an eigenvalue, because there are no corresponding eigenvectors
in H), but nevertheless the operator A− λ has no bounded inverse. ♢
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Example 3.2.2. (The Laplacian in R3) We conclude with an example of a dif-
ferential operator, namely the Laplacian ∆ on the Hilbert space L2(R3). We begin with
the simplest domain D(∆) = C∞

0 (R3) of smooth test functions. With this domain, the
Laplacian is symmetric, but it is not selfadjoint. One method for obtaining a domain for
which ∆ is selfadjoint is to take the Fourier transform and use the results for multipli-
cation operators of the previous Example 3.2.1. To this end, it is preferable to choose
the domain as the Schwartz functions, D(∆) = S(R3). Taking the Fourier transform, the
Laplacian becomes a multiplication operator, i.e. using the notation in Definition 2.4.4,

F∆F∗ = Tg with g(p) = −|p|2 .

Similar to (3.2.10), the multiplication operator Tg is selfadjoint with domain

D
(
Tg

)
= {ϕ ∈ L2(R3) | gϕ ∈ L2(R3)} .

Since the Fourier transform is a unitary transformation by Plancherel’s theorem (see
Theorem 2.4.8), we obtain a selfadjoint domain of the Laplacian simply by transforming
the domain of Tg back to position space,

D(∆) = F∗ D
(
Tg

)
. (3.2.11)

For the reader familiar with weak derivatives and Sobolev spaces we remark that this
domain can be expressed more directly as D(∆) = L2(R3) ∩ W 2,2(R3). But for the
purposes of this book, it suffices to write the domain according to (3.2.11). ♢

3.3. Exercises

Exercise 3.1. (Charts of Grassmann manifold) In this exercise we want to construct
a chart of the Grassmann manifold of Example 3.1.1. To this end, we consider unit
vectors u ∈ Cf with components

u(v) =
(√

1− ∥v∥2, v
)

with v ∈ Cf−1 with ∥v∥ < 1 .

We consider the mapping

F : B1 ⊂ Cf−1 → G , F (v) := |u(v)⟩⟨u(v)| (3.3.1)

(where we used bra/ket-notation; in other words, F (v) is the orthogonal projection to
the span of u(v)). Show that F is differentiable at the origin and that DF |0 has maximal
rank. Use this method to construct a differentiable atlas of G. Compare the mapping F

in (3.3.1) with the mapping Λ in (3.1.4) in the case p = 1 and q = 0. What are the
similarities and differences?

Exercise 3.2. Let x be a Hermitian f × f -matrix of rank p + q which (counting
multiplicities) has p positive and q negative eigenvalues. Let A be another f × f -matrix
(not necessarily Hermitian). Prove the following statements:

(a) The matrix A∗xA has at most p positive and at most q negative eigenvalues.
Hint: Consider the maximal positive and negative definite subspaces of the bilinear
forms ⟨., x.⟩Cf and ⟨., A∗xA .⟩Cf . Use that

⟨u,A∗xAu⟩Cf = ⟨(Au), x (Au)⟩Cf .

(b) If A is invertible, then the matrix A∗xA has again p positive and q negative eigen-
values.
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Exercise 3.3. Let A ∈ L(H). For λ ∈ ρ(A) in the resolvent set, we define the
resolvent Rλ by Rλ = (A− λ)−1. Prove the so-called resolvent identity

Rλ Rλ′ =
1

λ− λ′
(Rλ −Rλ′) ,

valid for any λ, λ′ ∈ ρ(A). Hint: Multiply by A− λ from the left and by A− λ′ from the
right.

Exercise 3.4. Let A ∈ L(H) be a bounded symmetric operator. Show that its
spectrum is real, ρ(A) ⊂ R. Hint: It might be helpful to prove and make use of the
inequality ∥(A− λ)u∥ ≥ Imλ ∥u∥.

Exercise 3.5. Prove the spectral mapping theorem (3.2.3) for a polynomial p. Hint:
Use that a complex polynomial can be factorized into a product of linear functions.

Exercise 3.6. Let A ∈ L(H) be unitary.

(a) Show that A is normal.
(b) Use the spectral calculus (3.2.8) to show thatˆ

C
|λ|2 dEλ = A∗A = 1 .

(c) Conclude that the spectrum of A is contained in the unit circle.

Exercise 3.7. (Spectrum and functional calculus for multiplication operators) We
return to the multiplication operators from Exercise 2.13. Let f ∈ C0(R,C) be a contin-
uous, complex-valued function. Assume that it is bounded, i.e. that supR |f | < ∞. We
consider the multiplication operator Tf on the Hilbert space H = L2(R), i.e.

Tf : H → H , (Tf ϕ)(x) = f(x) ϕ(x) .

(a) Show that, if the resolvent exists, it has the form

Rλ = (Tf − λ)−1 = Tg with g(x) =
1

f(x)− λ
.

For which values of λ has the operator Tf − λ a bounded inverse? What is the
spectrum of Tf?

(b) Are powers of Tf again multiplication operators? Use your findings to guess a formula
for the continuous spectral calculus f(Ta). What is the projection-valued spectral
measure E?

(c) Work out the projection-valued spectral measure explicitly in the example

f(x) =


x if x ∈ [0, 12 ]

−x if x ∈ (12 , 1]

0 otherwise .



CHAPTER 4

Spinors in Curved Spacetime

This chapter provides a brief introduction to spinors in curved spacetime. In order to
make this book accessible to a broader readership, we mainly restrict attention to systems
in Minkowski space. Nevertheless, many constructions and results carry over to curved
spacetime in a straightforward way. The present section is intended for providing the
necessary background for these generalizations. The reader not interested in gravity and
Lorentzian geometry may skip this section. More specifically, the results of this chapter
will be used only in Sections 11.3, 13.6 and 19.3. We follow the approach in [38]; for
other introductions to spinors on manifolds see for example [115, 90].

4.1. Curved Spacetime and Lorentzian Manifolds

The starting point for general relativity is the observation that a physical process
involving gravity can be understood in different ways. Consider for example an observer
at rest on earth looking at a freely falling person (e.g. a diver who just jumped from a
diving board). The observer at rest argues that the earth’s gravitational force, which he
can feel himself, also acts on the freely falling person and accelerates him. The person
in free fall, on the other hand, does not feel gravity. He can take the point of view that
he himself is at rest, whereas the earth is accelerated toward him. He concludes that
there are no gravitational fields, and that the observer on earth merely feels the force of
inertia corresponding to his acceleration. Einstein postulated that these two points of
view should be equivalent descriptions of the physical process. More generally, it depends
on the observer whether one has a gravitational force or an inertial force. In other words,

equivalence principle: no physical experiment can distinguish between
gravitational and inertial forces.

In mathematical language, observers correspond to coordinate systems, and so the equiv-
alence principle states that the physical equations should be formulated in general (i.e.
“curvilinear”) coordinate systems, and should in all these coordinate systems have the
same mathematical structure. This means that the physical equations should be in-
variant under diffeomorphisms, and thus spacetime is to be modeled by a Lorentzian
manifold (M, g).

A Lorentzian manifold is “locally Minkowski space” in the sense that at every space-
time point p ∈ M, the corresponding tangent space TpM is a vector space endowed
with a scalar product ⟨., .⟩p of signature (+ − −−). Therefore, we can distinguish be-
tween spacelike, timelike and null tangent vectors. Defining a non-spacelike curve q(τ)
by the condition that its tangent vector u(τ) := d

dτ q(τ) ∈ Tq(τ)M be everywhere non-
spacelike, our definition of the light cone and the notion of causality given in Section 1.2
in Minkowski space immediately carry over to a Lorentzian manifold. In a coordinate
chart, the scalar product ⟨., .⟩p can be represented in the form (1.2.1) where gjk are the
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components of the so-called metric tensor (and ξj are ηk are the components of two tan-
gent vectors at p, again in this coordinate chart). In contrast to Minkowski space, the
metric tensor is not a constant matrix but depends on the spacetime point, gjk = gjk(p).
Its ten components can be regarded as the relativistic analogue of Newton’s gravitational
potential. For every p ∈ M there are coordinate systems in which the metric tensor
coincides with the Minkowski metric up to second order in a Taylor expansion about the
point p,

gjk(p) = diag(1,−1,−1,−1) , ∂jgkl(p) = 0 . (4.1.1)

Such Gaussian normal coordinates correspond to the reference frame of a “freely falling
observer” who feels no gravitational forces. However, it is in general impossible to arrange
that also ∂jkglm(p) = 0. This means that by going into a suitable reference frame, the
gravitational field can be transformed away locally (=in one point), but not globally.
With this in mind, a reference frame corresponding to Gaussian normal coordinates is
also called a local inertial frame.

Physical equations can be carried over to a Lorentzian manifold by the prescription
that they should in a local inertial frame have the same form as in Minkowski space; this
is referred to as the strong equivalence principle. In practice, it amounts to replacing
all partial derivatives by the corresponding covariant derivatives ∇ of the Levi-Civita
connection of the Lorentzian manifold; we write symbolically (basics on the covariant
derivative can be found for example in [29, 117, 112])

strong equivalence principle : ∂ −→ ∇ .

The gravitational field is described via the curvature of spacetime. More precisely, the
Riemannian curvature tensor is defined by the relations

Rijkl u
l = ∇j∇ku

i −∇k∇ju
i . (4.1.2)

Contracting indices, one obtains the Ricci tensor Rjk = Rijik and scalar curvature R = Rjj .
The relativistic generalization of Newton’s gravitational law are the Einstein equations

Rjk −
1

2
R gjk = 8πκ Tjk ,

where κ is the gravitational constant. Here the energy-momentum tensor Tjk describes
the distribution of matter and energy in spacetime.

4.2. The Dirac Equation in Curved Spacetime

Dirac spinors on a manifold are often formulated using frame bundles, either an
orthonormal frame [9, 90] or a Newman-Penrose null frame [127, 20]. We here outline
an equivalent formulation of spinors in curved spacetime in the framework of a U(2, 2)
gauge theory (for details see [38]). We begin with constructions in local coordinates,
whereas global issues like topological obstructions to the existence of spin structures
will be discussed in Section 4.4 below. We let M be a 4-dimensional manifold (without
Lorentz metric) and define the spinor bundle SM as a vector bundle over M with fiber C4.
The fibers are endowed with an inner product ≺.|.≻ of signature (2, 2), referred to as
the spin inner product. Sections in the spinor bundle are called spinors or wave functions.
Choosing local coordinates on M and local bases {eα}α=1,...,4 of the spin spaces, a wave
function is represented by a 4-component complex function in spacetime, usually denoted
by ψ(x). Choosing at every spacetime point a pseudo-orthonormal basis (eα)α=1,...,4 in
the fibers,

≺eα|eβ≻ = sα δαβ , s1 = s2 = 1, s3 = s4 = −1 . (4.2.1)
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the spin inner product takes the form (1.3.7). Clearly, such a frame {eα} is not unique,
as one can always perform a transformation according to

eα −→ (U−1)βα eβ ,

where U is an isometry of the spin inner product, U ∈ U(2, 2). This basis transformation
may depend on the spacetime point. Under this basis transformation the spinors behave
as follows,

ψα(x) −→ Uαβ (x) ψ
β(x) . (4.2.2)

In order to simplify the notation in the following computations, we omit the tensor indices
and write this equation with a matrix multiplication,

ψ(x) −→ U(x) ψ(x) (4.2.3)

(here we implicitly identify the spinor with its concrete realization in a spinor basis). In
view of the analogy to gauge theories, we interpret the transformation law (4.2.3) of the
wave functions as a local gauge transformation with gauge group G = U(2, 2). We refer
to a choice of the spinor basis (eα) as a gauge.

Our next goal is to formulate classical Dirac theory in such a way that the above U(2, 2)
gauge transformations correspond to a physical symmetry, the U(2, 2) gauge symmetry.
To this end, we shall consider a Dirac-type operator as the basic object on M, from
which we will then deduce the Lorentz metric and the gauge potentials. First we define a
differential operator of first order as a linear operator D on wave functions which in any
local chart and gauge takes the form

D = iGj(x)
∂

∂xj
+B(x) (4.2.4)

with suitable (4×4)-matrices Gj(x) and B(x). This definition does not depend on a choice
of coordinates and gauge, although the specific form of the matrices Gj(x) and B(x)
clearly does. More precisely, if we change to other coordinates x̃i while keeping the gauge
fixed, a short computation shows that the operator (4.2.4) transforms to

i

(
Gk(x)

∂x̃j

∂xk

)
∂

∂x̃j
+B(x̃) . (4.2.5)

On the other hand, if we perform a gauge transformation ψ → Uψ but keep the coordi-
nates xi fixed, the Dirac operator transforms according to

Dψ −→ UDψ = UDU−1(Uψ) ,

and a straightforward computation gives

UDU−1 = i
(
UGjU−1

) ∂

∂xj
+
(
UBU−1 + iUGj(∂jU

−1)
)
. (4.2.6)

We now define an operator of Dirac type by the requirement that by choosing suitable
coordinates and gauge, one can arrange that the coefficient matrices Gj of the partial
derivatives “coincide locally” with the Dirac matrices of Minkowski space.

Definition 4.2.1. A differential operator D of first order on a spinor bundle is
called operator of Dirac type (or Dirac-type operator) if for every p ∈ M there is
a chart (xi, U) around p and a gauge (eα)α=1,...,4 on U such that D is of the form (4.2.4)
with

Gj(p) = γj , (4.2.7)

where the γj are the Dirac matrices of Minkowski space in the Dirac representation (1.3.3).
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It may seem unconventional that we defined Dirac-type operators without having a
covariant derivative on the spinor bundle yet. An advantage of our approach is that
the condition (4.2.7) is natural and can be understood physically as an extension of
the equivalence principle which incorporates gauge transformations (not just coordinate
transformations). As we shall see, the above Dirac operator includes both gravitational
fields and electromagnetic potentials, giving a unified description of electrodynamics and
general relativity as a gauge theory. More concretely, from a Dirac-type operator we
shall construct a gauge-covariant derivative D, also referred to as the corresponding spin
derivative or gauge-covariant derivative. In preparation, we write the transformation
law (4.2.2) in the shorter form

ψ(x) −→ U(x) ψ(x) (4.2.8)

with U ∈ U(2, 2). Clearly, partial derivatives of ψ do not have a nice behavior under
gauge transformations because we pick up derivatives of U . This problem disappears if
instead of partial derivatives we consider gauge-covariant derivatives

Dj = ∂j − iAj , (4.2.9)

where the gauge potential Aj is pointwise linear operator on spinor (i.e. a (4× 4)-matrix
valued function if represented in a gauge and coordinate system). Provided that these
gauge potentials Aj transform under a gauge transformation U as

Aj −→ UAjU
−1 + iU (∂jU

−1) , (4.2.10)

a short calculation shows that then the gauge-covariant derivative behaves under gauge
transformations according to

Dj −→ U Dj U
−1 , (4.2.11)

and thus the gauge-covariant derivatives of ψ obey the simple transformation rule

Djψ −→ U Djψ .

Thus our task is to find a way to construct matrices Aj which transform under local gauge
transformations according to (4.2.10). This construction will also reveal the structure of
the matrix B, and this will finally lead us to the definition of the Dirac operator, which
involves precisely the gravitational and electromagnetic fields.

Before we come to this construction, we first explain how a Dirac type operator
induces a Lorentzian metric. In a chart and gauge where (4.2.7) holds in a point p, it is
obvious from (1.3.1) that the anti-commutator of the matrices Gj(p) gives the Minkowski
metric. Transforming from this chart to a general coordinate system and gauge using the
transformation rules (4.2.5) and (4.2.6), one sees that in a general coordinate system and
gauge, the anti-commutator of these matrices defines a Lorentzian metric,

gjk(x) 1 =
1

2
{Gj(x), Gk(x)} . (4.2.12)

Moreover, using that the Dirac matrices in Minkowski space are symmetric with respect
to the spin inner product in Minkowski space (see (1.3.8)), one sees (again from the
transformation laws (4.2.5) and (4.2.6)) that the same is true for the matrices Gj ,

≺Glψ |ϕ≻ = ≺ψ |Glϕ≻ for all ψ, ϕ . (4.2.13)

Thus we see that, via (4.2.12), a Dirac-type operator induces on the manifold a Lorentzian
structure. We refer to the matrices Gj as the Dirac matrices in curved spacetime. Since
we can arrange by a choice of coordinate system and gauge that these matrices coincide
at any given spacetime point with the Dirac matrices of Minkowski space, all the familiar
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relations involving Dirac matrices generalize in an obvious way to curved space time. In
particular, the pseudo-scalar operator Γ(x) can be introduced in curved spacetime by
writing (1.3.21) in a coordinate and gauge-covariant form as

Γ(x) =
1

4!
εjklmG

j(x)Gk(x)Gl(x)Gm(x) , (4.2.14)

where the anti-symmetric tensor εjklm =
√

|det g| ϵjklm differs from the anti-symmetric
symbol ϵjklm by the volume density. The pseudo-scalar operator gives us again the notion
of even and odd matrices and of chirality (1.3.22). Furthermore, we introduce the bilinear
matrices σjk by

σjk(x) =
i

2

[
Gj(x), Gk(x)

]
.

As in Minkowski space, at any spacetime point the matrices

Gj , ΓGj , 1 , iΓ , σjk (4.2.15)

form a basis of the 16-dimensional (real) vector space of symmetric matrices (symmetric
with respect to the spin inner product ≺.|.≻). The matrices Gj and ΓGj are odd, whereas
1, iΓ and σjk are even.

We are now ready for the construction of the spin connection from a Dirac type opera-
tor. The Lorentzian metric (4.2.12) induces the Levi-Civita connection ∇ on the tangent
bundle, which further induces the Levi-Civita covariant derivative on arbitrary tensor
fields (for basics on the Levi-Civita connection see again [29, 117]). Taking covariant

derivatives of the Dirac matrices by the formula ∇kG
j = ∂kG

j+ΓjklG
l, where Γjkl are the

Christoffel symbols of the Levi-Civita connection, we obtain an expression which behaves
under coordinate transformations like a tensor. However, it is not gauge covariant, be-
cause a gauge transformation (4.2.8) yields contributions involving first derivatives of U .
More precisely, according to (4.2.6),

∇kG
j −→ ∇k(UG

jU−1) = U(∇kG
j)U−1 + (∂kU)GjU−1 + UGj(∂kU

−1)

= U(∇kG
j)U−1 −

[
U(∂kU

−1), UGjU−1
]

(4.2.16)

(in the last line we used the relation ∂jU = −U(∂jU
−1)U ; for details see Exercise 4.2).

We can use the second summand in (4.2.16) to partially fix the gauge.

Lemma 4.2.2. For every spacetime point p ∈ M there is a gauge such that

∇kG
j(p) = 0 for all indices j, k . (4.2.17)

Proof. We start with an arbitrary gauge and construct the desired gauge with two
subsequent gauge transformations:

(i) The matrix ∂jΓ is odd, because

0 = ∂j1 = ∂j(ΓΓ) = (∂jΓ)Γ + Γ(∂jΓ) .

As a consequence, the matrix iΓ(∂jΓ) is symmetric (with respect to the spin inner
product). Note that for any symmetric matrix A the family of operators U(q) =
exp(−iA(q− p)) is unitary and U(p) = 1, ∂jU(p) = −iA. Therefore, we can perform
a gauge transformation U with U(p) = 1 and ∂jU(p) = 1

2Γ(∂jΓ). In the new gauge
the matrix ∂jΓ(p) vanishes, as one checks by the computation

∂jΓ|p −→ ∂j(UΓU−1)|p = ∂jΓ|p +
1

2
[Γ(∂jΓ), Γ]|p = ∂jΓ|p − Γ2(∂jΓ)|p = 0 .
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Differentiating the relation {Γ, Gj} = 0, one sees that the matrix ∇kG
j
|p is odd

(in the sense that it anti-commutes with Γ, exactly as defined in Minkowski space
after (1.3.23)). We can thus represent it in the form

∇kG
j
|p = Λjkm Gm|p +Θj

km Γ|pG
m
|p (4.2.18)

with suitable coefficients Λjkm and Θj
km.

This representation can be further simplified: According to Ricci’s Lemma,
∇ng

jk = 0. Expressing the metric via the anti-commutation relation (4.2.12) and
using the Leibniz rule, we get

0 = {∇nG
j , Gk}+ {Gj , ∇nG

k}

= 2Λjnm gmk −Θj
nm 2iΓσmk + 2Λknm gmj −Θk

nm 2iΓσmj (4.2.19)

and thus
Λjnm gmk|p = −Λknm gmj|p . (4.2.20)

Further, in the case j = k ̸= m, the relation (4.2.19) yields that Θj
nm = 0. For j ̸= k,

we obtain Θj
nj σ

jk +Θk
nk σ

kj = 0 and thus Θj
nj = Θk

nk (j and k denote fixed indices,

no summation is performed). We conclude that there are coefficients Θn with

Θj
nk = Θn δ

j
k . (4.2.21)

(ii) We perform a gauge transformation U with U(p) = 1 and

∂kU = −1

2
Θk Γ− i

4
Λmkn g

nl σml (4.2.22)

(the existence of such a gauge transformation follows exactly as explained at the
beginning of (i), using that the matrix on the right side of (4.2.22) is anti-symmetric
with respect to the spin inner product). Using the representation (4.2.18) together
with (4.2.20) and (4.2.21), the matrix ∇kG

j transforms into

∇kG
j −→∇kG

j + [∂kU, G
j ]

= Λjkm Gm +Θk ΓG
j −Θk ΓG

j − i

4
Λmkn g

nl [σml, G
j ]

= Λjkm Gm − i

4
Λmkn g

nl 2i (Gm δjl −Gl δ
j
m)

= Λjkm Gm +
1

2
Λmkn g

nj Gm − 1

2
Λjkm Gm = 0 . □

We call a gauge satisfying condition (4.2.17) a normal gauge around p. In order to
analyze the remaining gauge freedom, we let U be a transformation between two normal
gauges. Then according to (4.2.16) and (4.2.17), the commutator [U(∂kU

−1), UGjU−1]
vanishes at p or, equivalently,

[i(∂kU
−1) U, Gj ]|p = 0 .

As is easily verified in the basis (4.2.15) using the anti-commutation relations, a matrix
which commutes with all Dirac matrices is a multiple of the identity matrix. Moreover,
the matrix i(∂jU

−1) U is symmetric because

(i(∂jU
−1) U)∗ = −iU−1 (∂jU) = −i∂j(U

−1U) + i(∂jU
−1) U = i(∂jU

−1) U .

We conclude that the matrix i(∂jU
−1)U is a real multiple of the identity matrix. Trans-

forming it unitarily with U , we see that it also coincides with the matrix iU(∂jU
−1).
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Restricting attention to normal gauges, it is easy to find expressions with the required
behavior (4.2.10) under gauge transformations. Namely, setting

aj =
1

4
ReTr

(
Gj B

)
1 , (4.2.23)

where “Tr” denotes the trace of a 4× 4-matrix, one sees from (4.2.6) that

aj −→ aj +
1

4
Re Tr

(
GjG

k i(∂kU
−1) U

)
1 = aj + iU(∂jU

−1) .

We can identify the aj with the gauge potentials Aj and use (4.2.9) as the definition of
the spin connection.

Definition 4.2.3. The spin derivative D is defined by the condition that it behaves
under gauge transformations (4.2.8) according to (4.2.11), and that in normal gauges
around p it has the form

Dj(p) =
∂

∂xj
− iaj (4.2.24)

with the potentials aj according to (4.2.23).

In general gauges, the spin derivative can be written as

Dj =
∂

∂xj
− iEj − iaj (4.2.25)

with additional matrices Ej(x), which involve the Dirac matrices and their first deriva-
tives. The components of Ej are sometimes referred to as spin coefficients. The spin
coefficients can be regarded in analogy to the Christoffel symbols of the Levi-Civita con-
nection, but now they act on spinors, not on vector fields. A short calculation shows
that the trace of the matrix Ej does not change under gauge transformations, and since
it vanishes in normal gauges, we conclude that the matrices Ej are trace-free. It is
straightforward to verify that they are given explicitly by (for details see Appendix A)

Ej =
i

2
Γ (∂jΓ)−

i

16
Tr(Gm ∇jG

n)GmGn +
i

8
Tr(ΓGj ∇mG

m) Γ . (4.2.26)

In the next two theorems we collect the basic properties of the spin connection.

Theorem 4.2.4. The spin derivative satisfies for all wave functions ψ, ϕ the equations[
Dk, G

j
]
+ Γjkl G

l = 0 (4.2.27)

∂j≺ψ|ϕ≻ = ≺Djψ |ϕ≻+≺ψ |Djϕ≻ . (4.2.28)

Proof. The left side of (4.2.27) behaves under gauge transformations according to
the adjoint representation . → U . U−1 of the gauge group. Therefore, it suffices to
check (4.2.27) in a normal gauge, where

[Dk, G
j ] + Γjkl G

l = ∇kG
j − i

4
ReTr

(
GjB

)
[1, Gj ] = 0 .

Since both sides of (4.2.28) are gauge invariant, it again suffices to consider a normal
gauge. The statement is then an immediate consequence of the Leibniz rule for partial
derivatives and the fact that the spin derivative differs from the partial derivative by an
imaginary multiple of the identity matrix (4.2.24). □
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The identity (4.2.27) means that the coordinate and gauge invariant derivative of the
Dirac matrices vanishes. The relation (4.2.28) shows that the spin connection is compat-
ible with the spin inner product.

We define the curvature R of the spin connection as the following two-form,

Rjk =
i

2
[Dj , Dk] .

Theorem 4.2.5. The spin connection satisfies the relation

[Dj , Gk] = [Dk, Gj ] .

Moreover, curvature has the form

Rjk =
1

8
Rmnjk σ

mn +
1

2
(∂jak − ∂kaj) ,

where Rmnjk is the Riemannian curvature tensor and the aj are given by (4.2.23).

Proof. The identity (4.2.27) yields[
Dj , Gk

]
=

[
Dj , gklG

l
]
= (∂jgkl)G

l − gkl Γ
l
jm Gm = Γmjk Gm .

Thus, using that the Levi-Civita connection is torsion-free, we obtain

[Dj , Gk] = [Dk, Gj ] =
(
Γmjk − Γmkj

)
Gm = 0 .

Next, again using (4.2.27), we can rewrite the covariant derivative as a spin derivative,

Gl ∇ku
l =

[
Dk, Glu

l
]
.

Iterating this relation, we can express the Riemann tensor (4.1.2) by

Gi R
i
jkl u

l =
[
Dj , [Dk, Glu

l]
]
−
[
Dk, [Dj , Glu

l]
]

=
[
[Dj , Dk], Glu

l
]
= −2i

[
Rjk, Glu

l
]
.

This equation determines curvature up to a multiple of the identity matrix, i.e.

Rjk(x) =
1

8
Rmnjk σ

mn + λjk1

with unknown parameters λjk. These parameters can be determined by computing the
trace of curvature. Since the matrices Ej in (4.2.26) and their partial derivatives are
trace-free, a direct computation starting from (4.2.25) gives

λjk =
1

4
Tr(Rjk) 1 =

1

8
Tr

(
∂jAk − ∂kAj

)
1 =

1

2

(
∂jak − ∂kaj

)
,

concluding the proof. □

We come to the physical interpretation of the above construction. According to
Lemma 4.2.2 we can choose a gauge around p such that the covariant derivatives of the
Dirac matrices vanish at p. Moreover, choosing normal coordinates and making a global
(=constant) gauge transformation, we can arrange that G(p) = γj and ∂jgkl(p) = 0.
Then the covariant derivatives at p reduce to partial derivatives, and we conclude that

Gj(p) = γj , ∂kG
j(p) = 0 . (4.2.29)

These equations resemble the conditions for normal coordinates (4.1.1), except that the
role of the metric is now played by the Dirac matrices. Indeed, by differentiating (4.2.12)
one sees that (4.2.29) implies (4.1.1). Therefore, (4.2.29) is a stronger condition which not
only poses a condition for the coordinates, but also for the gauge. We call a coordinate
system and gauge where (4.2.29) is satisfied a normal reference frame around p.
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In a normal reference frame around p, the Dirac matrices, and via (4.2.12) also the
metric, are the same as in Minkowski space up to the order ∼ (x − p)2. Combining the
equivalence principle with the usual minimal coupling procedure in physics, it seems a
sensible physical assumption that the Dirac equation at p should coincide with that in
Minkowski space. This implies that there should be a normal gauge such that all gauge
potentials vanish at p, and thus the Dirac operator at p should coincide with the vacuum
Dirac operator i∂/. This physical argument makes it possible to specify the zero order
term in (4.2.4).

Definition 4.2.6. A Dirac-type operator D is called Dirac operator if for any p ∈
M there is a normal reference frame around p such that B(p) = 0.

Equivalently, the Dirac operator could be defined as a differential operator of first
order (4.2.4) with the additional structure that for any p ∈ M there is a coordinate chart
and gauge such that the following three conditions are satisfied,

Gj(p) = γj , ∂kG
j(p) = 0 , B(p) = 0 .

This alternative definition has the disadvantage that it is a-priori not clear whether the
second condition ∂kG

j(p) = 0 can be satisfied for a general metric. This is the reason
why we preferred to begin with only the first condition (Definition 4.2.1), then showed
that the second condition can be arranged by choosing suitable coordinates and gauge,
and satisfied the third condition at the end (Definition 4.2.6).

In general coordinates and gauge, the Dirac operator can be written as

D = iGjDj = iGj
(
∂j − iEj − iaj

)
, (4.2.30)

where D is the spin connection of Definition 4.2.3. The matrices Ej take into account the
gravitational field and are called spin coefficients, whereas the aj can be identified with
the electromagnetic potential (compare (1.3.6)). We point out that the gravitational field
cannot be introduced into the Dirac equation by the simple replacement rule ∂ → D,
because gravity has an effect on both the Dirac matrices and the spin coefficients. But
factorizing the gauge group as U(2, 2) = U(1) × SU(2, 2), the SU(2, 2)-gauge transfor-
mations are linked to the gravitational field because they influence Gj and Ej , whereas
the U(1) can be identified with the gauge group of electrodynamics. In this sense, we
obtain a unified description of electrodynamics and general relativity as a U(2, 2) gauge
theory. The Dirac equation

(D −m) ψ = 0 (4.2.31)

describes a Dirac particle in the presence of a gravitational and electromagnetic field.
According to Theorem 4.2.5, the curvature of the spin connection involves both the
Riemann tensor and the electromagnetic field tensor. One can express the classical action
in terms of these tensor fields, so that the corresponding Euler-Lagrange equations give
rise to the classical Einstein-Dirac-Maxwell equations.

For the probabilistic interpretation of the Dirac equation in curved spacetime, we
choose a spacelike hypersurface N (corresponding to “space” for an observer) and consider
in generalization of (1.3.12) on solutions of the Dirac equation the scalar product

(ψ|ϕ)N =

ˆ
N

≺ψ |Gjνj ϕ≻ dµN , (4.2.32)

where ν is the future-directed normal on N and dµN is the invariant measure on the
Riemannian manifold N (in order to ensure that the integral exists, one can for example
restrict attention to solutions of spatially compact support, as will be introduced after
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Theorem 4.5.2 below). Then (ψ|ψ)N is the normalization integral, which we again nor-
malize to one. Its integrand has the interpretation as the probability density. In analogy
to (1.3.9) the Dirac current is introduced by Jk = ≺ψ |Gkψ≻. Using Theorem 4.2.4 one
sees similar as in Minkowski space that the Dirac current is divergence-free, ∇kJ

k = 0.
From the Gauß divergence theorem one obtains that the scalar product (4.2.32) does
not depend on the choice of the hypersurface N (this follows similar as explained in
Minkowski space after (1.3.11)).

In analogy to (1.3.16), we can introduce the spacetime inner product

<ψ|ϕ> :=

ˆ
M

≺ψ|ϕ≻x dµM . (4.2.33)

in which the wave functions (which need not satisfy the Dirac equation but must have a
suitable decay at infinity) are integrated over all of spacetime. We finally remark that,
using Theorem 4.2.4 together with Gauß’ divergence theorem, one easily verifies that the
Dirac operator is symmetric with respect to this inner product.

4.3. Computation of the Dirac Operator

We now explain how the Dirac operator can be computed in an efficient way in a given
spacetime. Thus suppose that the Lorentzian metric gij is given in a chosen chart. The
general procedure is to first choose matrices Gj(x) which are symmetric with respect to
the spin inner product (4.2.13) (where in our formulation, the spin inner product is always
given by (4.2.1)) and which satisfy the anti-commutation relations (4.2.12). Then the spin
coefficients as given by (4.2.26) are obtained by a straightforward computation. Then the
spin derivative is given by (4.2.25) (where aj are the components of the electromagnetic
potential; they are set to zero if no electromagnetic field is present). The Dirac operator
is given by (4.2.30), i.e.

D = iGjDj = iGj∂j +GjEj +Gjaj . (4.3.1)

In this construction, one has a lot of freedom to choose the Dirac matrices Gj(x) (as
described systematically by the U(2, 2)-gauge transformations (4.2.8) and (4.2.11)). It is
a promising strategy to use this gauge freedom such as to choose Dirac matrices for which
the formulas for the spin coefficients (4.2.26) become as simple as possible. Moreover, one
should keep in mind that for the computation of the Dirac operator, one does not need
to know all the matrices Ej , but it suffices to compute the combination GjEj in (4.3.1).
Indeed, in many spacetimes of physical interest, making use of the gauge freedom, the
combination GjEj can be computed easily (for details see the computations in black hole
geometries in [85, 66] or various examples in [60, Section 9]). We here illustrate this
method by the example of a diagonal metric, in which case it is even unnecessary to
compute the Christoffel symbols:

Proposition 4.3.1. Assume that there is a local chart (xi) in which the metric is
diagonal, i.e.

ds2 =
3∑
i=0

gii(x) dx
2
i . (4.3.2)

Then there is a gauge in which the Dirac operator (without electromagnetic field) takes
the form

D = iGj
∂

∂xj
+B , (4.3.3)
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where

Gj(x) = gjj(x)
− 1

2 γj (4.3.4)

B(x) =
i

2
√
|det g|

∂j

(√
|det g|Gj

)
. (4.3.5)

(here γj are again the Dirac matrices in Minkowski space).

Proof. With (4.3.4) we have satisfied the anti-commutation relations

{Gj , Gk} = 2 gjk 1 .

Moreover, the choice (4.3.4) ensures that the pseudo-scalar operator is constant, and that
all derivatives of the Gj are in the span of γ0, . . . , σk. Therefore, the formula for the zero
order term in the Dirac operator (4.3.1) simplifies to

B = − i

16
Tr

(
Gm (∇jGn)

)
GjGmGn , (4.3.6)

where ∇jGn ≡ ∂jGn − ΓkjnGk is the covariant derivative acting on the components of

the spinorial matrix. Using the algebra of the Dirac matrices, one finds that (4.3.6) has
a vectorial component (obtained by using the anti-commutation relations), and an ax-
ial component which is totally antisymmetric in the indices j, m, and n. This totally
antisymmetric term vanishes for the following reasons: First, since the Levi-Civita con-
nection is torsion-free, we may replace the covariant derivative by a partial derivative.
Second, it follows from (4.3.4) that the matrix ∂jGn is a multiple of Gn, implying that
the trace Tr(Gm(∂jGn)) is symmetric in the indices m and n.

It remains to compute the vectorial component of (4.3.6). A short computation yields

B =
i

2
∇jG

j ,

and the usual formula for the covariant divergence of a vector field gives the result. □

The result of this proposition is very useful for applications, as is illustrated in Exer-
cise 4.4.

4.4. Formulation with Vector Bundles, the Spinor Bundle

So far, the Dirac operator was introduced in a local chart. We intentionally left a
large local gauge freedom, having the advantage that this freedom can be used to simplify
the form of the Dirac operator. The remaining question is whether our constructions in
local charts can be made global to obtain a Dirac operator D acting on the sections of
the so-called spinor bundle SM. To this end, we shall consider the Dirac operator in
different charts and patch the Dirac operators in the overlapping regions.

In preparation, we recall the structures introduced so far, using a more abstract no-
tation which clarifies the dependence on gauge and coordinates. In our local construction
at the beginning of Section 4.2, the spinor space at a point x ∈ M is simply C4 with the
inner product (4.2.1). Using the same notation as in Section 1.4 in Minkowski space, we
now denote the spinor space by (SxM,≺.|.≻x). Moreover, we denote the linear operators
on SxM which are symmetric with respect to the spin inner product by Symm(SxM).
It is a 16-dimensional real vector space spanned by the operators in (4.2.15). Given a
Dirac-type operator D, the Dirac matrices Gj(x) span a four-dimensional subspace Kx

of Symm(SxM),

Kx := span
{
G0(x), . . . , G3(x)

}
⊂ Symm(SxM) ,



72 4. SPINORS IN CURVED SPACETIME

referred to as a Clifford subspace at x. Contracting a tangent vector u with the Dirac
matrices gives rise to a mapping

γ : TxM → Kx , u 7→ ujGj .

Multiplying a spinor by γ(u) is referred to as Clifford multiplication. The anti-commutation
relations (4.2.12) can be written as

1

2
{γ(u), γ(v)} = gx(u, v) 1SxM ,

showing that Clifford multiplication encodes the Lorentzian metric.
In view of the transformation law (4.2.5), the Clifford subspace does not depend on

the choice of coordinates. But it clearly depends on the gauge. Indeed, in view of (4.2.6),
it transforms according to

Kx → U Kx U
−1 with U ∈ U(Sx) . (4.4.1)

In order to simplify our problem, it is a good idea to arrange by a gauge transformation
that the Clifford subspace agrees at every spacetime point with the standard Clifford
subspace:

Lemma 4.4.1. By a gauge transformation (4.4.1) we can arrange that

Kx = span{γ0, . . . , γ3}

(where γj are again the Dirac matrices in the Dirac representation).

Proof. We consider the pseudo-scalar operator Γ(x) as defined by (4.2.14). Working
in a coordinate system and gauge where the Dirac matrices coincide at x with the usual
Dirac matrices in Minkowski space, one sees immediately that the pseudo-scalar matrix
satisfies also in curved spacetime the relations

Γ(x)∗ = −Γ(x) and Γ(x)2 = 1 .

The first relation implies that Γ(x) maps positive definite spinors to negative definite
spinors and vice versa. Therefore, there is a pseudo-orthonormal basis of the spinor
space in which Γ(x) takes the same form as in Minkowski space,

Γ(x) =

(
0 1

1 0

)
. (4.4.2)

Rewriting the change of basis as a gauge transformation, we have arranged by a trans-
formation of the form (4.4.1) that the pseudo-scalar operator has the same form as in
Minkowski space.

It follows from (4.2.14) and the anti-commutation relations that every vector in K
anti-commutes with Γ. Therefore,

K ⊂ span
{
γ0, . . . , γ3,Γγ0, . . . ,Γγ3

}
.

We next show that the vector spaceK∩span{γ0,Γγ0} is one-dimensional. To this end,
let u, v ∈ TxM with γ(u) = (a+bΓ) γ0 and γ(v) = (c+dΓ) γ0 with real coefficients a, b, c, d.
Then their anti-commutator is computed by

{γ(u), γ(v)} = 2
(
ac− bd

)
1+ 2

(
bc− ad) Γ ,

implying that bc−ad = 0. This implies that γ(u) and γ(v) are linearly dependent, giving
the claim.
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Repeating the last argument for γ1, . . . , γ3, we conclude that there is a (not necessarily
pseudo-orthonormal) basis u0, . . . , u3 of TxM such that

γ(uj) = (aj + bjΓ) γj .

Then for any j ̸= k,

{γ(uj), γ(uk)} =
(
bjak − ajbk) Γ

[
γj , γk

]
,

implying that the four vectors (aj , bj) ∈ R2 with j = 0, . . . , 3 are all linearly independent.
Therefore, by rescaling the basis vectors uj we can arrange that

γ(uj) = (a+ bΓ) γj

for real parameters a and b.
The signature (1, 3) of the Lorentzian metric implies that |a| > |b|. Moreover, by

flipping the sign of the vectors uj if necessary we can arrange that a > 0. Therefore, we
may represent K as

K = span
{
(eαΓ γ0, . . . eαΓ γ3

}
for some α ∈ R (note that eαΓ = coshα + Γ sinhα). Performing the gauge transforma-
tion (4.4.1) with U according to

U = exp
(
− α

2
Γ
)

gives the result. □

After these preparations, we are ready to enter the patching construction. Thus
let (x, U) and (x̃, Ũ) be two local charts on (M, g) with non-empty overlap U∩Ũ . For tech-
nical simplicity, we always restrict attention to the case that spacetime is time-oriented
in the sense that the transition maps between any two charts preserve the time direction.
Moreover, for simplicity we restrict attention to spacetimes which are oriented in the
sense that all transition maps also preserve the orientation (i.e., in more technical terms,
we assume that the determinant of the Jacobian of every transition map is everywhere
positive). We choose the charts such that x0 and x̃0 are time functions which increase
to the future. Then we can write the Dirac operator in each chart according to (4.2.30),
where for clarity we denote the objects in the chart x̃ with an additional tilde. We first
consider the case without electromagnetic field where the potentials aj vanish. According
to Lemma 4.4.1, there is no loss of generality to restrict attention to gauges where the
Dirac matrices are linear combinations of the Dirac matrices in Minkowski space, i.e.

Gj(x) = hjk(x) γ
k and G̃j(x̃) = h̃jk(x̃) γ

k .

Since x0 is a time coordinate, the bilinear form ≺.|G0(x).≻x is definite at very space-
time point x, and similar for the tilde coordinates. We choose the signs of the Dirac
matrices such that the bilinear forms ≺.|G0(x).≻x and ≺.|G̃0(x̃).≻y are all positive defi-
nite. Moreover, as explained in Lemma 4.4.1, we always choose the gauge such that the
pseudo-scalar operator (4.2.14) has the same form as in Minkowski space (4.4.2). Using
that spacetime is oriented, this can be done consistently for all charts (meaning that
if (4.4.2) holds in one chart and gauge, then it also hold in all other charts for the same
gauge).

The transformation from the chart (x, U) to (x̃, Ũ) involves the coordinate transfor-
mation as described by (4.2.5). After this transformation, the Dirac matrices

G̃j(x̃) and Gk(x)
∂x̃j

∂xk
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will in general not coincide. But since the matrices are all formed as linear combinations
of the Dirac matrices in Minkowski space, satisfy the same anti-commutation relations,
and have the same time and spatial orientations, they can be obtained from each other
by an orthochronous and proper Lorentz transformation, i.e.

G̃j(x̃) = Λjl G
k(x)

∂x̃l

∂xk
.

Now we can proceed just as in the proof of Lorentz invariance of the Dirac equation
in Minkowski space (see Lemma 1.3.1) to conclude that there is a unitary transforma-
tion U(x) ∈ U(Sx) of the form

U := exp

(
1

4
λlk γ

l γk
)

(4.4.3)

(with an anti-symmetric tensor λlk) such that the Dirac matrices agree after the gauge
transformation, i.e.

U(x̃) G̃j(x̃)U(x̃)−1 = Gj(x)
∂x̃l

∂xk
.

Since the spin coefficients Ej in (4.2.25) are given explicitly in terms of the Dirac matrices
and their derivatives (see (4.2.26)), the lower order terms in the resulting Dirac opera-
tors (4.2.30) also agree. Moreover, using that the only matrices which commute with all
Dirac matrices are multiples of the identity, one sees that the gauge transformation U(x̃)
of the form (4.4.3) is uniquely determined up to a sign. In this way, to every coordinate
transformation, we have found a gauge transformation, unique up to a sign, such that
the Dirac operators agree.

With the above construction, we have found a procedure for matching the Dirac op-
erators in two overlapping charts. The involved gauge transformations of the form (4.4.3)
are unique up to signs. Therefore, once we have decided on the signs, there is a unique way
of identifying the Dirac wave functions in the overlapping region of two charts, such as to
obtain Dirac wave functions in a larger patch of the manifold M. Proceeding inductively,
one can hope to obtain Dirac wave functions on all of M. The subtle point is whether the
signs of the transformations can be chosen in a compatible way for all charts. In more
mathematical terms, one must satisfy the so-called cocycle conditions, and it turns out
that these conditions can be fulfilled if and only if M satisfies a topological condition, the
so-called spin condition (for details see for example [115, § II.1 and § II.2]). If the spin
condition is satisfied, one can identify the spinor spaces via the mappings which patch
the charts together. In this way, one obtains a vector bundle over M, referred to as the
spinor bundle SM. The fibers of the spinor bundle are the spinor spaces SxM, which
are four-dimensional complex vector spaces endowed with an inner product ≺.|.≻x of
signature (2, 2). The transformations of the form (4.4.3) generate a group, the so-called
spin group denoted by

Spin↑x ⊂ U(Sx) (4.4.4)

(the reason why we write “generated by” is that the operators of the form (4.4.3) do not
form a group; see Exercise 4.3). Elements of the spin group act on vectors of the Clifford
subspace by the adjoint representation,

γ(v) → U γ(v)U−1 ,

we obtain another vector of the Clifford subspace, i.e.

U γ(v)U−1 = γ
(
OU (u)

)
.
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Since the anti-commutation relations remain unchanged, the resulting transformation of
the tangent space is an isometry. Indeed, by Lemma 1.3.1 it is a proper orthochronal
Lorentz transformation,

OU ∈ SO↑(TxM) . (4.4.5)

The indices ↑ in (4.4.4) and (4.4.5) indicate that we restrict attention to orthochronous
transformations. We thus obtain the usual commutative diagram

Z2 −→ Spin↑x
O−→ SO↑(TxM) −→ 0 .

The connection to the usual spin group is obtained as follows. We say that a tangent
vector u ∈ TxM is a unit vector if ⟨u, u⟩ = ±1. The spin group is defined by (see
for example [9, 115], the concise summary in [5, Section 2] or similarly [90] in the
Riemannian setting)

Spinx :=
{
group generated by γ(u) γ(v) with unit vectors u, v ∈ TxM

}
. (4.4.6)

By expanding the exponential in (4.4.3), one sees that this matrix is generated by even
products of Dirac matrices, showing that the group Spin↑x in (4.4.4) is a subgroup of Spinx.
The group Spinx also includes operators which are not unitary but satisfy instead the
relation U∗U = −1. These transformations describe reversals of the time orientation.
Working with the general spin group (4.4.6) is of advantage in general dimension or
signature. In four-dimensional time-oriented and orientable spacetimes, however, we can
just as well restrict attention to orthochronous proper Lorentz transformations and the
gauge transformations in (4.4.4).

We finally mention how to treat an electromagnetic field. Then the starting point is
a time-oriented Lorentzian spin manifold (M, g) together with an anti-symmetric two-
tensor F (the field tensor). In this situation, after the above coordinate and gauge trans-
formations, the electromagnetic potentials aj and ãj in the two charts will in general not
coincide. But, since the field tensor is prescribed, they coincide after a local U(1)-gauge
transformation. Identifying the spinor spaces after this gauge transformation defines the
Dirac operator as acting on the spinor bundle SM. The resulting effective gauge group
is U(1)×Spin↑x. We point out that this effective gauge group is obtained under the condi-
tion that the Clifford subspace is fixed at each spacetime point according to Lemma 4.4.1.
Dropping this condition gives rise to the larger local gauge group U(2, 2).

4.5. The Dirac Solution Space in Globally Hyperbolic Spacetimes

We now turn attention to solutions of the Dirac equation. In Minkowski space, a con-
venient method for constructing solutions is the Fourier transformation (see Section 2.4).
However, this method can be used only for PDEs with constant coefficients, and therefore
it does not apply to the Dirac equation in curved spacetime. Instead, a general method
is to solve the Cauchy problem for given initial data, making it possible to identify the
solution space of the Dirac equation with the space of suitable initial data. Clearly,
for this method to be applicable, one needs to decompose spacetime into “space” and
“time,” because otherwise it would not be clear how to prescribe initial data at some
initial time. In order to describe the Dirac solutions in all of spacetime by initial data,
this splitting of spacetime into space and time must be performed globally. Moreover,
there must be distinguished notions of the future and past of a spacelike hypersurface.
Intuitively speaking, these requirements are necessary in order to make sense of the initial
value problem in which, given initial data on a spacelike hypersurface, one seeks global
solutions of the Dirac equation to both the future and the past.
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In mathematical terms, the necessary assumptions on spacetime needed for a sensible
formulation of the initial value problem, also referred to as the Cauchy problem, are
subsumed in the notion of global hyperbolicity. We first give the formal definition
and then explain its consequences. Let (M, g) be a Lorentzian manifold. We again
assume that M is time-oriented (meaning that all transition maps preserve the time
direction). We consider a parametrized piecewise C1-curve γ(τ) in M which is regular
in the sense that its tangent vector γ̇(τ) is non-zero for all τ where γ is differentiable.
This spacetime curve is said to be causal if its tangent vector is causal (i.e. timelike
or lightlike) for all τ where γ is differentiable. Moreover, it is future-directed and past-
directed its tangent vectors are future- and past-directed, respectively. The manifold M
is said to satisfy the strong causality condition if there are no almost closed causal curves
in the sense that for all x ∈ M and for each open neighborhood U of x there is an
open neighborhood V ⊂ U of x such that every causal curve in M which is starting
and ending in V is entirely contained in U . Moreover, in straightforward generalization
of the corresponding notions in Minkowski space as introduced after (1.2.2), we let J∨

x

(and J∧
x ) be the set of all points y ∈ M which can be joined from x by a future-directed

(respectively past-directed) causal curve. The manifold M is said to be globally hyperbolic
if the strong causality condition holds and if the set J∨

x ∩ J∧
y is compact for all x, y ∈ M.

For more details on the abstract definitions we refer to [102, Section 6.6], [6, Section 1.3],
[11, Section 3.2] or [125, Chapter 14]).

A globally hyperbolic Lorentzian manifold (M, g) has remarkable properties, as we
now explain. First, global hyperbolicity implies that (M, g) is diffeomorphic to a product,

M ≃ R× N , (4.5.1)

where ≃ means that there is a smooth diffeomorphism from M to R × N (with N a
three-dimensional manifold). Thus every point p ∈ M can be written as p = (t, x)
with t ∈ R and x ∈ N . One also refers to the above property that M admits a smooth
foliation M = (Nt)t∈R, where Nt := {t}×N . Moreover, the foliation can be chosen such
as to have the following properties:

(i) Every surface Nt is spacelike (meaning that the metric induced by g on Nt is negative
definite).

(ii) Every surface Nt is a Cauchy surface, meaning that every inextendible timelike curve
in M intersects Nt exactly once. Here the timelike curve is said to be inextendible if
it cannot be extended as a continuous curve.

The function t is also referred to as a global time function. These above properties of
globally hyperbolic manifolds were proven in [12] (for more details and more references
see again [6, Section 1.3]).

The property of Nt of being a Cauchy surface implies that the Cauchy problem for
the Dirac equation is well-posed, as we now explain. To this end, let (M, g) be a four-
dimensional globally hyperbolic spacetime. Then the topological splitting (4.5.1) implies
that the spin condition mentioned before (4.4.4) is satisfied. Therefore, there is a spinor
bundle (SM,≺.|.≻), being a vector bundle with fibers SxM ≃ C4 (there may be different
spin structures, but we shall not go into this here). Moreover, the Dirac operator D is
well-defined; in local coordinates and local spinor bases it takes the form (4.2.30). In the
Cauchy problem, one seeks for solutions of the Dirac equation of mass m for prescribed
initial data at time t0, i.e.

(D −m)ψ = ϕ with ψ|Nt0
= ψ0 . (4.5.2)
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Then the following result holds:

Theorem 4.5.1. For smooth initial data ψ0 ∈ C∞(Nt0 , SM) and a smooth in-
homogeneity ϕ ∈ C∞(M, SM) the Cauchy problem (4.5.2) has a unique global solu-
tion ψ ∈ C∞(M, SM).

The proof of this theorem uses methods of hyperbolic partial differential equations and
will be given in Section 13.6 later in this book.

Having a Cauchy surface is also very useful because we can then define a scalar
product on the solution space as the spatial integral (4.2.32), where N is chosen as a
Cauchy surface. However, for the integral in (4.2.32) to be well-defined, working with
smooth solutions is not suitable. Instead, similar as explained in Minkowski space in
Section 1.4, we better assume that the solution has compact support on the Cauchy
surface. Due to finite propagation speed for solutions of hyperbolic partial differential
equations (as will be made precise in Section 13.2), the following result holds:

Theorem 4.5.2. If the initial data and the inhomogeneity have compact support,

ψ0 ∈ C∞
0 (Nt0 , SM) and ϕ ∈ C∞

0 (M, SM) ,

then the solution ψ of the Cauchy problem (4.5.2) also has compact support on any other
Cauchy surface Nt.

The proof of this theorem will again be given in Section 13.6 below.
Using the same notion as in Section 1.4, we refer to smooth solutions as in the above

theorem as having spatially compact support. Smooth and spatially compact sections
of the spinor bundle are again denoted by C∞

sc (M, SM). For Dirac solutions in this
class, the scalar product (4.2.32) is well-defined. Moreover, due to current conservation,
this scalar product does not depend on the choice of the Cauchy surface (as explained
after (4.2.32)). Exactly as explained in Section 1.4, taking the completion gives the
Hilbert space (Hm, (.|.)) of weak solutions of the Dirac equation with the property that
their restriction to any Cauchy surface is square integrable (where “square integrable” is
defined via (4.2.32)).

4.6. Hamiltonian Formulation in Stationary Spacetimes

Given a foliation (Nt)t∈R of the globally hyperbolic spacetime (M, g) by Cauchy
surfaces, one can rewrite the Dirac equation in the Hamiltonian form

i∂tψ = Hψ

with a Hamiltonian H. In order to compute H in a local chart, one chooses a coordinate
system (xi) such that x0 = t coincides with the time function. Then, writing the Dirac
operator in (4.2.31) in the form (4.2.30) and solving for the time derivatives, one obtains
in generalization of (1.3.15)

H = −
(
G0

)−1
(∑3

α=1
iGα

(
∂α − iEα − iaα

)
−m

)
− E0 − a0 .

When analyzing the Dirac equation in the Hamiltonian form, one must be be careful
because the Hamiltonian in general is not symmetric with respect to the Hilbert space
scalar product (4.2.32). This can be seen as follows. For the Dirac equation in Minkowski
space, the symmetry of the Hamiltonian is obtained just as for the Schrödinger equation
by using that the scalar product is conserved in time (1.1.6). In curved spacetime, the
scalar product is still conserved (due to current conservation). But when taking the time
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derivative, one must take into account that the scalar product itself is time dependent.
More precisely, assuming for notational simplicity that the Cauchy surfaces admit global
charts,

0 = ∂t(ϕ|ψ) =
∂

∂t

ˆ
Nt

≺ϕ |Gjνj ψ≻ dµNt

= (∂tϕ |ψ) + (ϕ | ∂tψ) +
ˆ
R3

≺ψ |
(
∂t
(
Gjνj

√
det gNt

))
ϕ≻ d3x

= −i
(
(Hϕ|ψ)− (ϕ|Hψ)

)
+

ˆ
R3

≺ψ |
(
∂t
(
Gjνj

√
det gNt

))
ϕ≻ d3x (4.6.1)

(where gNt
denotes the induced Riemannian metric on the Cauchy surface Nt). The

integral in the last line is in general non-zero. In this case, the Hamiltonian is obviously
not symmetric. At first sight, this might seem surprising because it seems to contradict the
axioms of quantum mechanics (for a detailed account on this issue see [2, 3]). However,
one should keep in mind that the non-symmetric contributions to the Hamiltonian are
needed in order to compensate for the fact that the scalar product itself is time-dependent.

Our interpretation of the above problem is that the Hamiltonian formulation of the
Dirac equation is useful only in situations when the integral in (4.6.1) vanishes. This
can be arranged if the all the coefficients of the metric are time-independent. In other
words, spacetime should be stationary with corresponding Killing field given by ∂t. Under
these assumptions, the Hamiltonian H is also time-independent. Moreover, the compu-
tation (4.6.1) shows that the operator is symmetric. Using that the time evolution maps
smooth and compactly supported initial data on the Cauchy surface at time t0 to a
smooth and compactly supported solution at an arbitrary time t, one can use abstract
methods to construct a selfadjoint extension of H (see for example [82] for a general
situation involving additional boundary conditions). Then the Cauchy problem can be
solved immediately using the spectral theorem for selfadjoint operators,

ψ(t, x) =
(
e−itH ψ0

)
(x) . (4.6.2)

This formulation is particularly useful for analyzing the long-time behavior of the solu-
tions (see for example the analysis in the Kerr geometry in [68, 67]).

4.7. Exercises

Exercise 4.1. Verify by elementary integration by parts in a chart that for a di-
agonal metric (4.3.2), the Dirac operator (4.3.3) is symmetric with respect to the inner
product (4.2.33).

Exercise 4.2. Let U(x) with x ∈ R4 be a smooth function of invertible matrices.
Show that

∂jU = −U(∂jU
−1)U .

Hint: Differentiate the relation U(x)U(x)−1 = 1.

Exercise 4.3. The goal of this exercise is to show that the unitary operators of the
form (4.4.3) do not form a group (in more mathematical language, the spin group is not
exponential; for details see [30] and the references therein). We proceed in several steps:

(a) Let λjk be an anti-symmetric tensor. Show using the anti-commutation relations
that (

1

4
λlk γ

l γk
)2

= − 1

16
λlk λ

lk 1+
i

16 · 4!
Γ εijkl λijλkl . (4.7.1)
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(b) Deduce from (a) that the corresponding unitary transformation (4.4.3) is a linear
combination of the matrices

1 , Γ , λlk γ
l γk and λlk Γ γ

l γk .

(c) Show under the additional assumption εijkl λijλkl = 0 that

exp

(
1

4
λlk γ

lγk
)

=


1 cosα+

1

4
λlk γ

lγk
sinα

α
if λlk λ

lk > 0

1 coshα+
1

4
λlk γ

lγk
sinhα

α
if λlk λ

lk < 0 ,

(4.7.2)

where α :=
√
|λlk λlk|/4. Hint: Use (4.7.1) in the power series of the exponential.

(d) Choose a specific tensor λlk for which the matrix in (4.7.2) is equal to minus the
identity.

(e) We now restrict attention to tensors λ for which the corresponding unitary trans-
formation (4.4.3) is a linear combination of the matrices 1 and γ0γ1. Infer from (b)
that in this case, there are real numbers α, β such that

1

4
λlk γ

l γk = (α+ iΓβ) γ0γ1 .

Deduce that

exp

(
1

4
λlk γ

lγk
)

= cosh
(
α+ iΓβ

)
+ γ0γ1 sinh

(
α+ iΓβ

)
.

(f) Show that the last expression involves no contribution ∼ Γ only if either α = 0
or β = 0 (Hint: It might be convenient to work in an eigenvector basis of iΓ). Infer
that in the case α = 0, this expression is a linear combination of the matrices 1
and γ0γ1 only if β ∈ πZ. Conclude that

exp

(
1

4
λlk γ

lγk
)

= a1+ b γ0γ1 with a > 0 .

(g) Deduce from (c) and (e) that the matrices of the form (4.4.3) do not form a group.

Exercise 4.4. The Schwarzschild geometry is the simplest mathematical model of
a black hole (for the physical background see for example [112]). In so-called Boyer-
Lindquist coordinates t ∈ R (the time coordinate), r ∈ (2M,∞) (the radial coordinate)
and ϑ ∈ (0, π), φ ∈ (0, 2π) (the angular coordinates), the line element takes the form

ds2 = gjk dxj dxk =
(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1
dr2 − r2 dϑ2 − r2 sin2 ϑ dφ2 ,

whereM > 0 is the mass of the black hole. Compute the Dirac operator in this geometry.
Hint: Use the formulas in Proposition 4.3.1. The results can be found in the literature
for example in [85] or [83, Section 2.2].
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CHAPTER 5

A Brief Introduction to Causal Fermion Systems

In this chapter we define and explain the basic objects and structures of a causal
fermion system. Since causal fermion systems introduce a new language to describe our
physical world, we begin with preliminary considerations which explain how the basic
objects of the theory come about and how to think about them. In order to provide
different perspectives, the preliminary considerations motivate causal fermion systems
in two somewhat different ways. In Section 5.1 the motivating question is whether and
how spacetime structures can be encoded in quantum mechanical wave functions. In Sec-
tion 5.2, on the other hand, we begin with the example of a two-dimensional lattice system
and ask the question how one can formulate physical equations in this discrete spacetime
without making use of specific lattice structures like the nearest neighbor relations and
the lattice spacing. By extending the setting from the motivating examples (Section 5.3)
we are led to the general definition of a causal fermion system (Section 5.4). Next, as
a further example, we explain how the Minkowski vacuum can be described by a causal
fermion system (Section 5.5). In order to formulate equations describing the dynamics of
a causal fermion system, we introduce a variational principle, the so-called causal action
principle (Section 5.6). We proceed by explaining how to obtain a spacetime as well as
structures therein (Section 5.7). We conclude by discussing the form of the causal action
principle (Section 5.8) and by explaining the underlying physical concepts (Section 5.9).

5.1. Motivation: Encoding Spacetime Structures in Wave Functions

For the introductory considerations, following [58, Section 2.1.1] we begin with a
quantum particle described by a quantum mechanical wave function ψ satisfying the
Klein-Gordon equation (1.2.5) in Minkowski space or in a curved spacetime. Suppose
that we have access only to the information contained in the absolute square |ψ(x)|2
of this wave function. We ask the question: Given this information, what can we infer
on the structure of spacetime? First, let the wave function ψ be a solution evolved
from compactly supported initial data ψ0 as illustrated in Figure 5.1. Then finite speed
of propagation guarantees that the absolute square |ψ(x)|2 vanishes outside the causal
future of the support of the initial data. In this way, the support of |ψ(x)|2 gives us
some information on the causal structure of our spacetime. But, of course, there is only
a limited amount of information which can be extracted from a single wave function.
However, if instead we probe with many wave functions, as illustrated in Figure 5.2, we
gain more information. If we aggregate the information contained in all wave functions
evolved from compactly supported initial data, then we can extract the complete causal
structure of our spacetime. We remark that this determines the metric up to a conformal
factor [103, 119].

We next consider the situation if an electromagnetic background field is present. The
coupling of the scalar field to the electromagnetic field is described by the Klein-Gordon
equation (1.2.6). Now the wave functions are deflected by the electromagnetic force.

83
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ψ0

t

~x

Figure 5.1. Causal propagation of a wave function.

Therefore, their absolute square also encodes information on the electromagnetic field.
In order to retrieve this information, one can use the following procedure. Suppose that
we have access to two wave functions ψ and ϕ and that we can also measure the absolute
value of superpositions, i.e.∣∣αψ(x) + βϕ(x)

∣∣2 = ∣∣αψ(x)∣∣2 + 2Re
(
αβ ψ(x) ϕ(x)

)
+
∣∣βϕ(x)∣∣2

for arbitrary complex coefficients α and β. By varying these coefficients, we can determine
the quantity

ψ(x)ϕ(x) ,

which tells us about the correlation of the two wave function ψ and ϕ at the spacetime
point x. This allows us to probe the electromagnetic field, as shown schematically in
Figure 5.3. Here we do not need to be specific on what “probing” exactly means (for
example, one could determine deflection angles, recover the Aharanov-Bohm phase shifts
of the wave function, etc.). All that counts is that we can get information also on
the electromagnetic field. Generally speaking, the more wave functions we have to our
disposal, the more information on the electromagnetic field can be retrieved. It seems
sensible to expect that, after suitably increasing the number of wave functions, we can
recover both the spacetime structures and the matter fields therein from the knowledge
of the absolute squares of all these wave functions alone.

Now we go one step further and formulate the idea of encoding spacetime structures
in a family of wave functions in mathematical terms. To this end, we consider a (for
simplicity finite) number f of linearly independent wave functions ψ1, . . . , ψf : M →
C, mapping from a classical spacetime M to the complex numbers. On the complex
vector space H spanned by these wave functions we introduce a scalar product ⟨.|.⟩H by
demanding that the wave functions ψ1, . . . , ψf are orthonormal, i.e.

⟨ψk|ψl⟩H = δkl .

We thus obtain an f -dimensional Hilbert space (H, ⟨.|.⟩H). At any spacetime point x ∈ M
we can now introduce the local correlation operator F (x) : H → H as the linear operator
whose matrix representation in the basis ψ1, . . . , ψf is given by

(F (x))jk = ψj(x)ψk(x) . (5.1.1)

The diagonal entries of this matrix are the absolute squares of the wave functions, whereas
the off-diagonal entries tell us about the correlation of two different wave functions at
the spacetime point x. This is why we refer to F (x) as the local correlation operator.
Alternatively, the local correlation operator can be characterized in a basis-invariant form
by the identity

⟨ψ|F (x)ϕ⟩H = ψ(x)ϕ(x) for all ψ, ϕ ∈ H .
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ψ0 ψ1 ψ3 ψ4

t

~x

Figure 5.2. Probing with many wave functions.

By construction, the operator F (x) is positive semi-definite and has rank at most one (in
order not to distract from the main construction, this will be explained in more detail
after (5.2.2) in Section 5.2 below). By varying the point x, we obtain a map F : M → F

from the classical spacetime M to the set F of positive semi-definite linear operators of
rank at most one,

F :=
{
y ∈ L(H)

∣∣ y positive semi-definite of rank at most one
}
.

This map encodes all the physical information1 contained in the wave functions of H.
Next, we need to formalize the idea that we want to restrict attention to the infor-

mation encoded in the wave functions. This entails that we want to disregard all the
information contained in the usual structures of Minkowski space or a curved spacetime
(like the causal structure, the metric, the spinor bundle, and all that). In order to do so
mathematically, we focus on the family of all local correlation operators. Thus, instead
of considering F as a mapping from our classical spacetime to F, we restrict attention to
its image M := F (F) as a subset of F,

M ⊂ F . (5.1.2)

In this way, Minkowski space and the corresponding classical spacetime structures no
longer enter our description. Instead, spacetime and all structures therein are encoded in
and must be recovered from the information contained in the family of wave functions.
This point of view of recovering all spacetime structures from the wave functions will be
taken seriously in this book, and we will unravel its consequences step by step.

It turns out that working as in (5.1.2) merely with a subset of F is not quite sufficient.
In order to get into the position to formulate physical equations, we need one more
structure: a measure ρ on spacetime. Here by a “measure on spacetime” we mean a
mapping which to a subset Ω ⊂ M associates a non-negative number, which can be
thought of as the “volume” of the spacetime region corresponding to Ω. In non-technical
terms, this measure can be obtained by combining the volume measure in Minkowski
space with the map F . More precisely, we take the pre-image F−1(Ω) ⊂ F and integrate
over it,

ρ(Ω) :=

ˆ
F−1(Ω)

dµ ,

where dµ = d4x is the volume measure on Minkowski space M (and similarly dµ =√
| det g| d4x in curved spacetime). In more mathematical terms, the measure ρ is the

1Here by “physical” we mean the information up to local gauge phases, which drop out in (5.1.1).
Local gauge freedom and local gauge transformations will be discussed in Section 5.9.
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Figure 5.3. Probing an electromagnetic field.

push-forward of µ under F (for basics on measure theory and the push-forward measure
see Section 2.3).

This construction leads us to consider a measure ρ on a set of linear operators on a
Hilbert space as the basic structure describing a physical system in spacetime. These are
indeed all the basic ingredients to define a causal fermion system. The only modification
to be made later is that, instead of complex wave functions, we will work with sections
of a spinor bundle. One consequence of that is that the local correlation operators will
no longer be positive semi-definite. Instead, they will be of finite rank with a fixed upper
bound on the number of positive and negative eigenvalues.

Before coming to these generalizations (Section 5.3), we next explain why encoding
information in the wave functions also has benefits if one wants to formulate physical
equations in a setting which goes beyond a classical continuous spacetime.

5.2. Motivating Example: Formulating Equations in Discrete Spacetimes

It is generally believed that for distances as small as the Planck length, spacetime can
no longer be described by Minkowski space or a Lorentzian manifold, but that it should
have a different, possibly discrete structure. There are different approaches to model such
spacetimes. The simplest approach is to replace Minkowski space by a discrete lattice.
Indeed, causal fermion systems provide another, more general approach. In any such
approach one faces the challenge of how to formulate physical equations if one gives up
the continuous structure of spacetime and thus can no longer work with partial differential
equations like the Klein-Gordon equation or the Dirac equation.

In order to explain the underlying problem more concretely, we now have a closer
look at the simple example of a spacetime lattice (this example was first given in [48,
Section 1]). For simplicity, we consider a two-dimensional lattice (one space and one time
dimension), but higher-dimensional lattices could be described similarly. Thus let M ⊂
R1,1 be a rectangular lattice in two-dimensional Minkowski space. We denote the spacing
in time direction by ∆t and in spatial direction by ∆x (see Figure 5.4). The usual
procedure for setting up equations on a lattice is to replace derivatives by difference
quotients, giving rise to an evolution equation which can be solved time step by time
step according to deterministic rules. A simple example is the discretization of the two-
dimensional wave equation for a function ϕ : M → C on the lattice,

0 = □ϕ(t, x) :=
1

(∆t)2

(
ϕ(t+∆t, x)− 2ϕ(t, x) + ϕ(t−∆t, x)

)
− 1

(∆x)2

(
ϕ(t, x+∆x)− 2ϕ(t, x) + ϕ(t, x−∆x)

)
.
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Figure 5.4. Time evolution of a lattice system M ⊂ R1,1.

Solving this equation for ϕ(t+∆t, x) gives a deterministic rule for computing ϕ(t+∆t, x)
from the values of ϕ at earlier times t and t−∆t (see again Figure 5.4).

While this method for setting up equations in a discrete spacetime is very simple and
yields well-defined evolution equations, it also has several drawbacks:

▶ The above method of discretizing the continuum equations is very ad hoc. Why do
we choose a regular lattice, why do we work with difference quotients? There are
many other ways of discretizing the wave equation.

▶ The method is not background-free. In order to speak of the “lattice spacing,” the
lattice must be thought of as being embedded in a two-dimensional ambient space-
time.

▶ The concept of a spacetime lattice is not invariant under general coordinate trans-
formations. In other words, the assumption of a spacetime lattice is not compatible
with the equivalence principle.

In view of these shortcomings, the following basic question arises:

Can one formulate equations without referring to the nearest neighbor
relation and the lattice spacing?

The answer to this question is yes, and we will now see how this can be done in the example
of our two-dimensional lattice system. Although our example is somewhat oversimplified,
this consideration will lead us quite naturally to the setting of causal fermion systems.

In order to formulate the equations, we consider on our lattice a family of complex-
valued wave functions ψ1, . . . , ψf : M → C (for simplicity a finite number, i.e. f <∞). At
this stage, these wave functions do not need to satisfy any wave equation. On the complex
vector space H spanned by these wave functions we introduce a scalar product ⟨.|.⟩H by
demanding that the wave functions ψ1, . . . , ψf are orthonormal, i.e.

⟨ψk|ψl⟩H = δkl .

We thus obtain an f -dimensional Hilbert space (H, ⟨.|.⟩H). Note that the scalar product
is given abstractly (meaning that it has no representation in terms of the wave functions
as a sum over lattice points). Next, for any lattice point (t, x) ∈ M we introduce the
so-called local correlation operator F (t, x) : H → H as the linear operator whose matrix
representation in the basis ψ1, . . . , ψf is given by

(F (t, x))jk = ψj(t, x)ψk(t, x) . (5.2.1)

The diagonal elements of this matrix are the absolute squares |ψk(t, x)|2 of the corre-
sponding wave functions. The off-diagonal elements, on the other hand, tell us about the
correlation of the jth and kth wave function at the lattice point (t, x). This is the reason
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Figure 5.5. Embedding in F.

for the name “local correlation operator.” This operator can also be characterized in a
basis-invariant way by the relations

⟨ψ |F (t, x)ϕ⟩H = ψ(t, x)ϕ(t, x) , (5.2.2)

to be satisfied for all ψ, ϕ ∈ H.
We now analyze some properties of the local correlation operators. Taking the com-

plex conjugate, one sees immediately that the matrix defined by (5.2.1) is Hermitian.
Stated equivalently independent of bases, the local correlation operator is a symmetric
linear operator on H (see Definition 2.2.5 in the preliminaries). Moreover, a local corre-
lation operator has rank at most one and is positive semi-definite. This can be seen in
detail by expressing it in terms of the operator

e(t, x) : H → C , ψ 7→ ψ(t, x) ,

which to every vector associates the corresponding wave function evaluated at the space-
time point (t, x) (this mapping is sometimes referred to as the evaluation map). Indeed,
rewriting the right side of (5.2.2) as

ψ(t, x)ϕ(t, x) =
(
e(t, x)ψ

)(
e(t, x)ϕ

)
= ⟨ψ | e(t, x)∗ e(t, x)ϕ⟩H ,

(where e(t, x)∗ : C → H is the adjoint of the operator e(t, x) as defined by (2.2.5)), we
can compare with the left side of (5.2.2) to conclude that

F (t, x) = e(t, x)∗ e(t, x) . (5.2.3)

This shows that F (t, x) is positive semi-definite. Moreover, being a mapping to H, the
operator e(t, x) has rank at most one. As a consequence, also F (t, x) has rank at most
one.

It is useful to denote the set of all operators with the above properties by

F :=
{
F ∈ L(H)

∣∣ F is symmetric,

positive semi-definite and has rank at most one
}
.

(5.2.4)

Varying the lattice point, we obtain a mapping (see Figure 5.5)

F : M → F , (t, x) 7→ F (t, x) .

For clarity, we note that the set F is not a vector space, because a linear combination of
operators in F in general has rank greater than one. But it is a conical set in the sense
that a positive multiple of any operator in F is again in F (this is why in Figure 5.5 the
set F is depicted as a cone).

We point out that the local correlation operators do not involve the lattice spacing
or the nearest neighbor relation (as a matter of fact, we did not even use that M is
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a lattice); instead they contain information only on the local correlations of the wave
functions at each lattice point. With this in mind, our strategy for formulating equations
which do not involve the specific structures of the lattice is to work exclusively with the
local correlation operators, i.e. with the subset F (M) ⊂ F. In other words, in Figure 5.5
we want to disregard the lattice on the left and work exclusively with the objects on the
right.

How can one set up equations purely in terms of the local correlation operators? In or-
der to explain the general procedure, we consider a finite number of operators F1, . . . , FL ∈
F. Each of these operators can be thought of as encoding information on the local correla-
tions of the wave functions at a corresponding spacetime point. However, this “spacetime
point” is no longer a lattice point, because the notions of lattice spacing and nearest lat-
tice point have been dropped. At this stage, spacetime is merely a point set, where each
point is an operator on the Hilbert space. In order to obtain a “spacetime” in the usual
sense (like Minkowski space, a Lorentzian manifold or a generalization thereof), one needs
additional structures and relations between the spacetime points. Such relations can be
obtained by multiplying the operators. Indeed, the operator product Fi Fj tells us about
correlations of the wave functions at different spacetime points. Taking the trace of this
operator product gives a real number. Our method for formulating physical equations is
to use the operators Fi and their products to set up a variational principle. This varia-
tional formulation has the advantage that symmetries give rise to conservation laws by
Noether’s theorem (as will be explained in Chapter 9). Therefore, we want to minimize
an action S defined in terms of the operators F1, . . . , FL. A simple example is to

minimize S(F1, . . . , FL) :=
L∑

i,j=1

Tr(Fi Fj)
2 (5.2.5)

under variations of the points F1, . . . , FL ∈ F. In order to obtain a mathematically sen-
sible variational principle, one needs to impose certain constraints. Here we do not enter
the details, because the present example is a bit too simple (see however Exercise 5.1).
Instead, we merely use it as a motivation for the general setting of causal fermion systems,
which we now introduce.

5.3. Toward the General Definition of a Causal Fermion System

In order to get from the previous motivating examples to the general setting of causal
fermion systems, we extend the above constructions in several steps:

(a) The previous example works similarly in higher dimensions, in particular for a lat-
tice M ⊂ R1,3 in four-dimensional Minkowski space. This has no effect on the
resulting structure of a finite number of distinguished operators F1, . . . , FL ∈ F.

(b) Suppose that we consider multi-component wave functions ψ : M → CN . Then,
clearly, we cannot directly multiply two such wave functions pointwise as was done
on the right side of (5.2.1). However, assuming that we are given an inner product
on CN , which we denote by ≺.|.≻ (in mathematical terms, this inner product is
a non-degenerate sesquilinear form; we always use the convention that the wave
function in the first argument is complex conjugated), we can adapt the definition
of the local correlation operator (5.2.1) to

(F (t, x))jk = −≺ψj(t, x)|ψk(t, x)≻
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(the minus sign compared to (5.2.1) merely is a useful convention). The resulting
local correlation operator is no longer an operator of rank at most one, but it has
rank at most N (as can be seen for example by writing it similar to (5.2.3) in the
form F (t, x) = −e(t, x)∗ e(t, x) with the evaluation map e(t, x) : H → CN , ψ 7→
ψ(t, x)). If the inner product ≺.|.≻ on CN is positive definite, then the opera-
tor F (t, x) is negative semi-definite. However, in the physical applications in mind,
this inner product will not be positive definite. Indeed, a typical example in mind is
that of four-component Dirac spinors. The Lorentz invariant inner product ψϕ on
Dirac spinors in Minkowski space (with the usual adjoint spinor ψ := ψ†γ0) is indef-
inite of signature (2, 2). In order to describe systems involving leptons and quarks,
one must take direct sums of Dirac spinors, giving the signature (n, n) with n ∈ 2N.
With this in mind, we assume more generally that

≺.|.≻ has signature (n, n) with n ∈ N .

Then the resulting local correlation operators are symmetric operators of rank at
most 2n, which (counting multiplicities) have at most n positive and at most n
negative eigenvalues.

(c) Finally, it is useful to generalize the setting such as to allow for continuous spacetimes
and for spacetimes which may have both continuous and discrete components. In
preparation, we note that the sums over the operators F1, . . . , FL in (5.2.5) can be
written as integrals,

S(ρ) =
ˆ
F

dρ(x)

ˆ
F

dρ(y) Tr(xy)2 , (5.3.1)

if the measure ρ on F is chosen as the sum of Dirac measures supported at these
operators,

ρ =
L∑
i=1

δFi . (5.3.2)

Note that, in this formulation, the measure plays a double role: First, it distinguishes
the points F1, . . . , FL as those points where the measure is non-zero, as is made
mathematically precise by the notion of the support of the measure (for details see
Definition 2.3.4), i.e.

supp ρ = {F1, . . . , FL} . (5.3.3)

Second, a measure makes it possible to integrate over its support, an operation which
for the measure (5.3.2) reduces to the sum over F1, . . . , FL.

Now one can extend the setting simply by considering (5.3.1) for more general
measures on F (like for example regular Borel measures). The main advantage
of working with measures is that we get into a mathematical framework in which
variational principles like (5.2.5) can be studied with powerful analytic methods.

5.4. Basic Definition of a Causal Fermion System

Motivated by the previous considerations we now give the basic definition of a causal
fermion system. This definition evolved over several years. Based on preparations in [41],
the present formulation was first given in [57].

Definition 5.4.1. Given a separable complex Hilbert space H with scalar product ⟨.|.⟩H
and a parameter n ∈ N (the spin dimension), we let F ⊂ L(H) be the set of all symmet-
ric operators on H of finite rank, which (counting multiplicities) have at most n positive
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M

Figure 5.6. A causal fermion system.

and at most n negative eigenvalues. Moreover, let ρ be a positive measure on F (defined
on a σ-algebra of subsets of F). We refer to (H,F, ρ) as a causal fermion system.

The definition of a causal fermion system is illustrated in Figure 5.6. The set F is
invariant under the transformation where an operator is multiplied by a real number, as
is indicated in the figure by the double cones. The support of the measure, denoted by

M := supp ρ , (5.4.1)

is referred to as spacetime (intuitively speaking, the support of a measure consists of
all points where the measure is non-zero; for mathematical details see Definition 2.3.4).
In contrast to the example of the lattice system, where spacetime consisted of discrete
points (5.3.3), in general the measure ρ can also have continuous components. For exam-
ple, M could be a subset of F having the additional structure of being a four-dimensional
manifold. The space F should be thought of as a space of very large dimension2, so
that M typically is a low-dimensional subset of F. The measure ρ(Ω) of a measurable
subset Ω ⊂ M can be regarded as the volume of the spacetime region Ω. In the exam-
ple of the lattice system, this volume is simply the number of spacetime points in Ω,
whereas for a continuous spacetime it is the four-dimensional Lebesgue measure of Ω.
It is a specific feature of a causal fermion system that a spacetime point x ∈ M is a
linear operator on the Hilbert space H. This endows spacetime with a lot of additional
structure. In particular, as will be explained in Section 5.7, the spacetime point operators
give rise to a family of spinorial wave functions and to causal and geometric structures.
The general idea is that a causal fermion system describes a spacetime together with all
structures therein. Before entering these structures in more detail, we illustrate the gen-
eral definition by the simple and concrete example of Dirac wave functions in Minkowski
space.

5.5. Example: Dirac Wave Functions in Minkowski Space

As a further example, we now explain how to construct a causal fermion system
in Minkowski space. Recall that in Section 1.4 (and similarly in curved spacetime in
Section 4.5), for a given parameter m ∈ R we introduced the Hilbert space (Hm, (.|.)) of
all solutions of the Dirac equation with mass m (recall that the scalar product is defined
as the spatial integral (1.3.12)). We now choose a closed subspace H of this Hilbert space
and denote the scalar product (.|.) restricted to this subspace by ⟨.|.⟩H (changing the
notation from round to pointed brackets clarifies that we consider ⟨.|.⟩H as an abstract

2This statement is made precise in [69, 76] as follows. The operators of F of maximal rank 2n form a
Banach manifold. If the Hilbert space H is finite-dimensional, then this manifold also has finite dimension
given by 4ndimH − 4n2; see also Proposition 3.1.3 in the Preliminaries.
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scalar product, without referring to its representation as a spatial integral (1.3.12)). We
thus obtain the

Hilbert space
(
H, ⟨.|.⟩H

)
.

By construction, the vectors in this Hilbert space are solutions of the Dirac equation.
They can be thought of as the “occupied states” of the system. We prefer the notion
of physical wave functions, where “physical” means intuitively that these wave functions
are realized in our physical system (whatever this means; we shall not enter philosophical
issues here). The choice of the subspace H ⊂ Hm is part of the input which characterizes
the physical system. For example, in order to describe the vacuum, one chooses H as
the subspace of all negative-energy solutions of the Dirac equation (see Section 1.5). In
order to model a system involving electrons, however, the subspace H must be chosen
to include the electronic wave functions of positive frequency. At this stage, we do not
need to specify H, and in order to clarify the concepts, it seems preferable to keep our
considerations on a general abstract level. Specific choices and explicit computations can
be found in [45, Section 1.2] and in later chapters of this book (Chapters 15-19).

We point out that the functions in H do not need to be continuous (instead, as
mentioned at the end of Section 1.4, their restriction to any Cauchy surface merely is an
L2-function). Therefore, we cannot evaluate the wave functions pointwise at a spacetime
point x ∈ M. However, for the following constructions it is crucial to do so. The way
out is to introduce so-called regularization operators (Rε) with 0 < ε < εmax as linear
operators which map H to the continuous wave functions,

Rε : H → C0(M, SM) linear . (5.5.1)

In the limit ε ↘ 0, these operators should go over to the identity (in a suitable sense
which we do not specify here as it will not be needed). The physical picture is that on
a small length scale, which can be thought of as the Planck length scale ε ≈ 10−35 me-
ters, the structure of spacetime must be modified. The regularization operators specify
this microscopic structure of spacetime. Different choices of regularization operators are
possible. A simple example of a regularization operator is obtained by mollifying with a
test function. Thus we let h ∈ C∞

0 (M,R) be a non-negative test function withˆ
M
h(x) d4x = 1 .

We define the operators Rε for ε > 0 as the convolution operators (for basics on the
convolution see the paragraph after (2.4.15) in Section 2.4)

(Rεu)(x) :=
1

ε4

ˆ
M
h
(x− y

ε

)
u(y) d4y .

Another method is to work in Fourier space (for preliminaries see Sections 1.5 and 2.4)
by setting

u(x) =

ˆ
d4k

(2π)4
û(k) e−ikx ,

and to regularize by multiplication with an exponentially decaying cutoff function, i.e.(
Rεu

)
(x) =

ˆ
d4k

(2π)4
û(k) e−ε |ω| e−ikx with ω = k0 . (5.5.2)

This so-called iε-regularization is most convenient for explicit computations (for more
details see [45, §2.4.1]). Clearly, these methods of regularizing Dirac solutions are very
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special and should be thought of merely as a mathematical tool for constructing simple
and explicit examples of causal fermion systems.

Before going on, we briefly remark for the reader familiar with quantum field theory
(QFT) how the above regularization is related to the ultraviolet regularization proce-
dures used in relativistic QFT. Both in QFT and the setting of causal fermion systems,
regularizations are needed in order to make the theory mathematically well-defined. In
the renormalization program in QFT, one shows that the UV regularization can be taken
out if other parameters of the theory (like masses and coupling constants) are suitably
rescaled. Then the regularization can be understood merely as a computational tool. In
the causal fermion systems, however, the physical picture behind the regularization is
quite different. Namely, in our setting the regularized objects are to be considered as
the fundamental physical objects. The regularization models the microscopic structure
of spacetime and has therefore a physical significance.

Next, for any x ∈ M we consider the bilinear form

bεx : H ×H → C , bεx(u, v) = −≺(Rε u)(x) | (Rε v)(x)≻ .

This bilinear form is well-defined and bounded because Rε is defined pointwise and be-
cause evaluation at x gives a linear operator of finite rank (see Exercise 5.3). Thus for
any v ∈ H, the anti-linear form bεx(., v) : H → C is continuous. By the Fréchet-Riesz
theorem (Theorem 2.2.4), there is a unique vector wε ∈ H such that bεx(u, v) = ⟨u|wε⟩H
for all u ∈ H. The mapping v 7→ wε is linear and bounded. We thus obtain a bounded
linear operator F ε(x) on H such that

bεx(u, v) = ⟨u |F ε(x) v⟩H for all u, v ∈ H , (5.5.3)

referred to as the local correlation operator. Taking into account that the inner product
on the Dirac spinors at x has signature (2, 2), the local correlation operator F ε(x) is a
symmetric operator on H of rank at most four, which has at most two positive and at
most two negative eigenvalues.

Varying the point x ∈ M, for any ε we obtain a mapping

F ε : M → F , (5.5.4)

where F ⊂ L(H) is the set of all symmetric operators on H of finite rank which (count-
ing multiplicities) have at most two positive and at most two negative eigenvalues. We
sometimes refer to F ε as the local correlation map. The last step is to drop all other
structures (like the metric and causal structures of Minkowski space, the spinorial struc-
tures, etc.). As mentioned earlier, the basic concept behind causal fermion systems is to
work exclusively with the local correlation operators corresponding to the physical wave
functions. In order to formalize this concept, we introduce the measure ρε on F as the
push-forward of the volume measure on M (for details see Section 2.3 or Exercise 2.18),

ρε := F ε∗µ . (5.5.5)

We thus obtain a causal fermion system of spin dimension n = 2 (see Definition 5.4.1).
The local correlation operators are encoded in ρ as the support M of this measure.
Working exclusively with the structures of a causal fermion system, we no longer have
the usual spacetime structures (particles, fields, causal structure, geometry, . . . ). The
underlying idea is that all these spacetime structures are encoded in the local correlation
operators. At this point, it is not obvious that this concept is sensible. But, as we shall
see in the later sections in this book, it is indeed possible to reconstruct all spacetime
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structures from the local correlation operators. In this sense, the structures of a causal
fermion system give a complete description of the physical system.

5.6. The Causal Action Principle

Having given the general definition of a causal fermion system (see Definition 5.4.1),
the question arises how physical equations can be formulated in this setting. To this
end, we now introduce a variational principle, the so-called causal action principle. In
this variational principle, we minimize a functional, the so-called causal action, under
variations of the measure ρ. The minimality property will then impose strong conditions
on the possible form of this measure. The mathematical structure of the causal action
is similar to the action (5.2.5) given in our example of the lattice system. Its detailed
form, however, is the result of many computations and longer considerations, as will be
outlined in Section 5.8 below.

For any x, y ∈ F, the product xy is an operator of rank at most 2n. However, in
general it is no longer a symmetric operator because (xy)∗ = yx, and this is different
from xy unless x and y commute. As a consequence, the eigenvalues of the opera-
tor xy are in general complex. We denote these eigenvalues counting algebraic multi-
plicities by λxy1 , . . . , λ

xy
2n ∈ C (more specifically, denoting the rank of xy by k ≤ 2n,

we choose λxy1 , . . . , λ
xy
k as all the non-zero eigenvalues and set λxyk+1, . . . , λ

xy
2n = 0). We

introduce the Lagrangian and the causal action by

causal Lagrangian: L(x, y) = 1

4n

2n∑
i,j=1

(∣∣λxyi ∣∣− ∣∣λxyj ∣∣)2
(5.6.1)

causal action: S(ρ) =
¨

F×F

L(x, y) dρ(x) dρ(y) . (5.6.2)

The causal action principle is to minimize S by varying the measure ρ under the following
constraints:

volume constraint: ρ(F) = const (5.6.3)

trace constraint:

ˆ
F

tr(x) dρ(x) = const (5.6.4)

boundedness constraint: T (ρ) :=

¨
F×F

( 2n∑
j=1

∣∣λxyj ∣∣)2

dρ(x) dρ(y) ≤ C , (5.6.5)

where C is a given parameter (and tr denotes the trace of a linear operator on H of finite
rank). As already mentioned, we postpone the physical explanation of the detailed form
of the Lagrangian to Section 5.8. The constraints can be understood mathematically as
being needed in order to get a well-posed variational principle with non-trivial minimizers.
This will be explained in Chapter 12 (see in particular Section 12.4; also the Exercise 5.4
is related).

Before going on, for clarity we point out that the mathematical structure of the causal
action principle is quite different from other variational principles considered in physics
and mathematics. There does not seem to be a direct way of deriving or even motivating
the causal action principle from other known action principles or Lagrangians. The only
way to get the connection to the known physical equation is by studying suitable limiting
cases of the causal action principle and the corresponding Euler-Lagrange equations (it
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will be outlined in Sections 21 and 22 how to get a connection to classical field theory
and quantum field theory, respectively).

In order to make the causal action principle mathematically well-defined, one needs
to specify the class of measures in which to vary ρ. To this end, on F we consider the
topology induced by the operator norm

∥A∥ := sup
{
∥Au∥H with ∥u∥H = 1

}
(5.6.6)

(for basics see the preliminaries in Sections 2.1 and 2.2). In this topology, the Lagrangian
as well as the integrands in (5.6.4) and (5.6.5) are continuous. The σ-algebra generated
by the open sets of F consists of the so-called Borel sets. A regular Borel measure is a
measure on the Borel sets with the property that it is continuous under approximations by
compact sets from inside and by open sets from outside (for basics see the preliminaries in
Section 2.3). The right prescription is to vary ρ within the class of regular Borel measures
on F.

One must distinguish two settings:

(a) The finite-dimensional setting: dimH <∞ and ρ(F) <∞.
In this case, we will prove the existence of minimizing measures in Chapter 12. This
will also clarify the significance of the constraints (see in particular the examples in
Section 12.4).

(b) The infinite-dimensional setting: dimH = ∞ and ρ(F) = ∞.
An obvious complication in this setting is that the volume constraint (5.6.3) is infi-
nite. Likewise, the other constraints as well as the causal action may diverge. These
divergences can be avoided by restricting attention to variations which change the
measure only on a set of finite volume. By doing so, the differences of the action
and the constraints are well-defined and finite (this method will be introduced in
Sections 6.3 and 12.8).

With this in mind, the remaining problem is to deal with infinite-dimensional
Hilbert spaces. The question whether physics is to be described on the fundamental
level by finite- or infinite-dimensional Hilbert spaces seems of more philosophical
nature, and we shall not enter this question here. One way of getting along with the
finite-dimensional setting is to take the point of view that, on a fundamental phys-
ical level, the total volume is finite and the Hilbert space H is finite-dimensional,
whereas the infinite-dimensional setting merely is a mathematical idealization needed
in order to describe systems in infinite volume involving an infinite number of quan-
tum particles. Even if this point of view is taken, the infinite-dimensional case is
of independent mathematical interest and should also be the appropriate effective
description in many physical situations. This case also seems to be mathematically
sensible. However, the existence theory has not yet been developed. But at least,
it is known that the Euler-Lagrange equations corresponding to the causal action
principle still have a mathematical meaning in the infinite-dimensional setting (for
details see [45]).

We now explain how the spacetime of a causal fermion system is endowed with a topo-
logical and causal structure. Recall that, given a minimizing measure ρ, spacetimeM ⊂ F

is defined as the support of ρ (see (5.4.1); this is illustrated in Exercise 2.18). Thus the
spacetime points are symmetric linear operators on H. On M we consider the topology
induced by F (generated by the sup-norm (5.6.6) on L(H)). Moreover, the measure ρ|M
restricted toM can be regarded as a volume measure on spacetime. This turns spacetime
into a topological measure space. Furthermore, one has the following notion of causality:



96 5. A BRIEF INTRODUCTION TO CAUSAL FERMION SYSTEMS

Definition 5.6.1. (causal structure) For any x, y ∈ F, the product xy is an op-
erator of rank at most 2n. We denote its non-trivial eigenvalues (counting algebraic
multiplicities) by λxy1 , . . . , λ

xy
2n. The points x and y are called spacelike separated if all

the λxyj have the same absolute value. They are said to be timelike separated if the λxyj
are all real and do not all have the same absolute value. In all other cases (i.e. if the λxyj
are not all real and do not all have the same absolute value), the points x and y are said
to be lightlike separated.

Restricting the causal structure of F to M , we get causal relations in spacetime.
Before going on, we point out that it is not obvious whether and in which sense

this definition of causality agrees with the usual notion of causality in Minkowski space
(or, more generally, in a Lorentzian spacetime). In order to get the connection, one can
consider the causal fermion system constructed in Section 5.5 with the Hilbert space H ⊂
Hm chosen as the subspace of all negative-energy solutions of the Dirac equation (thereby
realizing the concept of the Dirac sea as explained in Section 1.5). Then the above
“spectral definition” of causality goes over to the causal structure of Minkowski space in
the limiting case ε↘ 0. Since the detailed computations for getting this correspondence
are a bit lengthy, we do not present them here but refer the interested reader instead
to [45, Section 1.2].

The Lagrangian (5.6.1) is compatible with the above notion of causality in the fol-
lowing sense. Suppose that two points x, y ∈ F are spacelike separated. Then the eigen-
values λxyi all have the same absolute value. As a consequence, the Lagrangian (5.6.1)
vanishes. Thus pairs of points with spacelike separation do not enter the action. This can
be seen in analogy to the usual notion of causality where points with spacelike separation
cannot influence each other. This analogy is the reason for the notion “causal” in “causal
fermion system” and “causal action principle.”

A causal fermion also system distinguishes a direction of time. In order to see this,
for x ∈ F we let πx be the orthogonal projection in H on the subspace x(H) ⊂ H and
introduce the functional

C : M ×M → R , C(x, y) := i tr
(
y x πy πx − x y πx πy

)
. (5.6.7)

Obviously, this functional is anti-symmetric in its two arguments, making it possible to
introduce the notions{

y lies in the future of x if C(x, y) > 0

y lies in the past of x if C(x, y) < 0 .

We remark that the detailed form of the functional (5.6.7) is not obvious; it must be
justified by working out that it gives back the time direction of Minkowski space in a
suitable limiting case (for details see Exercise 5.9 and [45, §1.2.5]).

By distinguishing a direction of time, we get a structure similar to a causal set (see
for example [17]). However, in contrast to a causal set, our notion of “lies in the future
of” is not necessarily transitive.

5.7. Basic Inherent Structures

It is the general concept that a causal fermion system describes spacetime as well
as all structures therein (like the causal and metric structures, particles, fields, etc.).
Thus all these structures must be constructed from the basic objects of the theory alone,
using the information already encoded in the causal fermion system. We refer to these
constructed structures as being inherent in the causal fermion system. We now introduce
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Hilbert space H

SxMSyM

Figure 5.7. The spin spaces

and explain the most important of these structures: the spin spaces, the physical wave
functions and the kernel of the fermionic projector. Other inherent structures will be
introduced later in this book (see Chapters 9–11); for a more complete account we also
refer to [45, Chapter 1].

The causal action principle depends crucially on the eigenvalues of the operator prod-
uct xy with x, y ∈ F. For computing these eigenvalues, it is convenient not to consider
this operator product on the (possibly infinite-dimensional) Hilbert space H, but instead
to restrict attention to a finite-dimensional subspace of H, chosen such that the opera-
tor product vanishes on the orthogonal complement of this subspace. This construction
leads us to the spin spaces and to the kernel of the fermionic projector, which we now
introduce. For every x ∈ F we define the spin space Sx as the image of the operator x,
i.e.

Sx := x(H) ; (5.7.1)

it is a subspace of H of dimension at most 2n (see Figure 5.7). Moreover, we let

πx : H → Sx (5.7.2)

be the orthogonal projection in H on the subspace Sx ⊂ H. For any x, y ∈M we define
the kernel of the fermionic projector P (x, y) by (see Figure 5.8).

P (x, y) = πx y|Sy : Sy → Sx (5.7.3)

(where πx is again the orthogonal projection on the subspace x(H) ⊂ H). Taking the
trace of (5.7.3) in the case x = y, one finds that tr(x) = TrSx(P (x, x)), making it possible
to express the integrand of the trace constraint (5.6.4) in terms of the kernel of the
fermionic projector. In order to also express the eigenvalues of the operator xy in terms
of the kernel of the fermionic projector, we introduce the closed chain Axy as the product

Axy = P (x, y)P (y, x) : Sx → Sx . (5.7.4)

The closed chain can be computed in more detail using the formula (5.7.3). In prepara-
tion, we note that, from the definition of πx as the orthogonal projection to the image
of x (5.7.2), it follows immediately that πxx = x. Taking the adjoint of this relation, we
conclude that

πx x = x = xπx . (5.7.5)

Using these identities, we can compute the closed chain by

Axy = (πxy)(πyx)|Sx = πx yx|Sx .

Applying this equation iteratively and using again (5.7.5), we obtain for the pth power of
the closed chain

(Axy)
p = πx (yx)

p|Sx .
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φ ∈ SxM

P (y, x)φ

Figure 5.8. The kernel of the fermionic projector

Taking the trace, one sees in particular that

TrSx(A
p
xy) = tr

(
(yx)p

)
= tr

(
(xy)p

)
(5.7.6)

(where the last identity simply is the invariance of the trace under cyclic permutations).
Since all our operators have finite rank, for any x, y ∈ F there is a finite-dimensional
subspace I of H such that xy maps I to itself and vanishes on the orthogonal complement
of I. For example, one can choose I as the span of the image of xy and the orthogonal
complement of the kernel of xy,

I = span
{
(xy)(H), ker(xy)⊥

}
.

Then the non-trivial eigenvalues of the operator product xy are the non-zero roots of
the characteristic polynomial of the restriction xy|I : I → I. The coefficients of this
characteristic polynomial (like the trace, the determinant, etc.) are symmetric polyno-
mials in the eigenvalues and can therefore be expressed in terms of traces of powers of
the operator xy|I : I → I (for details see Exercise 5.10). Using this result similarly for
the characteristic polynomial of Axy and using (5.7.6), we conclude that the eigenvalues
of the closed chain coincide with the non-trivial eigenvalues λxy1 , . . . , λ

xy
2n of the opera-

tor xy in Definition 5.6.1 (including multiplicities). In particular, one sees that kernel
of the fermionic projector encodes the causal structure of M . The above argument also
implies that the operator products xy and yx are isospectral. This shows that the causal
structure is symmetric in x and y. The main advantage of working with the kernel of
the fermionic projector is that the closed chain (5.7.4) is a linear operator on a vector
space of dimension at most 2n, making it possible to compute the λxy1 , . . . , λ

xy
2n as the

eigenvalues of a matrix (in finite dimensions).
Next, it is very convenient to choose inner products on the spin spaces in such a way

that the kernel of the fermionic projector is symmetric in the sense that

P (x, y)∗ = P (y, x) , (5.7.7)

where the star denotes the adjoint with respect to yet to be specified inner products on
the spin spaces. This identity indeed holds if on the spin space Sx (and similarly on Sy)
one chooses the spin inner product ≺.|.≻x defined by

≺u|v≻x = −⟨u|xv⟩H (for all u, v ∈ Sx) . (5.7.8)

Due to the factor x on the right, this definition really makes the kernel of the fermionic
projector symmetric, as is verified by the computation

≺u |P (x, y) v≻x = −⟨u |xP (x, y) v⟩H = −⟨u |xy v⟩H
= −⟨πy xu | y v⟩H = ≺P (y, x)u | v≻y ,

where we again used (5.7.5) (and u ∈ Sx, v ∈ Sy). The spin space (Sx,≺.|.≻x) is an
indefinite inner product of signature (p, q) with p, q ≤ n (for textbooks on indefinite inner
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ψu(x)ψu(y)

Figure 5.9. The physical wave function

product spaces see [16, 94]). In this way, indefinite inner product spaces arise naturally
when analyzing the mathematical structure of the causal action principle.

The kernel of the fermionic projector plays a central role in the analysis for several
reasons:

▶ The Lagrangian can be expressed in terms of P (x, y) (via the closed chain (5.7.4)
and its eigenvalues).

▶ Being a mapping from one spin space to another, P (x, y) gives relations between
different spacetime points. In this way, it carries geometric information. This will
be explained in Chapter 11 (see also [56] or the introductory survey paper [47]).

▶ The kernel of the fermionic projector also encodes all the wave functions of the
system. In order to see the connection, for a vector u ∈ H one introduces the
corresponding physical wave function ψu as (see Figure 5.9)

ψu : M → H , ψu(x) = πxu ∈ Sx . (5.7.9)

Then, choosing an orthonormal basis (ei) of H and using the completeness relation
as well as (5.7.8), one obtains for any ϕ ∈ Sy

P (x, y)ϕ = πxy|Sy ϕ =
∑
i

πxei ⟨ei|y ϕ⟩H = −
∑
i

ψei(x)≺ψei(y) |ϕ≻y ,

showing that P (x, y) is indeed composed of all the physical wave functions, i.e. in
bra/ket notation

P (x, y) = −
∑
i

|ψei(x)≻≺ψei(y)| . (5.7.10)

We remark that knowing the kernel of the fermionic projector in spacetime makes it
possible to reconstruct the causal fermion system (the detailed construction can be found
in [57, Section 1.1.2]). We also note that the representation of the kernel of the fermionic
projector (5.7.10) also opens the door to the detailed study of causal fermion systems in
Minkowski space as carried out in [45]; see also the Exercises 5.15–5.18.

Taking a slightly different perspective, one can say that all structures of the causal
fermion system are encoded in the family of physical wave functions ψu with u ∈ H

as defined in (5.7.9). In order to make this statement precise, it is most convenient to
introduce the wave evaluation operator Ψ(x) at the spacetime point x ∈M by

Ψ(x) : H → Sx , u 7→ ψu(x) = πxu . (5.7.11)

Clearly, using (5.7.9), the wave evaluation operator can be written simply as

Ψ(x) = πx . (5.7.12)

The wave evaluation operator describes the family of all physical wave functions. Indeed,
applying the wave evaluation operator to a vector u and varying the point x, we get back
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the corresponding physical wave function ψu. We next compute the adjoint of Ψ(x),

Ψ(x)∗ : Sx → H .

Taking into account the corresponding inner products, we obtain for any ϕ ∈ Sx and u ∈
H,

⟨Ψ(x)∗ϕ|u⟩H = ≺ϕ|Ψ(x)u≻x
(5.7.8)
= −⟨ϕ|xΨ(x)u⟩H .

This shows that
Ψ(x)∗ = −x|Sx . (5.7.13)

Combining (5.7.12) and (5.7.13) and comparing with (5.7.3), one sees that

x = −Ψ(x)∗Ψ(x) and P (x, y) = −Ψ(x)Ψ(y)∗ . (5.7.14)

In this way, all the spacetime point operators and the kernel of the fermionic projector can
be constructed from the wave evaluation operator. Moreover, the conclusion after (5.7.6)
that the eigenvalues of the closed chain coincide with the nontrivial eigenvalues of the
operator product xy can be seen more directly from the computation

Axy = P (x, y)P (y, x) = Ψ(x)Ψ(y)∗Ψ(y)Ψ(x)∗

= −Ψ(x)
(
yΨ(x)∗

)
≃ −Ψ(x)∗Ψ(x) y = xy ,

where by ≃ we mean that the operators are isospectral (in the sense that they have the
same non-zero eigenvalues with the same algebraic multiplicities). Here we used that for
any two matrices A ∈ Cp×q and B ∈ Cq×p, the matrix product AB is isospectral to BA
(for details see Exercise 5.5).

5.8. How Did the Causal Action Principle Come About?

Causal fermion systems and the causal action principle came to light as a result
of many considerations and computations carried out over several years. We now give
an outline of these developments, also explaining the specific form of the causal action
principle.

The starting point for the considerations leading to causal fermion systems was the
belief that in order to overcome the conceptual problems of quantum field theory, the
structure of spacetime should be modified. Moreover, instead of starting from differential
equations in a spacetime continuum, one should formulate the physical equations using
the new structures of spacetime, which might be non-smooth or discrete. A more concrete
idea in this direction was that the spacetime structures should be encoded in the family
of wave functions which is usually associated to the Dirac sea (for basics see Section 1.5).
Thus, instead of disregarding the sea states, one should take all these wave functions
into account. The mutual interaction of all these wave functions should give rise to the
structures of spacetime as we experience them.

The first attempts toward making this idea more precise go back to the early 1990s.
The method was to consider families of Dirac solutions (the formalism of quantum fields
was avoided in order to keep the setting as simple and non-technical as possible). In order
to describe such a family mathematically, the corresponding two-point kernel P (x, y) was
formed

P (x, y) := −
f∑
l=1

|ψl(x)≻≺ψl(y)|

(where ψ1, . . . , ψf are suitably normalized solutions of the Dirac equation; for preliminar-
ies see Section 1.3). The kernel P (x, y) is also referred to as the kernel of the fermionic
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projector. In the Minkowski vacuum, this kernel is formed of all the states of the Dirac
sea. Then the sum goes over to an integral over the lower mass shell

P vac(x, y) =

ˆ
d4k

(2π)4
(/k +m) δ(k2 −m2) Θ(−k0) e−ik(x−y) (5.8.1)

(this integral is well-defined as the Fourier transform of a tempered distribution; see the
preliminaries in Section 2.4). Likewise, a system involving particles and anti-particles is
described by “occupying additional states of positive energy” and by “creating holes in
the Dirac sea,” respectively. Thus, more technically, one sets

P (x, y) = P vac(x, y)−
∑
a

|ψa(x)≻≺ψa(y)|+
∑
b

|ϕb(x)≻≺ϕb(y)| , (5.8.2)

where ψa and ϕb are suitably normalized Dirac solutions of positive and negative energy,
respectively. In case a bosonic interaction is present, the kernel of the fermionic projector
should no longer satisfy the vacuum Dirac equation, but the Dirac equation in the presence
of a, say, external potential B. Clarifying the dependence on the bosonic potential with
an additional tilde, we write the resulting Dirac equation as

(i∂/+B−m) P̃ (x, y) = 0 . (5.8.3)

Analyzing the distribution P̃ (x, y) in Minkowski space reveals the following facts:

(a) The kernel P̃ (x, y) contains all the information on the wave functions of the particles
and anti-particles of the system. This statement can be understood from the repre-
sentation (5.8.2) in which all these wave functions appear. Alternatively, the wave

functions can be reconstructed from P̃ (x, y) as being the image of the corresponding
integral operator on C∞

0 (M, SM)

ϕ 7→
ˆ

M
P̃ (., y) ϕ(y) d4x .

(b) The kernel P̃ (x, y) has singularities on the light cone. The detailed form of the
singularities involves integrals of the potential B and its derivatives along the light
cone. In particular, knowing the kernel P̃ (x, y) makes it possible to reconstruct
the potential B at every spacetime point. These statements follow immediately by
looking at the so-called light-cone expansion of P̃ (x, y) (see Chapter 19 in this book
or [45, Section 2.2 and Appendix B]).

(c) The singularity structure of P̃ (x, y) encodes the causal structure of Minkowski space.

This can be seen again from the light-cone expansion of P̃ (x, y) (see again Chapter 19
in this book or [45, Section 2.2 and Appendix B]).

These findings show that, at least for Dirac systems in the presence of classical bosonic
potentials, the kernel P̃ (x, y) contains all the information on the physical system. This

led to the concept to regard P̃ (x, y) as the basic physical object in spacetime. The more
familiar structures and objects like Minkowski space with its causal structure, the Dirac
equation, the classical field equations for the bosonic fields (like the Maxwell or Einstein
equations), however, should no longer be considered as being fundamental. Consequently,
the physical equations should be formulated directly in terms of the kernel of the fermionic
projector.

Formalizing this idea in a clean way also made it necessary to disregard or to prescind
from the usual spacetime structures. This led to the principle of the fermionic projector
as formulated around 1990 (see the unpublished preprint [35] and the monograph [41]).
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We here present a slightly different but equivalent formulation which is somewhat closer
to the setting of causal fermion systems. Let M be a discrete set (i.e. a point set without
additional structures), the discrete spacetime. Moreover, for every x ∈ M one chooses
an indefinite inner product space (Sx,≺.|.≻x), referred to as the spin space at x (usually,
one chooses the dimensions and signatures of all spin spaces to be the same, but this is
not crucial for the construction). Next, we consider a collection of wave functions (ψa)a,
each being a mapping which to every discrete spacetime point x ∈ M associates a vec-
tor ψa(x) ∈ Sx of the corresponding spin space. Out of these wave functions, one can
form the kernel of the fermionic projector

P (x, y) := −
∑
a

|ψa(x)≻≺ψa(y)| : Sy → Sx .

The principle of the fermionic projector asserts that the physical equations should be
formulated purely in terms of the kernel of the fermionic projector in discrete spacetime.

The next question was how precisely these physical equations should look like. This
was a difficult question which took many years to be answered. Apart from the struc-
tural requirements coming from the principle of the fermionic projector, the following
considerations served as guiding principles3:

(i) In analogy to classical field theory, a variational approach should be used. One main
advantage is the resulting connection between symmetries and conservation laws
(corresponding to the classical Noether theorem), which seems of central importance
in physical applications.

(ii) Classical field theory should be obtained in a certain limiting case. More specifically,
the Euler-Lagrange equations coming from our variational principle should reproduce
the Maxwell and Einstein equations.

(iii) Also the Dirac equation should be recovered in a certain limiting case.

More mathematically, the strategy was to form composite expressions of the kernel of the
fermionic projector. Choosing n points x1, . . . , xn ∈M , one can form the closed chain

Ax1,...,xn := P (x1, x2)P (x2, x3) · · ·P (xn−1, xn) P (xn, x1) : Sx1 → Sx1 . (5.8.4)

Being an endomorphism of the spin space, one can compute the eigenvalues of the closed
chain and form a Lagrangian L[Ax1,...,xn ] as a symmetric function of these eigenvalues.
Summing over the spacetime points gives an ansatz for the

n-point action S =
∑

x1,...,xn∈M
L[Ax1,...,xn ] .

This general ansatz can be made more specific and concrete by considering gauge
phases. This consideration was motivated by the fact that the kernel of the fermionic
projector P̃ (x, y) formed of Dirac solutions involves gauge phases. More specifically,
choosing the potential in the Dirac equation (5.8.3) as an electromagnetic potential, i.e.
B = /A, then the leading contribution to the kernel are gauge phases described by line
integrals over the electromagnetic potential,

P̃ (x, y) = e−i
´ y
x Ajξ

j
P vac(x, y) + · · · , (5.8.5)

3Of course, it is also an important requirement that our variational principle should give agreement
with quantum field theory. But this connection was not used for finding the causal action principle. It
was worked out more recently; for more details see Chapter 22.
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where ˆ y

x
Ajξ

j =

ˆ 1

0
Aj(αy + (1− α)x) (y − x)j dα

(this can again be seen from the light-cone expansion; more specifically, see [45, §2.2.4]).
Here · · · stands for many other contributions to P̃ (x, y) which involve derivatives of the
potential (like the field tensor, the Maxwell current, etc.). All these additional contribu-
tions are small in the sense that they are less singular on the light cone. These findings
will be made precise by the Hadamard and light-cone expansions of the kernel of the
fermionic projector in Chapter 21 of this book. At this stage, we do not need to be
specific. All we need is that gauge phases come into play, which involves integrals of the
potential along the line segment joining the points x and y.

Let us analyze the effect of the gauge phases on the closed chain (5.8.4). First of all,
the closed chain is gauge invariant. Indeed, if one considers a pure gauge potential Aj =
∂jΛ, then the gauge phases in (5.8.5) simplify to

P̃ (x, y) = e−iΛ(y)+iΛ(x) P vac(x, y) , (5.8.6)

and the phase factors of neighboring factors cancel in (5.8.4). This consideration also gives
a relation between local gauge invariance and the fact that the adjacent factors in (5.8.4)
must coincide. In the case n = 1, the kernel of the fermionic projector is evaluated
only on the diagonal P (x, x). This turns out to be too simple for formulating physical
equations, as can be understood from the fact that no relations between spacetime points
are taken into account. If n ≥ 3, the gauge phases in (5.8.4) can be rewritten using
Stokes’ theorem as flux integrals of the electromagnetic field through the two-dimensional
polygon with vertices x1, . . . , xn. Analyzing the situation in some more detail, one finds
that the resulting Euler-Lagrange equations will be satisfied only if all fluxes vanish.
This implies that the electromagnetic potential must be a pure gauge potential. In other
words, the case n ≥ 3 does not allow for an interaction via gauge potentials. This is the
reason why this case was disregarded (for some more details on this argument see [41,
Remark 6.2.5]).

After these considerations, we are left with the

two-point action S =
∑
x,y∈M

L[Axy] ,

where Axy is the closed chain formed of two points,

Axy := P (x, y)P (y, x) . (5.8.7)

In this case, the polygon with vertices x and y degenerates to a straight line, implying
that the flux through this polygon vanishes as desired. The starting point for a more
quantitative analysis was to choose the Lagrangian formed by taking products and sums
of traces of powers of the closed chain. A typical example is the Lagrangian

L[Axy] := TrSx

(
A2
xy

)
− c

(
TrSx(Axy)

)2
(5.8.8)

with a real parameter c. In such examples, the Lagrangian is a symmetric polynomial in
the eigenvalues of the closed chain. The methods and results of this early analysis can
be found in the unpublished preprints [35, 36].

Generally speaking, the study of such polynomial Lagrangians seemed a promising
strategy toward formulating physically sensible equations. However, the more detailed
analysis revealed the basic problem that chiral gauge phases come into play: As just
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explained after (5.8.6), the closed chain and therefore also the Lagrangian are gauge in-
variant for the electromagnetic potential. However, the situation changes if chiral gauge
potentials are considered. Here chiral gauge potentials are left- or right-handed poten-
tials AL and AR which can be inserted into the Dirac equation by generalizing (1.3.6)
to (

i∂/+ χR /AL + χL /AR −m
)
ψ = 0 ,

where χL/R are the chiral projection operators (1.3.22) (for details see for example [45,
§2.2.3]). In physics, the electroweak interaction involves left-handed gauge potentials. In
this case, the left- and right-handed components of P (x, y) involve phase transformations
by the left- and right-handed gauge potentials, respectively. When forming the closed
chain (5.8.7), the left- and right-handed components of P (x, y) are multiplied together.
As a consequence, the closed chain involves relative phases of the left- and right-handed
gauge potentials, i.e. phase factors of the form

e±i
´ y
x (AL−AR)jξ

j
,

where AL and AR are the left- and right-handed gauge potentials (here for simplicity
again Abelian). As a consequence, also the eigenvalues of the closed chain are multiplied
by these relative phases. The traces of powers of the closed chain as in (5.8.8) are still
real-valued (this is because the phase factors always come as complex conjugate pairs),
but they do not have fixed signs. Working out the Euler-Lagrange equations, one sees
that they also involve the relative gauge phases, making it difficult to allow for chiral
gauge fields. In order to bypass these difficulties, from around 1999 on Lagrangians were
considered which involved absolute values of the eigenvalues of the closed chain. This had
two major advantages:

(a) The chiral gauge phases drop out of the Lagrangian.
(b) It became natural to formulate non-negative Lagrangians. As a consequence, in the

variational principle one minimize the action instead of merely looking for critical
points.

(c) A connection to causality was obtained. In order to see how this comes about, we
give a simple computation in the Minkowski vacuum. Suppose that the points x
and y are either timelike or spacelike separated. Then P (x, y) is well-defined and
finite even without regularization and, due to Lorentz symmetry, it has the form

P (x, y) = α ξjγ
j + β 1

with two complex-valued functions α and β (where again ξ = y − x, and γj are the
Dirac matrices). Taking the adjoint with respect to the spin inner product, we see
that

P (y, x) = α ξjγ
j + β 1 .

As a consequence,

Axy = P (x, y)P (y, x) = a ξjγ
j + b1

with two real parameters a and b given by

a = αβ + βα , b = |α|2 ξ2 + |β|2 (5.8.9)

(here ξ2 = ξiξi denotes the Minkowski inner product, which may be negative). Ap-
plying the formula (Axy − b1)2 = a2 ξ2 1, the roots of the characteristic polynomial
of Axy are computed by

b±
√
a2 ξ2 . (5.8.10)
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Therefore, the eigenvalues of the closed chain are either real, or else they form a
complex conjugate pair. Moreover, one gets a connection to causality: By explicit
computation in Minkowski space one sees that a is non-zero (the details can be
found in [56, proof of Lemma 4.3]). Therefore, if ξ is timelike (i.e. ξ2 > 0) then
the relations (5.8.9) and (5.8.10) show that the eigenvalues are distinct, both real
and have the same sign. If ξ is spacelike, on the other hand, the eigenvalues are
complex and have the same absolute value. In this way, one gets agreement with the
spectral definition of causality in Definition 5.6.1. Moreover, choosing a Lagrangian
which depends only on differences of absolute values of the eigenvalues vanishes for
spacelike separation, making it possible to build causality into the action principle.

The further analysis led to the class of Lagrangians

L =
∑
i,j

(∣∣λxyi ∣∣p − ∣∣λxyj ∣∣p)2

with a parameter p ∈ N, where the λxyi are the eigenvalues of Axy (again counted with
algebraic multiplicities). The case p = 1 gives the causal Lagrangian (5.6.1) (albeit with
the difference of working instead of the local correlation operators with the kernel of the
fermionic projector; the connection will be explained below). The decision for p = 1
was taken based on the so-called state stability analysis, which revealed that the vacuum
Dirac sea configuration (5.8.1) is a local minimizer of the causal action only if p = 1
(for details see [41, Section 5.5]). Now that the form of the causal action was fixed, the
monograph [41] was completed and published. The causal action principle is given in this
book as an example of a variational principle in discrete spacetime (see [41, Section 3.5]).
The boundedness constraint (5.6.5) already appears, and the causal Lagrangian (5.6.1)
arises when combining the Lagrangian with the Lagrange multiplier term corresponding to
the boundedness constraint. The volume constraint (5.6.3) is also implemented, however
in discrete spacetime simply as the condition that the number of spacetime points be fixed
(and ρ-integrals are replaced by sums over the spacetime points). The trace constraint,
however, was not yet recognized as being necessary and important.

After the publication of the monograph [41], the causal action principle was analyzed
in more detail and more systematically, starting from simple systems and proceeding to
more realistic physical models, concluding with systems showing all the interactions of
the standard model and gravity (see [45, Chapters 3–5]). This detailed study also led
to the causal action principle in the form given in Section 5.6 above. The path from the
monograph [41] to the present formulation in [45] is outlined in [41, Preface to second
online edition]. We now mention a few points needed for the basic understanding.

One major conceptual change compared to the setting in indefinite inner product
spaces was to recognize that an underlying Hilbert space structure is needed in order
for the causal variational principle to be mathematically well-defined. This became clear
when working on the existence theory in discrete spacetime [42]. This Hilbert space
structure is built in most conveniently by working instead of the kernel of the fermionic
projector with the local correlation operators which relate the Hilbert space scalar product
to the spin inner product by

⟨ψ|F (x)ϕ⟩H = −≺ψ(x)|ϕ(x)≻x . (5.8.11)

Using that the operator product F (x)F (y) has the same non-trivial eigenvalues as the
closed chain Axy given by (5.8.7) (as we already observed in Section 5.7 after (5.7.4)),
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the causal action principle can also be formulated in terms of the local correlation op-
erators F (x) with x ∈ M . Moreover, it turned out that measure-theoretic methods can
be used to generalize the setting such as to allow for the description of not only discrete,
but also continuous spacetimes. In this formulation, the sums over the discrete spacetime
points are replaced by integrals with respect to a measure µ on M . This setting was first
introduced in [43] when working out the existence theory. In this formulation, the only
a-priori structure of spacetime is that of a measure space (M,µ). The local correlation
operators give rise to a mapping

F : M → F , x 7→ F (x) ,

where F is the subset of finite rank operators on H which are symmetric and (counting
multiplicities) have at most n positive and at most n negative eigenvalues (where n is in-
troduced via the signature (n, n) of the indefinite inner product in (5.8.11)). This analysis
also revealed the significance of the trace constraint. As the final step, instead of working
with the measure µ, the causal action can be expressed in terms of the push-forward
measure ρ = F∗µ, being a measure on F (defined by ρ(Ω) = µ(F−1(Ω))). Therefore, it
seems natural to leave out the measure space (M,µ) and to work instead directly with
the measure ρ on F.

These considerations led to the general definition of causal fermion systems in Sec-
tion 5.4, where the physical system is described by a Hilbert space (H, ⟨.|.⟩H) and the
measure ρ on F. The causal action principle takes the form as stated in Section 5.6.

5.9. Underlying Physical Concepts

We now briefly explain a few physical concepts behind causal fermion systems and
the causal action principle. The aim is to convey the reader the correct physical picture
in a non-technical way. Doing so already here makes it necessary to anticipate some ideas
on a qualitative level which will be introduced more systematically and thoroughly later
in this book.

It is a general feature of causal fermion systems that the usual distinction between
the structure of spacetime itself (being modelled by Minkowski space or a Lorentzian
manifold) and structures in spacetime (like wave functions and matter fields) ceases to
exist. Instead, all these structures are described as a whole by a single object: the
measure ρ on F. Spacetime and all structures therein are different manifestations of this
one object. The dynamics of spacetime and of all objects in spacetime are described
in a unified and holistic manner by the causal action principle. Clearly, in order to get
a connection to the conventional description of physics, one still needs to construct the
familiar physical objects from a causal fermion system. Also, one needs to rewrite the
dynamics as described by the causal action principle in terms of these familiar physical
objects. This study is a main objective of this book. As already exemplified in Section 5.7
by the spin spaces and physical wave functions, the strategy is to identify suitable inherent
structures in a causal fermion system, which then may be given suitable names. This
must be done carefully in such a way that these names convey the correct physical picture.
Ultimately, the inherent structures serve the purpose of getting a better understanding
of the causal action principle. As we shall see, this will be achieved by reformulating the
Euler-Lagrange equations of the causal action principle in terms of the inherent structures.
When this is done, also the physical names of the inherent structures will be justified by
showing that they agree with the familiar physical objects in specific limiting cases and
generalize these objects in a sensible way.
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In view of this unified description of all physical structures by a single mathematical
object, it is difficult to describe the essence of causal fermion systems using the familiar
notions from physics. One simple way of understanding the causal action principle is
to focus on the structure of the physical wave functions and the kernel of the fermionic
projector. Clearly, the resulting picture is a bit oversimplified, because it only captures
part of the structures encoded in a causal fermion system. Nevertheless, it conveys a
good and the correct intuition of what the causal action principle is about. We saw
in Section 5.7 that a causal fermion system gives rise to the family of physical wave
functions (ψu)u∈H (see (5.7.9)). The kernel of the fermionic projector (5.7.10) is built up
of all the physical wave functions and thus describes the whole family. It gives rise to
the closed chain (5.7.4), which in turn determines the causal action and the constraints.
In this way, the causal action principle becomes a variational principle for the family of
physical wave functions. Thus the interaction described by the causal action principle can
be understood as a direct mutual interaction of all the physical wave functions. In simple
terms, the causal action principle aims at bringing the family of wave functions into an
“optimal” configuration. For such optimal configurations, the family of wave functions
gives rise to the spacetime structures as we know them: the causal and metric structure,
the bosonic fields, and all that.

The last step can be understood more concretely starting from Dirac’s hole theory and
the picture of the Dirac sea (for basics see again Section 1.5). In our approach, the Dirac
sea is taken literally. Thus all the states of the Dirac sea correspond to physical wave
functions. All the information contained in these wave functions induces spacetime with
the familiar structures. As a simple example, the bosonic potentials B are determined
via the Dirac equation (5.8.3) from the family of wave functions as described by P̃ (x, y).
Clearly, in order to make this picture precise, one needs to verify that, in a certain
limiting case, the kernel of the fermionic projector corresponding to a minimizer of the
causal action principle indeed satisfies a Dirac equation of the form (5.8.3) and thus gives
rise to a potential B. This will be one of the objectives of the later chapters in this book.

We now discuss which physical principles enter the approach, and how they were in-
corporated. Causal fermion systems evolved from an attempt to combine several physical
principles in a coherent mathematical setting. As a result, these principles appear in a
specific way:

▶ The principle of causality: A causal fermion system gives rise to a causal structure
(see Definition 5.6.1). The causal action principle is compatible with this notion of
causality in the sense that the pairs of points with spacelike separation do not enter
the Euler-Lagrange equations. In simple terms, points with spacelike separation do
not interact.

▶ The local gauge principle: Already in the above discussion of how the causal action
principle came about, we mentioned that the Lagrangian is gauge invariant in the sense
that gauge phases drop out of the Lagrangian (see the explanation after (5.8.6) in Sec-
tion 5.8). When starting from a general causal fermion system, local gauge invari-
ance becomes apparent when representing the physical wave functions in bases of the
spin spaces. More precisely, choosing a pseudo-orthonormal basis (eα(x))α=1,...,dimSx

of Sx, a physical wave function can be represented as

ψ(x) =

dimSx∑
α=1

ψα(x) eα(x) (5.9.1)
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with component functions ψ1, . . . , ψdimSx . The freedom in choosing the basis (eα) is
described by the group of unitary transformations with respect to the indefinite spin
inner product. This gives rise to the transformations

eα(x) →
∑
β

U−1(x)βα eβ(x) and ψα(x) →
∑
β

U(x)αβ ψ
β(x) (5.9.2)

with U ∈ U(p, q). As the basis (eα) can be chosen independently at each spacetime
point, one obtains local gauge transformations of the wave functions, where the gauge
group is determined to be the isometry group of the spin inner product. The causal
action is gauge invariant in the sense that it does not depend on the choice of spinor
bases.

▶ The Pauli exclusion principle is incorporated in a causal fermion system, as can
be seen in various ways. One formulation of the Pauli exclusion principle states that
every fermionic one-particle state can be occupied by at most one particle. In this
formulation, the Pauli exclusion principle is respected because every wave function can
either be represented in the form ψu (the state is occupied) with u ∈ H or it cannot
be represented as a physical wave function (the state is not occupied). Via these two
conditions, the fermionic projector encodes for every state the occupation numbers 1
and 0, respectively, but it is impossible to describe higher occupation numbers.

More technically, one may obtain the connection to the fermionic Fock space for-
malism by choosing an orthonormal basis u1, . . . , uf of H and forming the f -particle
Hartree-Fock state

Ψ := ψu1 ∧ · · · ∧ ψuf .
Clearly, the choice of the orthonormal basis is unique only up to the unitary transfor-
mations

ui → ũi =

f∑
j=1

Uij uj with U ∈ U(f) .

Due to the anti-symmetrization, this transformation changes the corresponding Hart-
ree-Fock state only by an irrelevant phase factor,

ψũ1 ∧ · · · ∧ ψũf = detU ψu1 ∧ · · · ∧ ψuf .
Thus the configuration of the physical wave functions can be described by a fermionic
multi-particle wave function. The Pauli exclusion principle becomes apparent in the
total anti-symmetrization of this wave function.

Clearly, the above Hartree-Fock state does not account for quantum entanglement.
Indeed, the description of entanglement requires more general Fock space constructions
(this will be described in more detail in Chapter 22).

▶ The equivalence principle: Starting from a causal fermion system (H,F, ρ), space-
timeM is given as the support of the measure ρ. Thus spacetime is a topological space
(with the topology on M induced by the operator norm on L(H)). In situations when
spacetime has a smooth manifold structure, one can describe spacetime by choosing
coordinates. However, there is no distinguished coordinate systems, giving rise to the
freedom of performing general coordinate transformations. The causal action as well
as all the constraints are invariant under such transformations. In this sense, the
equivalence principle is implemented in the setting of causal fermion systems.

However, other physical principles are missing. For example, the principle of locality is
not included. Indeed, the causal action principle is non-local, and locality is recovered
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only in the continuum limit. Moreover, our concept of causality is quite different from
causation (in the sense that the past determines the future) or microlocality (stating that
the observables of spacelike separated regions must commute).
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5.10. A Summary of the Basic Concepts and Objects

In this section we summarize all important concepts of the preceding sections. You
may use this as a reference list for frequently used concepts and objects.

Basic concept Summary and Comments
Causal fermion system
(H,F, ρ)

A separable Hilbert space H, a natural number
n ∈ N, the set F of symmetric linear operators on
H with at most n positive and n negative eigen-
values as well as a measure ρ defined on a σ-
algebra on F forms a causal fermion system.

Remarks:

• The structure of a causal fermion system provides a general framework for de-
scribing generalized spacetimes. Concrete physical systems correspond to spe-
cific choices of H, n and the measure ρ.

• H should be considered as the Hilbert space spanned by all one-particle wave
functions realized in our system (the physical wave functions).

• We are mainly interested in the case n = 2 (at most two positive and two
negative eigenvalues). This case allows for the description of Dirac spinors in
four-dimensional spacetimes.

Spacetime M By definition, we describe spacetime by the sup-
port of the measure M := supp(ρ).

Remarks:

• All points x ∈M are linear operators on H. This fact implies that our spacetime
is endowed with more structures and contains additional information.

• In order to describe systems in Minkowski space, we identify spacetime
points x ∈ M with corresponding points in Minkowski space M via a map-
ping F ε : M →M (for more details see (5.5.4)).
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The measure ρ The measure ρ in Definition 5.4.1 is the most important
object of the theory. It describes spacetime as well as all
objects therein.

Remarks:

• A lot of structure is encoded in the measure ρ. In particular, it describes the
behavior of spacetime on microscopic scales (Planck scale).

• In the example of causal fermion systems describing Minkowski space, the mea-
sure is obtained as the push-forward of the Minkowski volume measure dµ = d4x
under the local correlation map F ε, i.e. we set ρ = F ε∗µ.

The causal action We define a Lagrangian L(x, y) for two spacetime points
x and y using the eigenvalues (λxyi )i=1,...,2n of the product
xy, which is an operator of rank at most 2n. The La-
grangian is given by L(x, y) := 1

4n

∑2n
i,j=1(|λ

xy
i | − |λxyj |)2.

Finally, the causal action is defined by taking the double
integral S(ρ) :=

˜
F×F

L(x, y)dρ(x)dρ(y).

Remarks:

• It may happen that the rank of the operator xy is smaller than 2n. In this case,
some of the eigenvalues λxy1 , . . . λ

xy
2n are zero.

• The action depends nonlinearly on the measure ρ. Since ρ describes spacetime
and all objects therein, the action also depends on spacetime and on all these
object.
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The causal action
principle

The causal action principle states that measures de-
scribing physical systems must be minimizers of the
causal action under variations of ρ, respecting the con-
straints (5.6.3), (5.6.4) and (5.6.5).

Remarks:

• The Euler-Lagrange equations corresponding to the causal action principle are
the physical equations of the theory.

• By varying the measure ρ, we also vary spacetime as well as all structures therein.

The physical wave
functions

Every vector u ∈ H can represented in spacetime by the
physical wave function ψu defined by ψu(x) = πxu ∈ Sx,
where πx denotes the orthogonal projection in H onto the
subspace x(H) ⊂ H.

The kernel of the
fermionic projec-
tor

For any spacetime point operator x ∈ M we define the
spin space Sx as its image Sx := x(H). This gives rise
to a mapping between spin spaces at different spacetime
points x, y ∈ M by P (x, y) := πxy|Sx : Sy → Sx, The
mapping P (x, y) is the kernel of the fermionic projector.
It can be expressed in terms of all physical wave functions
by P (x, y) = −

∑
i |ψei(x)≻≺ψei(y)|, where the (ei) form

an orthonormal basis of H.

Remarks:

• The kernel of the fermionic projector gives relations between spacetime points.
In particular, it encodes the causal structure and the geometry of spacetime.

• In order to compute the Lagrangian, it is useful to form the closed chain
A(x, y) := P (x, y)P (y, x).
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5.11. Exercises

Exercise 5.1. This exercise is devoted to the study of the variational principle (5.2.5)
of the motivating example.

(a) Assume that the operators F1, . . . , FL are a minimizer of the action (5.2.5) under
variations of Fi ∈ F with F according to (5.2.4). Given i ∈ {1, . . . f}, represent Fi as

Fi = |ψi⟩⟨ψi| with ψi ∈ H .

Vary the vector ψi to derive the following Euler-Lagrange (EL) equations,

f∑
i,j=1

Tr(FjFi) Fj ψi = 0 .

(b) Deduce that all the matrices Fi must vanish. Hint: It is useful to first show that

f∑
i,j=1

∣∣Tr(FjFi)∣∣2 = 0 . (5.11.1)

(c) In order to get non-trivial solutions, one can for example impose the constraint

f∑
i=1

Tr
(
F 2
i

)
= 1 .

Derive the corresponding EL equations.
(d) The constraint (5.11.1) also makes it possible to prove existence of minimizer with

a compactness argument. Work out this existence proof in detail.

Exercise 5.2. (A causal fermion system on ℓ2) Let H = ℓ2 the Hilbert space of
square-summable complex-valued sequences, equipped with the scalar product

⟨u|v⟩ =
∞∑
i=1

ūi vi, u = (ui)i∈N, v = (vi)i∈N.

For any k ∈ N, let xk ∈ L(H) be the operator defined by

(xku)k := uk+1, (xku)k+1 := uk, (xku)i = 0 for i ̸∈ {k, k + 1}.

In other words,

xku =
(

0, . . . , 0︸ ︷︷ ︸
k − 1 entries

, uk+1, uk, 0, . . .
)

Finally, let µ the counting measure on N (i.e. µ(X) = |X| equals the cardinality ofX ⊂ N.)
(a) Show that every operator xk has rank two, is symmetric, and has one positive and

one negative eigenvalue. Make yourself familiar with the concept that every operator
is a point in F for spin dimension n = 1.

(b) Let F : N → F be the mapping which to every k associates the corresponding
operator xk. Show that the push-forward measure ρ = F∗ µ defined by ρ(Ω) :=
µ(F−1(Ω)) defines a measure on F. Show that this measure can also be characterized
by

ρ(Ω) = |{k ∈ N | xk ∈ Ω}|.
(c) Show that (H,F, ρ) is a causal fermion system of spin dimension one.
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(d) Show that the support of ρ consists precisely of all the operators xk. What is
spacetime M? What is the causal structure on M? What is the resulting causal
action?

Exercise 5.3. (Boundedness of operators of finite rank) Let (H, ⟨.|.⟩H) be a Hilbert
space and (V, ∥.∥) a normed space of finite dimension n. Moreover, let A : H → V be a
linear mapping.

(a) Show that the kernel of A is a closed subspace of H. Show that its orthogonal
complement (kerA)⊥ has dimension at most n.

(b) Derive a block matrix representation of A on H = (kerA)⊕ (kerA)⊥.
(c) Deduce that A is bounded, i.e. that there is a constant c > 0 with ∥Au∥ ≤ c ∥u∥H

for all u ∈ H.

Exercise 5.4. (On the trace constraint) This exercise shows that the trace constraint
ensures that the action is non-zero. Let (H,F, ρ) be a causal fermion system of spin
dimension n.

(a) Assume that tr(x) ̸= 0. Show that L(x, x) > 0. (For a quantitative statement of this
fact in the setting of discrete spacetimes see [42, Proposition 4.3].)

(b) Assume that
´
F
tr(x) dρ ̸= 0. Show that S(ρ) > 0.

Exercise 5.5. (On the spectrum of the closed chain) This exercise is devoted to
analyzing general properties of the spectrum of the closed chain.

(a) We let x and y be symmetric operators of finite rank on a Hilbert space (H, ⟨.|.⟩H).
Show that there is a finite-dimensional subspace I ⊂ H on which both x and y are
invariant. By choosing an orthonormal basis of I and restricting the operators to I,
we may represent both x and y by Hermitian matrices. Therefore, the remainder of
this exercise is formulated for simplicity in terms of Hermitian matrices.

(b) Show that for any matrix Z, the characteristic polynomials of Z and of its adjoint Z∗

(being the transposed complex conjugate matrix) are related by complex conjugation,

i.e. det(Z∗ − λ 1) = det(Z − λ 1).
(c) Let X and Y be symmetric matrices. Show that the characteristic polynomials of

the matrices XY and Y X coincide.
(d) Combine (b) and (c) to conclude that the characteristic polynomial of XY has real

coefficients, i.e. det(XY − λ 1) = det(XY − λ 1). Infer that the spectrum of the
matrix product XY is symmetric about the real axis, i.e.

det(XY − λ 1) = 0 =⇒ det(XY − λ 1) = 0 . (5.11.2)

(e) For the closed chain (5.7.4), the mathematical setting is somewhat different, be-
cause Axy is a symmetric operator on the indefinite inner product space (Sx,≺.|.≻x).
On the other hand, we saw after (5.7.4) that Axy is isospectral to xy. Indeed, the
symmetry result (5.11.2) can be used to prove a corresponding statement for Axy,

det(Axy − λ 1) = 0 =⇒ det(Axy − λ 1) = 0 .

This result is well-known in the theory of indefinite inner product spaces (see for ex-
ample the textbooks [16, 94] or [42, Section 3]). In order to derive it from (5.11.2),
one can proceed as follows: First, represent the indefinite inner product in the
form ≺.|.≻ = ⟨.|S x⟩, where ⟨.|.⟩ is a scalar product and S is an invertible oper-
ator which is symmetric (with respect to this scalar product). Next, show that the
operator B := AxyS is symmetric (again with respect to this scalar product). Finally,
write the closed chain as Axy = BS−1 and apply (5.11.2).
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Exercise 5.6. (Regular spacetime points) Let x ∈ F have p(x) ≤ n negative
and q(x) ≤ n positive eigenvalues. The pair sign(x) := (p(x), q(x)) is referred to as
the signature of x. The operator x is said to be regular if sign(x) = (n, n). The goal of
this exercise is to show that the set Freg of regular points is open in F. Let us define the
positive and negative components of x as the operators

x± :=
x± |x|

2
, |x| :=

√
x2.

From the functional calculus it follows that x |x| = |x|x. Prove the following statements.

(a) Let {ei , i = 1, . . . ,m} be an orthogonal set. Show that any vector set {hi , i =
1, . . . ,m} which fulfills the following condition is linearly independent,

∥ei − hi∥ <
inf{∥ei∥ , i = 1, . . . ,m}

m
for all i = 1, . . . ,m.

(b) For every x ∈ F,
x(imx±) ⊂ imx± and x+ x− = 0.

Moreover, x|imx− and x|imx+ are negative and positive definite, respectively.
(c) Let x0 ∈ F. Then there is an orthonormal set {ei | i = 1 . . . dimSx0} of eigenvectors

of x0 such that

⟨ei|x0 ei⟩ < 0 for all i ≤ p(x0), ⟨ei|x0 ei⟩ > 0 for all p(x0) < i ≤ q(x0).

(d) The following functions are continuous,

fi : Br(x0) ∋ x 7→ fi(x) :=

{
x− ei i ≤ p(x0)

x+ ei p(x0) < i ≤ p(x0) + q(x0) .

Hint: You can use the general inequality ∥|A| − |B|∥ ≤ ∥A2 −B2∥
(e) There is a r > 0 such that p(x) ≥ p(x0) and q(x) ≥ q(x0) for every x ∈ Br(x0).

Hint: Use the statements above.
(f) Conclude that Freg is an open subset of F.

Exercise 5.7. (On the spectrum of the closed chain - part 2) Let (H,F, ρ) be a
causal fermion system and x, y ∈ F. For the closed chain

Axy := P (x, y)P (y, x) : (Sx,≺.|.≻x) → (Sx,≺.|.≻x),

the mathematical setting analyzed in Exercise 3.3 is somewhat different, because Axy is
a symmetric operator on an indefinite inner product space. On the other hand, we know
that Axy is isospectral to xy. Indeed, the symmetry result in Exercise 3.3-(iv) can be
used to prove a corresponding statement for the closed chain:

det(Axy − λ I) = 0 ⇐⇒ det(Axy − λ I) = 0.

This result is well-known in the theory of indefinite inner product spaces. In order to
derive it from Exercise 3.3-(iv), one can proceed as follows: First, represent the indefinite
inner product in the form ≺ · , · ≻ = ⟨ · , S · ⟩, where ⟨ · , · ⟩ is a scalar product and S is an
invertible operator which is symmetric (with respect to this scalar product). Next, show
that the operator B := AxyS is symmetric (again with respect to this scalar product).
Finally, write the closed chain as Axy = BS−1 and apply Exercise 3.3 (iv).

Exercise 5.8. (A causal causal fermion system on ℓ2 - part 2) We return to the
example of Exercise 5.2.. This time we equip it with a Krein structure.

(a) For any k ∈ N, construct the spin space Sxk and its spin scalar product.
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(b) Given a vector u ∈ H, what is the corresponding wave function ψu? What is the
Krein inner product < ., . >?

(c) What is the topology on the Krein space K? Does the wave evaluation operator Ψ :
u 7→ ψu give rise to a well-defined and continuous mapping Ψ : H → K? If yes, is it
an embedding? Is it surjective?

(d) Repeat part (c) of this exercise for the causal fermion system obtained if the opera-
tors xk are multiplied by k, i.e.

xku := (0, . . . , 0, k uk+1, k uk 0, . . . ).

Exercise 5.9. (Time direction) The ability to distinguish between past and fu-
ture can be described in mathematical terms by the existence of an antisymmetric func-
tional T :M ×M → R. One then says that{

y lies in the future of x if T (x, y) > 0

y lies in the past of x if T (x, y) < 0 .

Can you think of simple non-trivial examples of such a functional which involve only prod-
ucts and linear combinations of the spacetime operators and the orthogonal projections
on the corresponding spin spaces? Hint: One possible functional is

T (x, y) := tr
(
y πx − xπy

)
;

this is considered further in [45, Exercise 1.22].

Exercise 5.10. This exercise is devoted to clarifying the connection between the
characteristic polynomial and traces of powers of a matrix. We let A be an N × N -
matrix (not necessarily Hermitian) and denote the zeros of its characteristic polynomials
counting multiplicities by λ1, . . . , λN ∈ C, i.e.

det(λ1−A) = (λ− λ1) · · · (λ− λN ) .

Moreover, we denote the coefficients of the characteristic polynomial by ak, i.e.

det(λ1−A) = λN + a1λ
N−1 + · · ·+ aN .

(a) Show that the coefficients are symmetric polynomials in the eigenvalues of the form

an = cn
∑

B⊂{1,...,N}
with #B = n

∏
k∈B

λk ,

where the sum goes over all subsets of {1, . . . N} with n elements, and cn are com-
binatorial prefactors. Compute the cn.

(b) Show that each coefficient an can be written in the form

an = dnTr(A
n) + d1,n−1Tr(A) Tr(A

n−1) + d1,1,n−2Tr(A) Tr(A) Tr(A
n−2) + · · ·

=

n∑
k=1

∑
1≤j1≤···≤jk

with j1 + · · ·+ jk = n

dj1,...,jk Tr
(
Aj1

)
· · ·Tr

(
Ajj

)
with suitable combinatorial factors dn, d1,n−1, . . .. Hint: This formula can be derived
in various ways. One method is to proceed inductively in n. Alternatively, one can
use a dimensional argument.
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Exercise 5.11. (Embedding of SxM into SF (x)) The goal of this exercise is to
explain how the fibers of the spinor bundle SM are related to the spin spaces Sx of the
corresponding causal fermion system. In order to keep the setting as simple as possible, we
let (M, g) be Minkowski space and H a finite-dimensional subspace of the Dirac solution
space Hm, consisting of smooth wave functions of spatially compact support, i.e.

H ⊂ C∞
sc (M, SM) ∩Hm finite-dimensional .

We again let F (x) be the local correlation operators, i.e.

⟨ψ|F (x)ψ⟩ = −≺ψ(x)|ϕ(x)≻ for all ψ, ϕ ∈ H

(since H consists of smooth functions, we may leave out the regularization operators).
Defining the measure again by dρ = F∗(d

4x), we again obtain a causal fermion system of
spin dimension n = 2. We next introduce the evaluation map ex by

ex : H → SxM , ex(ψ) = ψ(x) .

Restricting the evaluation mapping to the spin space SF (x) at the spacetime point F (x)
(defined as in (5.7.1) as the image of the operator F (x)), we obtain a mapping

ex|SF (x)
: SF (x) → SxM .

(a) Show that ex|SF (x)
is an isometric embedding.

(b) Show that for all u ∈ H and x ∈ M,

ex|SF (x)

(
ψu(F (x))

)
= u(x) .

Exercise 5.12. (Identification of SM with SM) In the setting of the previous
exercise, we now make two additional assumptions:

(i) The mapping F : M → F is injective and its image is closed in F.
(ii) The resulting causal fermion system is regular in the sense that for all x ∈ M, the

operator F (x) has rank 2n.

Using the results of the previous exercise, explain how the following objects can be iden-
tified:

(a) x with F (x)
(b) M with M
(c) The spinor space SxM with the corresponding spin space SF (x)

(d) u ∈ H with its corresponding physical wave function ψu

Exercise 5.13. (The space C0(M,SM)) A wave function ψ is defined a mapping
fromM to H such that ψ(x) ∈ Sx for all x ∈M . It is most convenient to define continuity
of a wave function by the requirement that for all x ∈M and for every ε > 0 there is δ > 0
such that ∥∥√|y|ψ(y)−

√
|x|ψ(x)

∥∥
H
< ε for all y ∈M with ∥y − x∥ ≤ δ .

Show that, using this definition, every physical wave function is continuous. Thus, de-
noting the space of continuous wave functions by C0(M,SM), we obtain an embedding

H ↪→ C0(M,SM) .

Hint: You may use the inequality∥∥∥√|y| −
√

|x|
∥∥∥ ≤ ∥y − x∥

1
4 ∥y + x∥

1
4 .
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Exercise 5.14. (A causal fermion system in R3) We choose H = C2 with the
canonical scalar product. Moreover, we choose let M = S2 ⊂ R3 and dµ the Lebesgue
measure on M. Consider the mapping

F : M → L(H) , F (p) = 2

3∑
α=1

pασα + 1 ,

where σα are the three Pauli matrices (1.3.4).

(a) Show that for every p ∈ S2,

tr
(
F (p)

)
= 2 , tr

(
F (p)2

)
= 10 .

Conclude that the eigenvalues of F (p) are equal to 1± 2.
(b) We introduce the measure ρ as the push-forward measure ρ = F∗µ (i.e. ρ(Ω) :=

µ(F−1(Ω))). Show that (H,F, ρ) is a causal fermion system of spin dimension one.
(b) Show that the support of ρ coincides with the image of F . Show that it is is home-

omorphic to S2.

We refer to this example as a Dirac sphere. This example is also referred to as the Dirac
sphere; this and other similar examples can be found in [43, Examples 2.8 and 2.9] or [60,
Example 2.2].

Exercise 5.15. (The regularized fermionic projector in Minkowski space) The goal
of this exercise is to compute the kernel of the fermionic projector in the Minkowski
vacuum for the simplest regularization, the iε-regularization (5.5.2).

(a) Use the identifications of Exercises 5.11 and 5.12 to show that (5.7.10) holds in the
example of Dirac wave functions in Minkowski space (as constructed in Section 5.5)
but now with Dirac wave functions and the spin inner product thereon.

(b) More specifically, we now choose H = H−
m as the subspace of all negative-frequency

solutions of the Dirac equation. Moreover, we choose the iε-regularization (5.5.2).
For clarity, we denote the corresponding kernel of the fermionic projector by P 2ε(x, y).
Show that

P ε(x, y) =

ˆ
R4

d4k

(2π)4
(/k +m) δ(k2 −m2)Θ(−k0) e−ik(x−y) eεk

0
. (5.11.3)

Hint: Work in a suitable orthonormal basis of the Hilbert space. Without regular-
ization, the computation can be found in [45, Lemma 1.2.8].

(c) Show that P ε(x, y) can be written as /vε+βε with vεj , β
ε smooth functions of ξ = y−x.

(d) Compute P ε(x, x). Is this matrix invertible? How does it scale in ε? Why does this
result show that the resulting causal fermion system is regular? Hint: The details
can also be found in [45, Section 2.5]. For an alternative way of proving regularity
see Exercise 5.18.

(e) For ξ spacelike or timelike, i.e. away from the lightcone, the limit ε↘ 0 of (5.11.3) is
well-defined. More precisely, it can be shown that vεj → α ξj and β

ε → β pointwise,
for α, β smooth complex functions. Find smooth real functions a, b such that

lim
ε↘0

Aεxy = a/ξ + b. (5.11.4)

Exercise 5.16. (Correspondence of the causal structure in Minkowski space I)
Let x, y ∈ M be timelike separated vectors and assume that ξ := y − x is normalized
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to ξ2 = 1. As explained in Exercise 5.15, the limit ε ↘ 0 of the closed chain Aεxy takes
the form A := a /ξ + b. Consider the matrices

F± :=
1

2
(1± /ξ) ∈ L(C4) .

Prove the following statements.

(a) The matrices F± have rank two and map to eigenspaces of A. What are the corre-
sponding eigenvalues? Conclude that the points x and y are timelike separated in
the sense of Definition 5.6.1.

(b) The matrices F± are idempotent and symmetric with respect to the spin inner prod-
uct ≺.|.≻.

(c) The image of the matrices F± is positive or negative definite (again with respect to
the spin inner product).

(d) The image of F+ is orthogonal to that of F− (again with respect to the spin inner
product).

(e) The eigenvalues of A are strictly positive. Hint: Use how the functions a and b came
up in (5.11.4).

The result of (a)–(d) can be summarized by saying that the F± are the spectral projection
operators of A. We remark that the findings also mean that the x and y are even properly
timelike separated as introduced in [45, Definition 1.1.6].

Exercise 5.17. (Correspondence of the causal structure in Minkowski space II) We
now let x, y ∈ M be spacelike separated vectors and assume that ξ := y−x is normalized
to ξ2 = −1. Consider again the matrix A := a /ξ + b of Exercise 5.16 and set

F± :=
1

2
(1± i /ξ) ∈ L(C4) .

(a) The matrices F± have rank two and map to eigenspaces of A. What are the corre-
sponding eigenvalues? Conclude that the points x and y are spacelike separated in
the sense of Definition 5.6.1.

(b) The matrices F± are idempotent and F ∗
+ = F−.

(c) The image of the matrices F± is null (in other words, it is a lightlike subspace of the
spinor space).

These findings illustrate the more general statement that symmetric operators on an
indefinite inner product space may have complex eigenvalues, in which case they form
complex conjugate pairs.

Exercise 5.18. (Spin spaces for the regularized Dirac sea vacuum) We consider
the causal fermion system constructed in Section 5.5, where we choose H = H−

m as the
space of all negative-energy solutions of the Dirac equation. Moreover, we choose the iε-
regularization (5.5.2). For clarity, we denote the corresponding kernel of the fermionic
projector by P ε(x, y). This causal fermion system is also referred to as the regularized
Dirac sea vacuum.

(a) Let Σ0 denote the Cauchy surface at time t = 0. Show that, for any x ∈ M
and χ ∈ C4,

(i/∂ −m)P ε( · , x)χ = 0 and P ε( · , x)χ
∣∣
Σ0

∈ S(R3,C4) .

Conclude that P ε( · , x)χ ∈ H−
m ∩ C∞(R4,C4).
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(b) Convince yourself that

Rε(P
ε( · , x)χ) = P 2ε( · , x)χ .

(c) Let {e1, . . . , e4} denote the canonical basis of C4. Using Exercise 5.15 (b), show that
the wave functions P ε( · , x)eµ for µ = 1, 2, 3, 4 are linearly independent.

(d) Let Sx := F ε(x)(H−
m) endowed with ≺u, v≻x := −⟨u|F ε(x)v⟩ be the spin space

at x ∈ M. Show that the following mapping is an isometry of indefinite inner
products (i.e. injective and product preserving),

Φx : Sx ∋ u 7→ Rεu(x) ∈ C4.

Conclude that the causal fermion system is regular at x ∈ M, i.e. dimSx = 4, if and
only if there exist vectors uµ ∈ H−

m, for µ = 1, 2, 3, 4, such that the Rεuµ(x) ∈ C4

are linearly independent.
(e) Conclude that the causal fermion system is regular at every spacetime point.



CHAPTER 6

Causal Variational Principles

The causal action principle as introduced in Section 5.6 has quite a rich structure
and is rather involved. Therefore, it is difficult to analyze it in full generality in one
step. It is preferable to begin with special cases and simplified situations, and to proceed
from there step by step. In fact, doing so leads to a whole class of variational principles,
referred to as causal variational principles. These different variational principles capture
different features and aspects of the causal action principle. Proceeding in this way also
gives a better understanding of the physical meaning of the different structures of a causal
fermion system and of the interaction as described by the causal action principle. We now
give an overview of the different settings considered so far. This has the advantage that in
the later chapters of this book, we can always work in the setting which is most suitable
for the particular question in mind. Moreover, for pedagogical reasons, in this book we
shall sometimes idealize the setting for example by assuming for technical simplicity that
the Lagrangian is smooth.

6.1. The Causal Variational Principle on the Sphere

Clearly, the trace constraint (5.6.4) and the boundedness constraint (5.6.5) complicate
the analysis. Therefore, it might be a good idea to consider a simplified setting where
these constraints are not needed. This can be accomplished most easily by prescribing
the eigenvalues of the operators in F. This method was first proposed in [43, Section 2]
in a slightly different formulation. We now explain the method in a way which fits best
to our setting. Given n ∈ N, we choose real numbers ν1, . . . , ν2n with

ν1 ≤ · · · ≤ νn ≤ 0 ≤ νn+1 ≤ . . . ≤ ν2n . (6.1.1)

We let F be the set of all symmetric operators onH of rank 2n whose eigenvalues (counted
with multiplicities) coincide with ν1, . . . , ν2n. If H is finite-dimensional, the set F is com-
pact. This is the reason why it is sensible to minimize the causal action (5.6.2) keeping
only the volume constraint (5.6.3), which for simplicity we implement by restricting at-
tention to normalized measures,

ρ(F) = 1 .

Note that, since F is compact and the Lagrangian L is continuous on F × F, also the
action S(ρ) is finite for any normalized measure ρ.

The simplest interesting case is obtained by choosing the spin dimension n = 1 and
the Hilbert space H = C2. In this case, according to (6.1.1) we have one non-negative
and one non-positive eigenvalue. If these eigenvalues have the same absolute value, all the
operators have trace zero. This case is not of interest because there are trivial minimizers
(for details see Example 12.4.1 in Section 12.4). With this in mind, it suffices to consider
the case that |ν1| ≠ |ν2|. Since scaling all the eigenvalues in (6.1.1) by a real constant does
not change the essence of the variational principle, it is no loss of generality to assume

121
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that the two eigenvalues ν1, ν2 satisfy the relation ν1 + ν2 = 2, making it possible to
parametrize the eigenvalues by

ν1/2 = 1∓ τ with τ ≥ 1 .

Then F consists of all Hermitian 2 × 2-matrices F which have eigenvalues ν1 and ν2.
These matrices can be represented using the Pauli matrices by

F =
{
F = τ x⃗σ⃗ + 1 with x⃗ ∈ S2 ⊂ R3

}
. (6.1.2)

Thus the set F can be identified with the unit sphere S2.
The volume constraint (5.6.3) can be implemented most easily by restricting attention

to normalized regular Borel measures on F (i.e. measures with ρ(F) = 1). Such a measure
can be both continuous, discrete or a mixture. Examples of continuous measures are
obtained by multiplying the Lebesgue measure on the sphere by a non-negative smooth
function. By a discrete measure, on the other hand, we here mean a weighted counting
measure, i.e. a measure obtained by inserting weight factors into (5.3.2),

ρ =

L∑
i=1

ci δxi with xi ∈ F , ci ≥ 0 and

L∑
i=1

ci = 1 . (6.1.3)

In this setting, a straightforward computation yields for the Lagrangian (5.6.1) (see
Exercise 6.1)

L(x, y) = max
(
0,D(x, y)

)
with

D(x, y) = 2τ2
(
1 + ⟨x, y⟩

)(
2− τ2

(
1− ⟨x, y⟩

))
,

(6.1.4)

and ⟨x, y⟩ denotes the Euclidean scalar product of two unit vectors x, y ∈ S2 ⊂ R3

(thus ⟨x, y⟩ = cosϑ, where ϑ is the angle between x and y).
The resulting so-called causal variational principle on the sphere was introduced

in [43, Chapter 1] and analyzed in [84, Sections 2 and 5] and more recently in [10].
We now explain a few results from these papers.

First of all, the causal variational principle on the sphere is well-posed, meaning that
the minimum is attained in the class of all normalized regular Borel measures; (the proof
of this statement will be given in Chapter 12 using measure-theoretic methods to be
developed later in this book). Minimizing numerically in the class of weighted count-
ing measures for increasing number L of points and different values of the parameter τ ,
the resulting minimal value of the action has an interesting non-smooth structure shown
in Figure 6.1. In particular, one finds that the minimizing measure is not unique; in-
deed, there are typically many minimizers. From the mathematical perspective, this
non-uniqueness can be understood from the fact that the causal action principle is a
non-convex variational principle where one cannot expect uniqueness. To give a concrete
example for the non-uniqueness, we note that in the case τ = τc =

√
2, there is a min-

imizing measure which is supported on an octahedron (for details see [84, Section 2]).
This minimizing measure is not unique, because every measure obtained from it by a
rotation in SO(3) is again a minimizer. But the non-uniqueness goes even further in the
sense that there are pairs of minimizing measures which cannot be obtained from each
other by a rotation or reflection. For example, again in the case τ =

√
2, the normalized

Lebesgue measure on the sphere is also a minimizer.
Moreover, the study in [84, Section 2] gives the following
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Figure 6.1. Numerical minima for the weighted counting measure on the sphere.

numerical result: If τ >
√
2, every minimizing measure is a weighted

counting measure (6.1.3).

Thus, although we minimize over all regular Borel measures (i.e. measures which can
have discrete and continuous components), a minimizing measure always describes a
discrete spacetime consisting of a finite number of spacetime points. This result can be
interpreted physically as an indication that the causal action principle should give rise
to discrete spacetime structures. More details on the numerical findings and the physical
interpretation can be found in the review [57, Section 4]. A more advanced numerical
study of the causal action principle in low dimensions can be found in [59].

The above numerical findings can be underpinned by analytic results. We finally
mention some of these results, although they will not be needed later on, and the methods
of proof will not be covered in this book. First, it was proven in [84, Section 5.1] that
the support has an empty interior:

Theorem 6.1.1. If τ >
√
2, the support of any minimizing measure does not contain

an open subset of S2.

Intuitively speaking, this result shows that the spacetime points are a subset of the
sphere of dimension strictly smaller than two. More recently, it was shown in [10] that
the dimension of the support is even strictly smaller than one:

Theorem 6.1.2. In the case τ >
√
6, the support of any minimizing measure is totally

disconnected and has Hausdorff dimension at most 6/7.

The proof of these theorems uses techniques which will not be covered in this book.
Therefore, we refer the reader interested in more details to the papers cited above.
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6.2. Causal Variational Principles in the Compact and Smooth Settings

Generalizing the causal variational principle on the sphere, one can replace F by a
smooth compact manifold of dimension m ≥ 1.

Definition 6.2.1. Let F be a smooth compact manifold of dimension m ≥ 1 and D ∈
C∞(F × F,R). Define the Lagrangian L ∈ C(F × F,R+

0 ) by

L(x, y) := max
(
0,D(x, y)

)
(6.2.1)

and assume that L has the following properties:

(i) L is symmetric: L(x, y) = L(y, x) for all x, y ∈ F.
(ii) L is strictly positive on the diagonal: L(x, x) > 0 for all x ∈ F.

The causal variational principle in the compact setting is to minimize the causal
action

S =

ˆ
F

dρ(x)

ˆ
F

dρ(y) L(x, y) (6.2.2)

under variations of measures ρ in the class of all regular Borel measures on F which are
normalized, i.e.

ρ(F) = 1 . (6.2.3)

This setting was introduced in [84, Section 1.2]. It is the preferable choice for study-
ing phenomena for which the detailed form of the Lagrangian as well as the constraints
of the causal action principle are irrelevant. Note that also in the compact setting the
action S(ρ) is finite for any normalized measure ρ, because F is compact and L is con-
tinuous.

Given a minimizing measure ρ, the Lagrangian induces on spacetime M := supp ρ
a causal structure. Namely, two spacetime points x, y ∈ M are said to be timelike and
spacelike separated if L(x, y) > 0 and L(x, y) = 0, respectively. But, of course, compared
to the causal action principle for causal fermion systems, spin spaces and physical wave
functions (as defined in Section 5.7) are missing in this setting.

We point out that in (6.2.1) we merely assumed that the function D is smooth. The
Lagrangian, however, is only Lipschitz continuous. It is in general non-differentiable on
the boundary of the light cone as defined by the level set D(x, y) = 0. In order to
avoid differentiability issues, it is sometimes useful to simplify the setting even further by
assuming that the Lagrangian itself is smooth,

L ∈ C∞(F × F,R+
0 ) . (6.2.4)

This is the so-called smooth setting. We point out that the Lagrangian of the causal
action (5.6.1) is not smooth if some of the eigenvalues vanish or are degenerate (more pre-
cisely, the causal Lagrangian is only Hölder continuous, as is worked out in detail in [76,
Section 5]). Indeed, this non-smoothness yields interesting effects like the results on the
singular support in [84, 10]. In view of these results, the smoothness assumption (6.2.4)
is a mathematical simplification which, depending on the application in mind, may or
may not be justified. In this book, we choose the smooth setting mainly for pedagogical
reasons, keeping in mind that the generalizations to non-smooth Lagrangians are rather
straightforward. The reader who is interested in or needs these generalizations will find
the details in the research papers.

Before going on, we point out that the assumptions that F is a smooth manifold
and that the function D in (6.2.1) is smooth are convenient and avoid certain technicali-
ties. But these assumptions are much more than what is needed for the analysis. More
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generally, one can choose L as a non-negative continuous function,

L ∈ C0(F × F,R+
0 ) . (6.2.5)

Going one step further, one may relax the continuity of the Lagrangian by the condition
that L be lower semi-continuous, i.e. that for all sequences xn → x and yn′ → y,

L(x, y) ≤ lim inf
n,n′→∞

L(xn, yn′) .

Since the Lagrangian of the causal action (5.6.1) is continuous, lower semi-continuity is
an unphysical generalization. Nevertheless, this setting is useful for two reasons: First,
from the point of view of the calculus of variations, it is a natural generalization to which
most methods still apply. And second, lower semi-continuous Lagrangians are convenient
for formulating explicit examples (like the lattice model in [71, Section 5]).

We finally note that also the assumption of F being a smooth manifold can be relaxed.
From the point of view of calculus of variations, the right setting is to assume that F is
a compact topological Hausdorff space.

In this book, for pedagogical reasons we do not aim for the highest generality and
minimal smoothness and regularity assumptions. An introduction to a more general and
more abstract setting can be found in [75, Section 3].

6.3. Causal Variational Principles in the Non-Compact Setting

In the compact setting, spacetimeM is a compact subset of F. This is not suitable for
describing situations when spacetime has an asymptotic future or past or when spacetime
has singularities (like at the big bang or inside a black hole). For studying such situations,
it is preferable to work in the so-called non-compact setting introduced in [71, Section 2.1]
where F is chosen to be a non-compact manifold.

In the non-compact setting, it is not sensible to restrict attention to normalized
measures. Instead, the total volume ρ(F) is typically infinite. In this situation, the
causal action (6.2.2) could also be infinite. Therefore, we need to define in which sense a
measure is a minimizer of the action.

Definition 6.3.1. (Causal variational principles in the non-compact setting)
Let F be a non-compact smooth manifold of dimension m ≥ 1, and let D ∈ C∞(F×F,R)
be such that the Lagrangian L ∈ C0(F × F;R+

0 ) defined by (6.2.1) has the properties (i)
and (ii) in Definition 6.2.1. Given a regular Borel measure ρ on F, another regular Borel
measure ρ̃ on F is a variation of ρ of finite volume if it satisfies the conditions∣∣ρ̃− ρ

∣∣(F) <∞ and
(
ρ̃− ρ

)
(F) = 0 , (6.3.1)

where |ρ̃−ρ| is the total variation measure (see Definition 2.3.5 in Section 2.3). For such
a variation of finite volume we consider the (formal) difference of the actions defined by(

S(ρ̃)− S(ρ)
)
:=

ˆ
F

d(ρ̃− ρ)(x)

ˆ
F

dρ(y) L(x, y)

+

ˆ
F

dρ(x)

ˆ
F

d(ρ̃− ρ)(y) L(x, y)

+

ˆ
F

d(ρ̃− ρ)(x)

ˆ
F

d(ρ̃− ρ)(y) L(x, y) . (6.3.2)
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The measure ρ is said to be a minimizer of the causal action with respect to variations
of finite volume if this difference is non-negative for all ρ̃ satisfying (6.3.1),(

S(ρ̃)− S(ρ)
)
≥ 0 . (6.3.3)

We note for clarity that integrals with respect to ρ̃− ρ are defined byˆ
F

f(x) d(ρ̃− ρ)(x) :=

ˆ
F

f dµ+ −
ˆ
F

f dµ−

with the finite measures µ± as given in Definition 2.3.5. In particular, (ρ̃ − ρ)(F) :=
µ+(F)− µ−(F).

Exactly as mentioned at the end of the previous section, the assumption that F is a
smooth manifold could be weakened. From the point of view of calculus of variations,
the right setting is to assume that F is a σ-locally compact topological Hausdorff space
(for details see again [75, Section 3]).

6.4. The Local Trace is Constant

Causal variational principles as introduced in the previous sections are of interest in
their own right as a novel class of nonlinear variational principles. Nevertheless, since
we are primarily interested in causal fermion systems, it is important to get a concise
mathematical connection to the causal action principle. In preparation, we now analyze
the trace constraint and derive a first general result on minimizing measures of the causal
action principle. We present this result at such an early stage of this book because this
result can be used to simplify the setup of causal fermion systems, getting the desired
connection to causal variational principles (see Section 6.5 below). The following result
was first obtained in [13] (albeit with a different method); see also [45, Proposition 1.4.1].
For technical simplicity, we restrict attention to the finite-dimensional setting (in the
infinite-dimensional case, this problem has not yet been studied). Then the total volume
of spacetime as well as the minimal action are finite.

Proposition 6.4.1. Consider the causal action principle in the finite-dimensional
setting dimH < ∞. Let ρ be a minimizer of finite total volume, ρ(F) < ∞. Then there
is a real constant c such that

tr(x) = c for all x ∈M := supp ρ .

We often refer to tr(x) as the local trace at the point x.

Proof of Proposition 6.4.1. We will prove the theorem by contradiction and
therefore assume that the local trace is not constant. The idea is to use this assumption
to construct a suitable variation

(ρτ )τ∈(−δ,δ) with ρ0 = ρ

which satisfies the constraints, but makes the action smaller, in contradiction to ρ being
a minimizer.

For the construction of the variation we combine two different general methods. One
method is to multiply the measure ρ by a positive measurable function fτ : M → R+,

ρτ = fτ ρ

(alternatively, one can also write this relation as dρτ (x) = fτ (x) dρ(x)). Clearly, such a
variation does not change the support of the measure. In order to change the support,
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our second method is to consider a measurable function Fτ : M → F and take the
push-forward measure,

ρτ = (Fτ )∗ρ .

Combining these two methods, we are led to considering variations of the form

ρτ = (Fτ )∗
(
fτ ρ

)
. (6.4.1)

The condition ρ0 = ρ gives rise to the conditions

f0 ≡ 1 and F0 ≡ 1 . (6.4.2)

Finally, we assume that the functions fτ and Fτ are smooth in τ . The ansatz (6.4.1)
is particularly convenient for computations. Namely, by definition of the push-forward
measure,

ˆ
F

L(x, y) dρτ (y) =
ˆ
M

L
(
x, Fτ (y)

)
fτ (y) dρ(y) ,

and similarly for all other integrals.
Next, for arbitrarily given fτ , we want to choose Fτ in such a way that the last integral

becomes independent of τ . To this end, we choose

Fτ (x) :=
x√
fτ (x)

.

Using that the causal Lagrangian L(x, y) is homogeneous of degree two in y (as is obvious
from (5.6.1) and the fact that the eigenvalues λxyi are homogeneous of degree one in y),
it follows that

ˆ
M
L
(
x, Fτ (y)

)
fτ (y) dρ(y) =

ˆ
M

L
(
x,

y√
fτ (y)

)
fτ (y) dρ(y)

=

ˆ
M

L(x, y) 1

fτ (y)
fτ (y) dρ(y) =

ˆ
M

L(x, y) dρ(y) .

Arguing similarly in the variable x, one sees that our variation does not change the action.
Since the integrand |λxyj |2 of the boundedness constraint (5.6.5) is again homogeneous of
degree two in x and y, the above argument applies similarly to the functional T , showing
that the boundedness constraint is respected by our variations.

Let us analyze the volume and trace constraints. In order to satisfy the volume
constraint, we make the ansatz

fτ = 1 + τg , (6.4.3)

where g is a bounded function with zero mean,

ˆ
M
g(x) dρ(x) = 0 . (6.4.4)
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This ensures that the volume constraint is satisfied. We finally consider the variation of
the trace constraint,ˆ

F

tr(x) dρτ (x)−
ˆ
F

tr(x) dρ(x)

=

ˆ
M

tr
(
Fτ (x)

)
fτ (x) dρ(x)−

ˆ
M

tr(x) dρ(x)

=

ˆ
M

tr
( x√

fτ (x)

)
fτ (x) dρ(x)−

ˆ
M

tr(x) dρ(x)

=

ˆ
M

tr(x)
(√

fτ (x)− 1
)
dρ(x) .

Employing again the ansatz (6.4.3) and differentiating with respect to τ , we obtain for
the first variation

d

dτ

ˆ
F

tr(x) dρτ

∣∣∣∣
τ=0

=
1

2

ˆ
M

tr(x) g(x) dρ(x) (6.4.5)

(here we may differentiate the integrand using Lebesgue’s dominated convergence theo-
rem). Now we use of our assumption that the local trace is not constant on M , making
it possible to choose x1, x2 ∈ M with tr(x1) > tr(x2). Moreover, we choose a function g
which supported in a small neighborhood of x1 and x2, has zero mean (6.4.4) and is pos-
itive at x1 and negative at x2. In this way, we can arrange that the right side of (6.4.5)
is strictly positive. Hence, using (6.4.4), it follows that

d

dτ

ˆ
F

tr(x) d
(
ρτ − ρ

)
(x)

∣∣∣∣
τ=0

> 0 . (6.4.6)

To summarize, we have found a variation which respects the boundedness and the volume
constraint and preserves the causal action, but increases the integral of the trace (6.4.6).

The final step is to modify the variation in such a way that the trace and volume
constraints are respected, whereas the action and the boundedness constraints become
smaller. To this end, we transform the measures according to

ρτ → (Gτ )∗(ρτ )

with

Gτ (x) = x

(ˆ
M

tr(x) dρ

)/( ˆ
M

tr(x) dρt

)
. (6.4.7)

A short computation shows that the trace constraint is respected, and so is the volume
constraint. Moreover, in view of (6.4.6), for small positive τ the scaling factor in (6.4.7)
is strictly smaller than one, implying that the first variations of the action and of the
boundedness constraint are both strictly negative (here we use again the homogeneity of
the Lagrangian and of the integrand of the boundedness constraint). This is a contra-
diction to the fact that ρ is a minimizer (here we make essential use of the fact that the
boundedness constraint (5.6.5) is an inequality constraint, so that decreasing T in the
variation is allowed). We conclude that the local trace must be constant. □

6.5. How the Causal Action Principle Fits into the Non-Compact Setting

Under mild technical assumptions on the minimizing measure, the causal action prin-
ciple for causal fermion systems is a special case of the causal variational principle in the
non-compact setting, as we now explain.
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Since for minimizers of the causal action principle, all operators in M have the same
trace (see Proposition 6.4.1), we can simplify the setting by restricting attention to linear
operators in F which all have the same trace. Then the trace constraint can be disre-
garded, as it follows from the volume constraint. We now implement this simplification
by modifying our setting. At the same time, we implement the boundedness constraint
by a Lagrange multiplier term. Here we apply this method naively by modifying the
Lagrangian to

Lκ(x, y) :=
1

4n

2n∑
i,j=1

(∣∣λxyi ∣∣− ∣∣λxyj ∣∣)2
+ κ

( 2n∑
i=1

∣∣λxyi ∣∣)2

, (6.5.1)

where κ > 0 is the Lagrange multiplier. We refer to Lκ as the κ-Lagrangian. The
justification for this procedure as given in [13] is a bit subtle, and for brevity we shall
not enter these constructions here. It is important to note that, in contrast to the
usual Lagrange multiplier, where a minimizer under constraints in general merely is a
critical point of the Lagrangian including the Lagrange multipliers, here we obtain again
a minimizer of the effective action (for details see [13, Theorem 3.13]).

Finally, we make a mild technical simplification. A spacetime point x ∈ M is said
to be regular if x has the maximal possible rank 2n. Otherwise, the spacetime point is
singular. In typical physical applications, all spacetimes points are regular, except maybe
at singularities like the center of black holes. For example, the construction of a causal
fermion system in Minkowski space from Dirac wave functions in Section 5.5 gives regular
spacetime points if H is chosen sufficiently large (in particular for all negative-frequency
solutions). More generally, the interacting systems considered in [45, Chapters 3-5] all
have regular spacetime points. The same is true for the similar construction in globally
hyperbolic spacetimes (for details see [47]). With this in mind, in this book we usually
assume that the causal fermion system is regular in the sense that all spacetime points
are regular. This assumption has the advantage that the set of all regular points of F is
a smooth manifold (see Proposition 3.1.3 in Section 3.1). We remark that, in the case
that H is infinite-dimensional, the set of regular points of F can be endowed with the
structure of a Banach manifold (for details see [76, Section 3]). These consideration lead
us to the following setting:

Definition 6.5.1. Let H be a complex Hilbert space. Moreover, suppose we are given
parameters n ∈ N (the spin dimension), c > 0 (the constraint for the local trace) and κ > 0
(the Lagrange multiplier of the boundedness constraint). We then let Freg ⊂ L(H) be the
set of all symmetric operators F on H with the following properties:

(a) F has finite rank and (counting multiplicities) has exactly n positive and n negative
eigenvalues.

(b) The local trace is equal to c, i.e.

tr(F ) = c .

On Freg we again consider the topology induced by the sup-norm on L(H). The reduced
causal action principle for regular systems is to minimize the reduced causal action

Sκ(ρ) =
¨

F×F

Lκ(x, y) dρ(x) dρ(y)

over all regular Borel measures under variations which preserve the total volume.
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In this way, the causal action principle fits into the framework of causal varia-
tional principles in the non-compact setting as introduced in Section 6.3. In agreement
with (6.2.5), the causal Lagrangian is continuous (in fact, it is even locally Hölder contin-
uous; for details see [76, Section 5.1]). Moreover, it has the desired properties (i) and (ii)
on page 124 (it is strictly positive because the Lagrangian can be estimated from below
in terms of the local trace; see Exercise 5.4).

In order to avoid misunderstandings, we point out that the above description of
causal fermion systems by measures on Freg is not a suitable setting for the existence
theory (as will be developed in Chapter 12). The reason is that Freg is not closed in F,
because the boundary points in F are missing (in a converging sequence, some of the
eigenvalues could tend to zero in the limit). As a consequence, considering a minimizing
sequence (ρn)n∈N of measures in Freg, the limiting measure might well be supported also
on F \ Freg. For this reason, there is no existence theory for measures on Freg. But if a
minimizing measure is given, it seems sensible to assume that the resulting causal fermion
system is regular. Under this assumption, the analysis of the causal fermion system can
be carried out exclusively in Freg, whereas F is no longer needed. For a convenient and
compact notation, in such situations we shall even omit the superscript “reg”, so that F
denotes the set of all symmetric operators on H with the above properties (a) and (b).
Moreover, we shall omit the subscript κ. Thus, with a slight abuse of notation, we shall
denote the Lagrangian including the Lagrange multiplier term (6.5.1) again by L.

In this way, assuming that the causal fermion systems under consideration are regular,
we have recovered the causal action principle as a specific causal variational principle.
The connection is summarized schematically as follows:

causal action principle for causal variational principlesy implement boundedness constraint
by a Lagrange multiplier

reduced causal action principley build in trace constraint,
restrict attention to regular causal fermion systems

reduced causal action principle for regular systems

↪→

generalize

causal variational principles

Whenever the specific form of the causal Lagrangian (6.5.1) is not needed, we will work in
the more general setting of causal variational principles. Apart from the sake of greater
generality, this has the advantage that it becomes clearer which structures are needed
for which results. Moreover, it is often more convenient not to specify the form of the
Lagrangian. Generally speaking, we can work with causal variational principles unless the
physical wave functions and their induced geometric and analytic structures are invoked.

6.6. Exercises

Exercise 6.1. (Derivation of the causal variational principle on the sphere) We con-
sider the causal fermion systems in the case n = 1 and f = 2. For a given parameter τ > 1
we introduce the mapping F :M → F by

F (x⃗) = τ x⃗σ⃗ + 1 . (6.6.1)
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(a) Compute the eigenvalues of the matrix F (x⃗) and verify that it has one positive and
one negative eigenvalue.

(b) Use the identities between Pauli matrices

σiσj = δij + iϵijk σk ,

in order to compute the matrix product,

F (x⃗)F (y⃗) =
(
1 + τ2 x⃗y⃗

)
1+ τ (x⃗+ y⃗)σ⃗ + iτ2 (x⃗ ∧ y⃗)σ⃗.

(c) compute the eigenvalues of this matrix product to obtain

λ1/2 = 1 + τ2 cosϑ± τ
√
1 + cosϑ

√
2− τ2 (1− cosϑ) ,

where ϑ denotes the angle ϑ between x⃗ and y⃗.
(d) Verify that if ϑ ≤ ϑmax with

ϑmax := arccos

(
1− 2

τ2

)
,

then the eigenvalues λ1/2 are both real. Conversely, if ϑ > ϑmax, then the eigenvalues
form a complex conjugate pair.

(e) Use the formula

λ1λ2 = det(F (x⃗)F (y⃗)) = det(F (x⃗)) det(F (y⃗)) = (1 + τ)2(1− τ)2 > 0

to conclude that if the eigenvalues λ1/2 are both real, then they have the same sign.
(f) Combine the above findings to conclude that the causal Lagrangian (5.6.1) can be

simplified to (6.1.4).

Exercise 6.2. (The action and boundedness constraint of the Lebesgue measure on
the sphere) We consider the causal variational principle on the sphere as introduced in
Section 6.1. We let dµ be the surface area measure, normalized such that µ(S2) = 1.

(a) Use the formula for the causal Lagrangian on the sphere (6.1.4) to compute the
causal action (5.6.2). Verify that

S[F ] = 1

2

ˆ ϑmax

0
L(cosϑ) sinϑ dϑ = 4− 4

3τ2
. (6.6.2)

(b) Show that the functional T is given by

T [F ] = 4τ2(τ2 − 2) + 12− 8

3τ2
. (6.6.3)

Hence the causal action (6.6.2) is bounded uniformly in τ , although the function F ,
(6.6.1), as well as the functional T , (6.6.3), diverge as τ → ∞.

Exercise 6.3. (A minimizer with singular support) We again consider the causal
variational principle on the sphere as introduced in Section 6.1. Verify by direct com-
putation that in the case τ =

√
2, the causal action of the normalized counting measure

supported on the octahedron is smaller the action of µ. Hint: For τ =
√
2 the opening

angle of the light cone is given by ϑ = 90◦, so that all distinct spacetime points are
spacelike separated. Moreover, the causal action of the normalized Lebesgue measure is
given in Exercise 6.2 (a).

It turns out that normalized counting measure supported on the octahedron is indeed
a minimizer of the causal action. More details and related considerations can be found
in [43, 84, 57].
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Exercise 6.4. (A causal variational principle on R) We let F = R and consider the
Lagrangians

L2(x, y) = (1 + x2)(1 + y2) and L4(x, y) = (1 + x4)(1 + y4) .

We minimize the corresponding causal actions (6.2.2) within the class of all normalized
regular Borel measures on R. Show with a direct estimate that the Dirac measure δ
supported at the origin is the unique minimizer of these causal variational principles.

Exercise 6.5. (A causal variational principle on S1) We let F = S1 be the unit
circle parametrized as eiφ with φ ∈ R mod 2π and consider the Lagrangian

L(φ,φ′) = 1 + sin2
(
φ− φ′ mod 2π

)
.

We minimize the corresponding causal action (6.2.2) within the class of all normalized
regular Borel measures on S1. Show by direct computation and estimates that every
minimizer is of the form

ρ = τ δ
(
φ− φ′ − φ0 mod 2π

)
+ (1− τ) δ

(
φ− φ′ − φ0 + π mod 2π

)
(6.6.4)

for suitable values of the parameters τ ∈ [0, 1] and φ0 ∈ R mod 2π.



CHAPTER 7

The Euler-Lagrange Equations

In classical field theory, the dynamics of the physical system is revealed by analyzing
the Euler-Lagrange equations corresponding to the classical action principle. These Euler-
Lagrange equations are the physical equations (like the Maxwell or Einstein equations).
They have the mathematical structure of partial differential equations. Likewise, for the
causal action principle and causal variational principles, the Euler-Lagrange equations
describe the dynamics. However, they are no longer differential equations but have a
quite different form. In this chapter we shall derive the Euler-Lagrange equations and
discuss their general structure.

7.1. The Euler-Lagrange Equations

Let ρ be a minimizer of the causal variational principle in the non-compact setting
(more precisely, a minimizer with respect to variations of finite volume; see Section 6.3).
We now derive the Euler-Lagrange (EL) equations, following the method in the compact
setting [84, Lemma 3.4]. We again define spacetime as the support of ρ,

M := supp ρ ⊂ F .

In words, the EL equations state that the causal action is minimal under first variations
of the measure. In order to make mathematical sense of the variations, we need the
following assumptions:

(i) The measure ρ is locally finite (meaning that any x ∈ F has an open neighborhood U
with ρ(U) <∞).

(ii) The function L(x, .) is ρ-integrable for any x ∈ F, and the function

x 7→
ˆ
F

L(x, y) dρ(y)

is a bounded continuous function on F.

These technical assumptions are satisfied in most applications and are sufficiently general
for the purpose of this book (we note that the continuity assumption in (ii) could be
relaxed to lower semi-continuity; the details are worked out in [75]). We introduce the
function

ℓ(x) =

ˆ
F

L(x, y) dρ(y)− s : F → R , (7.1.1)

where s ∈ R is a parameter whose value will be specified below.

Theorem 7.1.1. (The Euler-Lagrange equations) Let ρ be a minimizer of the causal
action with respect to variations of finite volume and assume that ρ satisfies the condi-
tions (i) and (ii) above. Then

ℓ|M ≡ inf
F
ℓ . (7.1.2)

133
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M := supp ρ

M

F F
x

U

Figure 7.1. Evaluation of ℓ away from and near M .

Proof. Given x0 ∈ supp ρ, we choose an open neighborhood U with 0 < ρ(U) <∞.
For any y ∈ F we consider the family of measures (ρ̃τ )τ∈[0,1) given by

ρ̃τ = χM\U ρ+ (1− τ)χU ρ+ τ ρ(U) δy (7.1.3)

(where δy is the Dirac measure supported at y). Then

ρ̃τ − ρ = −τ χU ρ+ τ ρ(U) δy = τ
(
ρ(U) δy − χU ρ

)
. (7.1.4)

Using this formula one readily verifies that ρ̃τ is a variation of finite volume satisfying
the volume constraint. Hence

0 ≤
(
S(ρ̃τ )− S(ρ)

)
= 2τ

(
ρ(U)

(
ℓ(y) + s

)
−
ˆ
U

(
ℓ(x) + s

)
dρ(x)

)
+ O

(
τ2
)

= 2τ

(
ρ(U) ℓ(y))−

ˆ
U
ℓ(x)dρ(x)

)
+ O

(
τ2
)

(here we may carry out the integrals in arbitrary order using Tonelli’s theorem for non-
negative integrands). Since this holds for any τ ∈ [0, 1), the linear term must be non-
negative, and thus

ℓ(y) ≥ 1

ρ(U)

ˆ
U
ℓ(x) dρ(x) . (7.1.5)

Now assume that (7.1.2) is false. Then there is x0 ∈ supp ρ and y ∈ F such that ℓ(x0) >
ℓ(y). Continuity of ℓ implies that there is an open neighborhood U of x0 such that ℓ(x) >
ℓ(y) for all x ∈ U . But this contradicts (7.1.5). □

It is indeed no loss of generality to restrict attention to first variations within the special
class (7.1.4); for details see Exercise 7.1.

We always choose the parameter s such that the infimum of ℓ in (7.1.2) is zero. Then
the EL equations read

ℓ|supp ρ ≡ inf
F
ℓ = 0 . (7.1.6)

The parameter s can be understood as the “action per volume” (see Exercise 7.2). We
finally point out that solutions of the EL equations do not need to be minimizers of the
causal action principle. Similar to the situation for local maxima or saddle points in the
finite-dimensional setting, there may be variations for which S is stationary, but whose
second or higher variations are negative.

7.2. The Restricted Euler-Lagrange Equations in the Smooth Setting

The EL equations (7.1.6) make a statement on the function ℓ even at points x ∈ F

which are far away from spacetime M (see the left of Figure 7.1). In this way, the EL
equations contain much more information than conventional physical equations formu-
lated in spacetime. At present, it is unclear how this additional information can be used
or interpreted. One way of understanding this situation is to take the point of view



7.2. THE RESTRICTED EULER-LAGRANGE EQUATIONS IN THE SMOOTH SETTING 135

that all information on the physical system must be obtained by performing observations
or measurements in spacetime, which means that the information contained in ℓ away
from M is inaccessible for fundamental reasons. Here we shall not take sides or discuss
whether or to which extent this point of view is correct. Instead, we simply note that
it seems preferable and physically sensible to restrict attention to the function ℓ in an
arbitrarily small neighborhood U of M in F (see the right of Figure 7.1). In practice,
this means that we shall evaluate ℓ as well as its derivatives only on M . In this way, the
causal action principle gives rise to an interaction described by equations in spacetime.

This concept leads us to the so-called restricted EL equations, which we now introduce.
For technical simplicity, we again restrict attention to the smooth setting (for a more
general derivation see [71, Section 4]). This means that we assume that the Lagrangian
is smooth (see (6.2.4) and the discussion thereafter). To avoid confusion, we point out
that this assumption does not entail that spacetime M := supp ρ is a smooth manifold.
Nevertheless, we can speak of a smooth function or a smooth vector field on M , meaning
that the function (or vector field) has a smooth extension to F.1 Moreover, for technical
simplicity we assume that also the function ℓ defined by (7.1.1) is smooth on F. Under
these assumptions, the minimality of ℓ implies that the derivative of ℓ vanishes on M .
We thus obtain the equations

ℓ|M ≡ 0 and Dℓ|M ≡ 0 (7.2.1)

(where Dℓ(p) : TpF → R is the derivative). In order to combine these two equations in
a compact form, it is convenient to consider a pair u := (a, u) consisting of a real-valued
function a on M and a vector field u on TF along M , and to denote the combination of
multiplication and directional derivative by

∇uℓ(x) := a(x) ℓ(x) +
(
Duℓ

)
(x) . (7.2.2)

The pair u = (a, u) is referred to as a jet. This jet is a vector in a corresponding jet
space J defined by

u = (a, u) ∈ J := C∞(M,R)⊕ Γ∞(M,TF) , (7.2.3)

where C∞(M,R) and Γ∞(M,TF) denote the space of real-valued functions and vec-
tor fields on M , respectively, which admit a smooth extension to F. Then the equa-
tions (7.2.1) imply that ∇uℓ(x) vanishes for all x ∈M ,

∇uℓ|M = 0 for all u ∈ J . (7.2.4)

These are the so-called restricted EL equations. For brevity, a solution of the restricted
EL equations is also referred to as a critical measure. We remark that, in the literature,
the restricted EL equations are sometimes also referred to as the weak EL equations.
Here we prefer the notion “restricted” in order to avoid potential confusion with weak
solutions of these equations (as constructed in [22]; see also Chapter 14 below).

1We remark that the question on whether a function or vector field on M can be extended smoothly
to F is rather subtle. The needed conditions are made precise by Whitney’s extension theorem (see for
example the more recent account in [34]). Here we do not enter the details of these conditions, but use
them as implicit assumptions entering our notion of smoothness. We remark that these conditions are
fulfilled whenever M := supp ρ carries a manifold structure.
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7.3. Symmetries and Symmetric Criticality

In many applications, variational principles have an underlying symmetry (for ex-
ample spherical symmetry or time independence). Typically, it simplifies the variational
problem to vary within the class of functions which respect this symmetry. Having found a
minimizer within this restricted class, the question arises whether it is also a minimizer of
the full variational problem. The general answer to this question is no, simply because the
absolute minimizer does not necessarily respect the symmetry of the variational principle.
For causal variational principles, the situation is similar, if we only replace “function”
by “measure.” As a simple example, we saw in Section 6.1 for the causal variational
principle on the sphere that, although the variational principle is spherically symmetric,
minimizing measures are typically weighted counting measures, thus breaking spherical
symmetry.

Nevertheless, one can hope that minimizers within the class of symmetric functions
are critical points of the full variational problem. This statement, referred to as the prin-
ciple of symmetric criticality, has been formulated and proven under general assumptions
in [126]. In this section we explain how the principle of symmetric criticality can be stated
and proved in the setting of causal variational principles. As we shall see, the proof is
quite simple and rather different from that in the classical calculus of variations. We
begin by explaining the basic idea in the simplest possible situation, where we consider
the compact setting and assume that also the symmetry group is compact. Afterward we
explain how to treat a non-compact symmetry group.

As in Section 6.2 we let F be a compact manifold. Moreover, we again assume that
the Lagrangian L is continuous (6.2.5), symmetric and strictly positive on the diagonal
(see the assumptions (i) and (ii) on page 124). In order to describe the symmetry, we let G
be a compact Lie group, which should act as a group of diffeomorphisms on F (for basics
on Lie groups see for example [118, Chapter 7]). More precisely, we assume the group
action Φ : G× F → F to be a continuous mapping with the properties that Φg := Φ(g, .)
is a diffeomorphism of F for any g ∈ G, and that

Φg ◦ Φh = Φgh for all g, h ∈ G .

Moreover, the symmetry is expressed by the condition that the Lagrangian be invariant
under the group action, i.e.

L(Φgx,Φgy) = L(x, y) for all x, y ∈ F and g ∈ G . (7.3.1)

We denote the set of normalized regular Borel measures on F by M. Taking the
push-forward of Φ, we obtain a group action on M (for the definition of the push-forward
measure see again Section 2.3). We denote the measures which are invariant under this
group action by MG, i.e.

MG :=
{
ρ ∈ M

∣∣ (Φg)∗ρ = ρ for all g ∈ G
}
. (7.3.2)

We also refer to the measures in MG as being equivariant (for more details on equivariant
causal variational principles see [13, Section 4]).

Theorem 7.3.1. Let ρ be a minimizer of the causal action under variations within
the class MG of equivariant measures. Then ρ is a critical point of the full variational
principle in the sense that the EL equations (7.1.6) hold.
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We point out for clarity that minimizers under variations in MG will in general not be
minimizers under variations in M. The reason is that the minimizers in M are typically
not invariant under the action of the group G. A concrete example for this phenomenon
is given in Exercise 7.4.

Proof of Theorem 7.3.1. We denote the orbits of the group action by ⟨x⟩ := ΦGx
with x ∈ F. Since G is compact, so are the orbits. On G there is a uniquely defined
normalized measure which is invariant under the group action by left multiplication, the
so-called normalized Haar measure µ (for details on the Haar measure see for exam-
ple [118, Chapter 16]). A particular class of equivariant measures is obtained by taking
the push-forward of µ by the mapping Φ(., x). More precisely, for given x ∈ F we define
the (also normalized) Borel measure δ⟨x⟩ on F by

δ⟨x⟩(Ω) := µ
(
{g ∈ G | Φ(g, x) ∈ Ω}

)
(7.3.3)

for any Borel set Ω ⊂ F. The subscript ⟨x⟩ indicates that, being equivariant, this measure
depends only on the orbit.

Given y ∈ F, we now consider the variation (ρ̃τ )τ∈[0,1) within the class of equivariant
measures defined by

ρ̃τ = (1− τ) ρ+ τ δ⟨y⟩ . (7.3.4)

Note that, as convex combination of two normalized measures, also ρ̃τ is normalized.
Using that ρ is a minimizer within this class, we can proceed similarly as in the proof of
Theorem 7.1.1 to obtain ˆ

F

ℓ(x) dδ⟨y⟩(x) ≥
ˆ
F

ℓ(x) dρ(x) . (7.3.5)

Moreover, it follows by symmetry that the function ℓ is constant on the orbits, because

ℓ
(
Φgy

)
=

ˆ
F

L
(
Φgy, x

)
dρ(x)− s =

ˆ
F

L
(
y,Φg−1x

)
dρ(x)− s

=

ˆ
F

L
(
y, x

)
dρ(x)− s = ℓ(y) ,

where in the first line we used symmetry of L and in the second line we used that ρ is
equivariant. Hence, integrating over the orbit, we obtain

ℓ(y) =

ˆ
F

ℓ(x) dδ⟨y⟩ .

Combining this identity with (7.3.5), we conclude that

ℓ(y) ≥
ˆ
F

ℓ(x) dρ(x) for all y ∈ F .

Now we can argue exactly as in the proof of Theorem 7.1.1 to obtain the result. □

We next consider the case that the symmetry group G is a noncompact Lie group.
A typical example is the translation group, giving rise to the homogeneous causal ac-
tion principle as considered in [54]. We again assume that G acts on F as a group of
diffeomorphisms Φ : G × F → F. We can again single out the equivariant measures MG

by (7.3.2). Moreover, on G one can introduce a left-invariant measure µ (again referred
to as the Haar measure). However, in contrast to the case of a compact Lie group, now
the measure µ has infinite total volume. As a consequence, it cannot be normalized,
and moreover it is unique only up to a positive prefactor. It is a basic difficulty that
for any non-zero equivariant measure ρ, the integrals in the causal action (6.2.2) diverge,
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because the integral over the group elements g describing the symmetry (7.3.1) diverge.
In simple terms, this group integral gives an infinite prefactor. This suggests that the
problem could be cured simply by leaving out this integral. We now explain how this can
be done. For simplicity, we restrict attention to the case that G acts freely (in the sense
that gx = x with g ∈ G implies that g = e is the neutral element). Then, for any x ∈ G,
the mapping g 7→ Φ(g, x) is a continuous injective mapping from G to F. In other words,
each orbit is homeomorphic to G. Again denoting the space of orbits by F/G, we can thus
identify F ≃ (F/G)× G. Moreover, using this identification, the equivariant measure can
be written as

ρ = ρF/G × µ ,

where ρF/G is a measure on the orbits. Now we replace the action (6.2.2) by

S(ρ) =
ˆ
F/G

dρF/G(x)

ˆ
F

dρ(y) L(x, y) with ρ ∈ MG . (7.3.6)

The equivariant causal variational principle is to minimize this action under variations
in MG, leaving the total volume of ρF/G fixed. If F/G is compact, we can normalize this
total volume by demanding that

ρF/G(F/G) = 1 . (7.3.7)

If F/G is non-compact, the volume constraint can be treated similar as explained for
causal variational principles in the non-compact setting in Section 6.3. For more details
on this procedure and the resulting existence theory we refer to [13, Section 4] and [54].

The justification for considering the equivariant causal variational principle (7.3.6)
is that it gives a method for constructing critical points of the full variational principle.
The basis is the following result which applies in the case that F/G is compact.

Theorem 7.3.2. (Symmetric criticality for causal variational principles) Let G
be a noncompact Lie group acting freely on F as a group of diffeomorphisms. Assume
that F/G is compact. Let ρ be a minimizer of the equivariant causal action principle
which is normalized on the orbits (7.3.7). Then ρ is a critical point of the full variational
principle in the sense that the EL equations (7.1.6) hold.

Proof. The measure (7.3.3) is normalized on F/G. Therefore, the variation (7.3.4)
satisfies the volume constraint (7.3.7). Computing the first variation of the action, in
analogy to (7.3.4) we now obtainˆ

F/G
ℓ(x) dδ⟨y⟩(x) ≥

ˆ
F/G

ℓ(x) dρF/G(x)

(note that the integrands are constant on the orbits). Carrying out the integral on the
left side, we conclude that

ℓ(y) =

ˆ
F/G

ℓ(x) dρF/G(x) ,

giving the claim. □

In the case that F/G is not compact, it is not clear if minimizers exist. One strategy
for constructing minimizers is to exhaust F/G by compact sets, similar as is done in [75]
for causal variational principles in the non-compact setting (see also Section 12.8). If an
equivariant minimizer ρ exists, we know by symmetry that ℓ is constant on the orbits,
and moreover the corresponding EL equations imply that ℓ is minimal on the orbits in the
support of ρ. Combining these facts, we immediately obtain the EL equations (7.1.2).
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In this way, we conclude that symmetric criticality always holds for causal variational
principles.

7.4. Exercises

Exercise 7.1. (More general first variations) In the proof of Theorem 7.1.1 we re-
stricted attention to very specific variations (7.1.3). In this exercise we verify that the
resulting EL equations (7.1.2) guarantee that the action is minimal also under more gen-
eral variations. To this end, let µ be a normalized measure on F, for technical simplicity
with compact support. Consider variations of the form

ρ̃τ = χM\U ρ+ (1− τ)χU ρ+ τ ρ(U)µ

Show that (7.1.2) implies the inequality

d

dτ
S
(
ρ̃τ
)∣∣∣
τ=0

≥ 0 .

Exercise 7.2. Assume that ρ is a minimizer of a causal variational principle with
finite total volume. Show that the parameter s in (7.1.2) takes the value

s =
S(ρ)
ρ(F)

.

Exercise 7.3. (Non-smooth EL equations) We return to the example of the counting
measure on the octahedron as considered in Exercise 6.3.

(a) Compute the function ℓ(x). Show that the EL equations (7.1.2) are satisfied.
(b) Show that the function ℓ is not differentiable at any point x of the octahedron.

Therefore, it is not possible to formulate the restricted EL equations (7.2.4)

This example illustrates why in the research papers [70, 61] one carefully keeps track of
differentiability properties by introducing suitable jet spaces.

Exercise 7.4. (Symmetric criticality on the sphere) We consider the causal varia-
tional principle on the sphere as introduced in Section 6.1.

(a) Show that the symmetric measure on the sphere

dµ(ϑ, φ) =
1

4π
dφ sinϑ dϑ

is critical in the sense that it satisfies the EL equations (7.1.2).
(b) Use the minimizer with singular support constructed in Exercise 6.3 to argue that

minimizers within the class of symmetric measure are in general not minimizers
within the class of measures without symmetries. More details on this effect of
symmetry breaking can be found in [43, 84, 57].





CHAPTER 8

The Linearized Field Equations

The EL equations as derived in the previous chapter (see Theorem 7.1.1 or the re-
stricted EL equations in (7.2.4)) are nonlinear equations. This can be seen immediately
from the fact that the measure ρ enters in a twofold way: It determines the function ℓ via
the integration (7.1.1), and it also determines via its support M where the function ℓ is
to be evaluated. As usual, such nonlinear equations are difficult to analyze. Therefore, it
is a good idea to simplify these equations by linearization. This leads us to the so-called
linearized field equations which describe linear perturbations of the system which respect
the EL equations. This chapter is devoted to the derivation of the linearized field equa-
tions and to the construction of explicit examples. We remark that the linearized field
equations are also a suitable starting point for the analysis of the full EL equations, for
example by using perturbative methods (see [51] or Chapter 18).

8.1. Derivation of the Linearized Field Equations in the Smooth Setting

Linearizations are used frequently in physics and mathematical analysis. Typical
physical examples are the anharmonic oscillator for small displacements or nonlinear
waves of small amplitudes. In these examples, the nonlinearity of the underlying wave
equation may be neglected, making it possible to describe the dynamics by a linear
wave equation. In mathematical terms, the dynamics is usually described by nonlinear
equations which are difficult to solve (like for example the Einstein equations). Linearizing
gives linear equations (for example the equations of linearized gravity), which are much
easier to analyze. In order to derive the linearized equations, one typically considers a
family Gτ of solutions. The parameter τ can be thought of as the “amplitude” of the
perturbation, and Gτ |τ=0 describes the unperturbed system (for example an anharmonic
oscillator at rest or the vacuum). Then the derivative

d

dτ
Gτ

∣∣
τ=0

is the linearized field; it satisfies a linear equation obtained by differentiating the nonlinear
equation (like Hamilton’s equation for the anharmonic oscillator or a nonlinear wave
equation) with respect to τ .

The concept of linearization is also fruitful in the context of causal variational prin-
ciples. Since the system is described by the measure ρ, the above family of solutions now
corresponds to a family of measures (ρ̃τ )τ∈[0,δ) which are all critical points of the causal
action principle. The basic question is how to vary the measure. Indeed, there are many
ways of varying. We begin with a simple method, which we will generalize and discuss
afterward. In order to keep the presentation as simple as possible, we again restrict at-
tention to the smooth setting (as defined in Section 6.2; this means that the Lagrangian
is smooth (6.2.4), but M does not need to have a smooth manifold structure). Moreover,
for technical simplicity we assume that the Lagrangian has the following property.

141
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Definition 8.1.1. The Lagrangian has compact range if for every compact K ⊂ F

there is a compact set K ′ ⊂ F such that

L(x, y) = 0 for all x ∈ K and y ̸∈ K ′ .

We choose a family fτ of positive weight functions and a family Fτ of mapping fromM
to F. These functions should all be smooth, also in the parameter τ , i.e.

f ∈ C∞([0, δ)×M,R+) and F ∈ C∞([0, δ)×M,F)

(here, as explained before (7.2.1), smoothness on M is defined via the existence of a
smooth extension to F). We multiply ρ by fτ and then take the push-forward under Fτ ,

ρ̃τ := (Fτ )∗
(
fτ ρ

)
. (8.1.1)

We assume that for τ = 0 the variation is trivial,

f0 ≡ 1 and F0 ≡ 1 . (8.1.2)

Since multiplying by a positive function leaves the support unchanged, the support of the
measure is transformed only by Fτ ; more precisely,

supp ρ̃τ = Fτ
(
supp ρ

)
(8.1.3)

(for details see Exercise 8.1).
The assumption that all the measures ρ̃τ are critical means that they all satisfy the

restricted EL equations (7.2.4). Taking into account that the support of the measures
changes according to (8.1.3), we know that for all u ∈ J0 and all x ∈M ,

0 = ∇u

( ˆ
F

L
(
Fτ (x), y

)
dρ̃t(y)− s

)
= ∇u

( ˆ
F

L
(
Fτ (x), Fτ (y)

)
fτ (y) dρ(y)− s

)
,

where in the last line we used the definition of the push-forward measure. It is convenient
to multiply this equation by fτ (x). We can write this factor inside the brackets,

0 = ∇u

(ˆ
F

fτ (x) L
(
Fτ (x), Fτ (y)

)
fτ (y) dρ(y)− fτ (x) s

)
,

because the terms obtained when the derivative ∇u acts on fτ (x) vanish in view of the
restricted EL equations (7.2.4). Since this equation holds for all τ ∈ [0, δ), we can
differentiate at τ = 0,

0 =
d

dτ
∇u

( ˆ
F

fτ (x) L
(
Fτ (x), Fτ (y)

)
fτ (y) dρ(y)− fτ (x) s

)∣∣∣∣
τ=0

= ∇u(x)

(ˆ
F

(
ḟ0(x) +D1,Ḟ0(x)

+ ḟ0(y) +D2,Ḟ0(y)

)
L(x, y) dρ(y)− ḟ0(x) s

)
,

where D1 and D2 denote partial derivatives acting on the first and second argument of
the Lagrangian, respectively. Here we were allowed to interchange the derivative with the
integral because the integration range is compact by the assumption in Definition 8.1.1.
We write this equation in the shorter form

∇u(x)

(ˆ
F

(
∇1,v +∇2,v

)
L(x, y) dρ(y)−∇v s

)
= 0 , (8.1.4)
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where v is the jet generated by the functions fτ and Fτ ,

v :=
d

dτ

(
fτ , Fτ

)∣∣
τ=0

∈ J . (8.1.5)

Note that in (8.1.4) the u-derivative also acts on the jet v(x), giving rise to the termsˆ
F

∇1,DuvL(x, y) dρ(y)−∇Duv s . (8.1.6)

But these terms vanish in view of the restricted Euler-Lagrange equations (7.2.4). This
observation makes it possible to simplify the formulation of the linearized field equa-
tions by adopting the following computational conventions for partial derivatives and jet
derivatives:

(i) Partial and jet derivatives with an index i ∈ {1, 2} only act on the respective variable
of the function L. This implies, for example, that the derivatives commute,

∇1,v∇1,uL(x, y) = ∇1,u∇1,vL(x, y) .
(ii) The partial or jet derivatives which do not carry an index act as partial derivatives

on the corresponding argument of the Lagrangian. This implies, for example, that

∇u

ˆ
F

∇1,v L(x, y) dρ(y) =
ˆ
F

∇1,u∇1,v L(x, y) dρ(y) .

We will use these conventions from now on throughout this book. We point out that,
following these conventions, jets are never differentiated. This is a very convenient con-
vention. Clearly, we must always verify that this convention may really be used. As
already mentioned above, in (8.1.4) this convention is justified because the additional
terms obtained if the derivative ∇u acted on the jet v vanish as a consequence of the
restricted EL equations.

We remark that, from a differential geometric perspective, defining higher derivatives
on F would make it necessary to introduce a connection on F. While this could be
done, we here use the simpler method that higher derivatives on F are defined as partial
derivatives carried out in distinguished charts. More precisely, around each point x ∈ F

we choose a distinguished chart and carry out all derivatives as partial derivatives acting
on each tensor component in this chart. We remark that, in the setting of causal fermion
systems, an atlas of distinguished charts is provided by the so-called symmetric wave
charts (for details see the remark after Proposition 3.1.3 and [69, Section 6.1] or [76,
Section 3]).

Definition 8.1.2. Let ρ be a solution of the restricted EL equations (7.2.4). A jet v ∈
J is referred to as a solution of the linearized field equations if

⟨u,∆v⟩(x) := ∇u

( ˆ
F

(
∇1,v +∇2,v

)
L(x, y) dρ(y)−∇v s

)
= 0 (8.1.7)

for all u ∈ J and all x ∈ M . The vector space of all linearized solutions is denoted
by Jlin ⊂ J.

We often write the linearized field equation in the short form ∆v = 0. For the mathemati-
cal analysis of the linearized field equations, it is preferable to include an inhomogeneity w

∆v = w . (8.1.8)

In view of the pairing with the jet u in (8.1.7), the inhomogeneity is a dual jet, i.e. u(x) ∈
(Jx)

∗, making it possible to add on the right side of (8.1.7) the dual pairing ⟨u(x),w(x)⟩x.



144 8. THE LINEARIZED FIELD EQUATIONS

M := supp ρ

(a) (b) (c)

supp ρ̃τ
F

F2

F1

supp ρ̃τ

M

F F F

Figure 8.1. Fragmentation of the measure ρ.

We remark that, in the analysis of the linearized field equations in Chapter 14, the
distinction between jets and dual jets will become unnecessary because we will identify
them via a scalar product on the jets given at every spacetime point.

We conclude this section with a brief discussion of our ansatz (8.1.1). Intuitively
speaking, this ansatz means that the support of the measure is changed smoothly as a
whole. In particular, ifM is a smooth four-dimensional submanifold of F, then the varied
measure Mτ will again have this property. In physical terms, measures where M has
such a manifold structure describe classical spacetimes. Consequently, the ansatz (8.1.1)
and the corresponding linearization (8.1.5) correspond to classical fields in a classical
spacetime. In contrast, if the support M := supp ρ of the measure does not have the
structure of a four-dimensional manifold, then we refer to M as a quantum spacetime.
The notion “quantum spacetime” appears in the literature in different contexts with
rather different meanings. Here we take the above notion as the definition. In this
way, the notion “quantum spacetime” gets a precise mathematical meaning. Our notion
is very general. In particular, it allows for the description of non-smooth spacetime
structures. The name “quantum spacetime” is justified by the fact, in our setting, all
spacetime structures are encoded in the family of all physical wave functions, being the
fundamental quantum objects of a causal fermion system.

In order to give an idea for how such a quantum spacetime may look like, let us
consider the example where the unperturbed measure ρ describes a classical spacetimeM
(for example Minkowski space M ≃ R4). As just explained, the ansatz (8.1.1) changes
the support of the measure smoothly as a whole (see Figure 8.1 (a)). More generally, one
can consider the situation where the measure ρ “disintegrates” into several “components”
which are perturbed differently (see Figure 8.1 (b)). For the mathematical description,
we choose a parameter L ∈ N (the “number of subsystems”) and consider mappings

fa ∈ C∞(
[0, δ)×M,R+

)
, Fa ∈ C∞(

[0, δ)×M,F
)

with a = 1, . . . , L .

For the so-called measure with fragmentation, in generalization of (8.1.1) we make the
ansatz

ρ̃τ =
1

L

L∑
a=1

(Fa,τ )∗
(
fa,τ ρ

)
. (8.1.9)

The larger L is chosen, the more freedom we have in perturbing the measure. We point
out that we may choose L arbitrarily large. In the limit L → ∞, one can even describe
situations where the support of the measure ρ is “enlarged” by the perturbation, as is
shown in Figure 8.1 (c). In this way, a classical spacetime point may correspond to
many points of the quantum spacetime, making it possible to encode additional local
degrees of freedom. Integrating with respect to the measure ρ also entails an integration
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over these additional degrees of freedom, bearing some similarity to integrating over field
configurations in a path integral.

Assuming that the family (ρ̃τ )τ∈[0,δ) satisfies the restricted EL equations for all τ ,
we can again linearize in τ to obtain the corresponding linearized field equations. They
again have the form (8.1.7), but now with v being the “averaged jet”

v =
1

L

L∑
a=1

va with va =
d

dτ

(
fa,τ , Fa,τ

)∣∣
τ=0

.

Therefore, for linearized fields the fragmentation does not give anything essentially new.
But on the nonlinear level, fragmentation yields additional effects. We refer the interested
reader for more details to [49, Section 5] and [51, Section 5] as well as to the applications
to quantum field theory in [62, 23] (see also Chapter 22).

In view of this consideration, the only restriction in describing linear perturbations of
a measure ρ by a jet v of the form (8.1.5) is that the support of the measure ρ is changed
continuously in τ , in the sense that the support supp ρ̃τ lies in a small neighborhood ofM
(for details see Exercise 8.2). In particular, we do not cover variations of the form (7.1.3)
where part of the measure is “transported” to a point y ∈ F which may be far away
from M . The reason for disregarding such variations is that, similar as explained before
introducing the restricted EL equations in Section 7.2 (see Figure 7.1), analyzing the EL
equations outside a small neighborhood of M does not seem to be of physical relevance.

8.2. Commutator Jets in Causal Fermion Systems

In order to illustrate the linearized field equations, we conclude this chapter by deriv-
ing explicit classes of solutions. These solutions correspond to inherent symmetries of the
system. In this section, we consider commutator jets, which describe the unitary invari-
ance of a causal action principle. In the next section (Section 8.3), we shall derive inner
solutions by using the invariance of the measure under diffeomorphisms of M combined
with a suitable multiplication of ρ by a smooth weight function.

Let (H,F, ρ) be a causal fermion system. The causal action principle is unitarily
invariant in the following sense. Let U ∈ U(H) be a unitary transformation. Given a
measure ρ on F, we can unitarily transform the measure by setting

(Uρ)(Ω) = ρ
(
U−1ΩU

)
for Ω ⊂ F . (8.2.1)

By construction of the integral, this also means thatˆ
F

ϕ(x) d(Uρ)(x) =

ˆ
F
ϕ
(
UxU−1

)
dρ(x)

for any integrable function ϕ. Since the eigenvalues of an operator are invariant under
unitary transformations, a measure ρ is a minimizer or critical point of the causal action
principle if and only if Uρ is.

Infinitesimally, this unitary invariance gives rise to a special class of solutions of the
linearized field equations, as we now explain. Let ρ be a critical measure. We let A be a
symmetric operator on H, for technical simplicity of finite rank. By exponentiating, we
obtain a family of unitary operators (Uτ )τ∈R with

Uτ := exp(iτA) . (8.2.2)

According to (8.2.1), the support of the measures ρ̃τ := Uτρ is given by

M̃τ := supp ρ̃τ = Uτ M U−1
τ .
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Due to the unitary invariance of the Lagrangian, the measures ρ̃τ all satisfy the EL
equations. Infinitesimally, the unitary transformations are described by the jet v given
by

v := (0, v) ∈ Jlin with v(x) =
d

dτ

(
Uτ xU

−1
τ

)∣∣
τ=0

= i
[
A, x

]
. (8.2.3)

Due to the commutator in the last equation, we refer to jets of this form as commutator
jets (this notion was first introduced in [64, Section 3]). The fact that commutator
jets generate families of critical measures implies that they satisfy the linearized field
equations:

Lemma 8.2.1. The commutator jet v in (8.2.3) satisfies the linearized field equa-
tions (8.1.7).

Proof. Due to the unitary invariance of the Lagrangian,

L
(
UτxU

−1
τ , UτyU

−1
τ

)
= L(x, y) .

Differentiating with respect to τ and applying the product and chain rules gives

(D1,v +D2,v)L(x, y) dρ(y) = 0 .

Hence the integrand in (8.1.7) vanishes for all x, y ∈ F. As a consequence, the integral
in (8.1.7) vanishes for all x ∈ F. Consequently, also its derivative in the direction of u
vanishes. Using our convention that the jet derivatives act only on the Lagrangian (see
the end of Section 8.1), this directional derivative differs from the jet derivative in (8.1.7)
by the term DDuvℓ(x) (similar as explained for (8.1.6)). This term vanishes in view of
the restricted EL equations (7.2.4). □

As we shall see in Section 9.4, commutator jets are very useful because they give rise
to conserved quantities.

8.3. Inner Solutions in Smooth Spacetimes

We now return to causal variational principles in the smooth setting (thus we again
assume that the Lagrangian is smooth (6.2.4)). We introduce an additional smoothness
assumption for the measure ρ and explain why it is useful in some applications.

Definition 8.3.1. Spacetime M := supp ρ has a smooth manifold structure if
the following conditions hold:

(i) M is diffeomorphic to a smooth oriented manifold Mk of dimension k.
(ii) In a chart (x, U) of Mk, the measure ρ is absolutely continuous with respect to the

Lebesgue measure with a smooth, strictly positive weight function, i.e.

dρ = h(x) dkx with h ∈ C∞(Mk,R+) . (8.3.1)

Even though there is no reason why physical spacetime should have a smooth manifold
structure on the Planck scale, this assumption is clearly justified on the macroscopic scale
of atomic and gravitational physics. With this in mind, the assumption of a smooth man-
ifold structure seems admissible in all applications in which the microscopic structure of
spacetime should be irrelevant. Before going on, we point out that one should carefully
distinguish the assumption of a smooth manifold structure from the smooth setting in-
troduced in Section 6.2. In particular, should keep in mind that the smoothness of L
does not imply that M has a smooth manifold structure, nor vice versa.
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The fact that ρ is defined independent of charts implies that the function h in (8.3.1)
transform like a tensor density. More precisely, on the overlap of two charts (x, U)

and (x̃, Ũ), we know that

h(x) dkx = h̃(x̃) dkx̃

and thus

h(x) = det

(
∂xi

∂x̃j

)
h̃(x̃) .

This transformation law makes it possible to define the covariant divergence of a vector
field v on M ≃ Mk in a local chart by

div v =
1

h
∂j
(
h vj

)
(8.3.2)

(where, following the Einstein summation convention, we sum over j = 0, . . . , k). Alter-
natively, the divergence of a vector field v ∈ Γ(M,TM) can be defined independent of
charts by the relation ˆ

M
div v η(x) dρ = −

ˆ
M
Dvη(x) dρ(x) , (8.3.3)

to be satisfied for all test functions η ∈ C∞
0 (M,R). Indeed, integrating partial derivatives

by parts and using (8.3.1), we obtain

−
ˆ
M
Dvη(x) dρ(x) = −

ˆ
M
vj(x)

∂η(x)

∂xj
h(x) dkx

=

ˆ
M
η(x)

1

h(x)

(
∂

∂xj

(
h(x) vj(x)

))
h(x) dkx ,

and using (8.3.2) and again (8.3.1) gives back the left side of (8.3.3). We remark that
the right side of (8.3.3) can be understood as a weak formulation of the divergence.
Such a formulation has the advantage that it can be used even in cases where v is not
differentiable. In what follows, we will always restrict attention to smooth vector fields, so
that the weak and pointwise formulations (8.3.3) and (8.3.2) are equivalent. We usually
prefer to work with (8.3.2), but the weak formulation (8.3.3) still has its value in being
manifestly coordinate independent.

Having vector fields and the divergence to our disposal, we can now introduce a
specific class of linearized solutions. We first define them and explain their significance
afterward.

Definition 8.3.2. An inner solution is a jet v ∈ J of the form

v = (div v, v) with v ∈ Γ(M,TM) .

The vector space of all inner solution is denoted by Jin ⊂ J1.

This notion was first introduced in [61, Section 3]. The name “inner solution” is
justified by the following lemma:

Lemma 8.3.3. Every inner solution v ∈ Jin of compact support is a solution of the
linearized field equations, i.e.

⟨u,∆v⟩M = 0 for all u ∈ J .
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Proof. Applying the Gauß divergence theorem, one finds that for every function f ∈
C1
0 (M,R), ˆ

M
∇vf dρ =

ˆ
M

(
div v f +Dvf

)
dρ =

ˆ
M

div
(
fv

)
dρ = 0 .

Likewise, in the linearized field equations we may integrate by parts in y,

⟨u, v⟩M = ∇u

(ˆ
M

(
∇1,v +∇2,v

)
L(x, y) dρ(y)−∇vs

)
= ∇u

(ˆ
M

∇1,vL(x, y) dρ(y)−∇vs

)
= ∇u∇vℓ(x) = ∇v(x)

(
∇uℓ(x)

)
−∇Dvuℓ(x) = 0 .

The last equality comes about as follows. The summand ∇Dvuℓ(x) vanishes by the re-
stricted EL equations. Moreover, the restricted EL equations yield that the function ∇uℓ
vanishes identically on M . Therefore, this function is differentiable in the direction of
the vector field v on M , and this directional derivative is zero. Therefore,

∇v(x)

(
∇uℓ(x)

)
= Dv(x)

(
∇uℓ(x)

)
+ div v(x)∇uℓ(x) = 0 ,

giving the result. □

This result also holds for inner solutions v of non-compact support, provided that the
vector field v has suitable decay properties at infinity. For details we refer to [61, Sec-
tion 3].

We now explain the significance of inner solutions. To this end, we let Φt : M → M
with t ∈ (−δ, δ) and some δ > 0 be the local flow generated by the vector field v, i.e.

Φ0 = idM and
d

dt
Φt(x) = v

∣∣
Φt(x)

for all t ∈ (−δ, δ) .

We consider the corresponding flow of the measure as described by the push-forward
measures ρt := (Φt)∗ρ. These measures will in general be different from ρ (more precisely,
ρt = ρ for all t if and only if the vector field is divergence-free). But one can arrange the
measure to remain unchanged by modifying the weight of the measure with a function ft,
i.e.

ρ = (Φt)∗
(
ft ρ) for all t ∈ (−δ, δ) (8.3.4)

for a suitable function ft ∈ C∞(M,R+) (here we again make use of our assumption
that M has a smooth manifold structure; see Definition 8.3.1). One verifies by direct
computation that the function ft agrees infinitesimally with the divergence of v, i.e.

ḟ0(x) = div v(x) .

Therefore, the inner solution v = (div v, v) is the infinitesimal generator of the trans-
formation on the right side of (8.3.4). In other words, inner solutions are infinitesimal
generators of transformations of M which leave the measure ρ unchanged. Since the
causal fermion system is defined in terms of the measure ρ, inner solutions do not change
the causal fermion system, but they merely describe symmetry transformations of the
measure. For the reader familiar with general relativity, it may be helpful to see inner
solutions as the analog of infinitesimal coordinate transformations, in which case the in-
finitesimal change of the metric satisfies the Einstein equations (simply because curvature
remains unchanged).
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One application of inner solution is that they can be used to simplify the scalar com-
ponents of jets. We now explain the general procedure (explicit examples will be worked
out in Chapter 20). A preparatory question is which scalar components can be realized
by inner solutions. This question can be answered in great generality by applying Moser’s
theorem (see for example [113, Section XVIII, §2] or straightforward generalizations to
non-compact manifolds). For simplicity, we here make additional assumptions which
make it possible to use hyperbolic methods.

Theorem 8.3.4. Assume that M ≃ Mk has a smooth manifold structure. Moreover,
assume that M is topologically of the form M = R × N with a manifold N. Let a ∈
C∞
sc (M,R) be a smooth function with spatially compact support (meaning that, for all t ∈

R, the function a(t, .) is compactly supported in N). Then there is a vector field v ∈
C∞
sc (M, TM), again with spatially compact support, such that the jet v := (a, v) is an

inner solution.

Proof. Our task is to solve the equation div v = a, which can be written equivalently
as

∂j
(
h vj

)
= ha . (8.3.5)

We first consider the case that a has compact support. In order to solve the partial
differential equation (8.3.5), on N we choose a complete Riemannian metric gN (such a
metric exists according to [123]). Moreover, on M we choose the Lorentzian metric

ds2 = dt2 − gN . (8.3.6)

Here the choice of the Riemannian metric gN is irrelevant, and the arbitrariness in choos-
ing this metric corresponds to the fact that (8.3.5) is an under-determined equation which
admits many different solutions.

Assume that ϕ ∈ C∞
sc (M,R) is a spatially compact solution of the inhomogeneous

wave equation(
ha√
| det g|

)
(x) = □ϕ(x) :=

1√
| det g|

∂

∂xj

(√
| det g| gjk ∂kϕ(x)

)
(8.3.7)

(the existence of such a solution will be shown in the next paragraph). Then a direct
computation shows that the vector field

vj :=

√
|det g|
h

gjk ∂kϕ (8.3.8)

indeed satisfies (8.3.5) (note that, in view of (8.3.1), we may divide by h to again obtain
a smooth vector field with spatially compact support).

It remains to show that the inhomogeneous wave equation (8.3.7) has solutions of
spatially compact support. Here we must anticipate results for hyperbolic partial differ-
ential equations which will be treated in Chapter 13 later in this book. A simple method
of obtaining the desired solutions uses the existence of advanced and retarded Green’s
operators denoted by S∨ and S∧. In the case that the inhomogeneity a has compact
support, we can simply set ϕ = S∧(ha/

√
|det g|). In the case that a merely has spatially

compact support, we decompose it as

a = a+ + a− ,

where a+ is supported in the set {t > 0} and a− is supported in the set {t < 1}. Denoting
the advanced and retarded Green’s operators of the scalar wave equation corresponding
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to the Lorentzian metric (8.3.6) by S∨ and S∧, respectively, the function

ϕ := S∧
(

h√
|det g|

a+

)
+ S∨

(
h√

|det g|
a−

)
is a well-defined solution of the equation □ϕ = ha which is smooth and has spatially
compact support. Therefore, we can again define the vector field v by (8.3.8). This gives
the result. □

The result of this proposition can be used to change the scalar component of a lin-
earized solution arbitrarily. As a concrete example, let us consider a causal fermion
system describing an interacting system in Minkowski space which near spatial infinity
is the vacuum. In this case, all the jets describing the interaction have spatially compact
support. Therefore, we can compensate the scalar components by corresponding inner
solutions. After doing so, the interacting system is described purely in terms of jets
without scalar components. We denote the corresponding jet space similar to (7.2.3) by

Γ := {0} ⊕ Γ∞(M,TF)

(where Γ∞(M,TF) again denotes the space of vector fields on M which admit a smooth
extension to F). For clarity, we again point out that this simplification can be made only
if spacetime has a smooth manifold structure.

We finally note that, in the above setting, the scalar components of the jets may be
disregarded also for testing. Thus the restricted EL equations (7.2.4) and the linearized
field equations (8.1.7) can be written equivalently as

Duℓ|M = 0 for all u ∈ Γ0 (8.3.9)

Du

ˆ
F

(
D1,v +D2,v

)
L(x, y) dρ(y) = 0 for all u ∈ Γ0 . (8.3.10)

In this way, the scalar components of jets can be left out completely for spacetimes which
have a smooth manifold structure and also satisfy the other assumptions of Theorem 8.3.4.
We now sketch how to reduce to (8.3.9) (for the linearized field equation (8.3.10) one
argues similarly; the details of this this reduction can be found in [52, Section 3]). Clearly,
(7.2.4) implies (8.3.9). In order to show that also (8.3.9) implies (7.2.4), we assume
that (8.3.9) holds. Since the vector field u can be chosen arbitrarily at any given point x, it
follows that the function ℓ is constant onM . After changing the parameter s if necessary,
the function ℓ vanishes identically, implying (7.2.4).
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8.4. Summary of the Linearized Field Equations

Similar as in Section 5.10 we now summarize the important objects of Chapters 7
and 8. One may think of this as a helpful bookmark for the commonly used structures.

Basic concept Summary and Comments
The Euler-Lagrange
equations

For technical simplicity we here assume that

(1) the measure ρ is locally finite in the sense that
any x ∈ F has a neighborhood U with ρ(U) <∞.

(2) the function L(x, .) is ρ-integrable for all x ∈ F.

Under these assumptions, we introduce the func-
tion ℓ(x) =

´
F
L(x, y) dρ(y)−s. The EL equations are for-

mulated in our causal fermion system by ℓ|supp ρ ≡ infF ℓ.

Remarks:

• The parameter s can be chosen arbitrarily. For convenience, we always choose
it such that infF ℓ = 0. For this choice, the EL equations simplify to ℓ|suppρ ≡ 0

• Every minimizing measure ρ is a solution of the EL equations.

• One should keep in mind that not every solution of the EL equations is also
a minimizer of the causal action. It is only a critical point of the variational
principle.

Jet space J It is useful to introduce a pair u := (a, u) with a real-
valued function a ∈ C∞(M,R) and a vector field u ∈
C∞(M,TF) as a so-called jet. The set of all jets is called
the jet space J = C∞(M,R)⊕ C∞(M,TF).

Remarks:

• We often restrict attention to variations of the measure ρ in the form ρτ =
F ∗
τ (fτρ) with families of smooth functions (Fτ ) : M → F and (fτ ) : M → R+.

Infinitesimally, these variations are described by the jets v := d
dτ (fτ , Fτ )|τ=0.
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The restricted
EL equations

The above EL equations also contains information for points
on F which are far away from our spacetime M . In order to
get the connection to usual physical equations formulated in
spacetime, it suffices to restricting attention to a small neigh-
borhood of points in M . In the smooth setting considered in
this book, this leads to the following two equations:

(1) ℓ|M ≡ 0
(2) Dℓ|M ≡ 0

These the two equations can be combined in a compact form
by using a jet u = (a, u) to define ∇uℓ(x) := a(x)ℓ(x) +
(Duℓ)(x). Therefore, the restricted EL equations can be writ-
ten as ∇uℓ(x)|M = 0 for all u ∈ J.

Remarks:

• We also refer to solutions of the restricted EL equations as critical measures.

The linearized
field equations

The linearized field equations reads

⟨u,∆v⟩(x) := ∇u

( ´
F

(
∇1,v +∇2,v

)
L(x, y) dρ(y)−∇v s

)
= 0

for all u ∈ J an x ∈M . All v ∈ J which satisfy this equation are
called linearized solutions. The vector space of all linearized
solutions is denoted by Jlin.

Remarks:

• For simplicity of presentation, in this book we only consider the smooth setting
where we assume that the Lagrangian is smooth on F × F.

• The EL equations are nonlinear equations for ρ. They are simplified by lin-
earization, giving the linearized field equations.

• Often we use the shorthand notation ∆v = 0 for the linearized field equation.
One also can include an inhomogeneity w by writing ∆v = w.

• In order to avoid questions of differentiability of the jets, we use a formalism
where the jets are never differentiated.

• Solutions of the linearized field equations can be used to obtain solutions for the
full EL equations by means of a perturbation expansion.
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The commutator
jet

Let A be a symmetric operator on H. We get a fam-
ily of unitary transformations by Uτ := exp(iτA). Jets
of the form v := (0, v) ∈ Jlin with v(x) =
d
dτ

(
Uτ xU

−1
τ

)∣∣
τ=0

= i
[
A, x

]
are referred to as commutator

jets. They are solutions the linearized field equations.

Remarks:

• This is the first special class of solutions of the linearized field equations which
we consider.

The inner solu-
tions

If our spacetime has a smooth manifold structure, the
measure can be written in terms of the Lebesgue mea-
sure by dρ = h(x) dkx with h ∈ C∞(Mk,R+). Now
we can formulate the covariant divergence of a vector
field v by div v = 1

h ∂j
(
h vj

)
. We refer to the jets of the

form v = (div v, v) with v ∈ Γ(M,TM) as inner solu-
tions. All inner solutions with compact support are solu-
tions of the linearized field equations.

Remarks:

• This is the second class of special solutions.

• The space of all inner solutions is denoted by Jin.
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8.5. Exercises

Exercise 8.1. Let F : F → F be continuous and ρ a measure on F. Show that

suppF∗ρ = F (supp ρ) .

Hint: Recall the definition of the support of a measure (2.3.4) and use that the preimage
of an open set under a continuous mapping is open.

Exercise 8.2. (a) Assume that F is locally compact. Moreover, assume that F ∈
C0([0, δ)×M,F) is continuous and that its preimage of any compact set is compact.
Then for any y ̸∈M there is τ0 ∈ (0, δ) such that

y ̸∈ supp ρ̃τ for all τ ∈ [0, τ0]

(where ρ̃τ are again the measures (8.1.1)) Hint: Use the result of Exercise 8.1.
(b) Show that this result remains valid for the variation (8.1.9) with a finite number of

subsystems.
(c) What happens for an infinite number of subsystems? Also, is the assumption neces-

sary that the preimage of a compact set under F is compact?

Exercise 8.3. (Linearization of nonlinear partial differential equations) In this ex-
ercise you are given two non-linear partial differential equations with corresponding (soli-
ton) solutions. Check that the functions ϕ do indeed solve the equations. Then try to
figure out what it means to linearize the equations around the given solutions and do it.

(a) The sine-Gordon equation of velocity v ∈ (−1, 1):

∂ttϕ− ∂xxϕ+ sinϕ = 0, ϕ(t, x) = 4 arctan

(
e

x−vt√
1−v2

)
.

(b) The Korteweg-de-Vries equation of unit speed:

∂tϕ+ 6ϕ∂x ϕ+ ∂xxxϕ = 0, ϕ(t, x) =
1

2
sech2

(
x− vt

2

)
.

Hint: You may use the following identities,

sin(4 arctan(x)) = −4
x3 − x

(1 + x2)2
, tanh(x)− tanh3(x) = sech2(x) tanh(x).

Exercise 8.4. (Linearized fields on the sphere) Let ρ be a minimizing measure of
the causal variational principle of the sphere as introduced in Section 6.1 (for example
the octahedron in Exercise 6.3 (b)).

(a) Let v be the vector field ∂/∂φ (where φ is the azimuth angle). Show that v = (0, v)
is a solution of the linearized field equations. Hint: One can use the fact that the
causal variational principle is rotationally symmetric.

(b) Show that v can be written as a commutator jet, i.e. in analogy to (8.2.3),

v(x) = i
[
cσ3, F (x)

]
,

where F : S2 ⊂ R3 → F is the mapping in (6.1.2). Compute the constant c.

Exercise 8.5. (Linearized fields for the causal variational principle on R) We return
to the causal variational principles on R introduced in Exercise 6.4. Let ρ = δ be the
unique minimizer.

(a) Show that the jet v = (0, v) with the vector field v = ∂x is a solution of the linearized
field equations for the causal variational principle corresponding to L4.
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(b) Show that the jet v = (0, v) from (a) does not satisfy the linearized field equations
for the causal variational principle corresponding to L2.

Exercise 8.6. (Linearized fields for the causal variational principle on S1) We return
to the causal variational principle on R introduced in Exercise 6.5. Let ρ be a minimizing
measure (6.6.4) for 0 < τ < 1.

(a) Show that the jet v = (0, v) with the vector field v = ∂φ satisfies the linearized field
equations. Hint: One can use the fact that the variational principle is rotationally
symmetric.

(b) Show that the jet v = (b, 0) with b(ϕ0) = −b(ϕ0 + π) is a solution of the linearized
field equations. Hint: Use that the causal action is independent of the parameter τ .

(c) Show that every solution of the linearized field equations is a linear combination of
the linearized fields in (a) and (b).

Exercise 8.7. (The commutator of commutator jets) For any symmetric opera-
tor A of finite rank, the commutator vector field C(A) is defined by C(A)(x) = i

[
A, x

]
(see (8.2.3)). It is a vector field on M . For two vector fields u, v on M , their commutator
is defined by [u, v](f) = u(v(f)) − v(u(f)) (with f any smooth function on M). Show
that the commutator of two commutator vector fields is again a commutator vector field
and [

C(A),C(B)
]
= −C

(
i[A,B]

)
.

Hint: The proof can be found in [64, Lemma A.2].





CHAPTER 9

Surface Layer Integrals and Conservation Laws

In this chapter we introduce surface layer integrals as an adaptation of surface in-
tegrals to causal fermion systems and causal variational principles. The mathematical
structure of a surface layer integral fits nicely to the analytic structures (namely, the EL
equations and the linearized field equations as introduced in Chapters 7 and 8). This
will become apparent in conservation laws which generalize Noether’s theorem and the
symplectic form to the setting of causal variational principles. Moreover, we shall intro-
duce a so-called nonlinear surface layer integral which makes it possible to compare two
measures ρ and ρ̃ at a given time. Finally, we will explain how two-dimensional surface
integrals can be described by surface layer integrals.

9.1. The Concept of a Surface Layer Integral

In daily life we experience space and objects therein. These objects are usually
described by densities, and integrating these densities over space gives particle numbers,
charges, the total energy, etc. In mathematical terms, the densities are typically described
as the normal components of vector fields on a Cauchy surface, and conservation laws
express that the values of these integrals do not depend on the choice of the Cauchy
surface, i.e. ˆ

N1

Jkνk dµN1
(x) =

ˆ
N2

Jkνk dµN2
(x) , (9.1.1)

where N1 and N2 are two Cauchy surfaces, ν is the future-directed normal, and dµN1/2

is the induced volume measure.
In the setting of causal variational principles, surface integrals like (9.1.1) are unde-

fined. Instead, one considers so-called surface layer integrals, which we now introduce.
In general terms, a surface layer integral is a double integral of the formˆ

Ω

( ˆ
M\Ω

(· · · ) L(x, y) dρ(y)

)
dρ(x) , (9.1.2)

where one variable is integrated over a subset Ω ⊂M , and the other variable is integrated
over the complement of Ω. Here (· · · ) stands for a differential operator acting on the
Lagrangian to be specified below. In order to explain the basic idea, we begin with the
additional assumption that the Lagrangian is of short range in the following sense. We
let d ∈ C0(M×M,R+

0 ) be a suitably chosen distance function onM . Then the assumption
of short range can be quantified by demanding that L should vanish on distances larger
than δ, i.e.

d(x, y) > δ =⇒ L(x, y) = 0 . (9.1.3)

Under this assumption, the surface layer integral (9.1.2) only involves pairs (x, y) of
distance at most δ, with x lying in Ω and y lying in the complement M \ Ω. As a
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Ω Ω

ν y

x b

b

δN

ˆ

N

· · · dµN

ˆ

Ω

dρ(x)

ˆ

M\Ω
dρ(y) · · · L(x, y)

Figure 9.1. A surface integral and a corresponding surface layer integral.

consequence, the integral only involves points in a layer around the boundary of Ω of
width δ, i.e.

x, y ∈ Bδ
(
∂Ω

)
.

Therefore, a double integral of the form (9.1.2) can be regarded as an approximation of
a surface integral on the length scale δ, as shown in Figure 9.1. In the setting of causal
variational principles, such surface layer integrals take the role of surface integrals.

We point out that the causal Lagrangian is not of short range in the sense (9.1.3).
But it decays on a length scale which typically coincides with the Compton scale 1/m
(where m denotes the rest mass of the Dirac particles). With this in mind, the above
consideration and the qualitative picture of a surface layer integral in Figure 9.1 apply
to the causal action principle as well.

9.2. A Noether-Like Theorem

In modern physics, the connection between symmetries and conservation laws is of
central importance. For continuous symmetries, this connection is made mathematically
precise by Noether’s theorem (see [122] or the textbooks [95, Section 13.7], [7, Chap-
ter III]). As shown in [70], the connection between symmetries and conservation laws
can be extended to the setting of causal variational principles. As we shall see, both the
statement and the proof are quite different from the classical Noether theorem; this is
why we refer to our result as a Noether-like theorem.

The first step is to formulate a symmetry condition for the Lagrangian L(x, y) of a
causal variational principle. Similar to the procedure in Section 7.3, one could describe
the symmetry by a group of diffeomorphisms. For our purposes, the correct setting would
be to consider a one-parameter group of diffeomorphisms Φτ on F, i.e.

Φ : R× F → F with ΦτΦτ ′ = Φτ+τ ′ (9.2.1)

(we usually write the first argument as a subscript, i.e. Φτ (x) ≡ Φ(τ, x)). The symmetry
condition could be imposed by demanding that the Lagrangian be invariant under this
one-parameter group in the sense that

L(x, y) = L
(
Φτ (x),Φτ (y)

)
for all τ ∈ R and x, y ∈ F . (9.2.2)

It turns out that this condition is unnecessarily strong for two reasons. First, it suffices to
consider families which are defined locally for τ ∈ (−τmax, τmax). Second, the mapping Φ
does not need to be defined on all of F. Instead, it is more appropriate to impose the
symmetry condition only on spacetimeM ⊂ F. This leads us to consider instead of (9.2.1)
a mapping

Φ : (−τmax, τmax)×M → F with Φ0 = idM . (9.2.3)
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We refer to Φτ as a variation of M in F. Next, we need to specify what we mean
by “smoothness” of this variation. This is a subtle point because, as explained in the
example of the causal variational principle on the sphere in Section 6.1, the support
of a minimizing measure will in general be singular. Moreover, the function ℓ defined
by (7.1.1) in general will only be Lipschitz continuous. Our Noether-like theorems only
require that this function be differentiable in the direction of the variations:

Definition 9.2.1. A variation Φτ of the form (9.2.3) is continuously differen-
tiable if the composition

ℓ ◦ Φ : (−τmax, τmax)×M → R

is continuous and if its partial derivative ∂τ (ℓ ◦ Φ) exists and is continuous.

The next question is how to adapt the symmetry condition (9.2.2) to the mapping Φ
defined only on (−τmax, τmax) ×M . This is not obvious because setting x̃ = Φτ (x) and
using the group property, the condition (9.2.2) can be written equivalently as

L
(
Φ−τ (x̃), y

)
= L

(
x̃,Φτ (y)

)
for all τ ∈ R and x̃, y ∈ F . (9.2.4)

But if we restrict attention to pairs x, y ∈ M , the equations in (9.2.2) and (9.2.4) are
different. For the general mathematical formulation, it is preferable to weaken the con-
dition (9.2.2) starting from the expression in (9.2.4).

Definition 9.2.2. A variation Φτ of the form (9.2.3) is a symmetry of the La-
grangian if

L
(
x,Φτ (y)

)
= L

(
Φ−τ (x), y

)
for all τ ∈ (−τmax, τmax) and x, y ∈M . (9.2.5)

We now now state and prove our Noether-like theorem.

Theorem 9.2.3. Let ρ be a critical measure and Φτ a continuously differentiable
symmetry of the Lagrangian. Then for any compact subset Ω ⊂M ,

d

dτ

ˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y)
(
L
(
Φτ (x), y

)
− L

(
Φ−τ (x), y

))∣∣∣
τ=0

= 0 . (9.2.6)

Proof. Integrating (9.2.5) over Ω× Ω gives

0 =

¨
Ω×Ω

(
L
(
x,Φτ (y)

)
− L

(
Φ−τ (x), y

))
dρ(x) dρ(y)

=

¨
Ω×Ω

(
L
(
Φτ (x), y

)
− L

(
Φ−τ (x), y

)))
dρ(x) dρ(y)

=

ˆ
Ω
dρ(x)

ˆ
M

dρ(y) χΩ(y)
(
L
(
Φτ (x), y

)
− L

(
Φ−τ (x), y

)))
,

where in the first step we used the Lagrangian is symmetric in its two arguments and
that the integration range is symmetric in x and y. We rewrite the characteristic func-
tion χΩ(y) as 1− (1− χΩ(y)), multiply out and use the definition of ℓ, (7.1.1). We thus
obtain

0 =

ˆ
Ω

(
ℓ
(
Φτ (x)

)
− ℓ

(
Φ−τ (x))

)
dρ(x)

−
ˆ
Ω
dρ(x)

ˆ
M

dρ(y) χM\Ω(y)
(
L
(
Φτ (x), y

)
− L

(
Φ−τ (x), y

))
.
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Figure 9.2. Choices of spacetime regions.

We thus obtain the identityˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y)
(
L
(
Φτ (x), y

)
− L

(
Φ−τ (x), y

))
=

ˆ
Ω

(
ℓ
(
Φτ (x)

)
− ℓ

(
Φ−τ (x)

))
dρ(x) .

(9.2.7)

Using that ℓ(Φτ (x)) is continuously differentiable (see Definition 9.2.1) and that Ω is
compact, we conclude that the right side of this equation is differentiable at τ = 0.
Moreover, we are allowed to interchange the τ -differentiation with integration. The EL
equations (7.1.6) imply that

d

dτ
ℓ
(
Φτ (x)

)∣∣∣
τ=0

= 0 =
d

dτ
ℓ
(
Φ−τ (x)

)∣∣∣
τ=0

.

Hence the right side of (9.2.7) is differentiable at τ = 0, and the derivative vanishes. This
gives the result. □

This theorem requires a detailed explanation. We first clarify the connection to
surface layer integrals. To this end, let us assume for technical simplicity that Φτ and
the Lagrangian are differentiable in the sense that the derivatives

d

dτ
Φτ (x)

∣∣
τ=0

=: u(x) and
d

dτ
L
(
Φτ (x), y

)∣∣
τ=0

(9.2.8)

exist for all x, y ∈ M and are continuous on M respectively M ×M . Then one may
exchange differentiation and integration in (9.2.6) and apply the chain rule to obtainˆ

Ω
dρ(x)

ˆ
M\Ω

dρ(y)D1,uL(x, y) = 0 ,

where D1,u is the partial derivative at x in the direction of the vector field u(x). This
expression is a surface layer integral as in (9.1.2). In general, the derivatives in (9.2.8)
need not exist, because we merely imposed the weaker differentiability assumption of
Definition 9.2.1. In this case, the statement of the theorem implies that the derivative of
the integral in (9.2.6) exists and vanishes.

We next explain the connection to conservation laws. Let us assume that M admits
a sensible notion of “spatial infinity” and that the vector field ∂τΦ ∈ Γ(M,TF) has
suitable decay properties at spatial infinity. Then one can chose a sequence Ωn ⊂ M of
compact sets which form an exhaustion of a set Ω which extends up to spatial infinity (see
Figure 9.2 (a) and (b)). Considering the surface layer integrals for Ωn and passing to limit,
one concludes that also the surface layer integral corresponding to Ω vanishes. Let us
assume that the boundary ∂Ω has two componentsN1 andN2 (as in Figure 9.2 (b)). Then
the above theorem implies that the surface layer integrals over N1 and N2 coincide (where
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the surface layer integral over N is defined as the surface layer integral corresponding to
a set ΩN with ∂ΩN = N as shown in Figure 9.2 (c)). In other words, the quantity

d

dτ

ˆ
ΩN

dρ(x)

ˆ
M\ΩN

dρ(y)
(
L
(
Φτ (x), y

)
− L

(
Φ−τ (x), y

))∣∣∣
τ=0

is well-defined and independent of the choice of N . In this setting, the surfaces N can be
interpreted as Cauchy surfaces, and the conservation law of Theorem 9.2.3 means that
the surface layer integral is preserved under the time evolution.

As a concrete example, the unitary invariance of the causal action principle gives
rise to a conservation law, which corresponds to current conservation. This example will
be considered in detail in Section 9.4. We finally remark that the conservation laws for
energy-momentum can also be obtained from Theorem 9.2.3, assuming that the causal
fermion system has symmetries as described by generalized Killing symmetries. We refer
the interested reader to [70, Section 6].

9.3. A Class of Conservation Laws in the Smooth Setting

In the previous section we saw that surface layer integrals can be used to formulate
a Noether-like theorem which relates symmetries to conservation laws. In this section
we shall derive conservation laws even in the absence of symmetries. Instead, these
conservation laws are closely tied to the structure of the linearized field equations as
derived in Section 8.1. In order to focus on the essence of the construction, we again
restrict attention to the smooth setting (6.2.4). The basic idea of the construction is
explained in the following proposition:

Proposition 9.3.1. Let ρ be a critical measure and Ω ⊂ M be compact. Then for
any solution v ∈ Jlin of the linearized field equations (8.1.7),

γΩρ (v) :=

ˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y)
(
∇1,v −∇2,v

)
L(x, y) =

ˆ
Ω
∇v s dρ . (9.3.1)

Proof. In view of the anti-symmetry of the integrand,ˆ
Ω
dρ(x)

ˆ
Ω
dρ(y)

(
∇1,v −∇2,v

)
L(x, y) = 0 .

Adding this equation to the left side of (9.3.1), we obtain

γΩρ (v) =

ˆ
Ω
dρ(x)

ˆ
M

dρ(y)
(
∇1,v −∇2,v

)
L(x, y)

= 2

ˆ
Ω
dρ(x)

ˆ
M

dρ(y)
(
∇1,v

)
L(x, y)−

ˆ
Ω
dρ(x)

ˆ
M

dρ(y)
(
∇1,v +∇2,v

)
L(x, y)

=

ˆ
Ω
dρ(x)

(
2∇v

(
ℓ(x) + s

)
−
((

∆v
)
(x) +∇v s

))
,

where in the last line we used the definitions of ℓ and ∆ (see (7.1.1) and (8.1.7)). Applying
the restricted EL equations (7.2.4) and the linearized field equations (8.1.7) gives the
result. □

Viewing γΩρ as a linear functional on the linearized solutions, we also refer to γΩρ (v) as the
conserved one-form. We remark that the identity (9.3.1) has a similar structure as the
conservation law in the Noether-like theorem (9.2.6). In order to make the connection
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precise, one describes the symmetry Φτ infinitesimally by a jet v with vanishing scalar
component,

v(x) :=
d

dτ

(
0,Φτ (x)

)∣∣∣
τ=0

.

Using the symmetry property (9.2.5), one verifies similar as in the proof of Lemma 8.2.1
that this jet satisfies the linearized field equations (8.1.7). Therefore, Proposition 9.3.1
applies, and the right side vanishes because v has no scalar component. We thus recover
the identity obtained by carrying out the τ -derivative in (9.2.6).

We conclude that Proposition 9.3.1 is a generalization of Theorem 9.2.3. Instead of
imposing symmetries, the identity (9.3.1) is a consequence of the linearized field equations.
Again choosing Ω as the region between two Cauchy surfaces (see Figure 9.2), one obtains
a relation between the surface layer integrals around N1 and N2. If the scalar component
of v vanishes, we obtain a conservation law. Otherwise, the right side of (9.3.1) tells us
how the surface layer integral changes in time.

We now generalize Proposition 9.3.1. The basic idea is to integrate anti-symmetric
expressions in x and y which involve higher derivatives of the Lagrangian. We again
restrict attention to the smooth setting (for the general proof see [72]). Let ρ̃s,t with s, t ∈
(−δ, δ) be a two-parameter family of measures which are solutions of the restricted EL
equations. We assume that these measures are of the form

ρ̃s,t = (Fs,t)∗
(
fs,t ρ

)
, (9.3.2)

where fs,t and Fs,t are smooth,

f ∈ C∞(
(−δ, δ)2 × F,R+

)
and F ∈ C∞(

(−δ, δ)2 × F,F
)
, (9.3.3)

and are trivial in the case s = t = 0 (6.4.2). Moreover, we need the following technical
assumption:

(ta) For all x ∈ M , p, q ≥ 0 and r ∈ {0, 1}, the following partial derivatives exist and
may be interchanged with integration,ˆ

M
∂rs′∂

p
s∂

q
tL

(
Fs+s′,t(x), Fs,t(y)

)∣∣∣
s′=s=t=0

dρ(y)

= ∂rs′∂
p
s∂

q
t

ˆ
M

L
(
Fs+s′,t(x), Fs,t(y)

)
dρ(y)

∣∣∣∣
s′=s=t=0

.

We now state a general identity between a surface layer integral and a volume integral
which was first obtained in [72]. It generalizes the result of Proposition 9.3.1 and gives
rise to additional conservation laws for surface layer integrals, which will be analyzed
subsequently (in Section 9.5). The proof of the following theorem also works out the
mathematical essence of our conservation laws.

Theorem 9.3.2. Let f and F be as in (9.3.3) and (6.4.2) which satisfy the above
assumption (ta). Moreover, assume that the measures ρ̃s,t given by (9.3.2) satisfy the
restricted EL equations for all s and t. Then for every compact Ω ⊂M and every k ∈ N,

IΩk+1 :=

ˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y)

×
(
∂1,s − ∂2,s

)(
∂1,t + ∂2,t

)k
fs,t(x) L

(
Fs,t(x), Fs,t(y)

)
fs,t(y)

∣∣∣
s=t=0

= s

ˆ
Ω
∂s∂

k
t fs,t(x)

∣∣∣
s=t=0

dρ(x) . (9.3.4)
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Proof. Introducing the short notation

L
(
xs,t, ys,t

)
= fs,t(x) L

(
Fs,t(x), Fs,t(y)

)
fs,t(y) ,

the restricted EL equations (8.1.7) read

∇u

( ˆ
M
L
(
xs,t, ys,t

)
dρ(y)− s fs,t(x)

)
= 0 for all u ∈ J .

In particular for any k ≥ 0 and any vector v = vs∂s + vt∂s, we obtainˆ
M
∂1,s

(
∂1,v + ∂2,v

)k
L
(
xs,t, ys,t

)
dρ(y)

∣∣∣
s=t=0

= s ∂s∂
k
vfs,t(x)

∣∣
s=t=0

(9.3.5)

ˆ
M

(
∂1,v + ∂2,v

)k+1
L
(
xs,t, ys,t

)
dρ(y)

∣∣∣
s=t=0

= s ∂k+1
v fs,t(x)

∣∣
s=t=0

(9.3.6)

(the derivatives exist and can be exchanged with the integration according to the above
assumption (ta)). Differentiating the last equation with respect to vs and dividing by k+1,
we obtain ˆ

M

(
∂1,s + ∂2,s

)(
∂1,v + ∂2,v

)k
L
(
xs,t, ys,t

)
dρ(y) = s ∂s∂

k
vfs,t(x) .

Subtracting twice the identity (9.3.5), we obtain for any k ≥ 0 the equationˆ
M

(
∂1,s − ∂2,s

)(
∂1,v + ∂2,v

)k
L
(
xs,t, ys,t

)
dρ(y) = s ∂s∂

k
vfs,t(x) .

Integrating the last equation over Ω givesˆ
Ω
dρ(x)

ˆ
M

dρ(y)
(
∂1,s − ∂2,s

)(
∂1,v + ∂2,v

)k
L
(
xs,t, ys,t

)
= s

ˆ
Ω
∂s∂

k
vfs,t(x) dρ(x) .

(9.3.7)

On the other hand, since the integrand is anti-symmetric in its arguments x and y, we
also know thatˆ

Ω
dρ(x)

ˆ
Ω
dρ(y)

(
∂1,s − ∂2,s

)(
∂1,v + ∂2,v

)k
L
(
xs,t, ys,t

)
= 0 .

Subtracting this equation from (9.3.7) and evaluating at s = t = 0 gives the result. □

Specializing the statement of this theorem to the case k = 0 and setting

v =
d

ds

(
fs,t, Fs,t

)∣∣∣
s=t=0

,

we recover the statement of Proposition 9.3.1. The case k = 1 will be studied in more
detail in Section 9.5.

We conclude this section by discussing the conservation law of Proposition 9.3.1 for
inner solutions as considered in Section 8.3 (commutator jets will be considered afterward
in Section 9.4). To this end, we need to assume again that spacetime has a smooth
manifold structure. We first define an integration measure on the boundary of Ω.

Definition 9.3.3. Let v = (div v, v) ∈ Jin
ρ be an inner solution and Ω ⊂M closed with

smooth boundary ∂Ω. On the boundary, we define the measure dµ(v, x) as the contraction
of the volume form on M with v, i.e. in local charts

dµ(v, x) = h ϵijkl v
i dxj dxk dxl ,

where ϵijkl is the totally anti-symmetric symbol (normalized by ϵ0123 = 1).
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We now let v = (div v, v) be an inner solution. Then the integral on the right side
of (9.3.1) reduces the integral over the divergence of the vector field v,ˆ

Ω
∇v s dρ = s

ˆ
Ω
div v dρ . (9.3.8)

On the left side of (9.3.1), on the other hand, similar as in Lemma 8.3.3 we can integrate
by parts. But now boundary terms remain,

γΩρ (v) =

ˆ
∂Ω

dµ(v, x)

ˆ
M\Ω

dρ(y) L(x, y) +
ˆ
Ω
dρ(x)

ˆ
∂Ω

dµ(v, y) L(x, y)

=

ˆ
∂Ω

dµ(v, x)

ˆ
M

dρ(y) L(x, y) = s

ˆ
∂Ω

dµ(v, x) , (9.3.9)

where in the last line we used the symmetry of L and employed the EL equations. In
this way, the surface layer integral in (9.3.1) reduces to a usual surface integral over the
hypersurface ∂Ω. Moreover, combining (9.3.1) with (9.3.9) and (9.3.8), we get back the
Gauß divergence theorem

s

ˆ
∂Ω

dµ(v, x) = s

ˆ
Ω
div v dρ .

This illustrates that Proposition 9.3.1 is a generalization of the Gauß divergence theorem
where the vector field is replace by a general solution of the linearized field equations.
The formulation with surface layer integrals has the further advantage that the result can
be generalized in a straightforward way to non-smooth (for example discrete) spacetimes.

9.4. The Commutator Inner Product for Causal Fermion Systems

As a concrete example of a conservation law, we now consider current conservation.
To this end, we consider the setting of causal fermion systems. As in Section 8.2 we
again let A be a symmetric operator of finite rank on H and Uτ be the correspond-
ing one-parameter family of unitary transformations (8.2.2). Infinitesimally, this one-
parameter family is described by the commutator jet v (8.2.3). The unitary invariance
of the causal action implies that the commutator jets satisfy the linearized field equa-
tions (see Lemma 8.2.1). Moreover, using that the scalar component of commutator jets
vanishes, Proposition 9.3.1 gives for any compact Ω ⊂M the conservation law

γΩρ (v) :=

ˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y)
(
∇1,v −∇2,v

)
L(x, y) = 0 . (9.4.1)

In order to understand the significance of this conservation law, it is useful to choose A

more specifically as an operator of rank one. More precisely, given a non-zero vector ψ ∈
H, we form the symmetric linear operator A ∈ L(H) of rank one by

Au := ⟨u|ψ⟩H ψ (9.4.2)

(thus in bra/ket notation, A = |ψ⟩⟨ψ|). We now form the corresponding commutator
jet (8.2.3). Varying the vector ψ, we obtain a mapping

j : H → Jlin , ψ 7→ v . (9.4.3)

Moreover, we choose Ω again as the past of a Cauchy surface (as shown in Figure 9.2 (c)).
We write the corresponding conserved surface layer integral in (9.4.1) as

CΩ
ρ (u) :=

ˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y)
(
D1,j(u) −D2,j(u)

)
L(x, y) with u ∈ H , (9.4.4)
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where for technical simplicity we assume smoothness in order to interchange differen-
tiation with integration. Clearly, the mapping j in (9.4.3), and consequently also the
mapping CΩ

ρ , are homogeneous of degree two, i.e.

CΩ
ρ

(
λu

)
= |λ|2 CΩ

ρ (u) for all u ∈ H and λ ∈ C .

Therefore, we can use the polarization formula to define a sesquilinear form on the Hilbert
space H,

⟨u|v⟩Ωρ :=
1

4

(
CΩ
ρ (u+ v)− CΩ

ρ (u− v)
)
− i

4

(
CΩ
ρ (u+ iv)− CΩ

ρ (u− iv)
)
. (9.4.5)

This sesquilinear form is referred to as the commutator inner product (for details see [64,
Section 3]). In [70, Section 5.2] it is shown that for Dirac systems describing the
Minkowski vacuum, the commutator inner product coincides (up to an irrelevant prefac-
tor) with the scalar product on Dirac solutions (1.3.12). In this way, the conservation
law for the commutator inner product gives back the conservation of the Dirac cur-
rent (1.3.11). We thus recover current conservation as a special case of a more general
conservation law for causal fermion systems. Since in examples of physical interest, the
conserved surface layer integral CΩ

ρ (u, v) gives back the Hilbert space scalar product, we
give this property a name:

Definition 9.4.1. Given a critical measure ρ and a subset Ω ⊂M , the surface layer
integral CΩ

ρ is said to represent the scalar product on the subspace Hf ⊂ H if there

is a non-zero real constant c such that the sesquilinear form ⟨.|.⟩Ωρ defined by (9.4.5) has
the property

⟨u|u⟩Ωρ = c ∥u∥2H for all u ∈ Hf . (9.4.6)

In view of the conservation law of Proposition 9.3.1, this property remains valid if Ω is
changed by a compact subset of M . We point out that the representation (9.4.6) cannot
hold on the whole Hilbert space, i.e. for all u ∈ H; for details see Exercise 9.5 and [53,
Appendix A].

At present there is no general argument why the surface layer integral CΩ
ρ should

represent the scalar product on a non-trivial subspace Hf ⊂ H. Therefore, in this book
we shall not assume that this property holds. Instead, we make the following weaker
assumption. We assume that the sesquilinear form CΩ

ρ is equivalent to the scalar product
in the sense that

⟨u|v⟩Ωρ = ⟨u |Cρ v⟩H for all u, v ∈ Hf ,

where Cρ is a bounded linear operator onH with bounded inverse. Under this assumption,
the Hilbert space scalar product can be expressed by

⟨u | v⟩H = ⟨u |C−1
ρ v⟩Ωρ for all u, v ∈ Hf .

In this way, the Hilbert space scalar product can be represented by a surface layer integral
involving the physical wave functions in spacetime.

We conclude this section with a remark on the connection between the commutator
inner product and the scalar product on solutions of the Dirac equation. As already
mentioned after (9.4.5), for Dirac systems describing the Minkowski vacuum, the com-
mutator inner product (9.4.5) coincides with the scalar product (1.3.12). Since both inner
products are conserved, the same is true for any Dirac system which evolved from the
vacuum (for example by “turning on” an interaction). The basic shortcoming of this
correspondence is that it holds only for the physical wave functions, i.e. for all occupied
one-particle states of the system. Thus, in the example of the Minkowski vacuum, the
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connection between (9.4.5) and (1.3.12) can be made only for the negative-energy solu-
tions of the Dirac equation. The positive-energy solutions, however, do not correspond to
physical wave functions, so that the commutator inner product is undefined. In order to
improve the situation, one would like to extend the commutator inner product to more
general wave functions, in such a way that it still agrees with (1.3.12). This construc-
tion is carried out in [64, 53]. Current conservation continues to hold for the extension,
provided that the wave functions satisfy the so-called dynamical wave equationˆ

M
Qdyn(x, y)ψ(y) dρ(y) = 0 . (9.4.7)

Here the integral kernel Qdyn is constructed from first variations of the causal Lagrangian.
In this formulation, the commutator inner product takes the form

⟨ψ|ϕ⟩Ωρ := −2i

(ˆ
Ω
dρ(x)

ˆ
M\Ω
dρ(y)−

ˆ
M\Ω
dρ(x)

ˆ
Ω
dρ(y)

)
≺ψ(x) |Qdyn(x, y)ϕ(y)≻x .

(9.4.8)
For some more details on these connections see Exercises 9.3 and 9.4.

After these extensions have been made, the dynamical wave equation (9.4.7) can be
regarded as the generalization of the Dirac equation to causal fermion systems. More-
over, the commutator inner product (9.4.8) generalizes the scalar product on Dirac solu-
tions (1.3.12), thereby also extending current conservation to dynamical waves.

9.5. The Symplectic Form and the Surface Layer Inner Product

For the applications, the most important surface layer integrals are IΩ1 (also denoted
by γΩρ ; see Proposition 9.3.1 and Theorem 9.3.2 in the case k = 0) and IΩ2 (see Theo-

rem 9.3.2 in the case k = 1). We now have a closer look at the surface layer integral IΩ2 .
It is defined by

IΩ2 =

ˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y)

×
(
∂1,s − ∂2,s

)(
∂1,t + ∂2,t

)
fs,t(x) L

(
Fs,t(x), Fs,t(y)

)
fs,t(y)

∣∣∣
s=t=0

(9.5.1)

and satisfies for any compact subset Ω ⊂M the identity

IΩ2 = s

ˆ
Ω
∂s∂tfs,t(x)

∣∣∣
s=t=0

dρ(x) . (9.5.2)

These formulas simplify considerably if we anti-symmetrize in the parameters s and t.
Namely, the formula for IΩ2 reduces to the surface layer integralˆ

Ω
dρ(x)

ˆ
M\Ω

dρ(y)
(
∂1,s∂2,t − ∂1,s∂2,t

)
fs,t(x) L

(
Fs,t(x), Fs,t(y)

)
fs,t(y)

∣∣∣
s=t=0

.

Since this expression involves only first partial derivatives, it can be rewritten with jet
derivatives as

σΩρ (u, v) :=

ˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y)
(
∇1,u∇2,v −∇1,v∇2,u

)
L(x, y) , (9.5.3)

where the jets u and v are the linearized solutions

u = ∂s
(
fs,t, Fs,t

)∣∣
s=t=0

and v = ∂t
(
fs,t, Fs,t

)∣∣
s=t=0

. (9.5.4)
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Moreover, the right side of (9.5.2) vanishes when anti-symmetrizing in s and t. We
conclude that

σΩρ (u, v) = 0 for every compact Ω ⊂M .

Choosing Ω again as explained in Figure 9.2, we obtain a conservation law for a surface
layer integral over a neighborhood of a hypersurface N which extends to spatial infinity.
We refer to σΩρ as the symplectic form (the connection to symplectic geometry will be
explained after (9.5.7) below).

Symmetrizing IΩ2 in the parameters s and t gives the surface layer integralˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y)
(
∂1,s∂1,t − ∂2,s∂2,t

)
fs,t(x) L

(
Fs,t(x), Fs,t(y)

)
fs,t(y)

∣∣∣
s=t=0

. (9.5.5)

This expression has a more difficult structure because it involves second partial deriva-
tives. Such second partial derivatives cannot be expressed directly in terms of second
jet derivatives, because the derivatives of the jets also need to be taken into account.
In a differential geometric language, defining second derivatives would make it necessary
to introduce a connection on F. As explained after (ii) on page 143, we here use the
simpler method of taking second partial derivatives in distinguished charts (for example,
symmetric wave charts for causal fermion systems; see the remark after Proposition 3.1.3
and [69, Section 6.1] or [76, Section 3]). Then it is useful to introduce the surface layer
inner product (., .)Ωρ as the contribution to (9.5.5) involving second derivatives of the
Lagrangian, i.e.

(u, v)Ωρ :=

ˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y)
(
∇1,u∇1,v −∇2,u∇2,v

)
L(x, y) , (9.5.6)

where the jets u and v are again the linearized solutions (9.5.4). We point out that, in
contrast to the symplectic form, the surface layer inner product does not correspond to a
conservation law. This has two reasons: First because the right side of (9.5.2) gives rise
to a volume term, and second because the derivatives of the jets u and v give additional
correction terms. For the details and the interpretation of these correction terms we refer
to [72]. Here we only remark that the significance of the surface layer inner product is
that it is an approximate conservation law. In particular, it can be used for estimating
solutions of the linearized field equations and for proving existence results. We will come
back to these applications in Section 14.

We finally comment on the name symplectic form. Clearly, this name is taken from
symplectic geometry, where it refers to a closed and non-degenerate two-form σ on a
manifold which we denote by B. The connection to the surface layer integral (9.5.3)
is obtained if we assume that the set of all critical measures of the form (8.1.1) forms
a smooth manifold B (which may be a infinite-dimensional Banach manifold). In this
case, a jet v describing first variations of a measure (8.1.5) is a tangent vector in TρB.
Consequently, the jet space J can be identified with the tangent space TρB. The surface
layer integral (9.5.3) can be regarded as a mapping

σΩρ : TρB × TρB → R . (9.5.7)

Being antisymmetric, it can be regarded as a two-form. Similarly, the conserved sur-
face layer integral γΩρ in (9.3.1) can be regarded as a one-form. Moreover, the t-derivative

in (9.5.1) can be regarded as a directional derivative acting on IΩ1 = γΩρ . Anti-symmetrizing
in s and t corresponds to taking the outer derivative. We thus obtain

σΩρ = dγΩρ , (9.5.8)
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Figure 9.3. The nonlinear surface layer integral.

which also shows again that σΩρ is closed. Thus, exactly as in symplectic geometry, the
symplectic form defined as the surface layer integral (9.5.7) is a closed two-form. In
contrast to symplectic geometry, it does not need to be non-degenerate. But this can be
arranged by restricting attention to a more specific class of measures of the form (9.3.2).
We refer to [71] for a more general discussion of this point.

We finally note that the relation (9.5.8) resembles the representation of the symplec-
tic potential as the derivative of the symplectic potential (sometimes also referred to as
the tautological one-form or canonical one-form). It is a major difference to classical me-
chanics and classical field theory that, in the setting of causal variational principles, the
one-form γΩρ is canonically defined and represented by a conserved surface layer integral
in spacetime.

9.6. The Nonlinear Surface Layer Integral

We now introduce a different type of surface layer integral, which can be regarded as
a generalization of the surface layer integrals considered so far. In order to explain the
basic concept, we return to the general structure of a surface layer integral (9.1.2). The
differential operator (· · · ) in the integrand can be regarded as describing first or second
variations of the measure ρ. As we saw above, the resulting surface layer integrals give
rise to conserved currents, the symplectic form and inner products. Instead of considering
first or second variations of a measure ρ, we now consider an additional measure ρ̃ which
can be thought of as a finite perturbation of the measure ρ. Consequently, we also have
two spacetimes

M := supp ρ and M̃ := supp ρ̃ .

Choosing two compact subsets Ω ⊂ M and Ω̃ ⊂ M̃ of the corresponding spacetimes, we
form the nonlinear surface layer integral by

γΩ̃,Ω(ρ̃, ρ) :=

ˆ
Ω̃
dρ̃(x)

ˆ
M\Ω

dρ(y) L(x, y)−
ˆ
Ω
dρ(x)

ˆ
M̃\Ω̃

dρ̃(y) L(x, y) . (9.6.1)

Note that one argument of the Lagrangian is inM , whereas the other is in M̃ . Moreover,
one argument lies inside the set Ω respectively Ω̃, whereas the other argument lies outside.
In this way, the nonlinear surface layer integral “compares” the two spacetimes near the
boundaries of Ω and Ω̃, as is illustrated in Figure 9.3. If ρ̃ is a first or second variation of ρ,
one recovers surface layer integrals of the form (9.1.2). In this way, the nonlinear surface
layer integral can be regarded as a generating functional for the previous surface layer
integrals. Moreover, it has the advantage that it does not rely on continuous variations or
a perturbative treatment. Instead, it can be used for comparing two arbitrary measures ρ
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and ρ̃. This nonlinear surface layer integral was introduced in [61]. It plays a central role
for getting the connection to quantum field theory (as will be outlined in Chapter 22).

The nonlinear surface layer integral comes with a corresponding conservation law, as
we now explain. For technical simplicity, we assume that the measure ρ̃ can be obtained
from ρ by multiplication with a weight function and a push-forward, i.e.

ρ̃ = F∗(fρ)

with smooth functions f ∈ C∞(M,R+) and F ∈ C∞(M,F
)
. We use the mapping F in

order to identify M with M̃ . In particular, we choose

Ω̃ = F (Ω) .

Then, using the definition of the push-forward measure, the nonlinear surface layer inte-
gral can be written alternatively as

γΩ̃,Ω(ρ̃, ρ) =

ˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y)
(
f(x)L

(
F (x), y

)
− L

(
x, F (y)

)
f(y)

)
. (9.6.2)

Similar as explained in Section 9.2 in the connection of Noether-like theorems, by a
“conservation law” we mean that the nonlinear surface layer integral should vanish for
all compact Ω. In preparation for analyzing how to satisfy this condition, we rewrite the
nonlinear surface layer integral as a volume integral by using the antisymmetry of the
integrand in (9.6.2),

γΩ̃,Ω(ρ̃, ρ) =

ˆ
Ω
dρ(x)

ˆ
M

dρ(y)
(
f(x)L

(
F (x), y

)
− L

(
x, F (y)

)
f(y)

)
. (9.6.3)

In order to write this equation in a simpler form, we introduce a measure ν on M and a
measure ν̃ on M̃ by

dν(x) :=

( ˆ
M̃

L(x, y) dρ̃(y)

)
dρ(x) and dν̃(x) :=

(ˆ
M

L(x, y) dρ(y)

)
dρ̃(x) .

Intuitively speaking, these measures describe how the measures ρ and ρ̃ are connected to
each other by the Lagrangian. We refer to them as the correlation measures. Then we
can rewrite (9.6.3) as

γΩ̃,Ω(ρ̃, ρ) = ν̃
(
F (Ω)

)
− ν(Ω) .

In order to obtain a conservation law, this expression should vanish for all compact Ω.
In other words, the measure ν should be the push-forward of the measure ν̃ under the
mapping F ,

ν = F∗ν̃ .

In this way, the task of finding a conservation law is reduced to the following abstract
problem: Given two measures ν on M and ν̃ on M̃ , under which assumptions can one
measure be realized as the push-forward of the other? If ν and ν̃ are volume forms on
compact manifolds, such a push-forward mapping is obtained from a classical theorem
of Jürgen Moser (see for example [113, Section XVIII, §2]). In the non-compact case,
the existence of F has been proven under general assumptions in [97]. In this way, the
conservation law for the nonlinear surface layer integral can be arranged by adjusting the
identification of the spacetimes M and M̃ .

We finally remark how the nonlinear surface layer integral can be used to “compare”
two causal fermion systems (H,F, ρ) and (H̃, F̃, ρ̃). In this setting, one must keep in
mind that the causal fermion systems are defined on different Hilbert spaces. Therefore,
before forming the nonlinear surface layer integral, we must identify the Hilbert space H
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Ω ∩ V

M \ (Ω ∪ V )
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Figure 9.4. A two-dimensional surface layer integral.

and H̃ by a unitary transformation V : H → H̃. Since this identification is not unique,
we are left with the freedom to transform V according to

V → V U with U ∈ L(H) unitary .

A possible strategy for getting information independent of this freedom is to integrate
over the unitary group. For example, this leads to the so-called partition function

ZΩ̃,Ω(ρ̃, ρ) :=

ˆ
G

eβγ
Ω̃,Ω(ρ̃,Uρ) dµG(U) ,

where β is a real parameter, and G is a compact subgroup of the unitary group on H with
Haar measure dµG. Here the name “partition function” stems from an analogy to the path
integral formulation of quantum field theory. For more details we refer to Chapter 22 or
the research papers [62, 65].

9.7. Two-Dimensional Surface Layer Integrals

The surface layer integrals considered so far were intended to generalize integrals
over hypersurfaces. We now explain how lower-dimensional integrals can be described by
surface layer integrals. We restrict attention to two-dimensional integrals, noting that
the methods can be applied similarly to one-dimensional integrals (i.e. integrals along a
curve). It is most convenient to describe a two-dimensional surface S ⊂M as

S = ∂Ω ∩ ∂V ,

where Ω can be thought of as being the past of a Cauchy surface, and V describing a
spacetime cylinder. This description has the advantage that the resulting surface layer
integrals will be well-defined even in cases when spacetime is singular or discrete, in which
case the boundaries ∂Ω and ∂V are no longer a sensible concept. The most obvious way
of introducing a surface layer integral localized in a neighborhood of S is a double integral
of the form ˆ

Ω∩V

( ˆ
M\(Ω∪V )

(· · · ) L(x, y) dρ(y)

)
dρ(x) (9.7.1)

(where (· · · ) again stands for a differential operator acting on the Lagrangian). If the
Lagrangian has short range, we only get contributions to this surface layer integral if
both x and y are close to the two-dimensional surface S (see Figure 9.4).

The disadvantage of this method is that the surface layer integral (9.7.1) does not
seem to fit together with the EL equations and the linearized field equations. Therefore, at
present there is no corresponding conservation law. If one considers flows of two-surfaces,
it seems preferable to use the following method introduced in [21]. We need to assume
that M has a smooth manifold structure and is four-dimensional (see Definition 8.3.1)
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and that v is a vector field which is transverse to the hypersurface ∂Ω and tangential
to ∂V . Following Definition 9.3.3, the inner solution corresponding to v gives rise to a
volume measure µ on ∂Ω. Thus we can introduce a two-dimensional surface layer integral
by

A :=

ˆ
∂Ω∩V

dµ(v, x)

ˆ
M\V

dρ(y) (· · · )L(x, y) .

Applying the Gauß divergence theorem, this surface layer integral can also be written
in the usual way as a double spacetime integral involving jet derivatives of the inner
solution,

A =

ˆ
Ω∩V

dρ(x)∇v

ˆ
M\V

dρ(y) (· · · )L(x, y) (9.7.2)

=

ˆ
Ω∩V

dρ(x)

ˆ
M\V

dρ(y)
(
∇1,v ±∇2,v

)
(· · · )L(x, y) , (9.7.3)

where the notation ± means that the formula holds for either choice of the sign (this is
because the corresponding term vanishes, as one sees after integrating by parts as in the
proof of Lemma 8.3.3 and using that v is tangential to ∂V ). The obtained surface layer
integral (9.7.3) harmonizes with the structures of the EL equations and the linearized
field equations, as is exemplified in [21] by a simple connection between area change and
matter flux.

9.8. Exercises

Exercise 9.1. (Noether-like theorems) The goal of this exercise is to illustrate the
Noether-like theorems. In order to simplify the problem as far as possible, we consider
the compact setting and assume furthermore that the Lagrangian is smooth, i.e. L ∈
C∞(F × F,R+

0 ). Let ρ be a minimizer of the action under variations of ρ in the class of
(positive) normalized regular Borel measures. Let u ∈ TF be a vector field on F. Assume
that u is a symmetry of the Lagrangian in the sense that(

u(x)j
∂

∂xj
+ u(y)j

∂

∂yj

)
L(x, y) = 0 for all x, y ∈ F. (9.8.1)

Prove that for any measurable set Ω ⊂ F,ˆ
Ω
dρ(x)

ˆ
F\Ω

dρ(y)u(x)j
∂

∂xj
L(x, y) = 0.

Hint: Integrate (9.8.1) over Ω×Ω. Transform the integral using the symmetry L(x, y) =
L(y, x). Finally make use of the Euler-Lagrange equations.

Exercise 9.2. (Commutator jets and conserved surface layer integrals) Let (H,F, ρ)
be a causal fermion system on a finite-dimensional Hilbert space. For any symmetric
operator S ∈ L(H), we define the corresponding commutator jet by

CS := (0, CS), with CS(x) := i[S, x] for all x ∈ F.

Prove the following identity between the conserved one-form and the conserved symplectic
form:

γΩρ
(
(0, [CA, CB])

)
= −1

2
σΩρ (CA,CB),

where [CA, CB] denotes the commutator of vector fields on F.
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Exercise 9.3. (Representation of the commutator inner product) The goal of this
exercise is to represent the commutator inner product in a form similar to (9.4.8).

(a) Show that first variations of the Lagrangian can be written as

δL(x, y) = 2ReTrSxM

(
Q(x, y) δP (y, x)

)
with a suitable kernel Q(x, y) : Sy → Sx. Show that this kernel can be chosen to be
symmetric, i.e. that Q(x, y)∗ = Q(y, x).

(b) Show that the variation described by the commutator jet in (9.4.3) and (9.4.2) cor-
responds to the variation of the integrand in (9.4.4)(

D1,j(u) −D2,j(u)

)
L(x, y) = −2i

(
i≺ψ(x) |Q(x, y)ψ(y)≻x − i≺ψ(y) |Q(y, x)ψ(x)≻y

)
.

(c) Use the polarization formula (9.4.5) to conclude that ⟨u|v⟩Ωρ has the representa-
tion (9.4.8) with ψ = ψu and ϕ = ψv.

Hint: Details on this construction can be found in [64, Section 3].

Exercise 9.4. (Extending the commutator inner product) The goal of this exercise
is to illustrate how the commutator inner product can be extended to more general wave
functions. To this end, assume that we are given a space of wave function W which all
satisfy the dynamical wave equation (9.4.7) with a suitable kernel Qdyn(x, y). Prove that,
under these assumptions, the inner product (9.4.8) is conserved for any ψ, ϕ ∈ W.
Hint: In a first step it seem a good idea to choose Ω = Ωt as the past of an equal time
hypersurface and to differentiate with respect to t. More generally, one can consider the
difference of (9.4.8) for two sets Ω and Ω′ which differ by a compact set.

Exercise 9.5. (Representing the Hilbert space scalar product in a surface layer) The
goal of this exercise is to explain why the sesquilinear form ⟨.|.⟩Ωρ cannot represent the
scalar product on the whole Hilbert space. To this end, let us assume conversely that

⟨u|u⟩Ωρ = c ⟨u|u⟩H for all u ∈ H and c ̸= 0 (9.8.2)

and derive a contradiction. For technical simplicity, we assume thatH is finite-dimensional
and disregard all issues of convergence of integrals.

(a) Show that the surface layer integral can be written as

⟨u|u⟩Ωρ = i

ˆ
M

〈
u
∣∣ [x,B(x)]u

〉
H

dρ(x) (9.8.3)

with B(x) a suitable family of operators on the Hilbert space.
(b) Carry out the x-integral formally to obtain the representation

⟨u|u⟩Ωρ = ⟨u |Cu⟩H dρ(x)

with a trace-free operator C. Hint: Make use of the commutator structure of the
integrand in (9.8.3).

(c) Conclude from (9.8.2) that C is a multiple of the identity operator. Why is this a
contradiction?

Hint: More details on this argument can be found in [53, Appendix A].

Exercise 9.6. (On the surface layer inner product) The goal of this exercise to show
that, under a suitable restriction of the jet space, the surface-layer inner product is indeed
positive. On F = R2 we define the Lagrangian

L(x, y) = 1

2
η(x1 − y1) (x2 − y2)

2, where η ∈ C∞
0 (R,R+).
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Let M = R ⊂ F equipped with the canonical one-dimensional Lebesgue measure and
consider the set of jets

J :=

{
(0, u)

∣∣∣∣ u =

2∑
i=1

ui∂i ∈ TF with u1(t, 0) = 0 and ∂1u2(t, 0) ≤ 0 for all t ∈ R
}
.

Let Ωt := (−∞, t) ⊂ M . Show that the surface-layer inner product ( · , · )Ωt |J×J is
positive semi-definite. Hint: Remember that jets are never differentiated in expressions
like ∇i,v∇j,u.





CHAPTER 10

Positive Functionals

10.1. Motivation and Setup

Many physical quantities have a definite sign (for example positive mass, positive
energy, negative charge, etc.). With this in mind, it is an important question whether
the structure of a causal variational principle gives rise to positive functionals. We now
briefly explain the structural results known at present. These were obtained with two
different methods. One method is to make us of the fact that, given a minimizer of a
variational principle, second variations are always non-negative. This method was worked
out in [49], and we will give an outline in Sections 10.2 and 10.3. The second method
is to use that the action of a given minimizing measure ρ is smaller than the action of
any other test measure ρ̃. By a suitable choice of ρ̃, one gets surface layer integral with
a definite sign. This second method is explored in detail in [63] and applications are
worked out. Here we only explain the basic idea in Section 10.4.

For technical simplicity, we restrict attention to causal variational principles in the
noncompact smooth setting (see (6.2.4) and Section 6.3).

10.2. Positivity of the Hessian of ℓ

Let ρ be a minimizer of the causal action. According to the EL equations (7.1.2), the
function ℓ is minimal on M . This clearly implies that its Hessian (as computed in any
chart) is positive semi-definite, i.e.

D2ℓ(x) ≥ 0 for all x ∈M := supp ρ . (10.2.1)

This is the first non-negative quantity obtained from the fact that ρ is a minimizer.
In view of the restricted EL equations (7.2.4), the zero and first order derivatives of ℓ
vanish for all x ∈M . Adding such lower derivative terms, we can write (10.2.1) with jet
derivatives as

∇2ℓ|x(u, u) ≥ 0 for all x ∈M ,

where, following our conventions (i) and (ii) on page 143,

∇2ℓ|x(u, u) := a(x)2 ℓ(x) + 2 a(x)Duℓ(x) +D2ℓ|x(u, u) .

Integrating over M gives the following result:

Proposition 10.2.1. Let ρ be a minimizer of the causal action. Then
ˆ
M

∇2ℓ|x(u, u) dρ(x) ≥ 0 for all u ∈ J0 .

175
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10.3. Positivity of Second Variations Generated by Jets

We now analyze second variations for a special class of variations of the measure ρ
to obtain another positive functional on jets. Similar as in [71, Section 3] we consider
measures of the form

ρ̃τ = (Fτ )∗
(
fτ ρ

)
for τ ∈ (−τmax, τmax) (10.3.1)

with smooth mappings

f ∈ C∞((−τmax, τmax)×M,R+) and F ∈ C∞((−τmax, τmax)×M,F) ,

where the star denotes the push-forward measure defined by ((Fτ )∗µ)(Ω) = µ(F−1
τ (Ω))

(for details see the preliminaries in Section 2.3 or for example [15, Section 3.6]). We
assume that for τ = 0 the variation is trivial, (8.1.2). Moreover, for technical simplicity
we assume that Fτ and fτ are trivial outside a compact set K ⊂M , meaning that

fτ |M\K ≡ 1 and Fτ |M\K ≡ 1 .

Finally, in order to satisfy the volume constraint on the right side of (6.3.1), we assume
that ˆ

K
fτ (x) dρ(x) = ρ(K) for all τ ∈ (−τmax, τmax) . (10.3.2)

Then the transformation (10.3.1) is described infinitesimally by the smooth and compactly
supported jet

u = (a, u) :=
(
ḟ0, Ḟ0

)
∈ J0 ,

where the dot denotes the τ -derivative. Moreover, we differentiate the volume con-
straint (10.3.2) to obtain ˆ

K
a(x) dρ(x) = 0 . (10.3.3)

We now compute the first and second variations of the action. Combining (6.3.2)
with the definition of the push-forward measure, we obtain

S
(
ρ̃τ
)
− S(ρ) = 2

ˆ
K

dρ(x)

ˆ
M\K

dρ(y)
(
fτ (x) L

(
Fτ (x), y

)
− L(x, y)

)
+

ˆ
K

dρ(x)

ˆ
K

dρ(y)
(
fτ (x) fτ (y) L

(
Fτ (x), Fτ (y)

)
− L(x, y)

)
.

(10.3.4)

The first variation vanishes because

d

dτ
S
(
ρ̃τ
)∣∣∣
τ=0

= 2

ˆ
K

dρ(x)

ˆ
M

dρ(y)∇1,uL(x, y) = 2

ˆ
K
∇u

(
ℓ(x) + s

)
dρ(x) = 0 ,

where in the last step we used (7.2.4) and (10.3.3) (and ∇1 denotes the partial derivative
acting on the first argument of the Lagrangian). Differentiating (10.3.4) twice, the second
variation is computed to be

d2

dτ2
S
(
ρ̃τ
)∣∣∣
τ=0

= 2

ˆ
K

dρ(x)

ˆ
K

dρ(y)∇1,u∇2,uL(x, y)

+ 2

ˆ
K

dρ(x)

ˆ
M

dρ(y)
(
a(x)D1,uL(x, y) +D1,uD1,uL(x, y) +

(
f̈0(x) +D1,F̈0

)
L(x, y)

)
.
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In the last line we can carry out the y-integration using (7.1.1). Applying the EL equa-
tions (7.2.4), we obtain

ˆ
K

dρ(x)

ˆ
M
a(x)D1,uL(x, y) dρ(y) = 0

ˆ
K

dρ(x)

ˆ
M
D1,uD1,uL(x, y) dρ(y) = D2ℓ|x(u, u) = ∇2ℓ|x(u, u)

ˆ
K

dρ(x)

ˆ
M

(
f̈0(x) +D1,F̈0

)
L(x, y) dρ(y) =

ˆ
K
f̈0(x) s dρ(x)

(10.3.2)
= 0 .

We thus obtain the simple formula

1

2

d2

dτ2
S
(
ρ̃τ
)∣∣∣
τ=0

=

ˆ
K

dρ(x)

ˆ
K

dρ(y)∇1,u∇2,uL(x, y) +
ˆ
K
∇2ℓ|x(u, u) dρ(x) .

Since ρ is a minimizer and the first variation vanishes, the second variation is necessarily
non-negative, giving rise to the inequality

ˆ
M

dρ(x)

ˆ
M

dρ(y)∇1,u∇2,uL(x, y) +
ˆ
M

∇2ℓ|x(u, u) dρ(x) ≥ 0 , (10.3.5)

subject to the condition that the scalar component of the jet u must satisfy the volume
constraint (10.3.3). In the next proposition we remove this condition with a limiting
procedure:

Proposition 10.3.1. Let ρ be a minimizer of the causal action. Then the inequal-
ity (10.3.5) holds for all u ∈ J0.

Proof. Let u = (a, u) ∈ J0 be a jet which violates the volume constraint (10.3.3).
Then, choosing a compact set Ω ⊂M with ρ(Ω) > 0, the jet û := (â, u) with

â(x) = a(x)− c(Ω)χΩ(x) and c(Ω) :=
1

ρ(Ω)

ˆ
Ω
a(x) dρ(x) (10.3.6)

(where χΩ is the characteristic function) does satisfy (10.3.3). Choosing the scalar vari-

ation fτ = (1 − τ) + τ â and a family of diffeomorphisms Fτ with Ḟ0 = u, we obtain a

variation which satisfies the volume constraint (10.3.2) (note that f̈ = 0). Clearly, due to
the characteristic function, the jet û is no longer smooth, but it has again compact sup-
port, and an approximation argument using Lebesgue’s dominated convergence theorem
shows that the inequality (10.3.5) also holds for û. Expanding in powers of c, we thus
obtain the inequality

0 ≤
ˆ
K

dρ(x)

ˆ
K

dρ(y)∇1,u∇2,uL(x, y) +
ˆ
K
∇2ℓ|x(u, u) dρ(x)

− 2c

ˆ
M

dρ(x)

ˆ
K

dρ(y) χΩ(x)∇2,uL(x, y)

+ c2
ˆ
M

dρ(x)

ˆ
M

dρ(y) χΩ(x)χΩ(y) L(x, y)

+

ˆ
M

(
− 2c χΩ(x)∇uℓ(x) + c2 χΩ(x)

2 ℓ(x)
)
dρ(x)
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(the integrand in the last line arises from the contributions to ∇2ℓ|x(u, u) involving the
scalar components of the jets). The last line vanishes due to the restricted EL equa-
tions (7.2.4). Henceˆ

K
dρ(x)

ˆ
K

dρ(y)∇1,u∇2,uL(x, y) +
ˆ
K
∇2ℓ|x(u, u) dρ(x)

≥ 2c

ˆ
K

dρ(x)

ˆ
Ω
dρ(y)∇1,uL(x, y)− c2

ˆ
K

dρ(x)

ˆ
K

dρ(y) L(x, y) =: A(Ω) .

We now let (Ωn)n∈N be an exhaustion of M by compact sets. We distinguish the two
cases when ρ(M) is finite and infinite and treat these cases separately. If the total vol-
ume ρ(M) is finite, one can take the limit n→ ∞ with Lebesgue’s dominated convergence
theorem to obtain

lim
n→∞

ˆ
K
dρ(x)

ˆ
Ωn

dρ(y)∇1,uL(x, y) =
ˆ
K

dρ(x)

ˆ
M

dρ(y)∇1,uL(x, y)

=

ˆ
K
∇u

(
ℓ(x) + s

)
dρ(x) = s

ˆ
K
a(x) dρ(x)

lim
n→∞

A(Ωn) = 2 c(M) s

ˆ
K
a(x) dρ(x)− c(M)2 ρ(M) s

=
ν

2ρ(M)

(ˆ
K
a(x) dρ(x)

)2

≥ 0 ,

where in the last line we substituted the value of c(M) in (10.3.6).
In the remaining case that the volume ρ(M) is infinite, we estimate the terms as

follows,

c(Ωn)
2

ˆ
K

dρ(x)

ˆ
K

dρ(y) L(x, y)

≤ c(Ωn)
2

ˆ
K

dρ(x)

ˆ
M

dρ(y) L(x, y) = c(Ωn)
2 s ρ(K) → 0

ˆ
K

dρ(x)

ˆ
Ωn

dρ(y)∇1,uL(x, y) →
ˆ
K

dρ(x)

ˆ
M

dρ(y)∇1,uL(x, y)

=

ˆ
K
∇u

(
ℓ(x) + s

)
dρ(x) = s

ˆ
K
a(x) dρ(x) .

As a consequence, A(Ωn) converges to zero as n→ ∞. This concludes the proof. □

We note that, restricting attention to scalar jets, i.e. u = (a, 0) with a a real-valued
function on M , the inequality in Proposition 10.3.1 reduces toˆ

M
dρ(x)

ˆ
M

dρ(y) a(x) L(x, y) a(y) ≥ 0 for all a ∈ C∞
0 (M) . (10.3.7)

This inequality was first derived in [84, Lemma 3.5] and used for the analysis of mini-
mizing measures. For more details see also Exercise 10.3.

10.3.1. Application: Hilbert Spaces of Jets. As an application, we now explain
how our positive functionals can be used to endow spaces of jets in spacetime with Hilbert
space structures. These Hilbert space structures should be very useful because they make
functional analytic tools applicable to the analysis of the jet spaces and the causal action
principle.
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We introduce the following bilinear forms on J0,

⟨u, v⟩ :=
ˆ
M

dρ(x)

ˆ
M

dρ(y)∇1,u∇2,vL(x, y) +
ˆ
M

∇2ℓ|x(u, v) dρ(x) (10.3.8)〈
⟨u, v⟩

〉
:= ⟨u, v⟩+

ˆ
M

∇2ℓ|x(u, v) dρ(x) . (10.3.9)

By Propositions 10.2.1 and 10.3.1, both bilinear forms are positive semi-definite. The
second bilinear form has the advantage that it is bounded from below by the bilinear
form introduced in Proposition 10.2.1. Dividing out the null space and forming the
completion gives real Hilbert spaces of jets denoted by H⟨.,.⟩ and H⟨⟨.,.⟩⟩, respectively.
Obviously,

⟨u, u⟩ ≤
〈
⟨u, u⟩

〉
,

giving rise to a norm-decreasing mapping H⟨⟨.,.⟩⟩ → H⟨.,.⟩.
For the scalar components of the jets, the two scalar products (10.3.8) and (10.3.9)

obviously agree. But they are quite different for the vector components. In order to
understand this difference, it is instructive to consider a jet u = (0, u) which describes a
symmetry of the Lagrangian, i.e. (for details see [70, Section 3.1])

(
D1,u +D2,u

)
L(x, y) = 0 for all x, y ∈M .

For this jet, a direct computation shows that

⟨u, u⟩ = 0 .

Hence symmetry transformations lie in the kernel of the bilinear form ⟨., .⟩ and thus

correspond to the zero vector in H⟨.,.⟩. Generally speaking, the scalar product ⟨., .⟩ makes
it possible to disregard symmetry transformations of the causal Lagrangian. However,
jets describing symmetry transformations do in general correspond to non-zero vectors of
the Hilbert space H⟨⟨.,.⟩⟩.

10.3.2. Application: A Positive Surface Layer Integral. We now derive a
surface layer integral which is not necessarily conserved, but which has a definite sign.
Similar as explained at the beginning of Section 10.3.1, this can be used to endow the jet
space with a Hilbert structure. But in contrast to the scalar products in Section 10.3.1,
where the jets were integrated over spacetime, here the scalar product is given as a surface
layer integral. This should be useful for analyzing the dynamics of jets in spacetime.

Proposition 10.3.2. Let v be a solution of the linearized field equations (8.1.7). Then
for any compact Ω ⊂M , the following surface layer integral is positive,

−
ˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y)∇1,v∇2,vL(x, y) ≥ 0 .
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Proof. Denoting the components of v by v = (b, v), we evaluate (8.1.7) for u = v
and integrate over Ω. The resulting integrals can be rewritten as follows,

0 =

ˆ
Ω
dρ(x)

ˆ
M

dρ(y)∇1,v

(
∇1,v +∇2,v

)
L(x, y)− s

ˆ
Ω
b(x)2 dρ(x)

=

ˆ
Ω
∇2ℓ|x(v, v) dρ(x) +

ˆ
Ω
dρ(x)

ˆ
M

dρ(y)∇1,v∇2,vL(x, y)

=

ˆ
Ω
∇2ℓ|x(v, v) dρ(x) +

ˆ
Ω
dρ(x)

ˆ
Ω
dρ(y)∇1,v∇2,vL(x, y) (10.3.10)

+

ˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y)∇1,v∇2,vL(x, y) . (10.3.11)

Using characteristic functions, the expression (10.3.10) can be written as

ˆ
M

∇2ℓ|x(χΩv, χΩv) dρ(x) +

ˆ
M

dρ(x)

ˆ
M

dρ(y)∇1,χΩv∇2,χΩvL(x, y) .

Approximating the jet χΩv by smooth jets with compact support, one finds that the
integrals in (10.3.10) are non-negative by Proposition 10.3.1. Therefore, the last sum-
mand (10.3.11) must be non-positive. This gives the result. □

We finally remark that in [50, Section 6] the surface layer integral in the last propo-
sition is computed in Minkowski space.

10.4. A Positive Nonlinear Surface Layer Integral

In this section we briefly mention another method for obtaining a positive surface
layer integral. This method and the corresponding positivity results will not be used
later in this book. We refer the reader interested in more explanations and applications
of this method to [63].

As in Section 9.6 we again consider two measures: A measure ρ which describes
the vacuum spacetime, and another measure ρ̃ which typically describes an interacting
spacetime. We assume that the vacuum measure is a minimizer of the causal action
principle as defined in Section 6.3 (see (6.3.3) and (6.3.2)). We choose subsets Ω ⊂ M

and Ω̃ ⊂ M̃ having the same finite volume,

ρ(Ω) = ρ̃(Ω̃) <∞ .

In order to construct an admissible test measure ρ̂, we “cut out” Ω from ρ and “glue in”
the set Ω̃, i.e.

ρ̂ := χΩ̃ ρ̃+ χM\Ω ρ .

The measure ρ̂ differs from ρ only on a set of finite volume and preserves the volume
constraint (see (6.3.1)). Therefore, we obtain from (6.3.3) and (6.3.2) (with ρ̃ replaced
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by ρ̂) that

0 ≤
(
S(ρ̂)− S(ρ)

)
= 2

ˆ
F

d(ρ̂− ρ)(x)

ˆ
M

dρ(y) L(x, y) +
ˆ
F

d(ρ̂− ρ)(x)

ˆ
M

d(ρ̂− ρ)(y) L(x, y)

= 2

ˆ
Ω̃
dρ̃(x)

ˆ
M

dρ(y) L(x, y)− 2

ˆ
Ω
dρ(x)

ˆ
M

dρ(y) L(x, y)

+

ˆ
Ω̃
dρ̃(x)

ˆ
Ω̃
dρ̃(y) L(x, y)− 2

ˆ
Ω̃
dρ̃(x)

ˆ
Ω
dρ(y) L(x, y)

+

ˆ
Ω
dρ(x)

ˆ
Ω
dρ(y) L(x, y)

= 2

ˆ
Ω̃
dρ̃(x)

ˆ
M\Ω

dρ(y) L(x, y)− 2

ˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y) L(x, y)

+

ˆ
Ω̃
dρ̃(x)

ˆ
Ω̃
dρ̃(y) L(x, y)−

ˆ
Ω
dρ(x)

ˆ
Ω
dρ(y) L(x, y) .

We thus obtain the inequality

2

ˆ
Ω̃
dρ̃(x)

ˆ
M\Ω

dρ(y) L(x, y) ≤ 2

ˆ
Ω
dρ(x)

ˆ
M\Ω

dρ(y) L(x, y)

−
ˆ
Ω̃
dρ̃(x)

ˆ
Ω̃
dρ̃(y) L(x, y)−

ˆ
Ω
dρ(x)

ˆ
Ω
dρ(y) L(x, y) .

(10.4.1)

The left side of this inequality coincides with the first summand in the nonlinear surface
layer integral as introduced in (9.6.1). However, the second summand in (9.6.1) is now
missing. We can regard the left side of (10.4.1) again as a nonlinear surface layer integral,
but with a somewhat different mathematical structure. It is not conserved, but it satisfies
instead an inequality. The first summand on the right side of (10.4.1) can be interpreted
as the surface area of ∂Ω. The two other summands in (10.4.1), on the other hand, can

be regarded as volume integrals over Ω̃ and Ω, respectively.
This method can be generalized and adapted in various ways, also to cases when Ω̃

and Ω do not have the same volume. Moreover, the resulting inequality can be written
in a particularly useful form if also the measure ρ̃ satisfies the EL equations. We finally
remark that, assuming that ρ̃ is again of the form (10.3.1) and expanding in powers of τ ,
one gets inequalities for surface layer integrals involving jet derivatives.

10.5. Exercises

Exercise 10.1. (Positive functionals for the causal variational principle on R) We
return to the causal variational principles on R corresponding to the Lagrangian L2

introduced in Exercise 6.4. Let ρ = δ be the unique minimizer.

(a) Compute the function ℓ(x) and verify that its Hessian is positive (see (10.2.1)).
(b) Compute the functional in Proposition 10.3.1 for the jets u = (0, ∂x) and u = (1, 0).
(c) What are the resulting scalar products (10.3.8) and (10.3.9)?

Exercise 10.2. (Positive functionals for the causal variational principle on S1) We
return to the causal variational principle on R introduced in Exercise 6.5. Let ρ be a
minimizing measure (6.6.4) for 0 < τ < 1. We choose Jtest

0 as the four-dimensional vector
space generated by the scalar jet (1, 0 and the vector jet (0, ∂φ) at the two points.

(a) Compute the function ℓ(x) and verify that its Hessian.
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(b) Compute the bilinear form in Proposition 10.3.1.
(c) What are the resulting scalar products (10.3.8) and (10.3.9)? What are the resulting

Hilbert spaces of jets H⟨.,.⟩ and H⟨⟨.,.⟩⟩? Which dimensions do they have? How can
this result be understood in view of the space of linearized solutions as computed in
Exercise 8.6?

Exercise 10.3. (A positive operator on scalar jets) In this exercise we specialize the
statement of Proposition 10.3.1 to scalar jets and work out a few consequences.

(a) Show that for jets of the form u = (a, 0), the statement of Proposition 10.3.1 reduces
to the inequality (10.3.7).

(b) Let ρ be a minimizing measure and x0, . . . , xN ∈M be a finite number of spacetime
points. Show that the Gram matrix L defined by

L =
(
L(xi, xj)

)
i,j=0,...,N

is symmetric and positive semi-definite.
(c) Show that the operator Lρ defined by

Lρ : C∞
0 (M) ⊂ L2(M, dρ) → L2(M, dρ) , (Lρψ)(x) :=

ˆ
F

L(x, y) ψ(y) dρ(y)

is a symmetric, densely defined operator on the Hilbert space L2(M, dρ). Prove that
this operator is positive semi-definite.

Exercise 10.4. The goal of this exercise is to explore the positive nonlinear surface
layer integral of Section 10.4 in the limiting case when the measures of the sets Ω and Ω̃
tend to zero. For technical simplicity, let us assume that for given x ∈ M and y ∈ M̃ ,
there are sequences of open neighborhoods Ωk of x and Ω̃k of y with ρ(Ωk) = ρ̃(Ω̃k) for
all k ∈ N and limk→∞ ρ(Ωk) = 0. Show that, in the limit k → ∞, the inequality (10.4.1)
reduces to the inequality

ℓ(y) ≥ ℓ(x) .

Thus we get back the EL equation (7.1.6).
In view of this limiting case, the positive nonlinear surface layer integral in Section 10.4

can be regarded as a refined nonlinear version of the EL equations.



CHAPTER 11

Topological and Geometric Structures

This chapter is devoted to the topological and geometric structures of a causal fermion
system. We closely follow the presentation in [60] and [56].

11.1. A Topological Vector Bundle

For the topological structures, it is not essential that the operators in F have at most n
positive and at most n negative eigenvalues (see Definition 5.4.1). Instead, it is preferable
for the sake of greater generality and broader applicability to relax this condition in the
following way.

Definition 11.1.1. Given a complex Hilbert space (H, ⟨.|.⟩H) and parameters p, q ∈
N0 with p ≤ q, we let F ⊂ L(H) be the set of all symmetric operators on H of finite rank,
which (counting multiplicities) have at most p positive and at most q negative eigenvalues.
On F we are given a positive measure ρ (defined on a σ-algebra of subsets of F). We
refer to (H,F, ρ) as a topological fermion system of spin signature (p, q).

If p = 0, we call (H,F, ρ) a Riemannian fermion system of spin dimension n := q.

Clearly, the case p = q gives back a causal fermion system (see Definition 5.4.1). It
should be noted that the assumption p ≤ q merely is a convention, because otherwise
one may replace F by −F. The name Riemannian fermion system comes from the fact
that in examples on Riemannian manifolds, the inner product on the fibers is positive
definite, implying that the resulting local correlation operators are negative semi-definite.
For details see [60] or the examples in Exercises 11.1 and 11.2. We also note that for
Riemannian fermion systems, the causal structure (according to Definition 5.6.1) is trivial;
see Exercise 11.3.

In Section 2.5 the notion of a topological vector bundle was introduced (see Defini-
tion 2.5.2). Again setting M = supp ρ, we want to construct a topological vector bundle
having the spin space Sx := x(H) as the fiber at the point x ∈ M . To this end, all the
spin spaces must have the same dimension and signature, making it necessary to impose
the following condition:

Definition 11.1.2. The topological fermion system is called regular if for all x ∈M ,
the operator x has the maximal possible rank p+ q.

We note that most of our constructions can be extended to non-regular topological fermion
systems by decomposing M into subsets on which x has fixed rank and a fixed number
of positive and negative eigenvalues (for details see [60, Section 7]).

We define B as the set of pairs

B = {(x, ψ) | x ∈M, ψ ∈ Sx}

and let π be the projection onto the first component. Moreover, we let (Y,≺.|.≻) be
an indefinite inner product space of signature (q, p), and choose G = U(q, p) as the

183
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group of unitary transformations on Y . In order to construct the bundle charts, for any
given x ∈ M we choose a unitary mapping σ : Sx → Y . By restricting the projection πx
in (5.7.2) to Sy, we obtain the mapping

πx|Sy : Sy → Sx .

In order to compute its adjoint with respect to the spin inner product (5.7.8), for ψ ∈ Sx
and ϕ ∈ Sy we make the computation

≺ψ |πx|Sy ϕ≻x = −⟨ψ|xϕ⟩H = −⟨xψ|ϕ⟩H = −⟨πy xψ|ϕ⟩H = −⟨y (y|Sy)
−1 πy xψ|ϕ⟩H

= −
〈
(y|Sy)

−1 πy xψ
∣∣ yϕ〉

H
= ≺(y|Sy)

−1 πy xψ |ϕ≻y .

Hence (
πx|Sy

)∗
= (y|Sy)

−1 πy x|Sx .

We now introduce the operator

Txy =
(
πx|Sy

)(
πx|Sy

)∗
= πx (y|Sy)

−1 πy x|Sx : Sx → Sx .

By construction, this operator is symmetric and Txx = 1. We now form the polar decom-
position of Txy to obtain a unitary operator Uxy: By continuity, there is a neighborhood U
of x such that for all y ∈ U , the operator Txy is invertible and has a unique square root ρxy
(defined for example by the power series

√
Txy =

√
1+ (Txy − 1) = 1+ 1

2 (Txy−1)+ · · · ).
Introducing the mapping

Ux,y = ρ−1
xy πx|Sy : Sy → Sx ,

the calculation

Ux,y U
∗
x,y = ρ−1

xy πx|Sy

(
πx|Sy

)∗
ρ−1
xy = ρ−1

xy Txy ρ
−1
xy = 1Sx

shows that the mapping Uxy is unitary. Moreover, it clearly depends continuously on y ∈
U .

We define the bundle chart ϕU by

ϕU (y, v) =
(
y, (σ ◦ Ux,y)(v)

)
.

The commutativity of the diagram (2.5.8) is obvious because ϕ is the identity map in
the first component. Moreover, the transition functions gUV in (2.5.9) are in G because
we are working with unitary mappings of the fibers throughout. We choose the topology
on B such that all the bundle charts are homeomorphisms.

Definition 11.1.3. The topological vector bundle B → M is referred to as the vec-
tor bundle associated to the regular topological fermion system (H,F, ρ), or simply the
associated vector bundle.

The next result shows that every vector bundle over a manifold can be realized as
the associated vector bundle of a corresponding topological fermion system. In other
words, working with topological fermion systems poses no topological constraints for the
associated vector bundles.

Theorem 11.1.4. Let X → M be a vector bundle over a k-dimensional topological
manifold M, whose fibers are isomorphic to an indefinite inner product space of signa-
ture (q, p). Then there is a regular topological fermion system (H,F, ρ) of signature (p, q)
such that the associated vector bundle (see Definition 11.1.3) is isomorphic to X. If M
is compact, the Hilbert space H can be chosen to be finite-dimensional.

The proof can be found in [60, Section 3.3].
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11.2. Geometric Structures of a Causal Fermion System

We now outline constructions from [56] which give general notions of a connection
and curvature (see Theorem 11.2.9, Definition 11.2.10 and Definition 11.2.11). So far,
these constructions have been carried out only in the case of spin dimension n = 2. This
is the most important case because it allows for the description of Dirac spinors in a
four-dimensional spacetime.

11.2.1. Construction of the Spin Connection. Let (H,F, ρ) be a causal fermion
system of spin dimension n = 2. Moreover, we assume that it is regular (see Defini-
tion 11.1.2).

An important structure from spin geometry missing so far is Clifford multiplication.
To this end, we need a Clifford algebra represented by symmetric operators on Sx. For
convenience, we first consider Clifford algebras with the maximal number of five gener-
ators; later we reduce to four spacetime dimensions (see Definition 11.2.13 below). We
denote the set of symmetric linear endomorphisms of (Sx,≺.|.≻x) by Symm(Sx); it is a
16-dimensional real vector space.

Definition 11.2.1. A five-dimensional subspace K ⊂ Symm(Sx) is called a Clifford
subspace if the following conditions hold:

(i) For any u, v ∈ K, the anti-commutator {u, v} ≡ uv+ vu is a multiple of the identity
on Sx.

(ii) The bilinear form ⟨., .⟩ on K defined by

1

2
{u, v} = ⟨u, v⟩1 for all u, v ∈ K

is non-degenerate and has signature (1, 4).

In view of the situation in spin geometry, we would like to distinguish a specific Clifford
subspace. In order to partially fix the freedom in choosing Clifford subspaces, it is useful to
impose that K should contain a given operator, as is made precise in the next definitions.

Definition 11.2.2. An operator v ∈ Symm(Sx) is called a sign operator if v2 = 1

and if the inner product ≺.|v .≻ : Sx × Sx → C is positive definite.

Definition 11.2.3. Given a sign operator v, the set of Clifford extensions T v is
defined as the set of all Clifford subspaces containing v,

T v = {K Clifford subspace with v ∈ K} .

Considering x as an operator on Sx, this operator has by definition of the spin dimension
two positive and two negative eigenvalues. Moreover, the calculation

≺u|(−x)u≻x
(5.7.8)
= ⟨u|x2u⟩H > 0 for all u ∈ Sx \ {0}

shows that the operator (−x) is positive definite on Sx. Thus we can introduce a unique
sign operator sx by demanding that the eigenspaces of sx corresponding to the eigenval-
ues ±1 are precisely the positive and negative spectral subspaces of the operator (−x).
More constructively, this operator is obtained by diagonalizing (−x) and replacing all
positive matrix entries by plus one and all negative matrix entries by minus one (for
details see Exercise 11.4). This sign operator is referred to as the Euclidean sign opera-
tor sx. It is worth noting that for Clifford extensions of the Euclidean sign operator, the
bilinear form ⟨., .⟩ always has Lorentzian signature (see Exercise 11.5).
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A straightforward calculation shows that for two Clifford extensions K, K̃ ∈ T v,
there is a unitary transformation U ∈ eiRv such that K̃ = UKU−1 (for details see [56,
Section 3]). By dividing out this group action, we obtain a five-dimensional vector space,
endowed with the inner product ⟨., ⟩. Taking for v the Euclidean signature operator, we
regard this vector space as a generalization of the usual tangent space.

Definition 11.2.4. The tangent space Tx is defined by

Tx = T sx
x / exp(iRsx) .

It is endowed with an inner product ⟨., .⟩ of signature (1, 4).

Here the name “tangent space” requires an explanation. Since M does not need to
have a manifold structure, the geometric tangent space (as introduced in Section 2.5 of the
preliminaries) cannot be introduced at this stage. Definition 11.2.4 gives another notion,
which does make sense without assuming thatM is a manifold (for example, it applies also
to discrete spacetimes). The basic reason is that our definition of a tangent space merely
describes Clifford structures at each spacetime point, but without using the relations to
neighboring spacetime points. In other words, our definition does not incorporate the
usual notion that spacetime is “approximated infinitesimally” by the tangent space. The
reason why our notion nevertheless makes sense is that in the example of a causal fermion
system constructed on a smooth spin manifold, the geometric tangent space TxM of a
spacetime point x ∈ M (defined for example as in Section 2.5 as equivalence classes
of curves through x) can be identified with a distinguished subspace of Symm(SxM)
via Clifford multiplication v ∈ TxM 7→ γ(v) ∈ Symm(SxM). After identifying SxM
with SxM , we thus obtain a distinguished representative of the tangent space Tx. With
this in mind, Definition 11.2.4 can be regarded as a generalization of the tangent space of
a spin manifold, keeping only those structures which can be defined on the present level
of generality. We remark that a connection between the tangent space Tx and the local
geometry of M can be made even in the non-smooth setting by working with so-called
tangent cone measures (see Section 12.9 for the basic concept and [60, Section 6.2] for
the detailed construction).

We next consider two spacetime points. We need the following assumption.

Definition 11.2.5. Two points x, y ∈M are said to be properly timelike separated
if the closed chain Axy has a strictly positive spectrum and if the corresponding eigenspaces
are definite subspaces of Sx.

This definition clearly implies that x and y are timelike separated (see Definition 5.6.1 and
Exercise 11.7). Moreover, the eigenspaces of Axy are definite if and only if those of Ayx
are, showing that Definition 11.2.5 is again symmetric in x and y. As a consequence, the
spin space can be decomposed uniquely into an orthogonal direct sum Sx = I+ ⊕ I− of a
positive definite subspace I+ and a negative definite subspace I− of Axy. This allows us
to introduce a unique sign operator vxy by demanding that its eigenspaces corresponding
to the eigenvalues ±1 are the subspaces I±. This sign operator is referred to as the
directional sign operator of Axy. Having two sign operators sx and vxy at our disposal,
we can distinguish unique corresponding Clifford extensions, provided that the two sign
operators satisfy the following generic condition.

Definition 11.2.6. Two sign operators v, ṽ are said to be generically separated if
their commutator [v, ṽ] has rank four.
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Lemma 11.2.7. Assume that the sign operators sx and vxy are generically separated.

Then there are unique Clifford extensions K
(y)
x ∈ T sx and Kxy ∈ T vxy and a unique

operator ρ ∈ K
(y)
x ∩Kxy with the following properties:

(i) The relations {sx, ρ} = 0 = {vxy, ρ} hold.

(ii) The operator Uxy := eiρ transforms one Clifford extension to the other,

Kxy = UxyK
(y)
x U−1

xy .

(iii) If {sx, vxy} is a multiple of the identity, then ρ = 0.

The operator ρ depends continuously on sx and vxy.

We refer to Uxy as the synchronization map. Exchanging the roles of x and y, we also
have two sign operators sy and vyx at the point y. Assuming that these sign operators
are again generically separated, we also obtain a unique Clifford extension Kyx ∈ T vyx .

After these preparations, we can now explain the construction of the spin connec-
tion D (for details see [56, Section 3]). For two spacetime points x, y ∈M with the above
properties, we want to introduce an operator

Dx,y : Sy → Sx

(generally speaking, by the subscript xy we always denote an object at the point x,
whereas the additional comma x,y denotes an operator which maps an object at y to an
object at x). It is natural to demand that Dx,y is unitary, that Dy,x is its inverse, and
that these operators map the directional sign operators at x and y to each other,

Dx,y = (Dy,x)
∗ = (Dy,x)

−1 (11.2.1)

vxy = Dx,y vyxDy,x . (11.2.2)

The obvious idea for constructing an operator with these properties is to take a polar
decomposition of P (x, y); this amounts to setting

Dx,y = A
− 1

2
xy P (x, y) . (11.2.3)

This definition has the shortcoming that it is not compatible with the chosen Clifford
extensions. In particular, it does not give rise to a connection on the corresponding
tangent spaces. In order to resolve this problem, we modify (11.2.3) by the ansatz

Dx,y = eiφxy vxy A
− 1

2
xy P (x, y) (11.2.4)

with a free real parameter φxy. In order to comply with (11.2.1), we need to demand
that

φxy = −φyx mod 2π ; (11.2.5)

then (11.2.2) is again satisfied. We can now use the freedom in choosing φxy to arrange
that the distinguished Clifford subspaces Kxy and Kyx are mapped onto each other,

Kxy = Dx,y Kyx Dy,x . (11.2.6)

It turns out that this condition determines φxy up to multiples of π2 . In order to fix φxy
uniquely in agreement with (11.2.5), we need to assume that φxy is not a multiple of π

4 .
This leads us to the following definition.

Definition 11.2.8. Two points x, y ∈M are called spin connectable if the following
conditions hold:
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(a) The points x and y are properly timelike separated (note that this already implies
that x and y are regular as defined in Section 11.2.1).

(b) The Euclidean sign operators sx and sy are generically separated from the directional
sign operators vxy and vyx, respectively.

(c) Employing the ansatz (11.2.4), the phases φxy which satisfy condition (11.2.6) are
not multiples of π

4 .

We denote the set of points which are spin connectable to x by I(x). It is straightforward
to verify that I(x) is an open subset of M .

Under these assumptions, we can fix φxy uniquely by imposing that

φxy ∈
(
− π

2
,−π

4

)
∪
(π
4
,
π

2

)
, (11.2.7)

giving the following result (for the proofs see [56, Section 3.3]).

Theorem 11.2.9. Assume that two points x, y ∈ M are spin connectable. Then
there is a unique spin connection Dx,y : Sy → Sx of the form (11.2.4) having the
properties (11.2.1), (11.2.2), (11.2.6) and (11.2.7).

11.2.2. The Metric Connection and Curvature. We now outline a few further
constructions from [56, Section 3]. The spin connection induces a connection on the
corresponding tangent spaces, as we now explain. Suppose that uy ∈ Ty. Then, ac-
cording to Definition 11.2.4 and Lemma 11.2.7, we can consider uy as a vector of the

representative K
(x)
y ∈ T sy . By applying the synchronization map, we obtain a vector

in Kyx,

uyx := Uyx uy U
−1
yx ∈ Kyx .

According to (11.2.6), we can now “parallel transport” the vector to the Clifford sub-
space Kxy,

uxy := Dx,y uyxDy,x ∈ Kxy .

Finally, we apply the inverse of the synchronization map to obtain the vector

ux := U−1
xy uxy Uxy ∈ K(y)

x .

As K
(y)
x is a representative of the tangent space Tx and all transformations were unitary,

we obtain an isometry from Ty to Tx.

Definition 11.2.10. The isometry between the tangent spaces defined by

∇x,y : Ty → Tx : uy 7→ ux

is referred to as the metric connection corresponding to the spin connection D.

We next introduce a notion of curvature.

Definition 11.2.11. Suppose that three points x, y, z ∈ M are pairwise spin con-
nectable. Then the associated metric curvature R is defined by

R(x, y, z) = ∇x,y∇y,z∇z,x : Tx → Tx . (11.2.8)

The metric curvature R(x, y, z) can be thought of as a discrete analog of the holonomy of
the Levi-Civita connection on a manifold, where a tangent vector is parallel transported
along a loop starting and ending at x. On a manifold, the curvature at x is immediately
obtained from the holonomy by considering the loops in a small neighborhood of x. With
this in mind, Definition 11.2.11 indeed generalizes the usual notion of curvature to causal
fermion systems.
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The following construction relates directional sign operators to vectors of the tangent
space. Suppose that y is spin connectable to x. By synchronizing the directional sign
operator vxy, we obtain the vector

ŷx := U−1
xy vxy Uxy ∈ K(y)

x . (11.2.9)

As K
(y)
x ∈ T sx is a representative of the tangent space, we can regard ŷx as a tangent

vector. We thus obtain a mapping

I(x) → Tx : y 7→ ŷx .

We refer to ŷx as the directional tangent vector of y in Tx. As vxy is a sign operator and the
transformations in (11.2.9) are unitary, the directional tangent vector is a timelike unit
vector with the additional property that the inner product ≺.|ŷx.≻x is positive definite.

We finally explain how to reduce the dimension of the tangent space to four, with the
desired Lorentzian signature (1, 3).

Definition 11.2.12. The fermion system is called chirally symmetric if to ev-
ery x ∈ M we can associate a spacelike vector u(x) ∈ Tx which is orthogonal to all
directional tangent vectors,

⟨u(x), ŷx⟩ = 0 for all y ∈ I(x) ,

and is parallel with respect to the metric connection, i.e.

u(x) = ∇x,y u(y)∇y,x for all y ∈ I(x) .

Definition 11.2.13. For a chirally symmetric fermion system, we introduce the re-
duced tangent space T red

x by

T red
x = ⟨ux⟩⊥ ⊂ Tx .

Clearly, the reduced tangent space has dimension four and signature (1, 3). Moreover,
the operator ∇x,y maps the reduced tangent spaces isometrically to each other. The local

operator Γ := −iu/
√
−u2 takes the role of the pseudo-scalar matrix.

11.3. Correspondence to Lorentzian Spin Geometry

We now explain how the above geometric notions correspond to the usual objects
of differential geometry in Minkowski space (Theorem 11.3.1) and on a globally hyper-
bolic Lorentzian manifold (Theorem 11.3.2). We closely follow the presentation in [57,
Section 3.3]; see also the review [47].

We let (M, g) be a time-oriented Lorentzian spin manifold with spinor bundle SM
(for basic definitions see Section 4.5). In order to obtain a corresponding causal fermion
system, we adapt the construction in Minkowski space given in Section 5.5: First, we
choose a closed subspace H of the Hilbert space of Dirac solutions (Hm, (.|.)) (as intro-
duced in Section 4.5). Endowed with the induced scalar product ⟨.|.⟩H := (.|.)|H×H, we
obtain a Hilbert space (H, ⟨.|.⟩H). Next, one introduces a regularization operator (5.5.1),
for example by mollifying the initial data on a Cauchy surface (as is explained in [80,
Section 4]). Introducing the local correlation operator F ε(x) for every x ∈ M again
by (5.5.3), we define the measure ρ on F as the push-forward of the volume measure µ
on M, i.e.

ρ = (F ε)∗µ ,
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where, in local coordinates, the measure µ has the form

dµ =
√
|det g| d4x .

We thus obtain a causal fermion system (H,F, ρ) describing the curved spacetime (M, g).
The basic inherent structures of this causal fermion system (like the spin space Sx and
the spin inner product as defined in Section 5.7) can be identified canonically with the
corresponding objects of spin geometry (like the spinor space SxM with spin inner prod-
uct; for details see [45, §1.2.4] or [60]). With this identification, Clifford multiplication
gives rise to a canonical identification of the tangent space TxM with a distinguished
Clifford subspace.

Let γ(t) be a smooth, future-directed and timelike curve, for simplicity parametrized
by the arc length, defined on the interval [0, T ] with γ(0) = y and γ(T ) = x. Then the par-
allel transport of tangent vectors along γ with respect to the Levi-Civita connection ∇LC

gives rise to the isometry

∇LC
x,y : Ty → Tx .

In order to compare with the metric connection ∇ of Definition 11.2.10, we subdivide γ
(for simplicity with equal spacing, although a non-uniform spacing would work just as
well). Thus for any given N , we define the points x0, . . . , xN by

xn = γ(tn) with tn =
nT

N
.

We define the parallel transport ∇N
x,y by successively composing the parallel transport

between neighboring points,

∇N
x,y := ∇xN ,xN−1∇xN−1,xN−2 · · · ∇x1,x0 : Ty → Tx .

We first state a result in the Minkowski vacuum. We choose H as the subspace of all
negative-energy solutions of the Dirac equation (describing the Dirac sea; see the prelimi-
naries in Section 1.5). For technical simplicity, we choose the iε-regularization, where the
regularization operator (5.5.1) is the multiplication operator by eεω in momentum space
in (5.5.2).

Theorem 11.3.1. For every ε > 0 we consider the causal fermion systems (F,H, ρ)
describing the vacuum with iε-regularization. Then for a generic curve γ and for ev-
ery N ∈ N, there is ε0 such that for all ε ∈ (0, ε0] and all n = 1, . . . , N , the points xn
and xn−1 are spin connectable. Moreover,

∇LC
x,y = lim

N→∞
lim
ε↘0

∇N
x,y .

By a generic curve we mean that the admissible curves are dense in the C∞-topology
(i.e., for any smooth γ and every K ∈ N, there is a sequence γℓ of admissible curves
such that Dkγℓ → Dkγ uniformly for all k = 0, . . . ,K). The restriction to generic
curves is needed in order to ensure that the Euclidean and directional sign operators are
generically separated (see Definition 11.2.8 (b)). The proof of the above theorem is given
in [56, Section 4].

Clearly, in this theorem the connection ∇LC
x,y is trivial. In order to show that our

connection also coincides with the Levi-Civita connection in the case with curvature,
in [56, Section 5] a globally hyperbolic Lorentzian manifold is considered. For technical
simplicity, we assume that the manifold is flat Minkowski space in the past of a given
Cauchy hypersurface.
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Theorem 11.3.2. Let (M, g) be a globally hyperbolic manifold which is isometric to
Minkowski space in the past of a given Cauchy-hypersurface N. For given γ, for any ε > 0
we consider the causal fermion system (H,F, ρ) which in the past of N coincides with
the causal fermion system in Minkowski space considered in Theorem 11.3.1. Then for a
generic curve γ and for every sufficiently large N , there is ε0 such that for all ε ∈ (0, ε0]
and all n = 1, . . . , N , the points xn and xn−1 are spin connectable. Moreover,

lim
N→∞

lim
ε↘0

∇N
x,y −∇LC

x,y = O

(
L(γ)

∇R
m2

)(
1 + O

(scal
m2

))
,

where R denotes the Riemann curvature tensor, scal is scalar curvature, and L(γ) is the
length of the curve γ.

Thus the metric connection of Definition 11.2.10 indeed coincides with the Levi-Civita
connection, up to higher order curvature corrections. For detailed explanations and the
proof we refer to [56, Section 5].

We conclude this section with a few remarks on further constructions [56]. First, there
is the subtle point that the unitary transformation U ∈ exp(iRsx) which is used to identify

two representatives K, K̃ ∈ Tx via the relation K̃ = UKU−1 (see Definition 11.2.4) is not
unique. More precisely, the operator U can be transformed according to

U → −U and U → sx U .

As a consequence, the metric connection (see Definition 11.2.10) is defined only up to the
transformation

∇x,yu→ sx (∇x,yu) sx .

Note that this transformation maps representatives of the same tangent vector into each
other, so that ∇x,yu ∈ Tx is still a well-defined tangent vector. But we get an ambiguity
when composing the metric connection several times (as for example in the expression for
the metric curvature in Definition 11.2.11). This ambiguity can be removed by considering
parity-preserving systems as introduced in [56, Section 3.4].

At first sight, one might conjecture that Theorem 11.3.2 should also apply to the spin
connection in the sense that

DLC
x,y = lim

N→∞
lim
ε↘0

DN
x,y ,

where DLC is the spin connection on SM induced by the Levi-Civita connection and

DN
x,y := DxN ,xN−1DxN−1,xN−2 · · ·Dx1,x0 : Sy → Sx (11.3.1)

(and D is the spin connection of Theorem 11.2.9). It turns out that this conjecture is
false. But the conjecture becomes true if we replace (11.3.1) by the operator product

DN
(x,y) := DxN ,xN−1U

(xN |xN−2)
xN−1 DxN−1,xN−2U

(xN−1|xN−3)
xN−2 · · ·U (x2|x0)

x1 Dx1,x0 .

Here the intermediate factors U (.|.)
. are the so-called splice maps given by

U (z|y)
x = Uxz V U

−1
xy ,

where Uxz and Uxy are synchronization maps, and V ∈ exp(iRsx) is an operator which
identifies the representatives Kxy,Kxz ∈ Tx (for details see [56, Section 3.7 and Sec-
tion 5]). The splice maps also enter the spin curvature R, which is defined in analogy to
the metric curvature (11.2.8) by

R(x, y, z) = U (z|y)
x Dx,y U

(x|z)
y Dy,z U

(y|x)
z Dz,x : Sx → Sx .
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11.4. Exercises

Exercise 11.1. (Vector fields on a closed Riemannian manifold) Let (M, g) be a
smooth compact Riemannian manifold of dimension k and ∆ the covariant Laplacian on
smooth vector fields. We complexify the vector fields and endow them with the L2-scalar
product

⟨u|v⟩L2 :=

ˆ
M
gjk uj v

k dµM ,

where dµM =
√
det g dkx is the volume measure on M. Show the following:

(a) The operator −∆ is essentially selfadjoint and has smooth eigenfunctions.
(b) We choose a parameter L > 0 and choose H as the spectral subspace of the Laplacian

H = rgχ[0,L](−∆) .

Show that H is finite-dimensional.
(c) For any p ∈ M we define the local correlation operator F (p) ∈ L(H) by

−gij ui(p) vj(p) = ⟨u|F (p)v⟩L2 for all u, v ∈ H .

Show that this operator is well-defined, negative semi-definite and has rank at most k.
(d) We again introduce the measure by ρ = F∗µ. Show that (H,F, ρ) is a Riemannian

fermion system of spin dimension k.

Hint: For (a) and (b) one can use properties of elliptic operators on compact domains,
as can be found for example in [32, 143].

Exercise 11.2. (Spinors on a closed Riemannian manifold) Let (M, g) be a compact
Riemannian spin manifold of dimension k ≥ 1. Then the spinor bundle SM is a vector
bundle with fiber SpM ≃ Cn with n = 2[k/2] (see for example [115, 90]). Moreover,
the spin inner product ≺.|.≻p : SpM × SpM → C is positive definite. On the smooth
sections Γ(SM) of the spinor bundle we can thus introduce the scalar product

⟨ψ|ϕ⟩ =
ˆ

M
≺ψ|ϕ≻p dµM(p) .

Forming the completion gives the Hilbert space L2(M, SM).

(a) The Dirac operator D with domain of definition Γ(SM) is an essentially selfadjoint
operator on L2(M, SM). It has a purely discrete spectrum and finite-dimensional
eigenspaces.

(b) Given a parameter L > 0, we let H be the space spanned by all eigenvectors whose
eigenvalues lie in the interval [−L, 0],

H = rgχ[−L,0](D) ⊂ L2(M, SM) .

Denoting the restriction of the L2-scalar product to H by ⟨.|.⟩H, we obtain a finite-
dimensional Hilbert space (H, ⟨.|.⟩H). Show that this Hilbert space is finite-dimen-
sional and consists of smooth wave functions.

(c) For every p ∈ M we introduce the local correlation operator F (p) by

−≺ψ|ϕ≻p = ⟨ψ|F (p)ϕ⟩H for all ψ, ϕ ∈ H .

Show that this operator is negative semi-definite and has rank at most n.
(d) We again introduce the measure by ρ = F∗µ. Show that (H,F, ρ) is a Riemannian

fermion system of spin dimension n.
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Hint: The Dirac operator on Riemannian manifolds of general dimension is introduced
in [115, 90]. For (a) and (b) one can again use properties of elliptic operators on compact
domains, as can be found for example in [32, 143] or, more specifically for Dirac operators,
in [145, Chapter 20].

Exercise 11.3. (Causal structure of a Riemannian fermion system) Let (H,F, ρ)
be a Riemannian fermion system of spin dimension n (see Definition 11.1.1).

(a) Show that for every y ∈ F, the operator −y is positive semi-definite. How can its
square root

√
−y be defined?

(b) Show that the operator product
√
−y (−x)

√
−y (with x ∈ F) is positive semi-definite.

(c) Show that the eigenvalues of the operator product xy are all real and non-negative.
Hint: Use the relation xy = −x

√
−y

√
−y together with the fact that the spectrum

is invariant under cyclic permutations.
(d) What does this mean for the causal structure of Definition 5.6.1?

Exercise 11.4. (The Euclidean sign operator) Let x ∈ F be a regular spacetime
point. For convenience, we choose a basis of the Hilbert space where x is diagonal, i.e.

(−x) = diag
(
ν1, ν2, ν3, ν3, 0, . . .

)
with ν1, ν2 > 0 and ν3, ν4 < 0 .

(a) Show that the eigenspaces corresponding to the positive (negative) eigenvalues of (−x)
are positive (respectively negative) definite w.r.t. the spin inner product.

(b) We define the Euclidean sign operator in the above basis by

sx = diag
(
1, 1,−1,−1, 0, . . .

)
.

Show that this operator is uniquely defined without referring to bases by demanding
that sx commutes with x, that its eigenvalues are {1,−1, 0} and that the eigenspaces
corresponding to 1 (and −1) are negative (respectively positive) definite with respect
to the spin inner product.

Exercise 11.5. (Signature of Clifford extensions)

(a) Let T sx be a Clifford extension of the Euclidean sign operator sx. Show that resulting
bilinear form ⟨., .⟩ on T sx is Lorentzian, i.e. that it has signature (1, k) with k ∈
N. Hint: it is most convenient to work in an orthonormal eigenvector basis of the
Euclidean sign operator. You also find the proof in [60, Lemma 4.4].

(b) Now let T v be a the Clifford extension of a general sign operator v. Is the signature
of ⟨., .⟩ necessarily Lorentzian? Hint: It may be helpful to have a look at [56,
Lemma 3.2].

Exercise 11.6. (Clifford extensions on the Dirac sphere) We return to the Dirac
sphere considered in Exercise 5.14. Thus we let F : S2 → F and M := supp ρ = F (S2).

(a) Given p ∈ S2, we consider the spacetime point x = F (p) ∈ M . Construct the
Euclidean sign operator sx at x.

(b) What is the maximal dimension of Clifford extensions of the Euclidean sign operator?
Show that the Clifford extension of maximal dimension is unique.

(c) Give an explicit parametrization of this Clifford extension. How does the inner
product ⟨., .⟩ look like in your parametrization?

Exercise 11.7. (Stability of the causal structure) A binary relation P on F is said
to be stable under perturbations if

(x0, y0) ∈ P =⇒ ∃ r > 0 : Br(x0)×Br(y0) ⊂ P.



194 11. TOPOLOGICAL AND GEOMETRIC STRUCTURES

Following Definition 11.2.5, two points x, y ∈ F are said to be properly timelike separated
if the closed chain Axy has a strictly positive spectrum and if all eigenspaces are definite
subspaces of (Sx,≺ · , · ≻).

(a) Show that proper timelike separation implies timelike separation.
(b) Show by a counterexample with 3×3 matrices that the notion of timelike separation

is not stable under perturbations.
(c) Show that the notion of properly timelike separation is stable under perturbations.
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CHAPTER 12

Measure-Theoretic Methods

The main goal of this chapter is to prove the existence of minimizers for the causal
action principle in the case that H is finite dimensional and ρ is normalized, i.e.

dimH =: f <∞ and ρ(F) = 1 . (12.0.1)

After introducing the necessary methods (Sections 12.1 and 12.2) we first apply them
to prove existence of minimizers for causal variational principles in the compact setting
(Section 12.3). In preparation for the proof for the causal action principle, we illustrate the
constraints by a few examples (Section 12.4). The difficulties revealed by these examples
can be resolved by working with the so-called moment measures. After introducing
the needed mathematical methods (Section 12.5), the moment measures are introduced
(Section 12.6). Then the existence proof is completed (Section 12.7). In order to give
a first idea for how to deal with an infinite total volume, we finally prove existence of
minimizers for causal variational principles in the non-compact setting (Section 12.8).

Our general strategy is to apply the direct method in the calculus of variations, which
can be summarized as follows:

(a) Choose a minimizing sequence, i.e. a sequence of measures (ρk) which satisfy the
constraints such that

S(ρk) → inf
ρ
S(ρ) .

Such a minimizing sequence always exists by definition of the infimum (note that the
action and therefore also its infimum are non-negative).

(b) Show that a subsequence of the measures converges in a suitable sense,

ρkl “−→” ρ .

Here the quotation marks indicate that we still need to specify in which sense the
sequence should converge (convergence in which space, strong or weak convergence,
etc.).

(c) Finally, one must show that the action is lower semi-continuous, i.e.

S(ρ) ≤ lim inf
l→∞

S(ρkl) .

Also, one must prove that the limit measure ρ satisfies the constraints.

Once these three steps have been carried out, the measure ρ is a desired minimizer.
We point out that this procedure does not give a unique minimizer, simply because
there may be different minimizing sequences, and because the choice of the subsequences
may involve an arbitrariness. Indeed, for the causal action principle we do not expect
uniqueness. There should be many different minimizers, which describe different physical
systems (like the vacuum, a system involving particles and fields, etc.). This intuitive
picture is confirmed by the numerical studies in [84, 59] which show that, even if the
dimension of H is small, there are many different minimizers.

197
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12.1. The Banach-Alaoglu Theorem

For our purposes, it suffices to consider the case that the Banach space is separable,
in which case the theorem was first proved by Banach (Alaoglu proved the generalization
to non-separable Banach spaces; this makes use of Tychonoff’s theorem and goes beyond
what we need here). Indeed, the idea of proof of the theorem can be traced back to Eduard
Helly’s doctoral thesis in 1912, where the closely related “Helly’s selection theorem” is
proved (of course without reference to Banach spaces, which were introduced later). We
closely follow the presentation in [116, Section 10.3].

Let (E, ∥.∥E) be a separable (real or complex) Banach space and (E∗, ∥.∥E∗) its dual
space with the usual sup-norm, i.e.

∥ϕ∥E∗ = sup
u∈E,∥u∥=1

∣∣ϕ(u)∣∣ . (12.1.1)

A sequence (ϕn)n∈N in E∗ is said to be weak*-convergent to ϕ ∈ E∗ if

lim
n→∞

ϕn(u) = ϕ(u) for all u ∈ E .

Theorem 12.1.1. (Banach-Alaoglu theorem in the separable case) Let E be
a separable Banach space. Then every bounded sequence in E∗ has a weak*-convergent
subsequence.

Proof. Let ϕn be a bounded sequence in E∗, meaning that there is a constant c > 0
with

∥ϕn∥E∗ ≤ c for all n ∈ N . (12.1.2)

We let (uℓ)ℓ∈N be a sequence in E which is dense in E. Combining (12.1.2) with (12.1.1),
the estimate

|ϕn(u1)| ≤ ∥ϕn∥E∗ ∥u1∥E ≤ c ∥u1∥E (12.1.3)

shows that (ϕn(u1))n∈N is a bounded sequence. Thus we can choose a convergent sub-
sequence. By inductively choosing subsequences and taking the diagonal sequence, we
obtain a subsequence (ϕnj ) such that the limit limj→∞ ϕnj (uℓ) exists for all ℓ ∈ N. Hence
setting

ϕ(uℓ) := lim
j→∞

ϕnj (uℓ) ,

we obtain a densely defined functional. Taking the limit in (12.1.3) (and the similar
inequalities for u2, u3, . . .), one sees that this functional is again continuous. Therefore, it
has a unique continuous extension to E. By continuity, the resulting functional ϕ ∈ E∗

satisfies the relations
ϕ(u) = lim

j→∞
ϕnj (u) for all u ∈ H .

In particular, it is again a linear. This concludes the proof. □

12.2. The Riesz Representation Theorem

In this section and Section 12.5, we shall introduce the methods from measure theory
needed for the existence proofs. Apart from the books already mentioned in the prelimi-
naries (Section 2.3), we also recommend the book [33] (this book is only concerned with
measures in Rn, but otherwise goes far beyond what we need here).

For our purposes, it suffices to restrict attention to the case that the base space K is
a compact topological space. We always consider bounded regular Borel measures on K

(for the preliminaries see Section 2.3). In order to avoid confusion, we note that by a
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measure we always mean a positive measure (signed measures will not be considered in
this book). A bounded measure is also referred to as a measure of finite total volume.
Often, we normalize the measure such that µ(K) = 1.

In words, the Riesz representation theorem makes it possible to represent a linear
functional on the Banach space of continuous functions of a topological space by a regular
Borel measure on this topological space. We remark that we already came across the Riesz
representation theorem in Section 3.2, where it was needed for the construction of spectral
measures. However, in this context we only needed the special case that the topological
space was an interval of the real line. We now state the general theorem and outline its
proof, mainly following the presentation in [101, §56]. More details can be found in [8,
§IV.29].

As a simple example, one can choose K as the closed unit ball in Rn. Restricting
the Lebesgue measure to the Borel subsets of K gives a Radon measure. The Lebesgue
measure itself is a completion of this Radon measure obtained by extending the σ-algebra
of measurable sets by all subsets of Borel sets of measure zero. Since this completion is
a rather trivial extension, in what follows we prefer to work with Radon measures or,
equivalently, with normalized regular Borel measures.

Theorem 12.2.1. (Riesz representation theorem) Let K be a compact topological
space, and E = C0(K,R) the Banach space of continuous functions on K with the usual
sup-norm,

∥f∥ = sup
x∈K

|f(x)| .

Let Λ ∈ E∗ be a continuous linear functional which is positive in the sense that

Λ(f) ≥ 0 for all nonnegative functions f ∈ C0(K,R) .
Then there is a unique regular Borel measure µ such that

Λ(f) =

ˆ
K

f dµ for all f ∈ C0(K,R) .

Outline of the Proof. We follow the strategy in [101, §56]. Given a Borel setA ⊂
K, we set

λ(A) = inf
{
Λ(f)

∣∣ f ∈ C0(K,R) and f ≥ χA
}
∈ R+

0 .

Intuitively speaking, λ gives us the desired “volume” of the set A. But there is the
technical problem that λ is in general not a regular Borel measure. Instead, it merely is
a content, meaning that it has the following properties:

(i) non-negative and finite: 0 ≤ λ(A) <∞
(ii) monotone: C, D compact and C ⊂ D =⇒ λ(C) ≤ λ(D)
(iii) additive: C, D compact and disjoint =⇒ λ(C ∪D) = λ(C) + λ(D)
(iv) subadditive: C, D compact =⇒ λ(C ∪D) ≤ λ(C) + λ(D)

At this stage, we are in a similar situation as in the elementary measure theory course
after saying that a cube of length ℓ in R3 should have volume ℓ3. In order to get from this
“volume measure” to a measure in the mathematical sense, one has to proceed in several
steps invoking the subtle and clever constructions of measure theory (due to Lebesgue,
Hahn, Carathéodory and others) in order to get a mapping from a σ-algebra to the non-
negative real numbers which is σ-additive. In simple terms, repeating these constructions
starting from the above content gives the desired Borel measure µ. For brevity, we here
merely outline the constructions and refer for details to text books on measure theory
(like for example [101, Chapter X]).
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The first step is to approximate (or exhaust) from inside by compact sets. Thus one
introduces the inner content λ∗ by

λ∗(U) = sup
{
λ(C)

∣∣ C ⊂ U compact
}
.

This inner content is monotone and countably additive. The second step is to exhaust
from outside by open sets. This gives the outer measure µ∗,

µ∗(U) = inf
{
λ∗(Ω)

∣∣ Ω ⊃ U open
}
.

The outer measure is defined for any subset of K. Therefore, it remains to distinguish
the measurable sets. This is accomplished by Carathéodory’s criterion, which defines a
set A ⊂ K to be measurable if

µ∗(A) = µ∗(A ∩B) + µ∗(A \B)

for every subset B ⊂ K. Then Carathéodory’s lemma (for a concise proof see for exam-
ple [18, Lemma 2.8]) implies that the measurable sets form a σ-algebra, and that the
restriction of µ∗ to the measurable sets is indeed a measure, denoted by µ.

In order to complete the proof, one still needs to verify that every Borel set is µ-
measurable. Moreover, it remains to show that the resulting Borel measure is regular.
To this end, one first needs to show that the content λ is regular in the following sense:

(v) regular: For every compact C,

λ(C) = inf
{
λ(D)

∣∣D compact and C ⊂
◦
D
}
.

As the proofs of these remaining points are rather straightforward and not very instruc-
tive, we refer for the details to [101, §54–§56]. □

12.3. Existence of Minimizers for Causal Variational Principles in the
Compact Setting

We now apply the above methods to prove existence of minimizers for causal vari-
ational principles in the compact setting. Our strategy is to apply the Banach-Alaoglu
theorem to a specific Banach space, namely the continuous functions on a compact metric
space. We first verify that this Banach space is separable.

Proposition 12.3.1. Let K be a compact metric space. Then C0(K,R) is a separable
Banach space.

Proof. The proposition is a consequence of the Stone-Weierstrass theorem, whose
proof can be found for example in [26, 7.3.1] We closely follow the proof given in [26,
7.4.4].

Covering K by a finite number of open balls of radii 1, 1/2, 1/3, . . . , one gets an
enumerable basis of the open sets (Un)n∈N. For any n ∈ N , we let gn be the continuous
function

gn(x) = d
(
x,K \ Un

)
.

Clearly, the algebra generated by these functions (by taking finite products and finite
linear combinations) is again separable. Therefore, it suffices to show that this algebra
is dense in C0(K,R). To this end, we need to verify the assumptions of the Stone-
Weierstrass theorem. The only assumption which is not obvious is that the algebra
separates the points. This can be seen as follows: Let x and y be two distinct points
in K. Since the (Un) are a basis of the topology, there is Un with x ∈ Un and y ̸∈ Un. As
a consequence, gn(x) > 0 but gn(y) = 0. □
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We proceed by proving a compactness result for Radon measures.

Theorem 12.3.2. Let ρn be a series of regular Borel measures on C0(K,R) which are
bounded in the sense that there is a constant c > 0 with

ρn(K) ≤ c for all n .

Then there is a subsequence (ρnk
) which converges as a measure, i.e.

lim
k→∞

ˆ
K

f dρnk
=

ˆ
K

f dρ for all f ∈ C0(K,R) . (12.3.1)

Moreover, the total volume converges, i.e.

ρ(K) = lim
k→∞

ρnk
(K) . (12.3.2)

Proof. Via

ϕn(f) :=

ˆ
K

f dρn ,

every measure can be identified with a positive linear functional on E := C0(K,R).
Since E is separable (Proposition 12.3.1), we can apply the Banach-Alaoglu theorem
in the separable case (Theorem 12.1.1) to conclude that there is a weak*-convergent
subsequence, i.e.

lim
k→∞

ϕnk
(f) = ϕ(f) for all f ∈ C0(K,R) .

Clearly, since all ϕnk
are positive, the same is true for the limit ϕ. Therefore, the Riesz

representation theorem (Theorem 12.2.1) makes it possible to represent ϕ by a regular
Borel measure ρ, i.e.

ϕ(f) =

ˆ
K

f dρ for all f ∈ C0(K,R) .

Choosing f as the constant function, one obtains (12.3.2). This concludes the proof. □

Theorem 12.3.3. Assume that F is a compact topological space and the Lagrangian
is continuous,

L ∈ C0(F × F,R+
0 ) .

Then the causal variational principle where the causal action (6.2.2) is minimized in the
class of regular Borel measures under the volume constraint (6.2.3) is well-posed in the
sense that every minimizing sequence (ρn)n∈N has a subsequence which converges as a
measure to a minimizer ρ.

Proof. The existence of a convergent subsequence (ρnk
)k∈N is proven in Theo-

rem 12.3.2. It remains to show that the action is continuous, i.e.

lim
k→∞

S
(
ρnk

)
= S(ρ) .

This is verified in detail as follows. Using that the Lagrangian is continuous in its second
argument, we know that

lim
k→∞

ˆ
F

L(x, y) dρnk
(y) =

ˆ
F

L(x, y) dρ(y) for all x ∈ F . (12.3.3)

Next, since F is compact, the Lagrangian is even uniformly continuous on F×F. There-
fore, given ε > 0, every point x ∈ F has an open neighborhood U(x) ⊂ F such that∣∣L(x̂, y)− L(x, y)

∣∣ < ε for all x̂ ∈ U(x) and y ∈ F .
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Integrating over y with respect to any normed regular Borel measure ρ̃, it follows that∣∣∣∣ˆ
F

L(x̂, y) dρ̃(y) −
ˆ
F

L(x, y) dρ̃(y)

∣∣∣∣ ≤ ε for all x̂ ∈ U(x) . (12.3.4)

Covering F by a finite number of such neighborhoods U(x1), . . . , U(xN ), one can com-
bine the pointwise convergence (12.3.3) for x = x1, . . . , xN with the estimate (12.3.4) to
conclude that for any ε > 0 there is k0 ∈ N such that∣∣∣∣ ˆ

F

L(x, y) dρnk
(y) −

ˆ
F

L(x, y) dρ(y)
∣∣∣∣ ≤ 3ε for all x ∈ F and k ≥ k0 .

Integrating over y with respect to ρnk
and ρ gives for all k ≥ k0 the respective inequalities∣∣∣∣S(ρnk

)
−

ˆ
F

dρnk
(x)

ˆ
F

dρ(y) L(x, y)
∣∣∣∣ ≤ 3ε ,∣∣∣∣ˆ

F

dρ(x)

ˆ
F

dρnk
(y) L(x, y) − S(ρ)

∣∣∣∣ ≤ 3ε .

Combining these inequalities and using that the Lagrangian is symmetric in its two
arguments, we conclude that ∣∣S(ρnk

)
− S(ρ)

∣∣ ≤ 6ε .

This gives the result. □

We finally remark that the statement of this theorem also holds if the Lagrangian merely
is lower semi-continuous, as is worked out in [75, Section 3.2].

12.4. Examples Illustrating the Constraints

Compared to causal variational principles in the compact setting, the existence proof
for the causal action principle is considerably harder because we need to handle the
constraints (5.6.3)–(5.6.5) and face the difficulty that the set F is unbounded and therefore
non-compact. We now explain the role of the constraints in a few examples. The necessity
of the volume constraint is quite obvious: If we dropped the constraint of fixed total
volume (5.6.3), the measure ρ = 0 would be a trivial minimizer. The role of the trace
constraint is already less obvious. It is explained in the next two examples.

Example 12.4.1. (necessity of the trace constraint) Let x be the operator with
the matrix representation

x = diag
(
1, . . . , 1︸ ︷︷ ︸
n times

,−1, . . . ,−1︸ ︷︷ ︸
n times

, 0, 0, . . .
)
.

Moreover, we choose ρ as a multiple of the Dirac measure supported at x. Then the
action S vanishes (see (5.6.2)), whereas the constraint T is strictly positive (see (5.6.5)).

♢

Example 12.4.2. (non-triviality of the action with trace constraint) Let ρ
be a normalized measure which satisfies the trace constraint in a non-trivial way, i.e.ˆ

F

tr(x) dρ(x) = const ̸= 0 .

Let us prove that the action is non-zero. This will show that the trace constraint really
avoids trivial minimizers of the causal action principle.
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(a) Since the integral over the trace is non-zero, there is a point x in the support of ρ
with tr(x) ̸= 0. We denote the non-trivial eigenvalues of x by ν1, . . . , ν2n and order
them according to

ν1 ≤ · · · ≤ νn ≤ 0 ≤ νn+1 ≤ · · · ≤ ν2n .

The fact that the trace of x is non-zero clearly implies that the νi do not all have the
same absolute value. As a consequence, the nontrivial eigenvalues of the operator
product x2 given by λxxj = ν2j are all non-negative and not all equal. Using the form

of the Lagrangian in (5.6.1), we conclude that L(x, x) > 0.
(b) Since the Lagrangian is continuous in both arguments, there is an open neighbor-

hood U ⊂ F of x such that L(y, z) > 0 for all y, z ∈ U . Since x lies in the support
of ρ, we know that ρ(U) > 0. As a consequence,

S ≥
ˆ
U
dρ(x)

ˆ
U
dρ(y) L(x, y) > 0

(because if the integrals vanished, then the integrand would have to be zero almost
everywhere, a contradiction).

We remark that this argument is quantified in [42, Proposition 4.3]. ♢

We now come to the boundedness constraint. In order to explain how it comes about,
we give an explicit example with (4 × 4)-matrices (for a similar example with (2 × 2)-
matrices see Exercise 6.2).

Example 12.4.3. (necessity of the boundedness constraint) The following
example explains why the boundedness constraint (5.6.5) is needed in order to ensure
the existence of minimizers. It was first given in [43, Example 2.9]. Let H = C4. We
introduce the four 4× 4-matrices acting on H by

γα =

(
σα 0
0 −σα

)
, α = 1, 2, 3 and γ4 =

(
0 1

1 0

)

(where the σα are again the Pauli matrices (1.3.4)). Given a parameter τ > 1, we consider
the following mapping from the sphere S3 ⊂ R4 to the linear operators on H,

F : S3 → L(H) , F (x) =

4∑
i=1

τ xiγi + 1 .

(a) The matrices F (x) have two positive and two negative eigenvalues:
Since the computation of the eigenvalues of 4× 4-matrices is tedious, it is preferable
to proceed as follows. The matrices γj are the Dirac matrices of Euclidean R4,
satisfying the anti-commutation relations

{γi, γj} = 2δij 1 (i, j = 1, . . . , 4) .
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As a consequence,

F (x)− 1 =

4∑
i=1

τ xiγi

(
F (x)− 1

)2
=

4∑
i,j=1

τ2 xi xjγiγj =
τ2

2

4∑
i,j=1

xi xj
{
γi, γj

}
=
τ2

2

4∑
i,j=1

xi xj 2 δij 1 = τ2 1 .

Hence the matrix F (x) satisfies the polynomial equation(
F (x)− 1

)2
= τ2 1 .

We conclude that F (x) has the eigenvalues

ν± = 1± τ .

Since F (x) − 1 is trace-free, each eigenvalue must appear with multiplicity two.
Using that τ > 1, we conclude that F (x) really has two positive and two negative
eigenvalues.

(b) Construction of a causal fermion system:
Let µ be the normalized Lebesgue measure on S3 ⊂ R4. Setting ρ = F∗µ defines
a causal fermion system of spin dimension two and total volume one. Since the
matrices F (x) all have trace four, we also know that

ˆ
F

tr(x) dρ(x) =

ˆ
S3

tr(F (x)) dµ(x) = 4 .

Therefore, the volume constraint (5.6.3) and the trace constraint (5.6.4) are satisfied,
both with constants independent of τ .

(c) Computation of the eigenvalues of F (x)F (y):
Again, this can be calculated most conveniently using the Clifford relations.

F (x) F (y) =
( 4∑
i=1

τ xiγi + 1
)( 4∑

j=1

τ yjγj + 1
)

=
(
1 + τ2 ⟨x, y⟩

)
1+ τ

4∑
i=1

(xi + yi)γi +
τ2

2

4∑
i,j=1

xiyj
[
γi, γj

]
. (12.4.1)

Using that

γi
[
γi, γj

]
= −

[
γi, γj

]
γi ,

we conclude that(
F (x) F (y)−

(
1 + τ2 ⟨x, y⟩

)
1
)2

= τ2
4∑
i=1

(xi + yi)2 +

(
τ2

2

4∑
i,j=1

xiyj
[
γi, γj

])2

.
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This can be simplified with the help of the relations

5∑
i=1

(xi + yi)2 = 2 + 2 ⟨x, y⟩ (12.4.2)

( 4∑
i,j=1

xiyj
[
γi, γj

])2

= −4 sin2 ϑ = −4
(
1− ⟨x, y⟩2

)
, (12.4.3)

where ϑ is the angle between the vectors x, y ∈ R4. The relation (12.4.3) can be
verified in detail as follows. The rotational symmetry of the Euclidean Dirac operator
on R5 means that for every rotation O ∈ SO(4) there is a unitary operator U ∈ SU(4)
such that

Oij γ
j = UγiU−1 .

Making use of this rotational symmetry, we can arrange that the vector x is the basis
vector e1 and that y = cosϑ e1 + sinϑ e2. As a consequence,

5∑
i,j=1

xiyj
[
γi, γj

]
= sinϑ [γ1, γ2] = 2 sinϑ γ1γ2

( 5∑
i,j=1

xiyj
[
γi, γj

])2

= 4 sin2 ϑ γ1γ2γ1γ2 ,

and applying the anti-commutation relations gives (12.4.3).
Combining the above equations, we conclude that the product F (x)F (y) satisfies

the polynomial equation(
F (x) F (y)−

(
1 + τ2 ⟨x, y⟩

)
1
)2

= 2 τ2
(
1 + ⟨x, y⟩

)
− τ4

(
1− ⟨x, y⟩2

)
= τ2

(
1 + ⟨x, y⟩

)(
2− τ2

(
1− ⟨x, y⟩

))
.

Taking the square root, the zeros of this polynomial are computed by

λ1/2 = 1 + τ2 ⟨x, y⟩ ± τ
√
1 + ⟨x, y⟩

√
2− τ2 (1− ⟨x, y⟩) . (12.4.4)

Moreover, taking the trace of (12.4.1), one finds

tr
(
F (x) F (y)

)
= 4

(
1 + τ2 ⟨x, y⟩

)
.

This implies that each eigenvalue in (12.4.4) has algebraic multiplicity two.
(d) Computation of the Lagrangian:

We again denote the angle between the vectors x, y ∈ R4 by ϑ. If ϑ is sufficiently
small, the term (1 − ⟨x, y⟩) is close to zero, and thus the arguments of the square
roots in (12.4.4) are all positive. However, if ϑ becomes so large that

ϑ ≥ ϑmax := arccos

(
1− 2

τ2

)
,

then the argument of the last square root in (12.4.4) becomes negative, so that
the λ1/2 form a complex conjugate pair. Moreover, a short calculation shows that

λ1λ2 = (1 + τ)2(1− τ)2 > 0 ,
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implying that if the λ1/2 are both real, then they have the same sign. Using this
information, the Lagrangian simplifies to

L(F (x), F (y)
)
=

1

8

4∑
i,j=1

(∣∣λxyi ∣∣− ∣∣λxyj ∣∣)2
=

1

2

2∑
i,j=1

(∣∣λi∣∣− ∣∣λj∣∣)2

=
1

2
Θ(ϑmax − ϑ)

2∑
i,j=1

(
λi − λj

)2
= Θ(ϑmax − ϑ)

(
λ1 − λ2

)2
= 4τ2 (1 + cosϑ)

(
2− τ2 (1− cosϑ)

)
Θ(ϑmax − ϑ) .

(e) Computation the action:
Inserting this Lagrangian in (5.6.2) and using the definition of the push-forward
measure, we obtain

S =

ˆ
S3

dµ(x)

ˆ
S3

dµ(y) L(F (x), F (y)
)

=

ˆ
S3

dµ(y) L(F (x), F (y)
)
=

2

π

ˆ ϑmax

0
L(cosϑ) sin2 ϑ dϑ

=
512

15π

1

τ
+ O(τ−2) .

Thus setting Fk = F |τ=k, we have constructed a divergent minimizing sequence. However,
the integral in the boundedness constraint (5.6.5) also diverges as k → ∞. This example
shows that, leaving out the boundedness constraint, there is no minimizer. ♢

We finally remark that this example is not as artificial or academic as it might appear
at first sight. Indeed, as observed in the master thesis [109], when discretizing a Dirac
system in R × S3 (where the sphere can be thought of as a spatial compactification of
Minkowski space), then in the simplest case of four occupied Dirac states (referred to
as “one shell,” i.e. dimH = 4), this system reduces precisely to the last example. In
simple terms, this observation can be summarized by saying that Clifford structures tend
to make the causal action small.

12.5. The Radon-Nikodym Theorem

As already mentioned at the beginning of the previous section, one difficulty in the
existence proof for the causal action principle is the fact that the set F is unbounded and
thus non-compact. In order to deal with this difficulty, we need one more mathemati-
cal tool: the Radon-Nikodym theorem. We now give the proof of the Radon-Nikodym
theorem by von Neumann following the presentation in [136, Chapter 6]. An alternative
method of proof is given in [101, 33]. As in Section 12.2, it again suffices to consider the
case that the base space K is a compact topological space.

Definition 12.5.1. A Radon measure λ is absolutely continuous with respect to
another Radon measure ν, denoted by

λ≪ ν ,

if the implication

ν(E) = 0 =⇒ λ(E) = 0
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holds for any Borel set E. The measure λ is concentrated on the Borel set A if λ(E) =
λ(E ∩ A) for all Borel sets E. The measures λ and µ are mutually singular, denoted
by

λ ⊥ ν ,

if there are disjoint Borel sets A and B such that λ is concentrated in A and ν is con-
centrated in B.

In order to avoid confusion, we point out that the supports of two mutually singular
measures are not necessarily disjoint, as one sees in the simple example of the Lebesgue
measure on (0, 1) and the Dirac measure supported at the origin,

λ := dx|(0,1) and µ = δ0 .

Since the support is by definition a closed set (see (2.3.4)), the support of dx|(0,1) contains
the origin, which is precisely the support of the Dirac measure. But clearly, the two
measures are concentrated on the sets (0, 1) and {0}, respectively, and are thus mutually
singular.

Theorem 12.5.2. (Radon-Nikodym) Let µ and λ be Radon measures on the com-
pact topological space K.

(a) There is a unique pair of Borel measures λa and λs such that

λ = λa + λs and λa ≪ µ , λs ⊥ µ .

(b) There is a unique function h ∈ L1(K, dµ) such that

λa(E) =

ˆ
E
h dµ for every Borel set E . (12.5.1)

The pair (λa, λs) is also referred to as the Lebesgue decomposition of λ with respect
to µ.

Proof of Theorem 12.5.2. The uniqueness of the decomposition is easily seen as
follows: Suppose that (λ′a, λ

′
s) is another Lebesgue decomposition. Then

λ′a − λa = λs − λ′s . (12.5.2)

Since λs ⊥ µ and λ′s ⊥ µ, the measures λs and λs′ are concentrated in a Borel set A
with µ(A) = 0. Evaluating (12.5.2) on Borel subsets of A, the left side vanishes, be-
cause λa and λ′a are both absolutely continuous with respect to µ. Hence λ′s − λs = 0.
Using this relation in (12.5.2), we also conclude that λ′a−λa = 0. This proves uniqueness.

For the existence proof, we let ρ be the measure ρ = λ+ µ. Thenˆ
K

f dρ =

ˆ
K

f dλ+

ˆ
K

f dµ (12.5.3)

for any non-negative Borel function f . If f ∈ L2(K, dρ), the Schwarz inequality gives∣∣∣∣ˆ
K

f dλ

∣∣∣∣ ≤ ˆ
K

|f | dρ ≤
√
ρ(K) ∥f∥L2(K,dρ) .

Therefore, the mapping f 7→
´
K
f dλ is a bounded linear functional on L2(K, dρ). By the

Fréchet-Riesz theorem, we can represent this linear functional by a function g ∈ L2(K, dρ),
i.e. ˆ

K

f dλ =

ˆ
K

g f dρ for all f ∈ L2(K, dρ) . (12.5.4)
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We next want to show that, by modifying g on a set of ρ-measure zero, we can
arrange that g takes values in the interval [0, 1]. To this end, we let E be any Borel set
with ρ(E) > 0. Evaluating (12.5.4) for f = χE , we obtain

0 ≤ 1

ρ(E)

ˆ
E
g dρ =

λ(E)

ρ(E)
≤ 1 .

Now the claim follows from elementary measure theory (see for example [136, Theo-
rem 1.40]).

Using (12.5.3), we can rewrite (12.5.4) asˆ
K

(1− g) f dλ =

ˆ
K

g f dµ for all non-negative f ∈ L2(K,dρ) . (12.5.5)

We introduce the Borel sets

A = {x ∈ K | 0 ≤ g(x) < 1} and B = {x ∈ K | g(x) = 1} .

and define the measures λa and λs by

dλa = χA dλ and dλs = χB dλ .

Choosing f = χB in (12.5.5), one sees that µ(B) = 0, implying that λs ⊥ µ.
Moreover, since g is bounded, we can evaluate (12.5.5) for

f =
(
1 + g + · · ·+ gn

)
χE

for any n ∈ N and any Borel set E. Using the same transformation with “telescopic
sums” as in the evaluation of the geometric or Neumann series, we obtainˆ

E

(
1− gn+1

)
dλ =

ˆ
E
g
(
1 + g + · · ·+ gn

)
dµ . (12.5.6)

At every point of B, the factor (1− gn+1) in the integrand on the left vanishes. At every
point of A, on the other hand, the factor (1 − gn+1) is monotone increasing in n and
converges to one. Hence Lebesgue’s monotone convergence theorem implies that the left
side of (12.5.6) converges to

lim
n→∞

ˆ
E

(
1− gn+1

)
dλ = λ

(
E ∩A

)
.

The integrand on the right side of (12.5.6), on the other hand, is monotone increasing
in n, so that the limit

h(x) := lim
n→∞

g(x)
(
1 + g(x) + · · ·+ gn(x)

)
exists in R+

0 ∪ {∞} .

Moreover, the monotone convergence theorem implies that

lim
n→∞

ˆ
E
g
(
1 + g + · · ·+ gn

)
dµ =

ˆ
E
hdµ ∈ R+

0 ∪ {∞} .

We conclude that, in the limit n→ ∞, the relation (12.5.6) yields

λa(E) = λ
(
E ∩A

)
=

ˆ
E
hdµ for any Borel set E .

Choosing E = K, one sees that h ∈ L1(K, dµ). This concludes the proof of (12.5.1).
Finally, the representation (12.5.1) implies that λa ≪ µ. □
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12.6. Moment Measures

We now introduce an important concept needed for the existence proof: the moment
measures. We again assume that the Hilbert space is finite-dimensional and that the
measure ρ is normalized (12.0.1). We consider F with the metric induced by the sup-
norm on L(H), i.e.

d(p, q) = ∥p− q∥
(and ∥.∥ as in (5.6.6)). The basic difficulty in applying the abstract theorems is that F

is not compact (indeed, it is a star-shaped in the sense that p ∈ F implies λp ∈ F for
all λ ∈ R). If the metric space is non-compact, our abstract results no longer apply, as
becomes clear in the following simple example.

Example 12.6.1. Consider the Banach space C0
0 (R,R) of compactly supported con-

tinuous functions. Let ρn = δn be the sequence of Dirac measures supported at n ∈ N.
Then for any f ∈ C0

0 (R,R),

lim
n→∞

ˆ ∞

−∞
f dρn = lim

n→∞
f(n) = 0 .

Hence the sequence (ρn)n∈R converges as a measure to zero. Thus the limiting measure
is no longer normalized. This shows that Theorem 12.3.2 fails to hold if the base space
is non-compact. ♢

The way out is to make use of the fact that the causal action as well as the constraints
are formed of functionals which are homogeneous under the scaling p→ λp of degree zero,
one or two. This makes it possible to restrict attention to a compact subset of F, and to
consider three measures on this compact set. We now give the needed definitions.

Definition 12.6.2. Let K be the compact metric space

K = {p ∈ F with ∥p∥ = 1} ∪ {0} .
For a given measure ρ on F, we define the measurable sets of K by the requirement that
the sets R+Ω = {λp |λ ∈ R+, p ∈ Ω} and R−Ω should be ρ-measurable in F. We introduce

the measures m(0), m
(1)
± and m(2) by

m(0)(Ω) =
1

2
ρ
(
R+Ω \ {0}

)
+

1

2
ρ
(
R−Ω \ {0}

)
+ ρ

(
Ω ∩ {0}

)
(12.6.1)

m
(1)
+ (Ω) =

1

2

ˆ
R+Ω

∥p∥ dρ(p) (12.6.2)

m
(1)
− (Ω) =

1

2

ˆ
R−Ω

∥p∥ dρ(p) (12.6.3)

m(2)(Ω) =
1

2

ˆ
R+Ω

∥p∥2 dρ(p) +
1

2

ˆ
R−Ω

∥p∥2 dρ(p) . (12.6.4)

The measures m(l) and m
(l)
± are referred to as the lth moment measure.

As a short notation, it is convenient to abbreviate the difference of the first moment
measures by

m(1)(Ω) := m
(1)
+ (Ω)−m

(1)
− (Ω) . (12.6.5)

We remark that m(1) can be regarded as a signed measure (see for example [101, §28]
or [136, Chapter 6]). For simplicity, we here avoid the concept of signed measures by

working instead with the two (positive) measures m
(1)
± . Nevertheless, we introduce an
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m(1)-integral as a short notation for the difference of the integrals with respect to m
(1)
+

and m
(1)
− , i.e. ˆ

K

h dm(1) :=

ˆ
K

h dm
(1)
+ −

ˆ
K

h dm
(1)
− ,

where for simplicity we always assume that h is continuous.
The ρ-integrals of homogeneous functions can be rewritten as integrals over K using

the moment measures, as we now make precise.

Definition 12.6.3. A function h ∈ C0(F) is called homogeneous of degree ℓ
with ℓ ∈ {0, 1, 2} if

h(νx) = νℓ h(x) for all ν ∈ R and x ∈ F . (12.6.6)

Lemma 12.6.4. Let h ∈ C0(F) be a function which is homogeneous of degree ℓ ∈
{0, 1, 2}. Then ˆ

F

h dρ =

ˆ
K

h dm(l) .

Proof. We first note that, using the homogeneity (12.6.6), the function h is uniquely
determined by its restriction to K. Moreover, using an approximation argument with
Lebesgue’s dominated convergence theorem, it suffices to consider a function h which is
homogeneous of degree ℓ and simple in the sense that its restriction to K takes a finite
number of values, i.e.

h
∣∣
K
=

N∑
i=1

ci χΩi

with suitable Borel sets Ω1, . . . ,ΩN ⊂ K and real coefficients c1, . . . , cN . For such simple
functions, the integrals go over to finite sums, and we obtain

ˆ
F

h dρ =
N∑
i=1

ci

ˆ
R+Ωi

∥p∥ℓ dρ(p) =
N∑
i=1

ci m
(ℓ)
(
Ωi

)
=

ˆ
K

h dm(l) ,

as desired. This concludes the proof. □

Applying this lemma, the normalization ρ(F) = 1 can be expressed in terms of the
moment measures as

m(0)(K) = 1 , (12.6.7)

whereas the action (5.6.2) as well as the functionals in the constraints (5.6.5) and (5.6.4)
can be written as

S(ρ) =
¨

K×K

L(p, q) dm(2)(p) dm(2)(q) (12.6.8)

T (ρ) =

¨
K×K

|p q|2 dm(2)(p) dm(2)(q) (12.6.9)

ˆ
F

tr(x) dρ(x) =

ˆ
K

tr(p) dm
(1)
+ (p)−

ˆ
K

tr(p) dm
(1)
− (p) . (12.6.10)

Working with the moment measures has the advantage that they are measures on the
compact space K. We also learn that two measures ρ and ρ̃ whose moment measures coin-
cide yield the same values for the functionals S and T as well as for the integral (12.6.10)
entering the trace constraint. It is most convenient to work exclusively with the mo-
ment measures. At the end, we shall construct a suitable representative ρ of the limiting
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moment measures. A key step for making this method work is the following a-priori
estimate.

Lemma 12.6.5. There is a constant ε = ε(f, n) > 0 such that for every measure ρ on F

the corresponding moment measures (see Definition 12.6.2) satisfy for all measurable Ω ⊂
K the following inequalities:(

m
(1)
+ (Ω) +m

(1)
− (Ω)

)2
≤ m(0)(Ω)m(2)(Ω) (12.6.11)

m(2)(K) ≤
√
T (ρ)

ε
. (12.6.12)

Proof. The inequality (12.6.11) follows immediately from Hölder’s inequality,∣∣2(m(1)
+ (Ω) +m

(1)
− (Ω)

)∣∣2 ≤ (ˆ
RΩ

∥p∥ dρ(p)
)2

≤ ρ(RΩ)
ˆ
RΩ

∥p∥2 dρ(p) ≤ 4m(0)(Ω)m(2)(Ω) .

In order to prove (12.6.12), we introduce the mapping

ϕ : K×K → R : (p, q) 7→ |p q| .
Clearly, ϕ is continuous and

ϕ(p, p) = |p2| = Tr(p2) ≥ ∥p∥2 = 1

(here we used that the Hilbert-Schmidt norm is larger than the absolute square of each
eigenvalue). Thus every point r ∈ K has a neighborhood U(r) ⊂ K with

ϕ(p, q) ≥ 1

2
for all p, q ∈ U(r) . (12.6.13)

Since K is compact, there is a finite number of points r1, . . . , rN such that the corre-
sponding sets Ui := U(ri) cover K. Due to the additivity property of measures, there is
an index i ∈ {1, . . . , N} such that

m(2)(Ui) ≥
m(2)(K)

N
. (12.6.14)

We write T in the form (12.6.9) and apply (12.6.13) as well as (12.6.14) to obtain

T (ρ) ≥
¨
Ui×Ui

|p q|2 dm(2)(p) dm(2)(q) ≥ 1

2
m(2)(Ui)

2 ≥ m(2)(K)2

2N2
.

Setting ε = 1/(
√
2N), the result follows. □

12.7. Existence of Minimizers for the Causal Action Principle

After the above preparations, we can follow the strategy of the direct method in the
calculus of variations described at the beginning of Chapter 12 to obtain the following
result.

Theorem 12.7.1. Let H be a finite-dimensional Hilbert space and n ∈ N. Let ρk be
a minimizing sequence of regular Borel measures on F satisfying our constraints (5.6.3),
(5.6.4) and (5.6.5) (for fixed and finite constants). Then there is a regular Borel measure ρ
which also satisfies the constraints (again with the same constants) and

S(ρ) = lim inf
n→∞

S(ρn) .
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In short, the method for constructing ρ is to take a limit of the moment measures of
the ρk and to realize this limit by the measure ρ. In more detail, we proceed as follows. In
view of Lemma 12.6.5, we know that the moment measures are uniformly bounded mea-
sures on the compact metric space K. Applying the compactness result of Theorem 12.3.2
(based on the Banach-Alaoglu theorem and the Riesz representation theorem), we con-
clude that that for a suitable subsequence (which we again denote by (ρk)), the moment
measures converge in the C0(K)∗-topology to regular Borel measures,

m
(0)
k → m(0) , m

(1)
k,± → m

(1)
± and m

(2)
k → m(2) ,

which again have the properties (12.6.7), (12.6.11) and (12.6.12).

We next form the Radon-Nikodym decompositions of m
(1)
± and m(2) with respect

to m(0). The inequality (12.6.11) shows that every set of m(0)-measure zero is also a set

of measure zero with respect to m
(1)
+ and m

(1)
− . In other words, the measures m

(1)
± are

absolutely continuous with respect to m(0). Hence, applying Theorem 12.5.2, we obtain
the Radon-Nikodym decompositions

dm
(1)
± = f± dm(0) with f± ∈ L1(K, dm(0)) .

As a consequence, the difference of measures m(1) in (12.6.5) has the decomposition

dm(1) = f (1) dm(0) with f (1) := f+ − f− ∈ L1(K, dm(0)) . (12.7.1)

As we do not know whether also m(2) is absolutely continuous with respect to m(0),
Theorem 12.5.2 gives the decomposition

dm(2) = f (2) dm(0) + dm
(2)
sing with f (2) ∈ L1(K, dm(0)) , (12.7.2)

where the measure m
(2)
sing is singular with respect to m(0).

Lemma 12.7.2. The two functions f (1) and f (2) in the Radon-Nikodym decomposi-
tions (12.7.1) and (12.7.2) can be chosen such that∣∣f (1)∣∣2 ≤ f (2) .

Proof. Since m
(2)
sing ⊥ m(0), there is a Borel set V such that

χV dm(0) = dm(0) and χV dm
(2)
sing = 0 .

Then, using the Radon-Nikodym decompositions (12.7.1) and (12.7.2) in (12.6.11), we
obtain for any Borel set U ⊂ V the inequality∣∣∣∣ˆ

U
f (1) dm(0)

∣∣∣∣2 ≤ m(0)(U)

ˆ
U
f (2) dm(0) .

If the function f (1) does not change signs on U , we conclude that

inf
U

∣∣f (1)∣∣2 ≤ sup
U
f (2) .

By decomposing U into the two sets where f (1) is positive and negative, respectively, one
readily sees that this inequality even holds for any Borel set U ⊂ V . As a consequence,
the inequality |f (1)|2 ≤ f (2) holds almost everywhere (with respect to the measure m(0)),
concluding the proof. □
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In particular, we conclude that f (1) even lies in L2(K, dm(0)). Setting f = f (1) and dn =

(f (2) − |f |2) dm(0) + dm
(2)
sing, we obtain the decomposition

dm(1) = f dm(0) , dm(2) = |f |2 dm(0) + dn , (12.7.3)

where f ∈ L2(K, dm(0)), and n is a positive measure which need not be absolutely

continuous with respect to m(0). From the definition (12.6.5) it is clear that f is odd, i.e.

f(−p) = −f(p) for all p ∈ K .

The remaining task is to represent the limiting moment measures m(l) in (12.7.3) by a
measure ρ. Unfortunately, there is the basic problem that such a measure can exist only
if m(2) is absolutely continuous with respect to m(0), as the following consideration shows:
Assume conversely that m(2) is not absolutely continuous with respect to m(0). Then
there is a measurable set Ω ⊂ K with m(0)(Ω) = 0 and m(2)(Ω) ̸= 0. Assume furthermore
that there is a measure ρ on F which represents the limiting moment measures in the
sense that (12.6.1)–(12.6.4) hold. From (12.6.1) we conclude that the set RΩ ⊂ F has
ρ-measure zero. But then the integral (12.6.4) also vanishes, a contradiction.

This problem can also be understood in terms of the limiting sequence ρk. We cannot
exclude that there is a star-shaped region RΩ ⊂ F such that the measures ρk(RΩ) tend
to zero, but the corresponding moment integrals (12.6.4) have a non-zero limit. Using a
notion from the calculus of variations for curvature functionals, we refer to this phenom-
enon as the possibility of bubbling. This bubbling effect is illustrated by the following
example.

Example 12.7.3. (Bubbling) We choose f = 2 and n = 1. Furthermore, we let M =
[0, 1) with µ the Lebesgue measure. For any parameters κ ≥ 0 and ε ∈ (0, 12), we introduce
the mapping Fε : M → F by

Fε(x) =
1

1− 2ε
×


−κ ε−

1
2 σ3 if x ≤ ε

1+ σ1 cos(νx) + σ2 sin(νx) if ε < x ≤ 1− ε

κ ε−
1
2 σ3 if x > 1− ε ,

where we set ν = 2π/(1 − 2ε) (and σj are the Pauli matrices). The corresponding
measure ρε on F has the following properties. On the set

S := {1+ v1σ1 + v2σ2 with (v1)2 + (v2)2 = 1} ,

which can be identified with a circle S1, ρε is a multiple of the Lebesgue measure. More-
over, ρε is supported at the two points

p± := ± κ ε−
1
2

1− 2ε
σ3 with ρε({p+}) = ρε({p−}) = ε . (12.7.4)

A short calculation shows that the trace constraint is satisfied. Furthermore, the
separations of the points p+ and p− from each other and from S are either spacelike
or just in the boundary case between spacelike and timelike. Thus for computing the
action, we only need to take into account the pairs (p+, p+), (p−, p−) as well as pairs (x, y)
with x, y ∈ S. A straightforward computation yields

S(ρε) =
3

(1− 2ε)2
, T (ρε) =

6

(1− 2ε)2
+

16κ2

(1− 2ε)3
+

16κ4

(1− 2ε)4
. (12.7.5)
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Let us consider the limit ε ↘ 0. From (12.7.5) we see that the functionals S and T
converge,

lim
ε↘0

S = 3 , lim
ε↘0

T = 6 + 16 (κ2 + κ4) . (12.7.6)

Moreover, there are clearly no convergence problems on the set S. Thus it remains
to consider the situation at the two points p±, (12.7.4), which move to infinity as ε
tends to zero. These two points enter the moment measures only at the corresponding
normalized points p̂± = p±/∥p±∥ ∈ K. A short calculation shows that the limiting

moment measures m(l) = limε↘0m
(l)
ε satisfy the relations

m(0)({p̂±}) = m(1)({p̂±}) = 0 but m(2)({p̂±}) = κ2 > 0 .

Hence m(2) is indeed not absolutely continuous with respect to m(0).
In order to avoid misunderstandings, we point out that this example does not show

that bubbling really occurs for minimizing sequences, because we do not know whether
the family (ρε)0<ε<1/2 is minimizing. But at least, our example shows that bubbling
makes it possible to arrange arbitrary large values of T without increasing the action S
(see (12.7.6) for large κ). ♢

In order to handle possible bubbling phenomena, it is important to observe that the
second moment measure does not enter the trace constraint. Therefore, by taking out
the term dn in (12.7.3) we decrease the functionals S and T (see (12.6.8) and (12.6.9)),
without affecting the trace constraint. It remains to show that the resulting moment
measure can indeed be realized by a measure ρ. This is proven in the next lemma.

Lemma 12.7.4. For any normalized regular Borel measure m(0) on K and any func-
tion f ∈ L2(K,R), there is a normalized regular Borel measure ρ̃ whose moment mea-

sures m̃(l) are given by

m̃(0) = m(0) , dm̃(1) = f dm(0) , dm̃(2) = |f |2 dm(0) . (12.7.7)

Proof. We introduce the mapping

F : K → F , F (x) = f(x)x .

Choosing ρ̃ := F∗m
(0), a direct computation shows that the corresponding moment mea-

sures indeed satisfy (12.7.7). □

This concludes the proof of Theorem 12.7.1. We finally remark that the fact that
we dropped the measure dn in (12.7.3) implies that the value of T might decrease in the
limit. This is the only reason why the boundedness constraint (5.6.5) is formulated as
an inequality, rather than an equality. It is not clear if the causal action principle also
admits minimizers if the inequality in (5.6.5) is replaced by an equality. We conjecture
that the answer is yes. But at present, there is no proof. We note that, for the physical
applications, it makes no difference if (5.6.5) is an equality or an inequality, because in this
case one works with the corresponding Euler-Lagrange equations, where the constraints
enter only via Lagrange multiplier terms (for details see [13]).

12.8. Existence of Minimizers for Causal Variational Principles in the
Non-Compact Setting

In Theorem 12.7.1 the existence of minimizers was established in the case that the
Hilbert space H is finite-dimensional and the total volume ρ(F) of spacetime is finite.
From the physical point of view, this existence result is quite satisfying, because one
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can take the point of view that it should be possible to describe our universe at least
approximately by a causal fermion system with dimH < ∞ and ρ(F) < ∞. From
the mathematical point of view, however, it is interesting and important to also study
the cases of an infinite-dimensional Hilbert space and/or infinite total volume. The
case dimH <∞ and ρ(F) = ∞ is not sensible (see Exercise 12.5). In the case dimH = ∞
and ρ(F) <∞, on the other hand, there are minimizing sequences which converge to zero.
Therefore, it remains to study the infinite-dimensional setting dimH = ∞ and ρ(F) = ∞
already mentioned in Section 5.6. In this setting, the existence theory is difficult and has
not yet been developed. Therefore, our strategy is to approach the problem in two steps.
The first step is to deal with infinite total volume; this has been carried out in [75]. The
second step, which involves the difficulty of dealing with non-locally compact spaces, is
currently under investigation (for first results see [114]).

We now outline the basic strategy in the simplest possible case (more details and a
more general treatment can be found in [75]). We consider causal variational principles
in the non-compact setting as introduced in Section 6.3. Moreover, we consider the smooth
setting by assuming that the Lagrangian is smooth,

L ∈ C∞(F × F,R+
0 ) ,

and has the properties (i) and (ii) on page 124. Moreover, we again assume that the
Lagrangian has compact range (see Definition 8.1.1). The goal of this section is to prove
the following theorem.

Theorem 12.8.1. Under the above assumptions, there is a regular Borel measure ρ
on F (not necessarily bounded) which satisfies the EL equations

ℓ
∣∣
supp ρ

≡ inf
M
ℓ = 0 with ℓ(x) :=

ˆ
F

L(x, y) dρ(y)− 1 . (12.8.1)

For the proof, we first exhaust F by compact sets (Kj)j∈N, i..e

K1 ⊂ K2 ⊂ · · · ⊂ F and

∞⋃
j=1

Kj = F .

On each Kj we consider the restricted variational principle where we minimize the action

SKj (ρ) =

ˆ
Kj

dρ(x)

ˆ
Kj

dρ(y) L(x, y)

under variations of ρ within the class of normalized regular Borel measure on Kj . Using
the existence theory in the compact setting (see Theorem 12.3.3), each of these restricted
variational principles has a minimizer, which we denote by ρj . Each of these measures
satisfies the EL equations stated in Theorem 7.1.1. Thus, introducing the functions

ℓj ∈ C0(Kj ,R) , ℓ(x) :=

ˆ
Kj

L(x, y) dρj(y)− sj ,

one can choose the parameters sj > 0 such that

ℓj
∣∣
supp ρj

≡ inf
Kj

ℓj = 0 .

Typically, the support of the measures ρj will be “spread out” over larger and larger
subsets of F. This also means that, working with normalized measures, the measures ρj
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typically converge to the trivial measure ρ = 0. In order to ensure a non-trivial measure,
we must perform a suitable rescaling. To this end, we introduce the measures

ρ̃j =
ρj
sj
.

These new measures are no longer normalized, but they satisfy the EL equations with s̃j =
1, i.e.

ℓ̃j
∣∣
supp ρ̃j

≡ inf
Kj

ℓ̃j = 0 with ℓ̃j(x) :=

ˆ
Kj

L(x, y) dρ̃j(y)− 1 . (12.8.2)

Our next task is to construct a limit measure ρ of the measures ρ̃j . We first extend

the measures ρ̃j by zero to all of F and denote them by ρ[j],

ρ[j](U) := ρj(U ∩Kj) for any Borel subset U ⊂ F .

In the next lemma we show that these measures are bounded on every compact set.

Lemma 12.8.2. For every compact subset K ⊂ F there is a constant CK > 0 such
that

ρ[j](K) ≤ CK for all j ∈ N . (12.8.3)

Proof. Since L(x, .) is continuous and strictly positive at x, there is an open neigh-
borhood U(x) of x with

L(y, z) ≥ L(x, x)
2

> 0 for all y, z ∈ U(x) .

Covering K by a finite number of such neighborhoods U(x1), . . . , U(xL), it suffices to
show the inequality (12.8.3) for the sets K ∩ U(xℓ) for any ℓ ∈ {1, . . . , L}. Moreover, we

choose N so large that KN ⊃ K and fix k ≥ N . If K ∩ supp ρ[k] = ∅, there is nothing
to prove. Otherwise, there is a point z ∈ K ∩ supp ρ[k]. Using the EL equations (12.8.2)
at z, it follows that

1 =

ˆ
F

L(z, y) dρ[k](y) ≥
ˆ
U(xℓ)

L(z, y) dρ[k](y) ≥ L(xℓ, xℓ)
2

ρ[k](U(xℓ)) .

Hence

ρ[k](U(xℓ)) ≤
2

L(xℓ, xℓ)
.

This inequality holds for any k ≥ N . We introduce the constants c(xℓ) as the maximum

of 2/L(xℓ, xℓ) and ρ[1](U(xℓ)), . . . , ρ
[N−1](U(xℓ)). Since the open sets U(x1), . . . , U(xL)

coverK, we finally introduce the constant CK as the sum of the constants c(x1), . . . , c(xL).
□

Given a compact set K, combining the result of the previous lemma with the com-
pactness of measures on compact topological spaces (see Theorem 12.3.2), we conclude

that there is a subsequence (ρ[jn]) whose restrictions to K converge as a measure (i.e. in
the sense (12.3.1)). Proceeding inductively for the compact sets K1,K2, . . . and choosing

a diagonal sequence, one gets a subsequence of measures on F, denoted by ρ(k), whose
restriction to any compact set Kj converges, i.e.

ρ(k)
∣∣
Kj

converges as k → ∞ to ρ|Kj for all j ∈ N , (12.8.4)
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where ρ is a regular Borel measure on F (typically of infinite total volume). The conver-
gence of measures in (12.8.4) is referred to as vague convergence (for more details see [8,
Definition 30.1] or [75, Section 4.1]).

It remains to show that the obtained measure ρ is a non-trivial minimizer. In order
to show that it is non-trivial, we make use of the EL equations (12.8.2). Let x ∈ F.
Then (12.8.2) implies that ˆ

F

L(x, y) dρ(k)(y) ≥ 1 .

Since L has compact range, we may pass to the limit to conclude thatˆ
F

L(x, y) dρ(y) ≥ 1 . (12.8.5)

This shows (in a quantitative way) that the measure ρ is non-zero.
Our final step for proving the EL equations (12.8.1) is to show that the EL equa-

tions (12.8.2) are preserved in the limit. In view of the lower bound (12.8.5), it remains
to show that ℓ vanishes on the support of ρ. Thus let x ∈ supp ρ. We choose a compact
subset K ⊂ F such that x lies in its interior. Again using that the Lagrangian has com-
pact range, there is another compact subset K ′ ⊂ F such that (8.1.1) holds. The fact

that x lies in the support and that the measures ρ(k) converge vaguely to ρ implies that
there is a sequence xk ∈ supp ρ(k) which converges to x. The EL equations for each ρ(k)

imply that, for sufficiently large k,ˆ
K′

L(xk, y) dρ(k)(y) = 1 .

Taking the limit is a bit subtle because both the argument xk of the Lagrangian and the
integration measure depend on k. Therefore, we begin with the estimate∣∣∣∣ˆ

K′
L(x, y) dρ(y)−

ˆ
K′

L(xk, y) dρ(k)(y)
∣∣∣∣

≤
∣∣ℓ(x)− ℓ(k)(x)

∣∣− sup
j

∣∣ℓ(j)(x)− ℓ(j)(xk)
∣∣ , (12.8.6)

where we set

ℓ(k)(z) :=

ˆ
K′

L(z, y) dρ(k)(y)− 1 .

The first summand on the right side of (12.8.6) tends to zero because the measures ρ(k)

converge vaguely to ρ. The second summand, on the other hand, tends to zero because the
functions ℓ(j) are equicontinuous (for more details on this argument see [75, Section 4.2]).
This concludes the proof of Theorem 12.8.1.

We finally note that, starting from the EL equations (12.8.1), one can also show that ρ
is a minimizer under variations of finite volume, meaning that for every regular Borel
measure ρ̃ satisfying (6.3.1), the difference of actions (6.3.2) is nonnegative (6.3.3). The
proof can be found in [75, Section 4.3].

12.9. Tangent Cones and Tangent Cone Measures

In the previous sections, measure-theoretic methods have been used in order to prove
existence of minimizers. But methods of measure theory are also useful for analyzing
the structure of the minimizing measure. Since these methods might be important for
the future development of the theory, we now briefly explain the concept of a tangent
cone measure (more details and applications can be found in [60, Section 6]). We have
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the situation in mind that spacetime M does not have a smooth manifold structure, so
that the powerful methods of differential topology and geometry (like the tangent space,
the exponential map, etc.) cannot be used in spacetime. Nevertheless, the structure of
spacetime can be analyzed locally as follows. Let x ∈M be a spacetime point. We want
to analyze a neighborhood of x in M . To this end, it is useful to consider a continuous
mapping A fromM to the symmetric operators on the spin space at x. We always assume
that this mapping vanishes at x, i.e.

A :M → Symm(Sx) with A(x) = 0 .

There are different possible choices for A. The simplest choice is

A : y 7→ πx (y − x)x|Sx .

Here the factor x on the right is needed for the operator to be symmetric, because

≺ψ|Aϕ≻x
(5.7.8)
= −⟨ψ |x (πx (y − x)x)ϕ⟩H = −⟨ψ |x (y − x)xϕ⟩H
= −⟨πx (y − x)xψ |xϕ⟩H = ≺Aψ|ϕ≻x .

Alternatively, one can consider mappings involving the operators sy or πy, like for example

A : y 7→ πx (sy − sx)x|Sx

A : y 7→ πx (πy − πx)x|Sx

(where πx again denotes the orthogonal projection in H on Sx). But, of course, many
other choices of A are possible. The detailed choice of A depends on the application in
mind.

A conical set is a set of the form R+A with A ⊂ Symm(Sx). We denote the conical sets
whose pre-images under A are both ρ–measurable by M. For a conical set A ⊂ Symm(Sx)
we consider countable coverings by measurable conical sets,

A ⊂
∞⋃
k=1

Ak with Ak ∈ M .

We denote the set of such coverings by P. We define

µ∗con(A) = inf
P

∞∑
k=1

lim inf
δ↘0

1

ρ
(
Bδ(x)

) ρ(A−1
(
Ak

)
∩Bδ(x)

)
(where Bδ(x) ⊂ L(H) is the Banach space ball). We remark for clarity that, since x ∈
M := supp ρ, it follows that the measure ρ(Bδ(x)) is non-zero for all δ > 0.

The mapping µ∗con defines an outer measure on the conical sets in Symm(Sx). By
applying the Carathéodory extension lemma (see for example [8, 15]), one can construct
a corresponding measure denoted by µcon. By restriction one obtains a Borel measure
(for details see [60, Section 6.1]).

Definition 12.9.1. We denote the conical Borel sets of Symm(Sx) by Bcon(x). We
denote the measure obtained by applying the above construction by

µx : Bcon(x) → [0,∞] .

It is referred to as the tangent cone measure corresponding to A. The tangent
cone Cx is defined as the support of the tangent cone measure,

Cx := suppµx ⊂ Symm(Sx) .
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In simple terms, the tangent cone Cx distinguishes directions in which the measure ρ
is non-zero. The tangent cone measure, on the other hand, is a measure supported on the
tangent cone. By integrating functionals on conical subsets of Symm(Sx) with respect
to this measure, one can can get fine information on the structure of the measure ρ in
different directions. For example, one can set up a variational principle by maximizing a
suitable integral of this type under variations of the Clifford section at x. As a concrete
application, this method is used in [60, Section 6.2] in order to choose a distinguished
Clifford section at x.

12.10. Exercises

Exercise 12.1. Let Λ be the functional

Λ : C0
(
[0, 1],R

)
→ R , Λ(f) = sup

x∈[0,1]
f(x) .

Can this functional be represented by a measure? Analyze how your findings are com-
patible with the Riesz representation theorem.

Exercise 12.2. Let ρ be the Borel measure on [0, π] given by

ρ(Ω) =

ˆ
Ω
sinx dx +

∞∑
n=1

1

n2
χΩ

( 1

n

)
.

Compute the Lebesgue decomposition of ρ with respect to the Lebesgue measure.

Exercise 12.3. (Normalized regular Borel measures: compactness results)

(a) Let (ρn)n∈N be a sequence of normalized regular Borel measures on R with the
property that there is a constant c > 0 such thatˆ ∞

−∞
x2 dρn(x) ≤ c for all n .

Show that a subsequence converges again to a normalized Borel measure on R.
Hint: Apply the compactness result in Theorem 12.3.2 to the measures restricted to
the interval [−L,L] and analyze the behavior as L→ ∞.

(b) More generally, assume that for a given non-negative function f(x),ˆ ∞

−∞
f(x) dρn(x) ≤ c for all n .

Which condition on f ensures that the a subsequence of the measures converges to
a normalized Borel measure? Justify your answer by a counter example.

Exercise 12.4. Let M ⊂ R be a closed embedded submanifold of R3. We choose a
compact set K ⊂ R3 which contains M. On C0(K,R) we introduce the functional

Λ : C0(K,R) → R , Λ(f) =

ˆ
M
f(x) dµM(x)

(where dµM is the volume measure corresponding to the induced Riemannian metric
on M). Show that this functional is linear, bounded and positive. Apply the Riesz
representation theorem to represent this functional by a Borel measure on K. What is
the support of this measure?

Exercise 12.5. This exercise explains why the causal action principle is ill-posed in
the case dimH = ∞ and ρ(F) < ∞. The underlying estimates were first given in the
setting of discrete spacetimes in [42, Lemma 5.1].
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(a) Let H0 be a finite-dimensional Hilbert space of dimension n and (H0,F0, ρ0) be a
causal fermion system of finite total volume ρ0(F0). Let ι : H0 → H be an isometric
embedding. Construct a causal fermion system (H,F, ρ) which has the same action,
the same total volume and the same values for the trace and boundedness constraints
as the causal fermion system (H0,F0, ρ0).

(b) Let H1 = H0 ⊕ H0. Construct a causal fermion system (H1,F1, ρ1) which has the
same total volume and the same value of the trace constraint as (H0,F0, ρ0) but a
smaller action and a smaller value of the boundedness constraint. Hint: Let F1/2 :
L(H0) → L(H1) be the linear mappings(

F1(A)
)
(u⊕ v) = (Au)⊕ 0 ,

(
F2(A)

)
(u⊕ v) = 0⊕ (Av) .

Show that F1/2 map F0 to F1. Define ρ1 by

ρ1 =
1

2

(
(F1)∗ρ+ (F2)∗ρ

)
.

(c) Iterate the construction in (b) and apply (a) to obtain a series of measures on F

of fixed total volume and with fixed value of the trace constraint, for which the
action and the values of the boundedness constraint tend to zero. Do these measures
converge? If yes, what is the limit?

Exercise 12.6. (Riesz representation theorem - part 1) Let Λ be the functional

Λ : C0([0, 1],R) → R, Λ(f) := sup
x∈[0,1]

f(x).

Can this functional be represented by a measure? Analyze how your findings are com-
patible with the Riesz representation theorem.

Exercise 12.7. (Riesz representation theorem - part 2) Let M be a closed embedded
submanifold of R3. We choose a compact set K ⊂ R3 which contain M. On C0(K,R) we
introduce the functional

Λ : C0(K,R) → R, Λ(f) =

ˆ
M
f(x) dµM(x),

where dµM is the volume measure corresponding to the induced Riemannian metric on M.
Show that this functional is linear, bounded and positive. Apply the Riesz representation
theorem to represent this functional by a Borel measure on K. What is the support of
this measure?

Exercise 12.8. (Radon-Nikodym decomposition) Let ρ be the Borel measure on [0, π]
given by

ρ(Ω) :=

ˆ
Ω
sinx dx+

∞∑
n=1

1

n2
χΩ

(
1

n

)
.

Compute the Radon-Nikodym decomposition of ρ with respect to the Lebesgue measure.

Exercise 12.9. (Derivative of measures) Let µ be the counting measure on the
σ-algebra P(N). Consider the measure

λ(∅) := 0, λ(E) :=
∑
n∈E

(1 + n)2, E ∈ P(N).

Show that µ and λ are equivalent (one is absolutely continuous with respect to the other)

and determine the Radon-Nikodym derivative dµ
dλ .
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Exercise 12.10. (Minimizers) Let M denote the 2-sphere S2 ⊂ R3 and let dµM be
the normalized canonical surface measure. Consider a Lagrangian on M ×M defined by

L(x, y) := 1

1 + ∥x− y∥R3

for all x, y ∈M.

Show that the action S(µM ) is minimal under variations of the form

dρx0,t := (1− t)dµM + t dδx0 , with t ∈ [0, 1),

where δx0 is the Dirac measure centered at x0 ∈M .

Exercise 12.11. (Moment measures) Let F = R2 and K = S1 ∪ {0} be a com-
pact subset of F. Moreover, let ρ be a Borel measure ρ on F. Compute the moment
measures m(0), m(1) and m(2) for the following choices of ρ:

(a) ρ = F∗(µS1), where F : S1 ↪→ R2 is the natural injection and µS1 is the normalized
Lebesgue measure on S1.

(b) ρ = δ(0,0)+δ(1,1)+δ(5,0) (where δ(x,y) denote the Dirac measure supported at (x, y) ∈
R2).

(c) ρ = F∗(µR), where µR is the Lebesgue measure on R and

F : R → R2, F (x) = (x, 2).





CHAPTER 13

Methods of Hyperbolic Partial Differential Equations

The structures of a causal fermion system are all encoded in the family of physical
wave functions (see Section 5.7). Consequently, the dynamics of the causal fermion is
understood once we know how each physical wave function propagates in time. In many
examples, the physical wave functions satisfy the Dirac equation (for the simplest example
of this type see Section 5.5). More abstractly, the dynamics of the physical wave functions
is described by the dynamical wave equation (9.4.7). Moreover, we also encountered the
linearized field equations (see Definition 8.1.2). We now turn attention to methods for
solving these equations. In this chapter, we begin with linear partial differential equations
like the Dirac equation. Causality is reflected in these equations in the fact that they are
hyperbolic. As we shall see, the methods developed here will also be fruitful for the study
of the linearized field equations, as will be explained in the next chapter (Chapter 14).
With this in mind, the constructions here can be regarded as a technical preparation
for Chapter 14. We remark that the adaptation of the methods to the dynamical wave
equation will not be covered in this book; we refer the interested reader instead to [64].

13.1. The Cauchy Problem, Linear Symmetric Hyperbolic Systems

In this section, we shall prove that the Cauchy problem for the Dirac equation in the
presence of an external potential has a unique global solution. Moreover, we will show
that the finite speed of propagation as postulated by special relativity is indeed respected
by the solutions of the Dirac equation. For later purposes, it is preferable to include an
inhomogeneity. Thus we consider the Cauchy problem in Minkowski space

(i∂/+B−m)ψ = ϕ ∈ C∞(M, SM) , ψ|t0 = ψ0 ∈ C∞(R3, SM) (13.1.1)

for a given inhomogeneity ϕ and initial data ψ0. In order to make the standard methods
available, we multiply the equation by −iγ0,

1C4 ∂tψ + γ0γ⃗∇⃗ψ − iγ0(B−m)ψ = −iγ0ϕ . (13.1.2)

Now the matrices in front of the derivatives are all Hermitian (with respect to the stan-
dard scalar product on C4). Moreover, the matrix in front of the time derivative is positive
definite. Kurt Otto Friedrichs [91] observed that these properties are precisely what is
needed in order to get a well-posed Cauchy problem. He combined these properties in
the notion of a symmetric hyperbolic system. We now give its general definition. More
specifically, we consider a system of N complex-valued equations with spatial coordi-
nates x⃗ ∈ Rm and time t in an interval [0, T ] with T > 0. The initial data will always be
prescribed at time t = 0. For notational clarity, we denote partial derivatives in spatial
directions by ∇.

223
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Definition 13.1.1. A linear system of differential equations of the form

A0(t, x⃗) ∂tu(t, x⃗) +
m∑
α=1

Aα(t, x⃗)∇αu(t, x⃗) +B(t, x⃗)u(t, x⃗) = w(t, x⃗) (13.1.3)

with

A0, Aα, B ∈ C∞(
[0, T ]× Rm,L(CN )

)
, w ∈ C∞(

[0, T ]× Rm,CN
)
.

is called symmetric hyperbolic if

(i) The matrices A0 and Aα are Hermitian,

(A0)† = A0 and (Aα)† = Aα

(where † denotes the adjoint with respect to the canonical scalar product on CN ).
(ii) The matrix A0 is uniformly positive definite, i.e. there is a positive constant C such

that

A0(t, x⃗) > C 1CN for all (t, x⃗) ∈ ([0, T ]× Rm) .
In the case w ≡ 0, the linear system is called homogeneous.

A good reference for linear symmetric hyperbolic systems is the book by Fritz John [107,
Section 5.3] (who was Friedrichs’ colleague at the Courant Institute). Our presentation
was also influenced by [133, Chapter 8]. We remark that the concept of a symmetric
hyperbolic system can be extended to nonlinear equations of the form

A0(t, x⃗, u) ∂tu(t, x⃗) +

m∑
α=1

Aα(t, x⃗, u)∇αu(t, x⃗) +B(t, x⃗, u) = 0 ,

where the matrices A0 and Aα should again satisfy the above conditions (i) and (ii). For
details we refer to [144, Section 16] or [135, Section 7]. Having the Dirac equation in
mind, we always restrict attention to linear systems. We also note that an alternative
method for proving existence of fundamental solutions is to work with the so-called Riesz
distributions (for a good textbook see [6]). Yet another method is to work with estimates
in the interaction picture [25]. For completeness, we finally note that the concept of
symmetric hyperbolic systems was extended by Friedrichs to so-called symmetric positive
systems [92].

It is a remarkable fact that all partial differential equations in relativistic physics as
well as most wave-type equations can be rewritten as a symmetric hyperbolic system. As
an illustration, we now explain this reformulation in the example of a scalar hyperbolic
equation.

Example 13.1.2. Consider a scalar hyperbolic equation of the form

∂ttϕ(t, x⃗) =

m∑
α,β=1

aαβ(t, x⃗)∇αβϕ+

m∑
α=1

bα(t, x⃗)∇αϕ+ c(t, x⃗) ∂tϕ+ d(t, x⃗)ϕ (13.1.4)

with (aαβ) a symmetric, uniformly positive matrix (in the case aαβ = δαβ and b, c, d = 0,
one gets the scalar wave equation). Now the initial data prescribes ϕ and its first time
derivatives,

ϕ|t=0 = ϕ0 ∈ C∞(M) , ∂tϕ|t=0 = ϕ1 ∈ C∞(M) . (13.1.5)

In order to rewrite the equation as a symmetric hyperbolic system, we introduce the
vector u with k := m+ 2 components by

u1 = ∇1ϕ, . . . , um = ∇mϕ, um+1 = ∂tϕ, um+2 = ϕ . (13.1.6)
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Then the system

m∑
β=1

aαβ ∂tuβ −
m∑
β=1

aαβ∇βum+1 = 0

−
m∑

α,β=1

aαβ∇βuα −
m∑
α=1

bα uα +∂tum+1 − c um+1 −d um+2 = 0

0 −um+1 +∂tum+2 = 0

(13.1.7)

is symmetric hyperbolic (as one verifies by direct inspection). Also, a short calculation
shows that if ϕ is a smooth solution of the scalar equation (13.1.4), then the correspond-
ing vector u is a solution of the system (13.1.7). Conversely, assume that u is a smooth
solution of (13.1.7) which satisfies the initial condition u|t=0 = u0, where u0 is determined
by ϕ0 and ϕ1 via (13.1.6). Setting ϕ = um+2, the last line in (13.1.7) shows that um+1 =
∂tϕ. Moreover, the first line in (13.1.7) implies that ∂tuβ = ∇βum+1 = ∂t∇βϕ. Inte-
grating over t and using that the relation uβ = ∇βϕ holds initially, we conclude that
this relation holds for all times. Finally, the second line in (13.1.7) yields that ϕ satis-
fies the scalar hyperbolic equation (13.1.4). In this sense, the Cauchy problem for the
system (13.1.7) is equivalent to that for the scalar equation (13.1.5). ♢

This procedure works similarly for other physical equations like the Klein-Gordon
or Maxwell equations. Exercise 13.1 is concerned with the example of the homogeneous
Maxwell equations.

13.2. Finite Propagation Speed and Uniqueness of Solutions

For what follows, it is convenient to combine the time and spatial coordinates to a
spacetime vector x = (t, x⃗) ∈ [0, T ] × Rm. We denote the spacetime dimension by n =
m + 1. Moreover, setting ∂0 ≡ ∂t, we use latin spacetime indices i ∈ {0, . . . ,m} and
employ the Einstein summation convention. Then our linear system (13.1.3) can be
written in the compact form

Aj(x) ∂ju(x) +B(x) u(x) = w(x) . (13.2.1)

Next, a direction in spacetime can be described by a vector ξ = (ξi)i=0,...,m ∈ Rm+1.
Contracting with the matrices Aj(x), we obtain the Hermitian N ×N -matrix

A(x, ξ) := Aj(x) ξj ,

referred to as the characteristic matrix. Note that in the example of the Dirac equa-
tion (13.1.2), the index i is a vector index in Minkowski space, and ξ should be regarded
as a co-vector (i.e. a vector in the cotangent bundle). One should keep in mind that,
despite the suggestive notation, the equation (13.2.1) should not be considered as be-
ing manifestly covariant, because it corresponds to the Hamiltonian formulation (13.1.2),
where a time direction is distinguished.

The determinant of the characteristic matrix is referred to as the characteristic poly-
nomial, being a polynomial in the components ξi. For our purposes, it is most helpful
to consider whether the characteristic matrix is positive or negative definite. If the vec-
tor ξ = (τ, 0⃗) points in the time direction, then A(x, ξ) = τA0, which in view of Defini-
tion 13.1.1 is a definite matrix. By continuity, A(x, ξ) is definite if the spatial components
of ξ are sufficiently small. In the example of the Dirac equation (13.1.2), the fact that

A(x, ξ) = 1ξ0 + γ0γ⃗ξ⃗ has eigenvalues ξ0 ± |ξ⃗| (13.2.2)
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Figure 13.1. Lens-shaped regions.

shows that A(x, ξ) is definite if and only if ξ is a timelike vector. Moreover, it is positive
definite if and only if ξ is future-directed and timelike. This suggests that the causal
properties of the equation are encoded in the positivity of the characteristic matrix.
We simply use this connection to define the causal structure for a general symmetric
hyperbolic system.

Definition 13.2.1. The vector ξ ∈ Rm+1 is called timelike at the spacetime point x if
the characteristic matrix A(x, ξ) is definite. A timelike vector is called future-directed
if A(x, ξ) is positive definite. If the characteristic polynomial vanishes, then the vector ξ
is called lightlike. A hypersurface H ⊂ [0, T ]×Rm with normal ν is called spacelike if
the matrix A(x, ν) is positive definite for all x ∈ H.

The notion of a normal used here requires an explanation. The simplest method is to
represent the hypersurface locally as the zero set of a function ϕ(x). Then the normal
can be defined as the gradient of ϕ. In this way, the gradient is a co-vector, so that
the contraction Ajνj = Aj∂jϕ is well-defined without referring to a scalar product. In
particular, the last definition is independent of the choice of a scalar product on spacetime
vectors in Rn. We always choose the normal to be future-directed, and we normalize it
with respect to the Euclidean scalar product on Rm+1, but these are merely conventions.

We shall now explain why and in which sense the solutions of symmetric hyperbolic
systems comply with this notion of causality.

Definition 13.2.2. Let u be a smooth solution of the linear symmetric hyperbolic
system (13.2.1). A subset K of the initial value surface {t = 0} determines the solution
at a spacetime point x ∈ [0, T ]×Rm if every smooth solution of the system which coincides
on K with u, also coincides with u at x. The domain of determination of K is the
set of all spacetime points at which the solution is determined by the initial data on K.

Definition 13.2.3. An open subset L ⊂ (0, T )×Rm is called a lens-shaped region
if L is relatively compact in Rn and if its boundary ∂L is contained in the union of two
smooth hypersurfaces S0 and S1 whose intersection with L is spacelike. We set (∂L)+ =
∂L ∩ S1 and (∂L)− = ∂L ∩ S0, where we adopt the convention that (∂L)+ lies to the
future of (∂L)−.

Figure 13.1 shows typical examples of lens-shaped regions. Often, one chooses the initial
data surface as S0 = {t = 0}. Moreover, it is often convenient to write the hypersurface S1
as a graph S1 = {(t, x⃗) | t = f(x⃗)}. In this case, S1 is the zero set of the function ϕ(t, x⃗) =
t− f(x⃗), and the normal ν is the gradient of this function, i.e.

(νj)j=0,...,m = (1,∇1f, . . . ,∇mf) .

We first consider the homogeneous equation

(Aj∂j +B)u = 0 . (13.2.3)
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The idea for analyzing the domain of determination is to multiply this equation by a
suitable test function and to integrate over a lens-shaped region. More precisely, we
consider the equation

0 =

ˆ
L
e−Kt 2Re⟨u, (Aj∂j +B)u⟩ dnx , (13.2.4)

where ⟨., .⟩ denotes the canonical scalar product on CN , and K > 0 a positive parameter
to be determined later. Since the Aj are Hermitian, we have

∂j⟨u,Aju⟩ = 2Re ⟨u,Aj∂ju⟩+ ⟨u, (∂jAj)u⟩ , (13.2.5)

and using this identity in (13.2.4) gives

0 =

ˆ
L
e−Kt

(
∂j⟨u,Aju⟩+

〈
u,

(
B +B∗ − (∂jA

j)
)
u
〉)

dnx . (13.2.6)

In the first term we integrate by parts with the Gauß divergence theorem,ˆ
L
e−Kt∂j⟨u,Aju⟩ dnx = K

ˆ
L
e−Kt ⟨u,A0u⟩ dnx

+

ˆ
(∂L)+

e−Kt ⟨u, νjAju⟩ dµ∂L+ −
ˆ
(∂L)−

e−Kt ⟨u, νjAju⟩dµ∂L− .
(13.2.7)

We now use (13.2.7) in (13.2.6) and solve for the surface integral over (∂L)+,ˆ
(∂L)+

e−Kt ⟨u, νjAju⟩dµ∂L+ =

ˆ
(∂L)−

e−Kt ⟨u, νjAju⟩ dµ∂L−

+

ˆ
L
e−Kt

〈
u,

(
−K −B −B∗ + (∂jA

j)
)
u
〉
dnx .

(13.2.8)

This identity is the basis for the following uniqueness results.

Theorem 13.2.4. Let u1 and u2 be two smooth solutions of the linear symmetric
hyperbolic system (13.1.3) which coincide on the past boundary of a lens-shaped region L,

u1|(∂L)− = u2|(∂L)− .
Then u1 and u2 coincide in the whole set L.

Proof. The function u := u1 − u2 is a solution of the homogeneous system (13.2.3)
with u|(∂L)− = 0. Hence (13.2.8) simplifies toˆ

(∂L)+

e−Kt ⟨u, νjAju⟩ dµ∂L+ =

ˆ
L
e−Kt

〈
u,

(
−K −B −B∗ + ∂jA

j
)
u
〉
dnx .

Assume that u does not vanish identically in L. By choosing K sufficiently large, we can
then arrange that the right side becomes negative. However, since ∂L+ is a spacelike
hypersurface, the left side is non-negative. This is a contradiction. □

As an immediate consequence, we obtain the following uniqueness result for solutions
of the Cauchy problem.

Corollary 13.2.5. Let u1 and u2 be two smooth solutions of the linear symmetric
hyperbolic system (13.1.3) with the same initial at time t = 0. Then u1 ≡ u2 in a
neighborhood of the initial data surface.

If the matrices Aj are uniformly bounded and A0 is uniformly positive, then u1 ≡ u2
in [0, T ]× Rm.
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Figure 13.2. Coverings by lens-shaped regions.

Proof. The local uniqueness result follows immediately by covering the initial data
surface by lens-shaped regions (see the left of Figure 13.2). For the global uniqueness,
for any x0 = (t0, x⃗0) ∈ [0, T ] × Rm our task is to choose a lens-shaped region which
contains x0 and whose past boundary S0 is contained in the surface {t = 0}. We need
to rule out the situation shown on the right of Figure 13.2 that the hypersurface S1 does
not intersect S0, in which case we would not get a relatively compact lens-shaped region.
To this end, we must use that the matrices Aj are uniformly bounded by assumption.
As a consequence, there is ε > 0 such that the inequality ∥∇f∥ ≤ ε implies that the
hypersurface S1 = {(t = f(x⃗), x⃗)} is spacelike. Possibly after decreasing ε, we may
choose

f(x⃗) = t0 + ε
(
1−

√
1 + ∥x⃗− x⃗0∥2

)
.

This concludes the proof. □

By a suitable choice of lens-shaped region one can get an upper bound for the maximal
propagation speed. For the Dirac equation, where the causal structure of Definition 13.2.1
coincides in view of (13.2.2) with that of Minkowski space, one can choose for S1 a family
of spacelike hypersurfaces which converge to the boundary of a light cone (see Figure 13.3).
This shows that the maximal propagation speed for Dirac waves is indeed the speed of
light (which, according to our conventions, is equal to one).

13.3. Global Existence of Smooth Solutions

In this section we will show that, by refining the above uniqueness argument, we
even obtain an existence proof. The close connection between existence and uniqueness
for linear equations is a familiar theme in mathematics. The simplest setting where it
occurs is in the study of the linear equation Au = v with a given vector v ∈ Rn and a
quadratic matrix A. In this case, the uniqueness of the solution implies that the matrix A
is invertible, which in turn ensures existence. A more interesting example is Fredholm’s
alternative for compact operators (see for example [131, Section VI.5]). The procedure
for globally hyperbolic systems follows somewhat similar ideas. Here the general strategy
is to construct a bounded linear functional on a Hilbert space in such a way that the
Fréchet-Riesz theorem (see Theorem 2.2.4) gives the desired solution.

Before beginning, we point out that, in view of uniqueness and finite propagation
speed, it suffices to consider the problem in a bounded spatial region. Indeed, once we
have constructed “local solutions” in small lens-shaped regions as shown on the left of
Figure 13.2, uniqueness implies that these solutions agree in the overlap of the lens-
shaped regions, making it possible to “glue them together” to obtain the desired solution
which is global in space. We will come back to this construction in more detail in the
context of the Dirac equation in Sections 13.4 and 13.6 (see also Figure 13.4). Having this
construction in mind, we may start from a local problem and to extend the coefficients
of the symmetric hyperbolic system in an arbitrary way outside. Therefore, it is no loss
of generality to consider a problem in the whole space Rm. Choosing a bounded time
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Figure 13.3. Approximating the light cone by lens-shaped regions.

interval t ∈ [0, T ] (where t = 0 is the initial time), we are led to considering the time strip

RT := [0, T ]× Rm .

We now write the linear system (13.2.1) as

Lu = w with L := Aj∂j +B , (13.3.1)

where we again sum over j = 0, . . . ,m. Again using that the system can be extended
arbitrarily outside a bounded spatial region, we may assume that that the functions Aj , B
and w are uniformly bounded in RT and that w has spatially compact support (meaning
that w(t, .) ∈ C∞

0 (Rm) for all t ∈ [0, T ]). Moreover, for convenience we again assume
smoothness of Aj , B and w. In the Cauchy problem one seeks for a solution of the
equation (13.3.1) with prescribed initial data u0 ∈ C∞(Rm) at time t = 0,

Lu = w , u|t=0 = u0 ∈ C∞
0 (Rm) (13.3.2)

in Cs(RT ). First of all, we may restrict attention to the case u0 ≡ 0,

Lu = w , u|t=0 ≡ 0 . (13.3.3)

In order to see this, let u be a solution of the above Cauchy problem. Choosing a
function v ∈ C∞(RT ) which at t = 0 coincides with u0. Then the function ũ := (u − v)
satisfies the equation Lũ = w̃ with w̃ = w + Aj∂jv + Bv and vanishes at t = 0. If
conversely ũ is a solution of the corresponding Cauchy problem with zero initial data,
then u := ũ+ v is a solution of the original problem (13.3.2).

In preparation of the existence proof, we need to introduce the notion of a weak
solution. In order to get into the weak formulation, we multiply the equation (13.3.1) by
a test function v(t, x⃗) and integrate over RT , giving rise to the equation

⟨v, Lu⟩L2(RT ) = ⟨v, w⟩L2(RT )

with the L2-scalar product defined by

⟨v, w⟩L2(RT ) :=

ˆ T

0
dt

ˆ
Rm

⟨v(t, x⃗), w(t, x⃗)⟩ dmx . (13.3.4)

The next step is to integrate by parts, so that the derivatives act on the test function v.
Before doing so, we need to specify the regularity of the test functions. To this end,
for λ ∈ [0, T ] we consider the time strip

Rλ := [0, λ]× Rm .

We denote the s-times continuously differential functions on Rλ with spatially compact
support by Cs(Rλ). The function spaces

Cs(Rλ) and Cs(Rλ)

are defined as the functions which in addition vanish at t = 0 and t = λ, respectively. As
the space of test functions we choose C1(RT ); this guarantees that integrating by parts



230 13. METHODS OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

does not yield boundary terms at t = T . For a classical solution u ∈ C1(RT ) (i.e. a

solution with zero Cauchy data (13.3.3)), also the boundary term at t = 0 vanishes. We
thus obtain

⟨v, w⟩L2(RT ) = ⟨L̃v, u⟩L2(RT ) for all v ∈ C1(RT ) , (13.3.5)

where L̃ is the formal adjoint of L with respect to the scalar product (13.3.4), i.e.

L̃ := Ãj∂j + B̃ with Ãj = −Aj and B̃ = B† −
(
∂jA

j
)
. (13.3.6)

Now suppose that a function u ∈ C1(RT ) satisfies (13.3.5). Testing with functions v ∈
C1(RT )∩C1(RT ) which vanish both at times t = 0 and t = T , we can integrate by parts
without boundary terms. Using a standard denseness argument, one finds that u solves
the symmetric hyperbolic system (13.3.1). Next, testing with a function v ∈ C1(RT )
which does not vanish at t = 0, only the boundary term remains, giving the equationˆ

Rm

⟨v(0, x⃗), u(0, x⃗)⟩ dmx = 0 for all v ∈ C1(RT ) ,

which in turn implies that u vanishes initially. Thus u is a solution of the Cauchy
problem (13.3.3). To summarize, for functions u ∈ C1(RT ), the weak formulation (13.3.5)
is equivalent to our Cauchy problem (13.3.1) and (13.3.3). Therefore, it is sensible to
take (13.3.5) as the definition of a weak solution of the Cauchy problem. The main
advantage of the weak formulation (13.3.5) is that it is well-defined even for functions
which are not differentiable.

Our next step is to derive so-called energy estimates for a given solution u ∈ C1(RT ).

To this end, we return to the formula for the divergence (13.2.5) and using the equa-
tion (13.3.1), we obtain

∂j⟨u,Aju⟩+ ⟨u,Cu⟩ = 2Re ⟨u,w⟩, (13.3.7)

C := B +B∗ − (∂jA
j) . (13.3.8)

Next, we integrate (13.3.7) over Rλ, integrate by parts and use that the initial values
at t = 0 vanish. We thus obtain

E(λ) :=

ˆ
t=λ

⟨u,A0u⟩ dmx =

ˆ λ

0
dt

ˆ
Rm

(
2Re ⟨u,w⟩ − ⟨u,Cu⟩

)
dmx . (13.3.9)

Since the matrix C is uniformly bounded and A0 is uniformly positive, there is a con-
stant K > 1 such that

|⟨u,Cu⟩| ≤ K⟨u,A0u⟩ .
Moreover, the linear term in u can be estimated with the Schwarz inequality by

2Re ⟨u,w⟩ ≤ µ ⟨u, u⟩+ 1

µ
⟨w,w⟩ ≤ ⟨u,A0u⟩+ 1

µ2
⟨w,A0w⟩

with a suitable constant µ > 0. Applying these estimates in (13.3.9) gives

E(λ) ≤ (K + 1)

ˆ λ

0
E(t) dt+

1

µ2

ˆ
Rλ

⟨w,A0w⟩ dnx .

Writing this inequality as

d

dλ
e−(K+1)λ

ˆ λ

0
E(t) dt ≤ e−(K+1)λ 1

µ2

ˆ
RT

⟨w,A0w⟩ dnx ,
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we can integrate over λ to obtain
ˆ T

0
E(λ) dλ ≤ e(K+1)T − 1

K + 1

1

µ2

ˆ
RT

⟨w,A0w⟩ dnx .

Finally, we apply the mean value theorem and use that the exponential function is mono-
tone to conclude thatˆ T

0
E(λ) dλ ≤ T

µ2
e(K+1)T

ˆ
RT

⟨w,A0w⟩ dnx . (13.3.10)

This is the desired energy estimate.
Before going on, we point out that the notion of “energy” used for the quantity E(λ)

does in general not coincide with the physical energy. In fact, for the Dirac equa-
tion (13.1.2), E(λ) has the interpretation as the electric charge. Following Example 13.1.2,
for the scalar wave equation □ϕ = 0, we find

E(λ) =

ˆ
Rm

(
|∂tϕ|2 + |∇ϕ|2 + |ϕ|2

)
dmx . (13.3.11)

This differs from the physical energy by the last summand |ϕ|2 (and an overall factor
of two). The name “energy” for E(λ) was motivated by the fact, considering only the
highest derivative terms, the expression (13.3.11) is indeed the physical energy. We point
out that, in contrast to the physical energy, the quantity E(λ) does in general depend
on time. The point is that (13.3.10) gives an a-priori control of the energy in terms of
the inhomogeneity. The exponential factor in (13.3.10) can be understood in analogy to
a Grönwall estimate (for the classical Grönwall estimate see for example [1, Lemma 1.15
in Section VII.1]).

For the following construction, it is convenient to introduce on C1(RT ) the scalar
product

(u, v) =

ˆ
RT

⟨u,A0v⟩ dnx .

We denote the corresponding norm by ∥ · ∥. Setting furthermore

Γ2 =
T

µ2
e(K+1)T ,

the energy estimate can be written in the compact form

(u, u) ≤ Γ2 (w,w) .

This inequality holds for every solution u of the differential equation Lu = w which
vanishes at t = 0. Noting that every function u ∈ C1(RT ) is a solution of this differential
equation with inhomogeneity w := Lu, we obtain

∥u∥ ≤ Γ ∥Lu∥ for all u ∈ C1(RT ) . (13.3.12)

This is the form of the energy estimates suitable for an abstract existence proof.
Note that the operator L̃ in (13.3.6) is also symmetric hyperbolic and has the same

boundedness and positivity properties as L. Hence, repeating the above arguments, we
obtain similar to (13.3.12) the “dual estimate”

∥v∥ ≤ Γ̃ ∥L̃v∥ for all v ∈ C1(RT ) . (13.3.13)
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We now want to show the existence of weak solutions with the help of the Fréchet-
Riesz theorem (see Theorem 2.2.4 in the preliminaries or for example [131, 116]). To

this end, we first introduce on C1(RT ) yet another scalar product denoted by

⟨v, v′⟩ = (L̃v, L̃v) . (13.3.14)

This scalar product is indeed positive definite, because for any v ̸= 0,

⟨v, v⟩ = (L̃v, L̃v) ≥ Γ̃−2 (v, v) ̸= 0 ,

where in the last step we applied (13.3.13). Forming the completion, we obtain the
Hilbert space (H, ⟨., .⟩). We denote the corresponding norm by ||| . |||. In view of (13.3.13)
and (13.3.14), we know that every vector v ∈ H is a function in L2(RT , d

nx). Moreover,

we know from (13.3.14) that L̃v is also in L2(RT , d
nx). We remark that, in the language

of functional analysis, the space H can be identified with the Sobolev space W 1,2(RT ),
but we do not need this here.

We now consider for w ∈ C0(RT ) and v ∈ C1(RT ) the linear functional ⟨v, w⟩L2(RT ).
In view of the estimate∣∣⟨v, w⟩L2(RT )

∣∣ ≤ ∥v∥L2(RT ) ∥w∥L2(RT ) ≤
Γ̃

C
∥w∥L2(RT ) ||| v ||| ,

this functional is continuous in v ∈ H. The Fréchet-Riesz theorem shows that there
is U ∈ H with

⟨v, w⟩L2(RT ) = ⟨v, U⟩ = (L̃v, L̃U) for all v ∈ H .

Rewriting the last scalar product as

(L̃v, L̃U) = ⟨Lv,A0L̃U⟩L2(RT ) ,

one sees that the function u := A0L̃U ∈ L2(RT , d
nx) satisfies the equation (13.3.5) and

is thus the desired weak solution. Note that all our methods apply for arbitrarily large T .
We have thus proved the global existence of weak solutions.

We next want to show that the solutions are smooth. Thus our task is to show that our
constructed weak solution u is of the class Cs(Rλ), where s ≥ 1 can be chosen arbitrarily
large. We first show that a linear symmetric hyperbolic system can be “enlarged” to
include the partial derivatives of ϕ.

Lemma 13.3.1. Suppose that the system Aj∂ju + Bu = w is symmetric hyperbolic.
Then there is a symmetric hyperbolic system of the form

Ãj∂jΨ+ B̃Ψ = w̃ (13.3.15)

for the vector Ψ := (∂tu,∇1u, . . . ,∇mu, u) ∈ C(n+1)N .

Proof. Let i be a fixed spacetime index. We differentiate the equation Lu = w,

∂iw = ∂iLu = L∂iu+ (∂iA
j) ∂ju+ (∂iB)u .

This equation can be written as

Aj∂jΨi +

n∑
j=1

B̃j
i Ψj + (∂iB)u = w̃i ,

where we set

B̃j
i = B δji + (∂iA

j) and w̃i = ∂iw .
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Combining these equations with the equation Lu = w, we obtain a system of the
form (13.3.15), where the matrices Aj are block diagonal in the sense that

Ãj =
(
(Ãj)αβ

)
α,β=0,...,m+1

with (Ãj)αβ = Aj δαβ .

Obviously, this system is again symmetric hyperbolic. □

Iterating this lemma, we obtain (at least in principle) a symmetric hyperbolic system
for u and all its partial derivatives up to any given order s. Since the corresponding weak
solution is in L2(RT ), we conclude that u and all its weak partial derivatives are square
integrable. The next lemma, which is a special case of the general Sobolev embedding
theorems (see for example [32, Section II.5.] or [143, Section 4]), gives smoothness of
the solution.

Lemma 13.3.2. Let s > m
2 be an integer. If a function g on Rm is s times weakly

differentiable and ˆ
Rm

|∇αg|2 dmx < C (13.3.16)

for all multi-indices α with |α| ≤ s, then g is bounded, g ∈ L∞(Rm). Likewise, if g
is s+ l+ 1 times weakly differentiable with l ≥ 1 and (13.3.16) holds for all α with |α| ≤
s+ l + 1, then g ∈ C l(Rm).

Proof. We apply the Schwarz inequality to the Fourier transform,

|g(x)|2 =
∣∣∣∣ˆ

Rm

dmk

(2π)m
ĝ(k) e−ikx

∣∣∣∣2
=

∣∣∣∣ˆ
Rm

dmk

(2π)m
(1 + |k|2)−

s
2 (1 + |k|2)

s
2 ĝ(k)e−ikx

∣∣∣∣2
≤ cm

ˆ
Rm

dmk

(2π)m
(1 + |k|2)s |ĝ(k)|2 ,

where the constant cm is finite due to our choice of s,

cm =

ˆ
Rm

dmk

(2π)m
(1 + |k|2)−s <∞ .

Using the Plancherel formula together with the fact that a factor k2 corresponds to a
Laplacian in position space, we obtainˆ

Rm

dmk

(2π)m
(1 + |k|2)s |ĝ(k)|2 =

s∑
ℓ=0

(
n

ℓ

)
∥∇ℓg∥2L2(Rm) < c .

Hence
√
cm c is an L

∞-bound for g.
Next, if g is s + 1 times weakly differentiable, then ∥Dg∥L∞(Rm) < c. As a conse-

quence, the mean value theorem yields |g(x) − g(y)| ≤ c|x − y|, so that g is Lipschitz
continuous. Finally, if g is s + l + 1 times weakly differentiable, then all partial deriva-
tives ∇αg of order |α| ≤ l are Lipschitz continuous, so that g ∈ C l(Rm). □

More precisely, in order to apply this lemma, we fix a time t and consider the solu-
tion u(λ, .). The identity (13.3.9) implies that E(λ) is controlled in terms of ∥w∥ and ∥u∥.
After iteratively applying Lemma 13.3.1, we conclude that the weak derivatives of u(λ, .)
exist to any order and are in L2(Rm). It follows that u(λ, .) is smooth. Finally, one uses
the equation to conclude that u is also smooth in the time variable.

The results of this section can be summarized as follows.
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Theorem 13.3.3. Consider the Cauchy problem(
A0∂t +

m∑
α=1

Aα∇α +B
)
u = w ∈ C∞

0 ([0, T ]× Rm) , u|t=0 = u0 ∈ C∞
0 (Rm) .

Assume that the matrices A0, Aj and B as well as the functions w and u0 are smooth.
Moreover, assume that all these functions as well as as all their partial derivatives are
uniformly bounded (where the bound may depend on the order of the derivatives). Then
the Cauchy problem has a smooth solution on [0, T ]× Rm.

This theorem also applies in the case T = ∞, giving global existence of a smooth solution.
We finally show that the solutions depend smoothly an parameters.

Corollary 13.3.4. Suppose that the matrices Aj , B and the functions w, u0 depend
smoothly on a parameter λ. Then the family of solutions u(λ) is also smooth in λ.

Proof. First, similar as explained after (13.3.3), we may restrict attention to the
case u0 = 0. Differentiating the equation Lu = w with respect to λ, we obtain

Luλ = (∂λL)u+ ∂λw =: w̃ ,

where uλ stands for the formal derivative ∂λu. This is a symmetric hyperbolic system
for uλ. According to Theorem 13.3.3, we know that u and therefore w̃ are smooth.
Hence, applying this theorem again, we conclude that there exists a smooth solution uλ.
Considering the limit of the difference quotients, one verifies that uλ really coincides
with ∂λu(λ) for our given family of solutions u(λ). The higher λ-derivatives can be
treated inductively. □

13.4. The Causal Dirac Green’s Operators in Minkowski Space

We now want to apply the previous general existence and uniqueness results to the
Cauchy problem (13.1.1) for the Dirac equation in Minkowski space in the presence of an
external potential B.

Theorem 13.4.1. Consider the Cauchy problem for the Dirac equation (13.1.1) for
smooth initial data ψ0, a smooth inhomogeneity ϕ and a smooth matrix-valued poten-
tial B ∈ C∞(M,C4×4). Then there is a unique global smooth solution ψ ∈ C∞(M, SM).

Proof. Writing the Dirac equation in the Hamiltonian form (13.1.2), we obtain a
symmetric hyperbolic system. In view of the uniqueness result for smooth solutions of
Corollary 13.2.5, it suffices to construct a smooth solution at any given time T ∈ R. It
suffices to consider the case T > t0, because otherwise we reverse the time direction.
Moreover, we can arrange by a time shift that t0 = 0.

We cannot apply Theorem 13.3.3 directly because the coefficient functions in (13.1.2)
do not need to be bounded, nor are our initial values compactly supported. For this
reason, we need to construct local solutions and “glue them together” using linearity: We
first extend the initial data ψ0 smoothly to the time strip RT and consider the Cauchy
problem for ψ̃ := ψ − ψ0,

(i∂/+B−m) ψ̃ = ϕ̃ ∈ C∞(M, SM) , ψ̃|t0 = 0 .

We let (ηk)k∈N be a smooth partition of unity of Rm with ηk ∈ C∞
0 (Rm) (for details

see for example [136, Theorem 2.13]). We extend these functions to static functions
on RT (i.e. ηk(t, x⃗) := ηk(x⃗). Given k ∈ N, we first solve the Cauchy problem for the
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Figure 13.4. Construction of local solutions.

inhomogeneity ηkϕ̃. We choose a compact set K ⊂ Rm such that [0, T ] × K contains

the causal future of the support of (ηkϕ̃) (see Figure 13.4; more specifically, we could
choose K = B2T (supp ηk)). Next, we choose a smooth, compactly supported function θ ∈
C∞
0 (Rm) with θ|K ≡ 1. We again extend θ to a static function on RT .
We now consider the modified Cauchy problem(

1C4 ∂tψ + γ0γ⃗∇⃗+ θ
(
− iγ0(B−m)

))
ψ̃k = −iγ0 ηk ϕ̃ , ψ̃k|t0 = 0 .

Now the coefficients in the PDE are uniformly bounded, and the inhomogeneity has
compact support. Therefore, we can apply Theorem 13.3.3 to obtain a global smooth
solution. Due to finite propagation speed (see Theorem 13.2.4, where we choose lens-
shaped regions L as shown in Figure 13.4), this solution vanishes outside K. Therefore,

it is also a solution of the unmodified Dirac equation, with initial data ηkϕ̃.
Finally, summing over k gives the desired solution of the original Cauchy problem,

ψ :=
∞∑
k=1

ψ̃k .

Here the series converges because, again due to finite propagation speed, it is locally
finite. □

We next explain how the previous existence and uniqueness results give rise to the
existence of causal Green’s operators, being defined as integral operators with distribu-
tional kernels. These kernels are often referred to as Green’s functions. Our main tool
is the Schwartz kernel theorem. We do not give a proof of this more advanced result of
distribution theory but refer instead to [105, Section 5.2] or [143, Section 4.6]. For better
consistency with the notation in the perturbative treatment in Section 18, from now on
we denote the objects in the presence of an external potential with an additional tilde.
We begin with a representation formula for the solution of the Cauchy problem in terms
of a distribution.

Theorem 13.4.2. Assume that the external potential B is smooth and that B and all
its partial derivatives are uniformly bounded in Minkowski space. Then for any t, t0 there
is a unique distribution k̃m(t, .; t0, .) ∈ D′(R3 × R3) such that the solution of the Cauchy
problem (17.0.1) has the representation

ψ(t, x⃗) = 2π

ˆ
N
k̃m(t, x⃗; t0, y⃗) γ

0 ψ0(y⃗) d3y . (13.4.1)

The integral kernel km is also a distribution in spacetime, km ∈ D′(M × M) It is a
distributional solution of the Dirac equation,

(i∂/x +B−m) k̃m(x, y) = 0 . (13.4.2)
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Proof. The energy estimates combined with the Sobolev embedding of Lemma 13.3.2
showed that there is k ∈ N and a constant C = C(t, t0, x⃗,B) such that the solution ψ(t, .)
of the Cauchy problem is bounded in terms of the initial data by

|ψ(t, x⃗)| ≤ C |ψ0|Ck , (13.4.3)

where |ψ|2 := ≺ψ|γ0ψ≻, and the Ck-norm is defined by

|ψ0|Ck = max
|β|≤k

sup
x⃗∈R3

|∇βψ0(x⃗)| .

Moreover, this estimate is locally uniform in x⃗, meaning that for any compact setK ⊂ R3,
there is a constant C such that (13.4.3) holds for all x⃗ ∈ K. This makes it possible to

apply the Schwartz kernel theorem [105, Theorem 5.2.1], showing that k̃m(t, .; t0, .) ∈
D′(R3 × R3).

Next, we note that the constant C in (13.4.3) can also be chosen locally uniformly in t
and t0. Thus, after evaluating weakly in t and t0, we may again apply the Schwartz kernel
theorem to obtain that k̃m ∈ D′(M ×M). Finally, the distributional equation (13.4.2)
follows immediately from the fact that (13.4.1) is satisfies the Dirac equation for any
choice of ψ0. □

The distribution k̃m is referred to as the causal fundamental solution. Encoding the
whole Dirac dynamics, it plays a fundamental role in the analysis of the Dirac equation.
In the next step, we introduce the causal Green’s operators by decomposing k̃m in time.
Namely, for any t, t0 we introduce the distribution s̃

∨
m(t, .; t0, .), s̃

∧
m(t, .; t0, .) ∈ D′(R3×R3)

by {
s̃∨m(t, .; t0, .) = 2πi k̃m(t, .; t0, .) Θ(t0 − t)

s̃∧m(t, .; t0, .) = −2πi k̃m(t, .; t0, .) Θ(t− t0)
(13.4.4)

(where Θ denotes the Heaviside function). In this way, we introduce the causal funda-
mental solutions for any given t0 and t as distributions on R3 × R3. Alternatively, they
can also be introduced as bi-distributions in spacetime, as is shown in the next lemma.

Theorem 13.4.3. Assume that the external potential B is smooth and that B and all
its partial derivatives are uniformly bounded in Minkowski space. Then there are unique
distributions

s̃∨m, s̃
∧
m ∈ D′(M × M)

which satisfy the distributional equations

(i∂/x +B−m) s̃m(x, y) = δ4(x− y) (13.4.5)

and are supported in the upper respectively lower light cone,

supp s̃∨m(x, .) ⊂ J∨
x , supp s̃∧m(x, .) ⊂ J∧

x . (13.4.6)

Proof. It is clear by construction and the fact that the constant C in (13.4.3) can
be chosen locally uniformly in x and y that the causal Green’s operators are well-defined
distributions in D′(M ×M). The support property (13.4.6) follows immediately from
finite propagation speed as explained at the end of Section 13.2. The uniqueness of the
causal Green’s operators is clear from the uniqueness of solutions of the Cauchy problem.
In order to derive the distributional equations (13.4.5), we only consider the retarded
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Green’s operator (the argument for the advanced Green’s operator is analogous). Then,
according to (13.4.1) and (13.4.4),

Θ(t− t0) ψ(t, x⃗) = i

ˆ
N
s̃∧m(t, x⃗; t0, y⃗) γ

0 ψ0(y⃗) d3y ,

where ψ is the solution of the corresponding Cauchy problem. Applying the Dirac oper-
ator in the distributional sense yields

iγ0δ(t− t0) ψ0(t, x⃗) = i(Dx −m)

ˆ
N
s̃∧m(t, x⃗; t0, y⃗) γ

0 ψ0(y⃗) d3y .

We now choose the initial values as the restriction of a test function in spacetime, ψ0 =
ϕ|t=t0 with ϕ ∈ C∞

0 (M,SM). Then we can integrate over t0 to obtain

iγ0ϕ(x) = (Dx −m)

ˆ
M
s̃∧m(x, y) iγ

0ϕ(y) d4y .

This gives the result. □

We remark that, turning the above argument around, we can also use the causal
Green’s operators in order to define the causal fundamental solution as a bi-distribution
in spacetime,

k̃m :=
1

2πi

(
s̃∨m − s̃∧m

)
∈ D′(M × M) . (13.4.7)

The causal fundamental solution has the remarkable property that it relates the scalar
product with the inner product obtained by integrating the spin inner product over space-
time. We now explain this relation step by step. Given two wave functions ψ and ϕ (not
necessarily solutions of the Dirac equation), we want to integrate their pointwise inner
product ≺ψ|ϕ≻x over spacetime (similar as already done in the preliminaries in (1.3.16)
and (4.2.33)). In order to ensure that this integral is well-defined, it suffices to assume
that one of the functions is compactly supported. We thus obtain the sesquilinear pairing

<.|.> : C∞(M, SM)× C∞
0 (M, SM) → C ,

<ψ|ϕ> =

ˆ
M

≺ψ|ϕ≻x dµM (13.4.8)

(here C∞(M, SM) are again the smooth sections of the spinor bundle, and C∞
0 (M, SM)

denotes the smooth sections with compact support). Restricting the first argument to
compactly supported wave functions, we obtain an inner product,

<.|.> : C∞
0 (M, SM)× C∞

0 (M, SM) → C ,

referred to as the spacetime inner product (we remark that this inner product space can
be extended to a Krein space; we refer the interested reader to [45, §1.1.5]). Alternatively,
one can also restrict the first argument of <.|.> to smooth Dirac solutions and extend by
approximation to the whole Hilbert space Hm, giving the sesquilinear pairing

<.|.> : Hm × C∞
0 (M, SM) → C .

The following proposition goes back to John Dimock (see [27, Proposition 2.2]).

Proposition 13.4.4. For any ψm ∈ Hm and ϕ ∈ C∞
0 (M, SM),

(ψm | k̃mϕ)m = <ψm|ϕ> . (13.4.9)
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Proof. We first give the proof under the additional assumption ψm ∈ C∞
sc (M, SM)

that the Dirac solution has spatially compact support. We choose Cauchy surfaces N+

and N− lying in the future and past of suppϕ, respectively. Let Ω be the spacetime region
between these two Cauchy surfaces, i.e. ∂Ω = N+ ∪N−. Then, according to (13.6.2) and
using again the notation (4.2.32),

(ψm | k̃m ϕ)m = (ψm | k̃m ϕ)N+
=

i

2π
(ψm | s̃∧m ϕ)N+

=
i

2π

[
(ψm | s̃∧m ϕ)N+

− (ψm | s̃∧m ϕ)N−

]
= i

ˆ
Ω
∇j≺ψm | γj s̃∧mϕ≻x dµ(x) ,

where in the last line we applied the Gauß divergence theorem and used (15.1.2). Using
that ψm satisfies the Dirac equation, a calculation similar to (1.3.10) yields

(ψm | k̃m ϕ)m =

ˆ
Ω
≺ψm | (D −m) s̃∧mϕ≻x dµ(x)

(16.2.1)
=

ˆ
Ω
≺ψm|ϕ≻x dµ(x) .

As ϕ is supported in Ω, we can extend the last integration to all of M, giving the result.
In order to extend the result to general ψm ∈ Hm, we use the following approximation

argument. Let ψ
(n)
m ∈ Hm ∩ C∞

sc (M, SM) be a sequence which converges in Hm to ψm.

Then obviously (ψ
(n)
m | k̃m ϕ)m → (ψm | k̃m ϕ)m. In order to show that the right side

of (13.4.9) also converges, it suffices to prove that ψ
(n)
m converges in L2

loc(M, SM) to ψm.
Thus let K ⊂ M be a compact set contained in the domain of a chart (x, U). Using
Fubini’s theorem, we obtain for any ψ ∈ Hm ∩ C∞

sc (M, SM) the estimateˆ
K
≺ψ|/νψ≻dµM =

ˆ
dx0

ˆ
≺ψ|/νψ≻

√
|g| d3x ≤ C(K) (ψ|ψ)m .

Applying this estimate to the functions ψ = ψ
(n)
m − ψ

(n′)
m , we see that ψ

(n)
m converges

in L2(K,SM) to a function ψ̃. This implies that ψ
(n)
m converges to ψ̃ pointwise almost

everywhere (with respect to the measure dµM). Moreover, the convergence of ψ
(n)
m in Hm

to ψm implies that the restriction of ψ
(n)
m to any Cauchy surface N converges to ψm|N

pointwise almost everywhere (with respect to the measure dµN). It follows that ψ̃ =
ψm|K , concluding the proof. □

Corollary 13.4.5. The operator k̃m, (13.6.2), is symmetric with respect to the inner
product (13.4.8).

Proof. Using Proposition 13.4.4, we obtain for all ϕ, ψ ∈ C∞
0 (M, SM),

<k̃mϕ |ψ> = (k̃mϕ | k̃mψ)m = <ϕ | k̃mψ> ,

concluding the proof. □

13.5. A Polynomial Estimate in Time

We now derive an estimate which shows that the solutions of the Dirac equation
increase at most polynomially in time. This result will be needed in Section 17.2.1. For
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the proof we adapt standard methods of the theory of partial differential equations to the
Dirac equation. In generalization of (16.3.4), we denote the spatial Sobolev norms by

∥ϕ∥2Wa,2 =
∑

α with |α| ≤ a

ˆ
R3

|∇αϕ(x⃗)|2 d3x .

Lemma 13.5.1. We are given two non-negative integers a and b as well as a smooth
time-dependent potential B. In the case a > 0 and b ≥ 0, we assume furthermore that
the spatial derivatives of B decay faster than linearly for large times in the sense that

|∇B(t)|Ca−1 ≤ c

1 + |t|1+ε
(13.5.1)

for suitable constants c, ε > 0. Then there is a constant C = C(c, ε, a, b) such that every
family of solutions ψ ∈ H∞ of the Dirac equation (1.3.14) for varying mass parameter
can be estimated for all times in terms of the boundary values at t = 0 by∥∥∂bmψm|t∥∥Wa,2 ≤ C

(
1 + |t|b

) b∑
p=0

∥∥∂pmψm|t=0

∥∥
Wa,2 .

Proof. We choose a multi-index α of length a := |α| and a non-negative integer b.
Differentiating the Dirac equation (1.3.14) with respect to the mass parameter and to the
spatial variables gives

(i∂/+B−m)∇α∂bmψm = b∇α∂b−1
m ψm −∇α

(
B ∂bmψm

)
+B∇α∂bmψm .

Introducing the abbreviations

Ξ := ∇α∂bmψm and ϕ := b∇α∂b−1
m ψm −∇α

(
B ∂bmψm

)
+B∇α∂bmψm ,

we rewrite this equation as the inhomogeneous Dirac equation

(D −m) Ξ = ϕ .

A calculation similar to current conservation yields

−i∂j≺Ξ|γjΞ≻ = ≺(D −m)Ξ |Ξ≻−≺Ξ | (D −m)Ξ≻ = ≺ϕ|Ξ≻−≺Ξ|ϕ≻ .

Integrating over the equal time hypersurfaces and using the Schwarz inequality, we obtain∣∣∂t(Ξ|t∣∣Ξ|t)t∣∣ ≤ 2
∥∥Ξ|t∥∥t ∥∥ϕ|t∥∥t

and thus ∣∣∣∂t∥∥Ξ|t∥∥∣∣∣ ≤ ∥∥ϕ|t∥∥t .
Substituting the specific forms of Ξ and ϕ and using the Schwarz and triangle inequalities,
we obtain the estimate∣∣∣∂t∥∥∇α∂bmψm|t

∥∥
t

∣∣∣ ≤ b
∥∥∇α∂b−1

m ψm|t
∥∥
t
+ c a |∇B(t)|Ca−1

∥∥∂bmψm|t∥∥Wa−1,2 , (13.5.2)

where we used the notation (17.2.2).
We now proceed inductively in the maximal total order a+b of the derivatives. In the

case a = b = 0, the claim follows immediately from the unitarity of the time evolution.
In order to prove the induction step, we note that in (13.5.2), the order of differentiation
of the wave function on the right hand side is smaller than that on the left hand side at
least by one. In the case a = 0 and b ≥ 0, the induction hypothesis yields the inequality∣∣∂t∥∂bmψm|t∥∣∣ ≤ b

∥∥∂b−1
m ψm|t

∥∥ ≤ bC
(
1 + |t|b−1

) b−1∑
p=0

∥∥∂pmψm|t=0

∥∥ ,
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and integrating this inequality from 0 to t gives the result. In the case a > 0 and b ≥ 0,
we apply (13.5.1) together with the induction hypothesis to obtain∣∣∣∂t∥∥∂bmψm|t∥∥Wa,2

∣∣∣ ≤ bC
(
1 + |t|b−1

) b−1∑
p=0

∥∥∂pmψm|t=0

∥∥
Wa,2

+ cC
1 + |t|b

1 + |t|1+ε
b∑

p=0

∥∥∂pmψm|t=0

∥∥
Wa−1,2 .

Again integrating over t gives the result. □

13.6. The Cauchy Problem in Globally Hyperbolic Spacetimes

We conclude this chapter by extending the global existence and uniqueness result for
the Dirac equation to curved spacetime. These results were already stated in Section 4.5.
We are now in the position for giving the proof. The reader not interested in or not
familiar with curved spacetime may skip this section. We note that more details on the
geometric properties of globally hyperbolic spacetimes can be found in [6, Section 3.2].

Proof of Theorem 4.5.1. Exactly as explained in the proof of Theorem 13.4.1, by
considering the Cauchy problem for ψ − ψ0 one may reduce the problem to that of zero
initial data zero. Moreover, choosing a partition of unity (ηk) subordinate to the charts
of a given atlas, it suffices to consider the compactly supported inhomogeneity ηkϕ (the
sum over k is again locally finite, similar as explained in the proof of Theorem 13.4.1).
In view of these constructions, it remains to consider the Cauchy problem

(D −m)ψ = ϕ ∈ C∞
0 (M, SM) , ψ|Nt0

= 0 . (13.6.1)

We denote the support of ϕ by K.
Clearly, in local charts the Dirac equation can be written as a symmetric hyperbolic

system. Therefore, the results in Sections 13.2 and 13.3 yield existence and uniqueness of
solutions of the Cauchy problem in local charts. This also yields global uniqueness: Let ψ
and ψ̃ be two smooth solutions of the Cauchy problem (13.6.1). Then their difference Ξ :=

ψ̃ − ψ is a homogeneous solution which vanishes at time t0. In view of a possible time
reversal, it suffices to consider the solution in the future of t0. Thus let x ∈ M be in the
future of t0. Then the past light cone J∧(x) intersects the future of t0 in a compact set,

J∧(x) ∩
(⋃

t≥t0
Nt

)
is compact .

Therefore, we can choose δ > 0 such that for every t̂, there is a finite number of lens-
shaped regions which cover the time strip

J∧(x) ∩
(⋃t̂+δ

t=t̂
Nt

)
.

On each lens-shaped regions, the solution for the Cauchy problem with zero initial data
vanishes identically. Therefore, we can proceed inductively to conclude that Ξ(x) = 0.
Since x is arbitrary, the solution Ξ vanishes identically on M.

In order to prove global existence, we proceed indirectly. In view of a possible time
reversal, it suffices to consider the Cauchy problem to the future. Thus suppose that the
solution exists only up to finite time tmax (see Figure 13.5). Due to finite propagation
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t0

tmaxtmax − δ

tmax + δ

K

J∨(K) ∪ J∧(K)

Lℓ

Figure 13.5. Global solutions in globally hyperbolic spacetimes.

speed, the solution is supported in the domain of causal dependence of K,

suppψ ⊂ J∨(K) ∪ J∧(K) .

By properties of globally hyperbolic spacetimes, the intersection D of this set with the
Cauchy surface Ntmax is compact. Covering D by a finite number of charts, we choose δ
such that the sets J∨(D) ∪ J∧(D) ∩ Nt lie in the domain of these charts for all t ∈
[tmax − δ, tmax + δ]. Next we choose a finite number of lens-shaped regions Lℓ which also
cover all these sets (see again Figure 13.5). In each of these lens-shaped regions we can
solve the Cauchy problem with initial data at time tmax−δ. In this way, we get a solution
up to time tmax+ δ. This is a contradiction, thereby proving that the solution must exist
for all times. □

Proof of Theorem 4.5.2. By extending the initial data ψ0 to a smooth and com-
pactly supported function in spacetime and considering the Cauchy problem for ψ − ψ0,
it again suffices to consider the case of zero initial data (13.6.1). The solution constructed
subsequently the proof of Theorem 4.5.1 was supported in J∨(K) ⊂ J∧(K). By general
properties of globally hyperbolic manifolds, the intersection of this set with every Cauchy
surface is compact. This concludes the proof. □

Similar as explained in Section 13.4 in Minkowski space, also in curved spacetime
the solution of the Cauchy problem can be expressed in terms of the causal fundamental
solution km, as we now explain. Similar as explained in Minkowski space in Section 13.4,
the retarded and advanced Green’s operators s∧m and s∨m are linear mappings (for details
see for example [27, 6])

s∧m, s
∨
m : C∞

0 (M, SM) → C∞
sc (M, SM) .

They satisfy the defining equation of the Green’s operator

(D −m)
(
s∧,∨m ϕ

)
= ϕ .

Moreover, they are uniquely determined by the condition that the support of s∧mϕ (or s∨mϕ)
lies in the future (respectively the past) of suppϕ. The causal fundamental solution km
is introduced by

km :=
1

2πi

(
s∨m − s∧m

)
: C∞

0 (M, SM) → C∞
sc (M, SM) ∩Hm . (13.6.2)

Note that it maps to solutions of the Dirac equation.
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Proposition 13.6.1. The solution of the Cauchy problem (4.5.1) has the representa-
tion

ψ(x) = 2π

ˆ
N
km(x, y) /ν ψN(y) dµN(y) ,

where km(x, y) is the causal fundamental solution (13.6.2).

Proof. Let us consider a point x in the future of N (the case for the past is analo-
gous). In this case, due to (13.6.2), the lemma simplifies to

ψ(x) = i

ˆ
N
s∧m(x, y) /ν(y)ψN(y) dµN(y) . (13.6.3)

In preparation, we want to prove that for any ϕ ∈ C∞(M, SM) which has compact
support to the past of N and with the property that (D−m)ϕ has compact support the
equation

ϕ = s∧m
(
(D −m)ϕ

)
(13.6.4)

holds. To this end, we consider the function

Ξ(x) := ϕ− s∧m
(
(D −m)ϕ

)
.

Applying the operator (D−m) and using the defining equation of the Green’s operators,
one sees that Ξ is a solution of the Dirac equation. Moreover, Ξ obviously vanishes in the
past of the support of ϕ. The uniqueness of the solution of the Cauchy problem implies
that Ξ vanishes identically, proving (13.6.4).

In order to derive equation (13.6.3), we let η ∈ C∞(M) be a function which is
identically equal to one at x and on N , but such that the function ηψ has compact support
to the past. (For example, in a foliation (Nt)t∈R with N = Nt0 one can take η = η(t) as a
smooth function with η|[t0,∞) ≡ 1 which vanishes if t < t0−1). Then we can apply (13.6.4)
to the wave function ϕ = ηψ. We thus obtain for any x in the future of N the relations

ψ(x) = (ηψ)(x) =
(
s∧m

(
(D −m)(ηψ)

))
(x) =

(
s∧m

(
iγj(∂jη)ψ

))
(x) , (13.6.5)

where we have used that ψ is a solution of the Dirac equation.
To conclude the proof, for η in (13.6.5) we choose a sequence ηℓ which converges in

the distributional sense to the function which in the future N is equal to one and in the
past of N is equal to zero. This yields ∂jηℓ → ν, and thus the right-hand-side of (13.6.5)
goes over to the right-hand-side of (13.6.3). □

13.7. Exercises

Exercise 13.1. The homogeneous Maxwell equations for the electric field E : R3 →
R3 and the magnetic field B : R3 → R3 read

∇×B = ∂tE , ∇× E = −∂tB ,

where × denotes the cross product in R3. Rewrite these equations as a symmetric hy-
perbolic system. Remark: We here ignore the equations divE = divB = 0. The reason
is that these equations hold automatically if they are satisfied initially.

Exercise 13.2. Consider the scalar wave equation (∂tt −∆Rm)ϕ(t, x) = 0.

(a) Rewrite the equation as a symmetric hyperbolic system

A0∂tu+
m∑
α=1

Aα∇αu+Bu = 0.
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(b) Determine the timelike and future-directed directions. Which directions ξ are char-
acteristic (meaning that the characteristic polynomial detA(x, ξ) vanishes)?

(c) Express the “energy”

E(t) =

ˆ
Rm

⟨u,A0u⟩ dmx

in terms of ϕ(t, x). Compare the resulting expression with the conserved physical
energy ˆ

Rm

(|∂tϕ|2 + |∇ϕ|2) dmx .

(d) Compute dE(t)
dt . Prove the inequality

dE(t)

dt
≤ E(t)

and integrate it (Grönwall’s lemma).

Exercise 13.3. Consider the solution of the homogeneous wave equation

(∂tt −∆Rn)ϕ(t, x) = 0

for smooth initial data ϕ(0, x) = f(x) and ∂tϕ(0, x) = g(x).
Show by a suitable choice of lens-shaped regions that ϕ(t0, x0) depends only on the initial
data in the closed ball {x ∈ Rn : |x− x0| ≤ t0}.

Exercise 13.4. We consider the system

∂tu1(t, x) + ∂xu1(t, x) + 4∂xu2(t, x) = 0

∂tu2(t, x) + 4∂xu1(t, x) + ∂xu2(t, x) = 0

(a) Write the system in symmetric hyperbolic form.
(b) Compute the solution of the Cauchy problem for the initial data u1(0, x) = sinx

and u2(0, x) = cosx.

Exercise 13.5. (The Euler equations) The evolution equation for an isentropic
compressible fluid reads {

∂tv +∇vv +
1
ρgrad(p) = 0

∂tρ+∇vρ+ ρdiv(v) = 0.
(13.7.1)

Here v : R+ × R3 → R3 is the velocity vector field, ρ : R+ × R3 → (0,∞) the density
and p = Aργ the pressure (where A > 0 and γ > 1).

(a) Show that (13.7.1) is equivalent to a quasilinear symmetric hyperbolic system, pro-
vided that ρ is bounded away from zero.

(b) Show that for smooth solutions, the system (13.7.1) is equivalent to{
∂tv +∇vv + grad(h(ρ)) = 0

∂tρ+ div(ρv) = 0,
(13.7.2)

where h ∈ C∞(R) satisfies the equation h′(ρ) = ρ−1p′(ρ).
(c) Let (v, ρ) be a solution of (13.7.2) with v(t, x) = ∇xφ(t, x) for a real-valued po-

tential φ. Prove Bernoulli’s law : If φ and ρ decay at infinity sufficiently fast and
if h(0) = 0, then

∂tφ+
1

2
|∇xφ|2 + h(ρ) = 0 .



244 13. METHODS OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

(d) Show that (13.7.1) can also be rewritten as a system for (p, v),{
∂tv +∇vv + ρ(p)−1grad(p) = 0

∂tp+∇vp+ (γp) div(v) = 0 .

Rewrite this system in symmetric hyperbolic form.

Exercise 13.6. Let λ > 0. A symmetric hyperbolic system of the form

∂tu+Aα(u)∂αu+ λu = 0 ,

where the matrices Aα are smooth, uniformly bounded and uniformly positive, is an
example of a so-called dissipative system.

(a) Prove that for spatially compact solutions, the following energy estimate holds:

d

dt
∥u(t)∥2Hp ≤

(
− 2λ+ c∥u(t)∥C1

)
∥u(t)∥2Hp .

(b) Prove: If the initial data u0 is sufficiently small in the C1-norm, then there exists a
global solution.
Hint: Choose p sufficiently large and use the Sobolev embedding theorem.

Exercise 13.7. (Causality in the setting of symmetric hyperbolic systems) The Dirac
equation (i/∂ −m)ψ = 0 can be rewritten as a symmetric hyperbolic system, i.e. in the
form (c > 0)

(A0(x) ∂0 +Aα(x) ∂α +B(x))ψ = 0, with (Ai)† = Ai and A0(x) ≥ cI.
For such systems a notion of causality can be introduced: a vector ξ ∈ R4 is said to be
timelike or lightlike at x ∈ R4, if the matrix A(x, ξ) := Ai(x) ξi is definite (either positive
or negative) or singular, respectively.

Find the matrices Ai and B for the Dirac equation and show that the above notions
of timelike and lightlike vectors coincide with the corresponding notions in Minkowski
space.



CHAPTER 14

Energy Methods for the Linearized Field Equations

In the previous chapter, we used energy methods in order to study the Cauchy problem
for linear symmetric hyperbolic systems. We now briefly explain how these methods can
be adapted to the linearized field equations for causal variational principles as introduced
in Chapter 7. These constructions are carried out in detail in [22]; for later developments
see [64, 74]. Here we do not aim for the largest generality, but instead explain the basic
ideas in the simplest possible setting. We also note that some of the constructions in this
section will be illustrated in Chapter 20 by simple concrete examples.

14.1. Local Foliations by Surface Layers

We consider causal variational principles in the compact setting (see Section 6.3).
Moreover, for technical simplicity we again restrict attention to the smooth setting by
assuming that the Lagrangian is smooth (6.2.4). Following our procedure for symmetric
hyperbolic systems, we want to analyze the initial problem “locally” in an open subset U
of spacetime M . In analogy to the time function in a lens-shaped region L (see Sec-
tion 13.2) we here choose a foliation of a compact subset L ⊂ U by surface layers. This
motivates the following definition.

Definition 14.1.1. Let U ⊂M be an open subset of spacetime and I := [tmin, tmax] a
compact interval. Moreover, we let η ∈ C∞(I ×U,R) be a function with 0 ≤ η ≤ 1 which
for all t ∈ I has the following properties:

(i) The function θ(t, .) := ∂tη(t, .) is non-negative and compactly supported in U .
(ii) For all x ∈ supp θ(t, .) and all y ∈ M \ U , the function L(x, y) as well as its first

and second derivatives vanish.

We also write η(t, x) as ηt(x) and θ(t, x) as θt(x). We refer to (ηt)t∈I as a local foliation
inside U .

The situation in mind is shown in Figure 14.1. The parameter t can be thought of as
the time of a local observer and will be referred to simply as time. The support of the

U ⊂M := supp ρ

ηt ≡ 0

ηt ≡ 1 supp θt

L

Figure 14.1. A local foliation.
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function θt is a surface layer. The function ηt should be thought of as being equal to one
in the past and equal to zero in the future of this surface layer. The condition (i) implies
that the set L defined by

L :=
⋃
t∈I

supp θt (14.1.1)

is compact. It is the region of spacetime described by the local foliation. The condition (ii)
has the purpose to ensure that the dynamics in the region L does not depend on the jets
outside U , making it possible to restrict attention to the spacetime region U . Sometimes,
we refer to this property that L is L-localized in U . One way of satisfying (ii) is to simply
choose U =M . However, in the applications it may be desirable to “localize” the problem
for example by choosing U as the domain of a coordinate chart.

Following the procedure for hyperbolic partial differential equations, our first goal is
to analyze the initial value problem For the following constructions, it will be useful to
combine the functions ηt and θt with the measure ρ such as to form new measures: The
measure

dρt(x) := θt(x) dρ(x) (14.1.2)

with t ∈ I is supported in the surface layer at time t. Likewise, the measures

ηt dρ and
(
1− ηt) dρ

are supported in the past respectively future of the surface layer at time t. For the
measures supported in a spacetime strip, we use the notation

η[t0,t1] dρ with η[t0,t1] := ηt1 − ηt0 ∈ C∞
0 (U) , (14.1.3)

where we always choose t0, t1 ∈ I with t0 ≤ t1. Note that the function η[t0,t1] is supported
in L.

14.2. Energy Estimates and Hyperbolicity Conditions

For the analysis of the linearized field equations it is helpful to study the surface
layer integrals as introduced in Section 9.5 for our local foliation (ηt)t∈I . It is useful to
“soften” these surface layer integrals by rewriting the integration domains with charac-
teristic functions and replacing the characteristic functions by smooth cutoff functions
formed of ηt, i.e. symbolicallyˆ

Ω
dρ(x)

ˆ
M\Ω

dρ(y) · · · =
ˆ
M

dρ(x)

ˆ
M

dρ(y) χΩ(x)
(
1− χΩ(y)

)
· · ·

−→
ˆ
M

dρ(x)

ˆ
M

dρ(y) ηt(x)
(
1− ηt(y)

)
· · · .

We thus define the softened symplectic form and the softened surface layer inner product
by

(u, v)t =

ˆ
U
dρ(x) ηt(x)

ˆ
U
dρ(y)

(
1− ηt(y)

) (
∇1,u∇1,v −∇2,u∇2,v

)
L(x, y) (14.2.1)

σt(u, v) =

ˆ
U
dρ(x) ηt(x)

ˆ
U
dρ(y)

(
1− ηt(y)

) (
∇1,u∇2,v −∇1,v∇2,u

)
L(x, y) . (14.2.2)

The quantity (u, u)t is of central importance for the following constructions, because
it will play the role of the energy used in our energy estimates. In preparation of these
estimates, we derive an energy identity:
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Lemma 14.2.1. (energy identity) For any jet u = (a, u) ∈ J,

d

dt
(u, u)t = 2

ˆ
U
⟨u,∆u⟩(x) dρt(x)

− 2

ˆ
U
∆2[u, u] dρt(x) + s

ˆ
U
a(x)2 dρt(x) ,

(14.2.3)

where the operator ∆2 : J× J → J∗ defined by〈
u,∆2[u1, u2]

〉
(x)

=
1

2
∇u

(ˆ
M

(
∇1,u1 +∇2,u1

)(
∇1,u2 +∇2,u2

)
L(x, y) dρ(y) −∇u1∇u2 s

)
. (14.2.4)

Proof. Differentiating (14.2.1) with respect to t gives

d

dt
(u, u)t =

ˆ
U
dρ(x) θt(x)

ˆ
U
dρ(y)

(
1− ηt(y)

) (
∇2

1,u −∇2
2,u

)
L(x, y)

−
ˆ
U
dρ(x) ηt(x)

ˆ
U
dρ(y) θt(y)

(
∇2

1,u −∇2
2,u

)
L(x, y)

=

ˆ
U
dρ(x) θt(x)

ˆ
U
dρ(y)

(
∇2

1,u −∇2
2,u

)
L(x, y) . (14.2.5)

Next, for all x ∈ L we may use Definition 14.1.1 (ii) to change the integration range
in (8.1.7) from M to U ,

⟨u,∆u⟩(x) =
ˆ
U
∇1,u

(
∇1,u +∇2,u

)
L(x, y) dρ(y)− s a(x)2 .

Multiplying by θt and integrating, we obtain

0 =

ˆ
U
θt(x) ⟨u,∆u⟩(x) dρ(x) + s

ˆ
U
θt(x) a(x)

2 dρ(x)

−
ˆ
U
dρ(x) θt(x)

ˆ
U
dρ(y)

(
∇2

1,u +∇1,u∇2,u

)
L(x, y) .

We multiply this equation by two and add (14.2.5). This gives

d

dt
(u, u)t = −

ˆ
U
dρ(x) θt(x)

ˆ
U
dρ(y)

(
∇1,u +∇2,u

)2L(x, y)
+ 2

ˆ
U
θt(x) ⟨u,∆u⟩(x) dρ(x) + 2s

ˆ
U
θt(x) a(x)

2 dρ(x) .

Using the property in Definition 14.1.1 (ii), in the y-integral we may replace the integra-
tion range U byM , making it possible to apply (14.2.4). Rewriting the obtained integrals
using the notation (14.1.2) gives (14.2.3). □

In order to make use of this energy identity, we need to impose a condition which we
call hyperbolicity condition. This notion can be understood as follows. As explained in
Chapter 13, in the theory of hyperbolic partial differential equations the hyperbolicity
of the equations gives rise to a positive energy (see E(λ) in (13.3.9)). The positivity
of this energy was a consequence of the structure of the equations (more precisely, for
symmetric linear hyperbolic systems, it is a consequence of the positivity statement in
Definition 13.1.1 (ii)). The positivity of the energy is crucial for the analysis of hyper-
bolic equations, because it gives both uniqueness (see Section 13.2) and existence of weak
solutions (see Section 13.3). With this in mind, our strategy is to express the hyperbolic
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nature of the linearized field equations by imposing a positivity condition for our “en-
ergy” (u, u)t. As we shall see, this so-called hyperbolicity condition is precisely what is
needed in order to obtain existence and uniqueness of solutions. For Dirac systems in
Minkowski space, the hyperbolicity conditions can be verified by direct computation (for
details see [50]). With this in mind, our hyperbolicity conditions are physically sensible.
But in most situation, imposing the hyperbolicity conditions for all jets in J is a too
strong assumption. Instead, these conditions will or can be satisfied only on a suitably
chosen subspace of jets, which we denote by

Jvary ⊂ J . (14.2.6)

Clearly, the smaller the jet space Jvary is chosen, the easier it is to satisfy (14.2.8). The
drawback is that the Cauchy problem will be solved in a weaker sense.

In order to define the hyperbolicity conditions, for all x ∈M we choose the subspace
of the tangent space spanned by the test jets,

Γx :=
{
u(x) | u ∈ Γtest

}
⊂ TxF .

We introduce a Riemannian metric gx on Γx. The choice of the Riemannian metric is ar-
bitrary; the resulting freedom can be used in order to satisfy the hyperbolicity conditions
below (note, however, that for causal fermion systems a canonical Riemannian metric is
obtained form the Hilbert-Schmidt scalar product; see [69, 76]). This Riemannian metric
also induces a pointwise scalar product on the jets. Namely, setting

Jx := R⊕ Γx ,

we obtain the scalar product on Jx

⟨., .⟩x : Jx × Jx → R , ⟨u, ũ⟩x := a(x) ã(x) + gx
(
u(x), ũ(x)

)
(14.2.7)

(where we again denote the scalar and vector components of the jet by u = (a, u)). We
denote the corresponding norm by ∥.∥x.

Definition 14.2.2. The local foliation (ηt)t∈I inside U satisfies the hyperbolicity
condition if there is a constant C > 0 such that for all t ∈ I,

(u, u)t ≥ 1

C2

ˆ
U

(
∥u(x)∥2x +

∣∣∆2[u, u]
∣∣) dρt(x) for all u ∈ Jvary . (14.2.8)

A compact set L ⊂M is a lens-shaped region inside U if there is a local foliation (ηt)t∈I
inside U satisfying (14.1.1) which satisfies the hyperbolicity conditions.

We point out that these hyperbolicity conditions also pose constraints for the choice of the
functions ηt; these constraints can be understood as replacing the condition in the theory
of hyperbolic PDEs that the initial data surface be spacelike. In general situations, the
inequality (14.2.8) is not obvious and must be arranged and verified in the applications.
More specifically, one can use the freedom in choosing the jet space Jvary, the Riemannian
metric in the scalar product (14.2.7) and the functions ηt in Definition 14.1.1 in order to
ensure that (14.2.8) holds.

We now explain how the above hyperbolicity condition can be used to derive energy
estimates. We let L be a lens-shaped region inside U with the local foliation (ηt)t∈I . We

denote the norm corresponding to the jet scalar product by ∥u∥t :=
√

(u, u)t. We begin
with a simple estimate of the energy identity in Lemma 14.2.1.
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Lemma 14.2.3. Assume that the hyperbolicity condition of Definition 14.2.2 holds.
Then for every t ∈ I and all u ∈ J,

d

dt
∥u∥t ≤ C ∥∆u∥L2(U,dρt) + c ∥u∥t (14.2.9)

with

c := C2 +
C2 s

2
.

Proof. Applying (14.2.8) in (14.2.3), we obtain

d

dt
(u, u)t ≤ 2

ˆ
U
⟨u,∆u⟩x dρt(x)− 2

ˆ
U
∆2[u, u] dρt(x) + s

ˆ
U
b(x)2 dρt(x)

≤ 2

ˆ
U
⟨u,∆u⟩x dρt(x) +

(
2C2 + C2 s

)
(u, u)t

≤ 2 ∥u∥L2(U,dρt) ∥∆u∥L2(U,dρt) + 2c (u, u)t

≤ 2C ∥u∥t ∥∆u∥L2(U,dρt) + 2c (u, u)t ,

where in the last line we applied (14.2.8). Using the relation ∂t∥u∥t = ∂t(u, u)
t/(2∥u∥t)

gives the result. □

Applying Grönwall-type estimates (see for example [1, Lemma 1.15 in Section VII.1]
or the proof of Proposition 14.2.4 below), the inequality (14.2.9) shows that ∥u∥t grows
at most exponentially in time, provided that ∆u decays in time sufficiently fast. We here
make this statement precise by estimates in Hilbert spaces of jets with zero initial values.
In the lens-shaped region L we work with the L2-scalar product

⟨u, v⟩L2(L) :=

ˆ
L
⟨u(x), v(x)⟩x ηI(x) dρ(x) , (14.2.10)

which, according to (14.1.2) and (14.1.3), can also be written in terms of a time integral,

⟨u, v⟩L2(L) =

ˆ tmax

t0

⟨u, v⟩L2(U,dρt) dt . (14.2.11)

The corresponding norm is denoted by ∥.∥L2(L).

Proposition 14.2.4. (energy estimate) Assume that the hyperbolicity condition of
Definition 14.2.2 holds. Then, choosing

Γ = 2C e2c (tmax−t0) (tmax − t0) , (14.2.12)

the following estimate holds,

∥u∥L2(L) ≤ Γ ∥∆u∥L2(L) for all u ∈ J with ∥u∥t0 = 0 .

Proof. We write the energy estimate of Lemma 14.2.3 as

d

dt

(
e−2ct (u, u)t

)
≤ 2 e−2ct C ∥u∥t ∥∆u∥L2(U,dρt) .

Integrating over t from t0 to some t ∈ I and using the hyperbolicity condition (14.2.8),
we obtain

e−2ct (u, u)t =

ˆ t

t0

d

dt′
(
e−2ct′(u, u)t

′)
dt′

≤ 2C

ˆ t

t0

e−2ct′ ∥u∥t′ ∥∆u∥L2(U,dρt′ )
dt′ .
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Multiplying by e2ct gives the inequality

(u, u)t ≤ 2C

ˆ t

t0

e2c (t−t
′) ∥u∥t′ ∥∆u∥L2(U,dρt′ )

dt′

≤ 2C e2c (tmax−t0)
ˆ tmax

t0

∥u∥t′ ∥∆u∥L2(U,dρt′ )
dt′

≤ 2C e2c (tmax−t0) ∥∆u∥L2(L)

(ˆ tmax

t0

(u, u)t
′
dt′

) 1
2

,

where in the last step we used the Schwarz inequality and (14.2.11). Integrating once
again over t from t0 to tmax gives(ˆ tmax

t0

(u, u)t dt

) 1
2

≤ 2C e2c (tmax−t0) (tmax − t0) ∥∆u∥L2(L) . (14.2.13)

Finally, we apply the hyperbolicity condition (14.2.8) in (14.2.11),

∥v∥L2(L) =

( ˆ tmax

t0

∥u∥2L2(U,dρt)
dt

) 1
2

≤ C

( ˆ tmax

t0

(u, u)t dt

) 1
2

.

Combining this inequality with (14.2.13) gives the result. □

14.3. Uniqueness of Strong Solutions

Based on the above energy estimates, we can now prove uniqueness of strong solutions
of the Cauchy problem. The methods is quite similar to that employed in Section 13.2
for symmetric hyperbolic systems. In preparation of formulating the Cauchy problem,
we need to introduce jets which vanish at initial time tmin. To this end, we demand that
the jet vanishes in the surface layer and that the corresponding softened surface layer
integrals (14.2.1) and (14.2.2) vanish,

J
tmin

:=
{
u ∈ J

∣∣ ηtmin u ≡ 0 and (u, v)tmin = 0 = σtmin(u, v) for all v ∈ J
}
.

Similarly, we define the space of jets which vanish at final time tmax by

JU
tmax

:=
{
u ∈ J

∣∣ (1− ηtmax

)
u ≡ 0

and(u, v)tmax = 0 = σtmax(u, v) for all v ∈ J
}
.

A strong solution of the Cauchy problem is a jet u ∈ JU which satisfies the equations

∆u = w in L and u− u0 ∈ J
tmin

, (14.3.1)

where u0 ∈ J is the initial data and w is the inhomogeneity. More precisely, as explained
after (8.1.8), the jet w(x) can be regarded as a dual jet. Here, having already introduced
a scalar product on the jets at every spacetime point (see (14.2.7)), we can identify dual
jets with jets. With this in mind, the inhomogeneity simply is a jet w ∈ JU .

Proposition 14.3.1. (uniqueness of strong solutions) Let (ηt)t∈I be a local foli-
ation inside U which satisfies the hyperbolicity conditions (as stated in Definitions 14.1.1
and 14.2.2). Then the Cauchy problem (14.3.1) with u0,w ∈ JU has at most one solu-
tion u in L.
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Proof. Let u be the difference of two solutions. Then u is a solution of the homoge-
neous equation with zero initial data. Applying Lemma 14.2.3, we obtain

∣∣∣ d

dt
∥u∥t

∣∣∣ ≤ c ∥u∥t and thus
d

dt

(
e−ct ∥u∥t

)
≤ 0 .

It follows that ∥u∥t vanishes for all t in the respective interval. Using (14.2.8), we conclude
that u vanishes identically in L. This gives the result. □

Similar as explained in Section 13.2 for symmetric hyperbolic systems, this uniqueness
statement also gives information on the speed of propagation and the resulting causal
structure. For details we refer to [22, 24].

14.4. Existence of Weak Solutions

Our existence proof is inspired by the method invented by K.O. Friedrichs for sym-
metric hyperbolic systems in [91] as outlined in Section 13.3. Our first step is to formulate
the linearized field equations weakly. To this end, we need to “integrate by parts” with
the help of the following lemma.

Lemma 14.4.1. (Green’s formula) For all u, v ∈ J,

σtmax(u, v)− σtmin(u, v) = ⟨u,∆v⟩L2(L) − ⟨∆u, v⟩L2(L) .

Proof. Using the definition of the L2-scalar product in (14.2.10) and the definition
of the linearized field operator (8.1.7), we obtain

⟨u,∆v⟩L2(L) − ⟨∆u, v⟩L2(L) =

ˆ
U

(
⟨u,∆v⟩ − ⟨∆u, v⟩

)
ηI dρ

=

ˆ
U
dρ(x) ηI(x) ∇u

(ˆ
M

(
∇1,v +∇2,v

)
L(x, y) dρ(y)−∇v s

)
−
ˆ
U
dρ(x) ηI(x) ∇v

(ˆ
M

(
∇1,u +∇2,u

)
L(x, y) dρ(y)−∇u s

)
.

Here the spacetime point x is in L. Using Definition 14.1.1 (ii), we get a contribution to
the integrals only if y ∈ U . Therefore, we may replace the integration range M by U .
We thus obtain

⟨u,∆v⟩L2(L) − ⟨∆u, v⟩L2(L)

=

ˆ
U
dρ(x) ηI(x)

ˆ
U
dρ(y)

(
∇1,u∇2,v −∇2,u∇1,v

)
L(x, y) , (14.4.1)

where we used that, following our convention (8.1), the second derivatives of the La-
grangian are symmetric. Using the definition (14.1.3) as well as the anti-symmetry of the
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integrand, the term (14.4.1) can be rewritten asˆ
U
dρ(x) ηI(x)

ˆ
U
dρ(y)

(
∇1,u∇2,v −∇2,u∇1,v

)
L(x, y)

=

ˆ
U
dρ(x)

ˆ
U
dρ(y) ηt(x)

(
∇1,u∇2,v −∇2,u∇1,v

)
L(x, y)

∣∣∣tmax

t0

=

ˆ
U
dρ(x)

ˆ
U
dρ(y)

(
ηt(x)− ηt(x) ηt(y)

) (
∇1,u∇2,v −∇2,u∇1,v

)
L(x, y)

∣∣∣tmax

t0

=

ˆ
U
dρ(x)

ˆ
U
dρ(y) ηt(x)

(
1− ηt(y)

) (
∇1,u∇2,v −∇2,u∇1,v

)
L(x, y)

∣∣∣tmax

t0

= σtmax(u, v)− σtmin(u, v) .

This gives the result. □

Assume that u is a strong solution of the Cauchy problem (14.3.1). As usual, replac-
ing u by u − u0 and w by w − ∆u0 ∈ J, it suffices to consider the Cauchy problem for
zero initial data, i.e.

∆u = w in U and u ∈ JU tmin
.

Then, applying the above Green’s formula, we obtain for any v ∈ J,

⟨v,w⟩L2(L) = ⟨v,∆u⟩L2(L) = ⟨∆v, u⟩L2(L) − σtmax(v, u) + σtmin(v, u) .

Having implemented the vanishing initial data by the condition u ∈ J
t0
, the symplectic

form vanishes at time tmin. In order to also get rid of the boundary values at time tmax,
we restrict attention to test jets which vanish at tmax. This leads us to the following
definition:

Definition 14.4.2. A jet u ∈ L2(L) is a weak solution of the Cauchy problem ∆u =
w with zero initial data if

⟨∆v, u⟩L2(L) = ⟨v,w⟩L2(L) for all v ∈ J
tmax

. (14.4.2)

Clearly, the energy estimate of Proposition 14.2.4 also holds if we exchange the roles
of tmax and tmin, i.e.

∥u∥L2(L) ≤ Γ ∥∆u∥L2(L) for all u ∈ J
tmax

(14.4.3)

(where the constant Γ is again given by (14.2.12)).
We introduce the positive semi-definite bilinear form

<., .> : JU
tmax × JU

tmax → R , <u, v> = ⟨∆u,∆v⟩L2(L) .

Dividing out the null space and forming the completion, we obtain a Hilbert space
(H, <., .>). The corresponding norm is denoted by ||| . |||.

We now consider the linear functional ⟨w, .⟩L2(L) on JU
tmax

. Applying the Schwarz
inequality and (14.4.3), we obtain∣∣⟨w, u⟩L2(L)

∣∣ ≤ ∥w∥L2(L) ∥u∥L2(L) ≤ Γ ∥w∥L2(L) ||| u ||| ,

proving that the linear functional ⟨w, .⟩L2(L) on J
tmax

is bounded on H. Therefore, it
can be extended uniquely to a bounded linear functional on all of H. Moreover, by the
Fréchet-Riesz theorem there is a unique vector U ∈ H with

⟨w, v⟩L2(L) = <U, v> = ⟨∆U,∆v⟩L2(L) for all v ∈ JU
tmax

.
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Hence u := ∆U ∈ L2(L) is the desired weak solution. We point out that in the above esti-
mates, the inhomogeneity w enters only via its L2-norm, making it possible to generalize
our methods to w ∈ L2(L). We have obtain the following result:

Theorem 14.4.3. Assume that (ηt)t∈I is a local foliation satisfying the hyperbolicity
conditions (see Definitions 14.1.1 and 14.2.2). Then for every w ∈ L2(L) there is a weak
solution u ∈ L2(L) of the Cauchy problem (14.4.2).

We remark that the construction of weak solutions is the starting point for the more
detailed analysis of linearized fields as carried out in [22, 64, 24, 74]. One task is to
deal with the uniqueness problem for weak solutions (see Exercise 14.3). Another issue
is to construct global solutions (for various methods for doing so see [22, Section 4], [64,
Section 6.3], [24, Section 3.3] and [74]). Once global advanced and retarded solutions have
been obtained for a general class of inhomogeneities, one can also introduce corresponding
Green’s operators (see [22, Section 5], [74, Section 4] or Exercise 14.4).

14.5. Exercises

Exercise 14.1. (Differentiated form of conservation laws) Conservation laws for
causal variational principles are formulated in terms of surface layer integrals (see for
example Theorem 9.2.3, Theorem 9.3.2, Proposition 9.3.1 or Lemma 14.4.1). For the
proofs, we rewrote the surface layer integrals as double volume integrals, making use of
anti-symmetry properties (see for example the proof of Theorem 9.3.2). Alternatively,
one can prove the conservation laws by computing the time derivatives. The goal of this
exercise is to illustrate this method (for more details see for example [61, Section 2.6]).

(a) Given a local foliation (ηt)t∈I we consider the softened symplectic form (14.2.2).
Given u, v ∈ J, compute

d

dt
σt(u, v)

in similar style as in the proof of Lemma 14.2.1. Use this formula to give an alter-
native proof of Lemma 14.4.1.

(b) Given a local foliation (ηt)t∈I , formulate a softened version of the surface layer in-
tegral IΩk+1 in Theorem 9.3.4. Differentiate with respect to the time parameter t to
obtain an alternative proof of Theorem 9.3.4.

Exercise 14.2. (Counter example to hyperbolicity conditions) The hyperbolicity
conditions in Definition 14.2.2 were formulated only for jets in a subspace Jvary ⊂ J. The
goal of this exercise is to explain why it would not be sensible to impose the inequal-
ity (14.2.8) for all u ∈ J. To this end, consider for simplicity the unsoftened surface layer
integral (9.5.6). Show that there is a jet u ∈ C0

0 (M,R) ⊕ C0
0 (M,TF) with (u, u)t < 0.

Hint: Choose points x ∈ Ω and y ∈ M \ Ω for which L(x, y) ̸= 0. Choose u as a scalar
jet which is supported in a small neighborhood of x and y.

Exercise 14.3. (Non-uniqueness of weak solutions) As illustrated in the previous
exercise (Exercise 14.2), in order to satisfy the hyperbolicity conditions, the jet space Jvary

must not be chosen too large. In particular, in typical examples the jet space Jvary is not
dense in L2(L). This leads to a non-uniqueness issue for weak solutions, which will be
illustrated in this exercise.

(a) Given an inhomogeneity w ∈ L2(L), to which extent are weak solutions unique?
Specify the jet space of all homogeneous solutions.
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(b) On the other hand, the construction before Theorem 14.4.3 gives a unique solu-
tion u = ∆U . How does this result fit together with the non-uniqueness in (a)? In
which sense is the solution u = ∆U distinguished?

Hint: Similar questions are analyzed in [22, Section 3].

Exercise 14.4. (Causal Green’s operators for the linearized field equations) In order
to avoid the issue of how to “glue together” local solutions obtained in different lens-
shaped regions such as to obtain global solutions, one can simplify the setting by assuming
that the spacetime M admits a global foliation (ηt)t∈R.

(a) How can Definition 14.1.1 be modified in order to describe a global foliation? What
is the resulting global analog of Theorem 14.4.3? Hint: It might be instructive to
compare your definition with Definition 6.4 in [64].

(b) Suppose that we know that for any compactly supported jet w ∈ L2
0(M) there is a

distinguished global weak solution v ∈ L2
loc(M), i.e.

⟨∆v, u⟩L2(M) = ⟨v,w⟩L2(M) for all v ∈ J0 .

Then the operator S : w → −v is referred to as the Green’s operator. How can
one distinguish between the advanced Green’s operator S∨ and the retarded Green’s
operator S∧. Show that their difference G := S∧ − S∨ maps to homogeneous weak
solutions. Hint: More details on Green’s operators and their causal properties can
be found in [22, Section 5], [24, Section 3] and [74, Section 4].



CHAPTER 15

Functional Analytic Methods in Spacetime

When constructing a causal fermion system in Minkowski space in Section 5.5, we
chose H as a subspace of the solution space Hm of the Dirac equation. In principle,
one can choose H as one likes, and different choices give rise to different causal fermion
systems. However, if one wants to describe a given physical system, one must specify the
subspace H ⊂ Hm, and it important to do it right. It is not obvious what “right” and
“wrong” should be. Generally speaking, H can be thought of as the “occupied states” of
the physical system under consideration. If we want to describe the vacuum in Minkowski
space (i.e. no particles and no interaction is present), then the natural and only physically
reasonable choice is to let H be the subspace of all negative-frequency solutions of the
Dirac equation. As already explained in the Section 1.5 in the preliminaries, this choice
corresponds to the physical concept of the Dirac sea as introduced by Dirac in 1930,
which led to the prediction of anti-matter (discovered shortly afterward in 1932, earning
Dirac the Nobel prize in 1933). Following these physical concepts, it is also clear that
if particles and/or anti-particles (but no interaction of the matter) is present, then H is
obtained from the subspace of all negative-frequency solutions by occupying additional
particle states and by creating “holes” in the sea corresponding to the anti-particle states.
Once an interaction (for example an electromagnetic field) is present, it is no longer clear
how H is to be chosen. The reason is that, as soon as the fields are time-dependent,
the notion of positive and negative frequency solutions breaks down, so that there is no
obvious decomposition of the solution space into two subspaces. But for the description
of the physical system, a decomposition of the solution space is needed, and taking the
“wrong” decomposition leads to artificial mathematical and physical difficulties.

We now explain a functional analytic method which gives rise to a canonical decompo-
sition of the solution space into two subspaces, even in the time-dependent situation. In
the static situation, this decomposition reduces to the canonical frequency splitting. This
splitting is “right” in the sense that it gives rise to a physically sensible ground state of
the system (a so-called Hadamard state, as we will learn in Chapter 19). Moreover, when
performing our construction perturbatively, one can compute the singularities of P (x, y)
explicitly working exclusively with bounded line integrals. These explicit computations
are the backbone of the analysis of the continuum limit in [45]. Before outlining the
perturbative treatment (see Chapter 18), we now explain the general functional analytic
construction.

15.1. General Setting and Basic Ideas

In preparation, we summarize the structures of Section 1 using a more general nota-
tion, which has the advantage that our setting applies just as well if Minkowski space is
replaced by a globally hyperbolic spacetime. Thus the reader who is familiar with gen-
eral relativity and Lorentzian geometry, in what follows may consider (M, g) as a globally
hyperbolic Lorentzian manifold with spinor bundle (SM,≺.|.≻). The Dirac equation is
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written as
(D −m)ψm = 0 (15.1.1)

(here the subscript m indicates the mass of the solution; this is of advantage because later
on, we shall consider families of solutions with a varying mass parameter). In Minkowski
space, one chooses D = i∂/ + B such as to get back to (1.3.14), where B is an arbitrary
multiplication operator satisfying the symmetry condition (1.3.13). More generally, in
a globally hyperbolic spacetime, the Dirac operator is a first order differential operator,
but the coefficients depend on the metric (for details see Chapter 4). Next, we let N be
any Cauchy surface. Then the scalar product (1.3.12) on the solutions can be written
more generally as

(ψm|ϕm)m = 2π

ˆ
N

≺ψm|/νϕm≻x dµN(x) , (15.1.2)

where ν is the future-directed normal and dµN the volume measure given by the induced
Riemannian metric on N (in Minkowski space and N = {t = const}, the normal has
the components νi = (1, 0, 0, 0) and dµN = d3x, giving back (1.3.12)). Similar to the
computation (1.3.10), the vector field ≺ψm|γjϕm≻x is again divergence-free, implying
that the above scalar product is independent of the choice of the Cauchy surface (for
details see [80, Section 2]). Forming the completion gives the Hilbert space (Hm, (.|.)m).

For the following constructions, we again need the spacetime inner product (13.4.8).
In order to explain the basic idea of the construction as first given in [80], let us assume for
simplicity that the integral in (13.4.8) exists for all solutions ψm, ϕm ∈ Hm. This condition
is not satisfied in Minkowski space because the time integral in (13.4.8) in general diverges.
But it is indeed satisfied in spacetimes of finite lifetime (for details see [80, Section 3.2]).
Under this assumption, the spacetime inner product can be extended by continuity to a
sesquilinear form

<.|.> : Hm ×Hm → C ,

which is bounded, i.e.
|<ϕm|ψm>| ≤ c ∥ϕm∥m ∥ψm∥m (15.1.3)

(where ∥.∥m = (.|.)
1
2
m is the norm on Hm). Then, applying the Fréchet-Riesz theorem

(similar as explained in the construction of the local correlation operator (5.5.3) in Sec-
tion 5.5), we can uniquely represent this inner product on the Hilbert space Hm with a
signature operator S,

S : Hm → Hm with <ϕm|ψm> = (ϕm | Sψm)m .

We refer to S as the fermionic signature operator. It is obviously a symmetric
operator. Moreover, it is bounded according to (15.1.3). Therefore, the spectral theorem
for selfadjoint operators gives the spectral decomposition

S =

ˆ
σ(S)

λ dEλ ,

where Eλ is the spectral measure (see Section 3.2 or for example [131]). The spectral
measure gives rise to the spectral calculus

f(S) =

ˆ
σ(S)

f(λ) dEλ : Hm → Hm ,

where f is a bounded Borel function on σ(S) ⊂ R. Choosing f as a characteristic
function, one obtains the operators χ(0,∞)(S) and χ(−∞,0)(S). Their images are referred
to as the positive and negative spectral subspace of Hm, respectively. In this way, one



15.1. GENERAL SETTING AND BASIC IDEAS 257

obtains the desired decomposition of the solution space into two subspaces. We remark
that the fermionic signature operator also gives a setting for doing spectral geometry and
index theory with Lorentzian signature. We will not enter these topics here but refer the
interested reader to the papers [78, 46].

The basic shortcoming of the above construction is that in many physically interesting
spacetimes (like Minkowski space) the inequality (15.1.3) fails to be true. The idea to by-
pass this problem is to make use of the fact that a typical solution ψ ∈ C∞

sc (M, SM)∩Hm

of the Dirac equation oscillates for large times. If, instead of a single solution, we con-
sider a family of solutions with a varying mass parameter m, then the wave functions for
different values of m typically have different phases. Therefore, integrating over the mass
parameter leads to dephasing (in the physics literature also referred to as destructive
interference), giving rise to decay in time. In order to make this idea mathematically pre-
cise, one considers families of solutions (ψm)m∈I of the family of Dirac equations (15.1.1)
with the mass parameter m varying in an open interval I. We need to assume that I does
not contain the origin, because our methods for dealing with infinite lifetime do not apply
in the massless case m = 0 (this seems no physical restriction because all known fermions
in nature have a non-zero rest mass). By symmetry, it suffices to consider positive masses.
Thus we choose I as the interval

I := (mL,mR) ⊂ R with parameters mL,mR > 0 . (15.1.4)

The masses of the Dirac particles of our physical system should be contained in I. Apart
from that, the choice of I is arbitrary and, as we shall see, all our results will be inde-
pendent of the choice of mL and mR. We always choose the family of solutions (ψm)m∈I
in the class C∞

sc,0(M × I, SM) of smooth solutions with spatially compact support in
Minkowski space M which depend smoothly on m and vanish identically for m outside
a compact subset of I. Then the “decay due to destructive interference” can be made
precise by demanding that there is a constant c > 0 such that∣∣∣∣<ˆ

I
ϕm dm |

ˆ
I
ψm′ dm′>

∣∣∣∣ ≤ c

ˆ
I
∥ϕm∥m ∥ψm∥m dm (15.1.5)

for all families of solutions (ψm)m∈I , (ϕm)m∈I ∈ C∞
sc,0(M × I, SM). The point is that we

integrate over the mass parameter before taking the spacetime inner product. Intuitively
speaking, integrating over the mass parameter generates a decay of the wave function,
making sure that the time integral converges. The inequality (15.1.5) is one variant of
the so-called mass oscillation property. If (15.1.5) holds, we shall prove that there is a
representation

<

ˆ
I
ϕm dm |

ˆ
I
ψm′ dm′> =

ˆ
I
(ϕm | S̃m ψm)m dm , (15.1.6)

which for everym ∈ I uniquely defines the fermionic signature operator S̃m. This operator
is bounded and symmetric with respect to the scalar product (15.1.2). Moreover, it does
not depend on the choice of the interval I. Then the positive and negative spectral
subspaces of the operator S̃m again yield the desired splitting of the solution space into
two subspaces.

Before entering the detailed constructions, we explain how the above integrals over
the mass parameters are to be understood. At first sight, integrating over a varying mass
parameter m ∈ I may look like “smearing out” the physical mass in the Dirac equation.
However, this picture is misleading. Instead, one should consider the mass integrals
merely as a technical tool in order to generate decay for large times. The resulting
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operators S̃m in (15.1.6) act on ψm with the corresponding massm ∈ I. Choosingm again

as the physical mass, the operator S̃m acts on standard Dirac wave functions describing
physical particles, without any smearing in the mass parameter.

15.2. The Mass Oscillation Properties

In a spacetime of infinite lifetime, the spacetime inner product <ψm|ϕm> of two
solutions ψm, ϕm ∈ Hm is in general ill-defined, because the time integral in (13.4.8) may
diverge. In order to avoid this difficulty, we shall consider families of solutions with a
variable mass parameter. The so-called mass oscillation property will make sense of the
spacetime integral in (13.4.8) after integrating over the mass parameter.

We consider the mass parameter in a bounded open interval I (15.1.4). For a given
Cauchy surface N , we consider a function ψN(x,m) ∈ SxM with x ∈ N and m ∈ I. We
assume that this wave function is smooth and has compact support in both variables,
ψN ∈ C∞

0 (N × I, SM). For every m ∈ I, we let ψ(.,m) be the solution of the Cauchy
problem for initial data ψN(.,m),

(D −m)ψ(x,m) = 0 , ψ(x,m) = ψN(x,m) ∀ x ∈ N . (15.2.1)

Since the solution of the Cauchy problem is smooth and depends smoothly on parameters,
we know that ψ ∈ C∞(M × I, SM). Moreover, due to finite propagation speed, ψ(.,m)
has spatially compact support. Finally, the solution is clearly compactly supported in
the mass parameter m. We summarize these properties by writing

ψ ∈ C∞
sc,0(M × I, SM) , (15.2.2)

where C∞
sc,0(M× I, SM) denotes the smooth wave functions with spatially compact sup-

port which are also compactly supported in I. We often denote the dependence on m
by a subscript, ψm(x) := ψ(x,m). Then for any fixed m, we can take the scalar prod-
uct (15.1.2). On families of solutions ψ, ϕ ∈ C∞

sc,0(M × I, SM) of (15.2.1), we introduce
a scalar product by integrating over the mass parameter,

(ψ|ϕ)I :=
ˆ
I
(ψm|ϕm)m dm (15.2.3)

(where dm is the Lebesgue measure). Forming the completion, we obtain the Hilbert
space (H, (.|.)I). It consists of measurable functions ψ(x,m) such that for almost all m ∈
I, the function ψ(.,m) is a weak solution of the Dirac equation which is square integrable
over any Cauchy surface. Moreover, this spatial integral is integrable over m ∈ I, so that
the scalar product (15.2.3) is well-defined. We denote the norm on H by ∥.∥I .

For the applications, it is useful to introduce a subspace of the solutions of the
form (15.2.2):

Definition 15.2.1. We let H∞ ⊂ C∞
sc,0(M× I, SM)∩H be a subspace of the smooth

solutions with the following properties:

(i) H∞ is invariant under multiplication by smooth functions in the mass parameter,

η(m)ψ(x,m) ∈ H∞ ∀ ψ ∈ H∞, η ∈ C∞(I) .

(ii) For every m ∈ I, the set H∞
m := {ψ(.,m) |ψ ∈ H∞} is a dense subspace of Hm,

H∞
m

(.|.)m
= Hm ∀m ∈ I .

We refer to H∞ as the domain for the mass oscillation property.
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The simplest choice is to set H∞ = C∞
sc,0(M× I, SM)∩H, but in some applications it is

preferable to choose H∞ as a proper subspace of C∞
sc,0(M × I, SM) ∩H. (for example,

in [81, Section 6], the space H∞ was chosen as being spanned by a finite number of
angular modes, making it unnecessary to prove estimates uniform in the angular mode).

Our motivation for considering a variable mass parameter is that integrating over the
mass parameter should improve the decay properties of the wave function for large times
(similar as explained in the introduction in the vacuum Minkowski space). This decay
for large times should also make it possible to integrate the Dirac operator in the inner
product (13.4.8) by parts without boundary terms,

<Dpψ|pϕ> = <pψ|Dpϕ> ,

implying that the solutions for different mass parameters should be orthogonal with
respect to this inner product. Instead of acting with the Dirac operator, it is technically
easier to work with the operator of multiplication by m, which we denote by

T : H → H , (Tψ)m = mψm . (15.2.4)

In view of property (i) in Definition 15.2.1, this operator leaves H∞ invariant,

T |H∞ : H∞ → H∞ .

Moreover, T is a symmetric operator, and it is bounded because the interval I is,

T ∗ = T ∈ L(H) .

Finally, integrating over m gives the operation

p : H∞ → C∞
sc (M, SM) , pψ =

ˆ
I
ψm dm . (15.2.5)

We point out for clarity that pψ no longer satisfies a Dirac equation. The following
notions were introduced in [81], and we refer the reader to this paper for more details.

Definition 15.2.2. The Dirac operator D = i∂/ + B on Minkowski space M has the
weak mass oscillation property in the interval I = (mL,mR) with domain H∞ if the
following conditions hold:

(a) For every ψ, ϕ ∈ H∞, the function ≺pϕ|pψ≻ is integrable on M. Moreover, there is
a constant c = c(ψ) such that

|<pψ|pϕ>| ≤ c ∥ϕ∥I for all ϕ ∈ H∞ . (15.2.6)

(b) For all ψ, ϕ ∈ H∞,

<pTψ|pϕ> = <pψ|pTϕ> . (15.2.7)

Definition 15.2.3. The Dirac operator D = i∂/ + B on Minkowski space M has the
strong mass oscillation property in the interval I = (mL,mR) with domain H∞ if
there is a constant c > 0 such that

|<pψ|pϕ>| ≤ c

ˆ
I
∥ϕm∥m ∥ψm∥m dm for all ψ, ϕ ∈ H∞ . (15.2.8)
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15.3. The Fermionic Signature Operator

In this section we give abstract constructions based on the mass oscillation property.
We first assume that the weak mass oscillation property of Definition 15.2.2 holds. Then,
in view of the inequality (15.2.6), every ψ ∈ H∞ gives rise to a bounded linear functional
on H∞. By continuity, this linear functional can be uniquely extended to H. The
Fréchet-Riesz theorem allows us to represent this linear functional by a vector u ∈ H, i.e.

(u|ϕ)I = <pψ|pϕ> ∀ ϕ ∈ H .

Varying ψ, we obtain the linear mapping

S : H∞ → H , (Sψ|ϕ)I = <pψ|pϕ> ∀ ϕ ∈ H .

This operator is symmetric because

(Sψ|ϕ)I = <pψ|pϕ> = (ψ|Sϕ)I ∀ ϕ, ψ ∈ H∞ .

Moreover, (15.2.7) implies that the operators S and T commute,

ST = T S : H∞ → H .

Thus the weak mass oscillation property makes it possible to introduce S as a densely
defined symmetric operator onH. It is indeed possible to construct a selfadjoint extension
of the operator S2 (using the Friedrich’s extension), giving rise to a functional calculus
with corresponding spectral measure (for details see [81, Section 3]). In this setting the
operator S and the spectral measure are operators on the Hilbert space H which involves
an integration over the mass parameter. In simple terms, this implies that all objects are
defined only for almost all values of m (with respect to the Lebesgue measure on I ⊂ R),
and they can be modified arbitrarily on subsets of I of measure zero. But it does not
seem possible to “evaluate pointwise in the mass” by constructing operators Sm which
act on the Hilbert space Hm for fixed mass.

In view of this shortcoming, we shall not enter the spectral calculus based on the weak
mass oscillation operator. Instead, we move on to the strong mass oscillation property,
which makes life much easier because it implies that S is a bounded operator.

Theorem 15.3.1. The following statements are equivalent:

(i) The strong mass oscillation property holds.
(ii) There is a constant c > 0 such that for all ψ, ϕ ∈ H∞, the following two relations

hold:

|<pψ|pϕ>| ≤ c ∥ψ∥I ∥ϕ∥I (15.3.1)

<pTψ|pϕ> = <pψ|pTϕ> . (15.3.2)

(iii) There is a family of linear operators Sm ∈ L(Hm) which are uniformly bounded,

sup
m∈I

∥Sm∥ <∞ ,

such that

<pψ|pϕ> =

ˆ
I
(ψm | Sm ϕm)m dm ∀ ψ, ϕ ∈ H∞ . (15.3.3)

Proof. The implication (iii)⇒(i) follows immediately from the estimate

|<pψ|pϕ>| ≤
ˆ
I

∣∣(ψm|Smϕm)m∣∣ dm ≤ sup
m∈I

∥Sm∥
ˆ
I
∥ψm∥m ∥ϕ∥m dm .
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In order to prove the implication (i)⇒(ii), we first apply the Schwarz inequality
to (15.2.8) to obtain

|<pψ|pϕ>| ≤ c

ˆ
I
∥ϕm∥m ∥ψm∥m dm

≤ c
( ˆ

I
∥ϕm∥2m dm

) 1
2
(ˆ

I
∥ψm∥2m dm

) 1
2
= c ∥ϕ∥I ∥ψ∥I ,

proving (15.3.1). Next, given N ∈ N we subdivide the interval I = (mL,mR) by choosing
the intermediate points

mℓ =
ℓ

N
(mR −mL) +mL , ℓ = 0, . . . , N .

Moreover, we choose non-negative test functions η1, . . . , ηN ∈ C∞
0 (R) which form a par-

tition of unity and are supported in small sub-intervals, meaning that

N∑
ℓ=1

ηℓ
∣∣
I
= 1|I and supp ηℓ ⊂ (mℓ−1,mℓ+1) , (15.3.4)

where we set m−1 = mL − 1 and mN+1 = mR + 1. For any smooth function η ∈ C∞
0 (R)

we define the bounded linear operator η(T ) : H∞ → H∞ by(
η(T )ψ

)
m

= η(m) ψm .

Then by linearity,

<pTψ|pϕ>−<pψ|pTϕ>

=

N∑
ℓ,ℓ′=1

(
<pT ηℓ(T )ψ | p ηℓ′(T )ϕ>−<p ηℓ(T )ψ | pT ηℓ′(T )ϕ>

)

=
N∑

ℓ,ℓ′=1

(
<p

(
T −mℓ

)
ηℓ(T )ψ | p ηℓ′(T )ϕ>−<p ηℓ(T )ψ | p

(
T −mℓ

)
ηℓ′(T )ϕ>

)
.

Taking the absolute value and applying (15.2.8), we obtain

∣∣<pTψ|pϕ>−<pψ|pTϕ>
∣∣ ≤ c

N∑
ℓ,ℓ′=1

ˆ
I
|m−mℓ| ηℓ(m) ηℓ′(m) ∥ϕm∥m ∥ψm∥m dm .

In view of the second property in (15.3.4), we only get a contribution if |ℓ − ℓ′| ≤ 1.
Moreover, we know that |m−mℓ| ≤ 2 |I|/N on the support of ηℓ. Thus∣∣<pTψ|pϕ>−<pψ|pTϕ>

∣∣ ≤ 6c |I|
N

N∑
ℓ=1

ˆ
I
ηℓ(m) ∥ϕm∥m ∥ψm∥m dm

=
6c |I|
N

ˆ
I
∥ϕm∥m ∥ψm∥m dm .

Since N is arbitrary, we obtain (15.3.2).
It remains to prove the implication (ii)⇒(iii). Combining (15.3.1) with the Fréchet-

Riesz theorem, there is a bounded operator S ∈ L(H) with

<pψ|pϕ> = (ψ|Sϕ)I ∀ ψ, ϕ ∈ H∞ . (15.3.5)
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The relation (15.3.2) implies that the operators S and T commute. Moreover, these two
operators are obviously symmetric. Hence the spectral theorem for commuting selfadjoint
operators implies that there is a spectral measure F on σ(S)× I such that

Sp T q =

ˆ
σ(S)×I

νpmq dFν,m ∀ p, q ∈ N . (15.3.6)

For given ψ, ϕ ∈ H∞, we introduce the Borel measure µψ,ϕ on I by

µψ,ϕ(Ω) =

ˆ
σ(S)×Ω

ν d(ψ|Fν,mϕ)I . (15.3.7)

Then µψ,ϕ(I) = (ψ|Sϕ)I and

µψ,ϕ(Ω) =

ˆ
σ(S)×I

ν d
(
χΩ(T )ψ

∣∣Fν,m χΩ(T )ϕ
)
I
= (χΩ(T )ψ | SχΩ(T )ϕ)I .

Since the operator S is bounded, we conclude that

|µψ,ϕ(Ω)| ≤ c ∥χΩ(T )ψ∥I ∥χΩ(T )ϕ∥I
(15.2.3)
= c

(ˆ
Ω
∥ψ∥2m dm

ˆ
Ω
∥ϕ∥2m′ dm′

) 1
2

≤ c |Ω|
(
sup
m∈Ω

∥ψm∥m
)(

sup
m′∈Ω

∥ϕm′∥m′

)
. (15.3.8)

This shows that the measure µ is absolutely continuous with respect to the Lebesgue
measure. The Radon-Nikodym theorem (see Theorem 12.5.2) implies that there is a
unique function fψ,ϕ ∈ L1(I, dm) such that

µψ,ϕ(Ω) =

ˆ
Ω
fψ,ϕ(m) dm . (15.3.9)

Using this representation in (15.3.8), we conclude that for any φ ∈ R,

Re

(
eiφ

ˆ
Ω
fψ,ϕ(m) dm

)
≤

∣∣µψ,ϕ(Ω)∣∣ ≤ c |Ω|
(
sup
m∈Ω

∥ψm∥m
)(

sup
m′∈Ω

∥ϕm′∥m′

)
.

As a consequence, for almost all m ∈ I (with respect to the Lebesgue measure dm),

Re
(
eiφ fψ,ϕ(m)

)
≤ c ∥ψm∥m ∥ϕm∥m .

Since the phase factor is arbitrary, we obtain the pointwise bound

|fψ,ϕ(m)| ≤ c ∥ψm∥m ∥ϕm∥m for almost all m ∈ I .

Using this inequality, we can apply the Fréchet-Riesz theorem to obtain a unique opera-
tor Sm ∈ L(Hm) such that

fψ,ϕ(m) = (ψm|Smϕm)m and ∥Sm∥ ≤ c . (15.3.10)

Combining the above results, for any ψ, ϕ ∈ H∞ we obtain

<pψ|pϕ> (15.3.5)
= (ψ|Sϕ)I

(15.3.6)
=

ˆ
σ(S)×I

ν d(ψ |Fν,m ϕ)I

(15.3.7)
=

ˆ
I
dµψ,ϕ

(15.3.9)
=

ˆ
I
fψ,ϕ(m) dm

(15.3.10)
=

ˆ
I
(ψm|Smϕm)m dm .

This concludes the proof. □

Comparing the statement of Theorem 15.3.1 (ii) with Definition 15.2.2, we immedi-
ately obtain the following result.
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Corollary 15.3.2. The strong mass oscillation property implies the weak mass os-
cillation property.

We next show uniqueness as well as the independence of the choice of the interval I.

Proposition 15.3.3. (uniqueness of Sm) The family (Sm)m∈I in the statement of
Theorem 15.3.1 can be chosen such that for all ψ, ϕ ∈ H∞, the expectation value fψ,ϕ(m) :=
(ψm|Smϕm)m is continuous in m,

fψ,ϕ ∈ C0
0 (I) . (15.3.11)

The family (Sm)m∈I with the properties (15.3.3) and (15.3.11) is unique. Moreover,
choosing two intervals Ǐ and I with m ∈ Ǐ ⊂ I and 0 ̸∈ I, and denoting all the objects
constructed in Ǐ with an additional check, we have

Šm = Sm . (15.3.12)

Proof. Let us show that the function fψ,ϕ is continuous. To this end, we choose a
function η ∈ C∞

0 (I). Then for any ε > 0 which is so small that Bε(supp η) ⊂ I, we obtainˆ
I

(
fψ,ϕ(m+ ε)− fψ,ϕ(m)

)
η(m) dm =

ˆ
I
fψ,ϕ(m)

(
η(m− ε)− η(m)

)
dm

(∗)
= <

ˆ
I

(
η(m− ε)− η(m)

)
ψm dm | pϕ> = <

ˆ
I
η(m)

(
ψm+ε − ψm

)
dm | pϕ> ,

where in (∗) we used (15.3.6) and (15.3.7). Applying (15.3.1), we obtain∣∣∣∣ˆ
I

(
fψ,ϕ(m+ ε)− fψ,ϕ(m)

)
η(m) dm

∣∣∣∣ ≤ c ∥ψ+ε − ψ∥I ∥ϕ∥I sup
I

|η| ,

where the vector ψ+ε ∈ H∞ is defined by (ψ+ε)m := ψm+ε. Since limε↘0 ∥ψ+ε−ψ∥I = 0
and η is arbitrary, we conclude that fψ,ϕ is continuous (15.3.11). This continuity is
important because it implies that the function fψ,ϕ is uniquely defined pointwise (whereas
in (15.3.9) this function could be modified arbitrarily on sets of measure zero).

In order to prove (15.3.12), we note that the representation (15.3.5) implies that

(ψ|Šϕ)I = (ψ|Sϕ)I for all ψ, ϕ ∈ Ȟ∞ .

Using (15.3.7) and (15.3.9), it follows thatˆ
Ω
f̌ψ,ϕ(m) dm =

ˆ
Ω
fψ,ϕ(m) dm for all Ω ⊂ Ǐ .

Choosing f̌ψ,ϕ(m) and fψ,ϕ(m) as continuous functions, we conclude that they coincide

for every m ∈ Ǐ. It follows from (15.3.3) that the operators Šm and Sm coincide. This
concludes the proof. □

15.4. The Unregularized Kernel of the Fermionic Projector

We now explain how the fermionic signature operator can be used for the construction
of the so-called fermionic projector. This will give a direct connection to the kernel of
the fermionic projector introduced abstractly for causal fermion systems in Section 5
(see (5.7.3)). We will explain this connection, which will be elaborated on further in
Section 21.



264 15. FUNCTIONAL ANALYTIC METHODS IN SPACETIME

It follows directly from Definition 15.3.3 that the operator Sm is symmetric. Thus
the spectral theorem gives rise to the spectral decomposition

Sm =

ˆ
σ(Sm)

ν dEν ,

where Eν is the spectral measure (see for example [131]). The spectral measure gives
rise to the spectral calculus

f(Sm) =

ˆ
σ(Sm)

f(ν) dEν ,

where f is a bounded Borel function.

Definition 15.4.1. Assume that the Dirac operator D on (M, g) satisfies the strong
mass oscillation property (see Definition 15.2.3). We define the operators

P± : C∞
0 (M, SM) → Hm

by
P+ = χ[0,∞)(Sm) km and P− = −χ(−∞,0)(Sm) km (15.4.1)

(where χ denotes the characteristic function). The fermionic projector P is defined
by P = P−.

Proposition 15.4.2. For all ϕ, ψ ∈ C∞
0 (M, SM), the operators P± are symmetric,

<P±ϕ |ψ> = <ϕ |P±ψ> .

Moreover, the image of P± is the positive respectively negative spectral subspace of Sm,
i.e.

P+(C∞
0 (M, SM)) = E(0,∞)(Hm) , P−(C∞

0 (M, SM)) = E(−∞,0)(Hm) . (15.4.2)

Proof. According to Proposition 13.4.4,

<P−ϕ |ψ> = (P−ϕ | kmψ)m = −
(
χ(−∞,0)(Sm) kmϕ

∣∣ kmψ)m
= −

(
km ϕ

∣∣χ(−∞,0)(Sm) kmψ
)
m

= <ϕ |P−ψ> .

The proof for P+ is similar. The relations (15.4.2) follow immediately from the fact
that km(C

∞
0 (M, SM)) is dense in Hm. □

Similar as in [80, Theorem 3.12], the fermionic projector can be represented by a
two-point distribution on M. As usual, we denote the space of test functions (with the
Fréchet topology) by D and define the space of distributions D′ as its dual space.

Theorem 15.4.3. Assume that the strong mass oscillation property holds. Then there
is a unique distribution P ∈ D′(M × M) such that for all ϕ, ψ ∈ C∞

0 (M, SM),

<ϕ|Pψ> = P(ϕ⊗ ψ) .

Proof. According to Proposition 13.4.4 and Definition 15.4.1,

<ϕ|Pψ> = (kmϕ |Pψ)m = −(kmϕ |χ(−∞,0)(Sm) kmψ)m .

Since the norm of the operator χ(−∞,0)(Sm) is bounded by one, we conclude that

|<ϕ|Pψ>| ≤ ∥kmϕ∥m ∥kmψ∥m = (<ϕ|kmϕ> <ψ|kmψ>)
1
2 ,

where in the last step we again applied Proposition 13.4.4. As km ∈ D′(M × M), the
right side is continuous on D(M × M). We conclude that also the functional <ϕ|Pψ>
is continuous on D(M × M). The result now follows from the Schwartz kernel theorem
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(see [105, Theorem 5.2.1], keeping in mind that this theorem applies just as well to
bundle-valued distributions on a manifold simply by working with the components in
local coordinates and a local trivialization). □

Exactly as explained in [80, Section 3.5], it is convenient to use the standard notation
with an integral kernel P (x, y),

<ϕ|Pψ> =

¨
M×M

≺ϕ(x) |P (x, y)ψ(y)≻x dµM(x) dµM(y)

(Pψ)(x) =

ˆ
M
P (x, y)ψ(y) dµM(y)

(where P (., .) coincides with the distribution P above). In view of Proposition 15.4.2,
we know that the last integral is not only a distribution, but a function which is square
integrable over every Cauchy surface. Moreover, the symmetry of P shown in Proposi-
tion 15.4.2 implies that

P (x, y)∗ = P (y, x) ,

where the star denotes the adjoint with respect to the spin inner product.
We next specify the normalization of the fermionic projector. We introduce an oper-

ator Π by

Π : Hm → Hm , (Πψm)(x) = −2π

ˆ
N
P (x, y) /ν (ψm)|N(y) dµN(y) , (15.4.3)

where N is any Cauchy surface.

Proposition 15.4.4. (spatial normalization) The operator Π is a projection op-
erator on Hm.

Proof. According to Theorem 13.4.2, the spatial integral in (15.4.3) can be combined
with the factor km in (15.4.1) to give the solution of the corresponding Cauchy problem.
Thus

Π : Hm → Hm , (Πψm)(x) = χ(−∞,0)(Sm)ψm ,

showing that Π is a projection operator. □

Instead of the spatial normalization, one could also consider the mass normalization
(for details on the different normalization methods see [86]). To this end, one needs to
consider families of fermionic projectors Pm indexed by the mass parameter. Then for
all ϕ, ψ ∈ C∞

0 (M, SM), we can use (15.3.3) and Proposition 13.4.4 to obtain

<p(Pmϕ) | p(Pm′ψ)> =

ˆ
I
(Pmϕ | SmPmψ)m dm =

ˆ
I
(kmϕ | Smχ(−∞,0)(Sm) kmψ)m dm

=

ˆ
I
<ϕ | Smχ(−∞,0)(Sm) kmψ> dm = −<ϕ | p(SmPmψ)> ,

which can be written in a compact formal notation as

Pm Pm′ = δ(m−m′) (−Sm)Pm .

Due to the factor (−Sm) on the right, in general the fermionic projector does not satisfy
the mass normalization condition. The mass normalization condition could be arranged
by modifying the definition (15.4.1) to

S−1
m χ(−∞,0)(Sm) km .
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Here we prefer to work with the spatial normalization. For a detailed discussion of the
different normalization methods we refer to [86, Section 2].

Finally, the spatial normalization property of Proposition 15.4.4 makes it possible to
obtain a representation of the fermionic projector in terms of one-particle states. To this
end, one chooses an orthonormal basis (ψj)j∈N of the subspace χ(−∞,0)(Sm) ⊂ Hm. Then

P (x, y) = −
∞∑
j=1

|ψj(x)≻≺ψj(y)| (15.4.4)

with convergence in D′(M × M) (for details see [80, Proposition 3.13]).
This formulas is reminiscent of the decomposition of the kernel of the fermionic pro-

jector into physical wave functions in (5.7.10). Indeed, these formulas can be understood
as being completely analogous, with the only difference that (15.4.4) is formed of wave
functions in Minkowski space, whereas in (5.7.10) one works abstractly with the physical
wave functions of a general causal fermion system. The connection can be made more
precise if one identifies the structures of the causal fermion system with corresponding
structures in Minkowski space. In order to avoid technicalities and too much overlap
with [45], here we shall not enter the details of these identifications (which are worked
out in [45, Section 1.2]). Instead, we identify (15.4.4) with (5.7.10) as describing the
same object, on one side in Minkowski space, and on the other side as abstract object of
the corresponding causal fermion system. With this identification, the Hilbert space H of
the causal fermion system corresponds to the negative spectral subspace of the fermionic
signature operator Sm. In the vacuum, this gives us back the subspace of all negative
frequency solutions as considered in the example of Exercise 5.15. However, the above
identification has one shortcoming: the wave functions in (15.4.4) have not yet been reg-
ularized. This is why we refer to P (x, y) as the unregularized kernel. In order to get
complete agreement between (15.4.4) and (5.15), one needs to introduce an ultraviolet
regularization. To this end, one proceeds similar as explained in the example in Sec-
tion 5.5: One introduces regularization operators (Rε)ε>0, computes the local correlation
operators F ε(x) and defines the measure ρ as the push-forwards dρ = F ε∗dµM. We will
come back to this construction in Chapter 21.

15.5. Exercises

Exercise 15.1. Let M be the “spacetime strip”

M = {(t, x⃗) ∈ R1,3 with 0 < t < T} .

Show that for any solution ψ ∈ C∞
sc (M, SM) ∩Hm of the Dirac equation, the following

inequality holds, ∣∣<ψ|ϕ>∣∣ ≤ T ∥ψ∥m ∥ϕ∥m .

This estimate illustrates why in spacetimes of finite lifetime, the spacetime inner product
is a bounded sesquilinear form on Hm.

Exercise 15.2. Let M again be the “spacetime strip” of the previous exercise.
Let ψ, ϕ ∈ H∞ := H ∩ C∞

sc,0(M × I, SM) be families of smooth Dirac solutions of spa-
tially compact support, with compact support in the mass parameter. Moreover, we
again define the operators p and T as in (15.2.4) and (15.2.5). Does the equation

<pTψ|pϕ> = <pψ|pTϕ>
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(which appears in the weak mass oscillation property) in general hold? Justify your
answer by a proof or a counter example.

Exercise 15.3. Let M again be the “spacetime strip” of the previous exercises.
Moreover, as in Exercise 5.11 we again let H ⊂ Hm be a finite-dimensional subspace of
the Dirac solution space Hm, consisting of smooth wave functions of spatially compact
support, i.e.

H ⊂ C∞
sc (M, SM) ∩Hm finite-dimensional .

Show that the fermionic signature operator S ∈ L(H) defined by

<ψ|ϕ> = (ψ|Sϕ)m for all ψ, ϕ ∈ H

can be expressed within the causal fermion system by

S = −
ˆ
M
x dρ(x)

(where ρ is again the push-forward of dµM).

Exercise 15.4. Let E be the Banach space E = C0([0, 1],C) and Λ : E ×E → C be
sesquilinear, bounded and positive semi-definite.

(a) Assume that Λ satisfies for a suitable constant c > 0 and all f, g ∈ E the inequality∣∣Λ(f, g)∣∣ ≤ c sup
x∈[0,1]

∣∣f(x) g(x)∣∣ . (15.5.1)

Show that there is a regular bounded Borel measure µ such that

Λ(f, g) =

ˆ 1

0
f(x) g(x) dµ(x) .

(b) Now make the stronger assumption that Λ satisfies for a suitable constant c̃ > 0 and
all f, g ∈ E the inequality∣∣Λ(f, g)∣∣ ≤ c̃

ˆ 1

0

∣∣f(x) g(x)∣∣ dx . (15.5.2)

Show that µ is absolutely continuous w.r.to the Lebesgue measure. Show that there
is a non-negative function h ∈ L1([0, 1], dx) such that

Λ(f, g) =

ˆ 1

0
f(x) g(x) h(x) dx .

Show that h is pointwise bounded by c.
(c) In order to clarify the different assumptions in this exercise, give an example for a

sesquilinear, bounded and positive semi-definite functional Λ which violates (15.5.1).
Give an example which satisfies (15.5.1) but violates (15.5.2).

Exercise 15.5. (Toward the mass oscillation property - part 1) This exercise illus-
trates the mass oscillation property. Let 0 < mL < mR and η ∈ C∞

0 ((mL,mR)). Show
that the function f given by

f(t) =

ˆ mR

mL

η(m) e−i
√
1+m2 t dm

has rapid decay. Does this result remain valid if mL and mR are chosen to have opposite
signs? Justify your finding by a proof or a counter example.
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Exercise 15.6. (Toward the mass oscillation property - part 2) Let RT be the
“spacetime strip”

RT = {(t, x⃗) ∈ R1,3 with 0 < t < T} .
Show that for any solutions ψ, ϕ ∈ C∞

sc (R4,C4)∩Hm of the Dirac equation, the following
inequality holds,∣∣<ψ|ϕ>T ∣∣ ≤ T ∥ψ∥m ∥ϕ∥m , where <ψ|ϕ>T :=

ˆ
RT

≺ψ(x)|ϕ(x)≻d4x.

This estimate illustrates how in spacetimes of finite lifetime, the spacetime inner product
is a bounded sesquilinear form on Hm.

Exercise 15.7. (Toward the mass oscillation property - part 3) Let RT again be
the “spacetime strip” of the previous exercises. Moreover, we again let H ⊂ Hm be a
finite-dimensional subspace of the Dirac solution space Hm, consisting of smooth wave
functions of spatially compact support, i.e.

H ⊂ C∞
sc (R4,C4) ∩Hm finite-dimensional .

Show that the fermionic signature operator S ∈ L(H) defined by

<ψ|ϕ>T = (ψ|Sϕ)m for all ψ, ϕ ∈ H

can be expressed within the causal fermion system by

S = −
ˆ
RT

x dρ(x)

(where ρ is again the push-forward of d4x).

Exercise 15.8. (The external field problem) In physics, the notion of “particle” and
“anti-particle” is often introduced as follows: Solutions of the Dirac equation with positive
frequency are called “particles” and solutions with negative frequency “anti-particles”.
In this exercise, we will check in how far this makes sense.
To this end, take a look at the Dirac equation in an external field:

(i/∂ + B −m)ψ = 0. (15.5.3)

Assume that B is time-dependent and has the following form:

B(t, x) = V Θ(t− t0)Θ(t1 − t),

where V ∈ R, Θ denotes the Heaviside step function and t0 = 0, t1 = 1. In order to

construct a solution thereof, for a given momentum k⃗, we use plane wave solutions of the
Dirac equation,

ψ(t, x⃗) = e−iωt+i⃗kx⃗χ
k⃗
,

where χ
k⃗
is a spinor ∈ C4, and patch them together suitably. (The quantity ω is called

the “frequency” or “energy”, and k⃗ the“momentum”.) To simplify the calculation, we

set k⃗ = (k1, 0, 0)
T . Proceed as follows:

(a) First, take a look at the region t < t0. Reformulate (15.5.3) such that there is only
the time derivative on the left hand side. (Hint: Multiply by γ0.)

(b) Insert the plane wave ansatz with k⃗ = (k1, 0, 0)
T into the equation. Your equation

now has the form ωψ = H(k1)ψ. Show that the eigenvalues of H(k1) are ±ω0

with ω0 :=
√

(k1)2 +m2.
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(c) Show that one eigenvector belonging to +ω0 is χ+
0 := (m+ω0

k1 , 0, 0, 1)T and that one

eigenvector belonging to −ω0 is χ−
0 := (m−ω0

k1 , 0, 0, 1)T . (Both eigenvalues have mul-
tiplicity two, but we do not need the other two eigenvectors here.)

(d) With this, you have constructed plane wave solutions e−i(±ω0)t+i⃗kx⃗χ±
0 for t < t0 and

also for t > t1. By transforming m → (m− V ), you immediately obtain plane wave
solutions also for t0 < t < t1. Denote the respective quantities by ω1 and χ±

1 .
(e) Assume that for t < t0 there is one “particle” present, i.e. set

ψ(t, x⃗) = e−iω0t+i⃗kx⃗χ+
0 for t < t0.

Assume that the solution for t0 < t < t1 takes the form

Ae−iω1t+i⃗kx⃗χ+
1 +Be−i(−ω1)t+i⃗kx⃗χ−

1 with A,B ∈ R.
Calculate A and B for the case k1 = 1 and V = m by demanding continuity of the
solution at t = t0.

(f) Assume that for t > t1 the solution takes the form

Ce−iω0t+i⃗kx⃗χ+
0 +De−i(−ω0)t+i⃗kx⃗χ−

0 with C,D ∈ C.
Calculate C and D for m = 2 by demanding continuity of the solution at t = t1 (here
you may want to use computer algebra).

(g) Interpret what you have found. Why could this be called the “external field prob-
lem”?





CHAPTER 16

Fourier Methods

In the previous chapter, the fermionic signature operator and the unregularized
fermionic projector were constructed abstractly. We now turn to the question how to
compute them in the Minkowski vacuum. This question can be addressed and answered
with Fourier methods. Since these techniques are frequently used and of independent
interest, we introduce them from a general perspective before entering the proof of the
mass oscillation properties and the construction of the fermionic signature operator. More
details can be found in [81, 79].

16.1. The Causal Green’s Operators

We already encountered Green’s operators in Chapter 13 when solving the Cauchy
problem with methods of hyperbolic partial differential equations (see Theorem 13.4.3).
In Minkowski space, these Green’s operators can be computed in more detail with Fourier
methods. Our starting point is the definition of the Green’s operator sm(x, y) of the
vacuum Dirac equation by the distributional equation

(i∂/x −m) sm(x, y) = δ4(x− y) , (16.1.1)

where δ4(x, y) denotes the four-dimensional δ distribution. Taking the Fourier transform
of (16.1.1),

sm(x, y) =

ˆ
d4k

(2π)4
sm(k) e

−ik(x−y) (16.1.2)

(where x, y ∈ M are spacetime points, k is the four-momentum, and k(x−y) denotes the
Minkowski inner product) we obtain the algebraic equation

(/k −m) sm(k) = 1 . (16.1.3)

Multiplying by /k +m and using the identity (/k −m)(/k +m) = k2 −m2, one sees that
if k2 ̸= m2, the matrix /k −m is invertible. If conversely k2 = m2, we have (/k −m)2 =
−2m(/k−m), which shows that the matrix /k−m is diagonalizable with eigenvalues −2m
and zero. Since the Dirac matrices (1.3.3) are trace-free, we have Tr(/k −m) = −4m. It
follows that the matrix /k−m has a two-dimensional kernel if k is on the mass shell. This
shows that the Green’s operator of the Dirac equation is not unique. If we add to it any
vector in the kernel of /k − m, i.e. if we add to it a solution of the homogeneous Dirac
equation, it still satisfies the defining equation (16.1.1) (for details see [14].)

A convenient method for solving the equation (16.1.3) for sm(k) is to use a ±iε-
regularization on the mass shell. Common choices are the advanced and the retarded
Green’s functions, which are defined by

s∨m(k) = lim
ε↘0

/k +m

k2 −m2 − iεk0
and s∧m(k) = lim

ε↘0

/k +m

k2 −m2 + iεk0
, (16.1.4)

271
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respectively (with the limit ε ↘ 0 taken in the distributional sense). Computing their
Fourier transform (16.1.2), one sees that they are causal in the sense that their supports
lie in the upper and lower light cone, respectively,

supp s∨m(x, .) ⊂ J∨
x , supp s∧m(x, .) ⊂ J∧

x . (16.1.5)

Mathematically, the formulas in (16.1.4) define the Green’s operators in momentum space
as tempered distributions. Taking their Fourier transform (16.1.2), the advanced and
retarded Green’s operators are tempered distributions in the variable ξ := y − x. We
also regard these distributions as integral kernels of corresponding operators on the wave
functions, i.e.

(sm(ψ))(x) :=

ˆ
M
sm(x, y) ψ(y) d4y .

We thus obtain operators

s∧m, s
∨
m : C∞

0 (M, SM) → C∞
sc (M, SM) .

Here C∞
0 (M, SM) denote the smooth functions with compact support in M, taking values

in the spinors, and C∞
sc denotes the smooth functions with spatially compact support.

16.2. The Causal Fundamental Solution and Time Evolution

We now state a few properties of the Green’s operators and explain why they are
useful. The considerations in this section are valid more generally in the presence of an
external potential. Then the defining equation of the Green’s operator (16.1.1) is modified
similar to (1.3.14) to

(i∂/x +B−m) sm(x, y) = δ4(x− y) , (16.2.1)

where B is again a multiplication operator satisfying the symmetry condition (1.3.13).
Then the existence of Green’s operators can no longer be proven by Fourier transforma-
tion. Instead, one can use methods of hyperbolic PDEs as introduced in Chapter 13 (see
Section 13.6). Here we do not assume that the reader is familiar with these methods.
Instead, we simply assume that we are given advanced and retarded Green’s operators.

The causal fundamental solution km is defined as the difference of the advanced and
the retarded Green’s operator,

km(x, y) :=
1

2πi

(
s∨m(x, y)− s∧m(x, y)

)
. (16.2.2)

It is a distribution which is causal in the sense that it vanishes if x and y have spacelike
separation. Moreover, it is a distributional solution of the homogeneous Dirac equation,

(i∂/x +B−m) km(x, y) = 0 .

The unique solvability of the Cauchy problem allows us to introduce the time evolution
operator of the Dirac equation as follows. Solving the Cauchy problem with initial data
at time t and evaluating the solution at some other time t′ gives rise to a mapping

U t
′,t : Ht → Ht′ ,

referred to as the time evolution operator. Since the scalar product (15.1.2) is time

independent, the operator U t
′,t is unitary. Moreover, using that the Cauchy problem can

be solved forwards and backwards in time, the unitary time evolution operators form a
representation of the group (R,+). More precisely,

U t,t = 1 and U t
′′,t′ U t

′,t = U t
′′,t .
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Proposition 13.6.1 immediately gives the following representation of U t
′,t:(

U t
′,t ψ|t

)
(y⃗) =

ˆ
R3

U t
′,t(y⃗, x⃗) ψ(t, x⃗) d3x , (16.2.3)

where the kernel U t
′,t(x⃗, y⃗) is defined as

U t
′,t(y⃗, x⃗) = 2π km

(
(t′, y⃗), (t, x⃗)

)
γ0 . (16.2.4)

16.3. Proof of the Weak Mass Oscillation Property in the Minkowski
Vacuum

In the remainder of this chapter, we return to the Dirac equation in Minkowski
space (16.1.1). An external potential will be considered in the next chapter (Chapter 17).

The mass oscillation property in the Minkowski vacuum can be proved using Fourier
methods. Here we shall give two different approaches in detail. The method of the first
proof (in this section) is instructive because it gives an intuitive understanding of “mass
oscillations”. However, this method only yields the weak mass oscillation property. The
second proof (Section 16.4) is more abstract but also gives the strong mass oscillation
property.

We again consider the foliation Nt = {(t, x⃗) | x⃗ ∈ R3} of constant time Cauchy hy-
persurfaces in a fixed reference frame (t, x⃗) and a variable mass parameter m in the
interval I = (mL,mR) with mL,mR > 0. The families of solutions ψ = (ψm)m∈I of the
Dirac equations (i∂/−m)ψm = 0 are contained in the Hilbert space (H, (.|.)) with scalar
product (15.2.3). The subspace H∞ ⊂ H in Definition 15.2.1 is chosen as

H∞ = C∞
sc,0(M × I, SM) ∩H . (16.3.1)

For what follows, it is convenient to work with the Fourier transform in space, i.e.

ψ̂(t, k⃗) =

ˆ
R3

ψ(t, x⃗) e−i⃗kx⃗ d3x , ψ(t, x⃗) =

ˆ
R3

d3k

(2π)3
ψ̂(t, k⃗) ei⃗kx⃗ .

Then a family of solutions ψ ∈ H∞ has the representation

ψ̂m(t, k⃗) = c+(k⃗,m) e−iω(k⃗,m) t + c−(k⃗,m) eiω(k⃗,m) t for all m ∈ I (16.3.2)

with suitable spinor-valued coefficients c±(k⃗,m) and ω(k⃗,m) :=

√
|⃗k|2 +m2. Integrating

over the mass parameter, we obtain a superposition of waves oscillating at different fre-
quencies. Intuitively speaking, this leads to destructive interference for large t, giving rise
to decay in time. This picture can be made precise using integration by parts in m, as
we now explain. Integrating (16.3.2) over the mass by applying the operator p, (15.2.5),
we obtain

pψ̂(t, k⃗) =

ˆ
I

(
c+ e−iωt + c− eiωt

)
dm

=

ˆ
I

i

t ∂mω

(
c+ ∂me

−iωt − c− ∂me
iωt

)
dm

= − i

t

ˆ
I

[
∂m

( c+
∂mω

)
e−iωt − ∂m

( c−
∂mω

)
eiωt

]
dm

(we do not get boundary terms because ψ ∈ H∞ has compact support inm). With ∂mω =
m/ω, we conclude that

pψ̂(t, k⃗) = − i

t

ˆ
I

[
∂m

(ω c+
m

)
e−iωt − ∂m

(ω c−
m

)
eiωt

]
dm .
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Since the coefficients c± depend smoothly on m, the resulting integrand is bounded

uniformly in time, giving a decay at least like 1/t, i.e. |pψ̂(t, k⃗)| ≲ 1/t. Iterating this
procedure, one even can prove decay rates ≲ 1/t2, 1/t3, . . . The price one pays is that
higher and higher powers in ω come up in the integrand, which means that in order for

the spatial Fourier integral to exist, one needs a faster decay of c± in |⃗k|. Expressed
in terms of the initial data, this means that every factor 1/t gives rise to an additional
spatial derivative acting on the initial data. This motivates the following basic estimate.

Lemma 16.3.1. For any ψ ∈ H∞, there is a constant C = C(mL) such that

∥∥(pψ)|t∥∥t ≤ C |I|
1 + t2

sup
m∈I

2∑
b=0

∥∥(∂bmψm)|t=0

∥∥
W 2,2 , (16.3.3)

where ∥.∥t is the norm corresponding to the scalar product

(.|.)|t := 2π

ˆ
R3

≺ . |γ0 .≻x⃗ d3x : L2(Nt, SM)× L2(Nt, SM) → C

(which is similar to (15.1.2), but now applied to wave functions which do not need to be
solutions), and ∥.∥W 2,2 is the spatial Sobolev norm

∥ϕ∥2W 2,2 :=
∑

α with |α| ≤ 2

ˆ
R3

|∇αϕ(x⃗)|2 d3x , (16.3.4)

where α is a multi-index.

The absolute value in (16.3.4) is the norm | . | :=
√
≺.|γ0.≻ on the spinors. If we again

identify all spinor spaces in the Dirac representation with C4, this simply is the standard
Euclidean norm on C4.

The proof of this lemma will be given later in this section. Before, we infer the weak
mass oscillation property.

Corollary 16.3.2. The vacuum Dirac operator i∂/ in Minkowski space has the weak
mass oscillation property with domain (16.3.1).

Proof. For every ψ, ϕ ∈ H∞, the Schwarz inequality gives

|<pψ|pϕ>| = 1

2π

∣∣∣∣ˆ ∞

−∞

(
(pψ)|t

∣∣ γ0 (pϕ)|t)t dt∣∣∣∣ ≤ ˆ ∞

−∞

∥∥(pψ)|t∥∥t ∥∥(pϕ)|t∥∥t dt . (16.3.5)

Applying Lemma 16.3.1 together with the estimate∥∥(pϕ)|t∥∥2t = ¨
I×I

(
ϕm|t

∣∣ϕm′ |t
)
t
dm dm′

≤ 1

2

¨
I×I

(
∥ϕm∥2m + ∥ϕm′∥2m′

)
dm dm′ = |I| ∥ϕ∥2 ,

we obtain inequality (15.2.6) with

c = C |I|
3
2 sup
m∈I

2∑
b=0

∥∂bm(ψm)|t=0∥W 2,2

ˆ ∞

−∞

1

1 + t2
dt <∞ . (16.3.6)
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The identity (15.2.7) follows by integrating the Dirac operator by parts,

<pTψ|pϕ> = <pDψ|pϕ> = <Dpψ|pϕ> =

ˆ
M

≺Dpψ|pϕ≻x d
4x

(⋆)
=

ˆ
M

≺pψ|Dpϕ≻x d
4x = <pψ|Dpϕ> = <pψ|pTϕ> .

(16.3.7)

In (⋆), we used that the Dirac operator is symmetric with respect to the inner prod-
uct <.|.>. Moreover, we do not get boundary terms because of the time decay in
Lemma 16.3.1. □

The remainder of this section is devoted to the proof of Lemma 16.3.1. Using the
result of Proposition 13.6.1, we can express the solution ψm of the Cauchy problem in
terms of the causal fundamental solution km. In order to bring km into a more explicit
form, we use (16.2.2) together with formulas for the advanced and retarded Green’s
operators. Indeed, these Green’s operators are the multiplication operators in momentum
space (16.1.4) (with the limit ε ↘ 0 taken in the distributional sense, and where the
vector k is the four-momentum). We thus obtain in momentum space

km(p) =
1

2πi
(/p+m) lim

ε↘0

[
1

p2 −m2 − iεp0
− 1

p2 −m2 + iεp0

]
=

1

2πi
(/p+m) lim

ε↘0

[
1

p2 −m2 − iε
− 1

p2 −m2 + iε

]
ϵ(p0)

(where for notational clarity we denoted the momentum variables by p, and ϵ is the sign
function ϵ(x) = 1 if x > 0 and ϵ(x) = −1 otherwise). Employing the distributional
equation

lim
ε↘0

(
1

x− iε
− 1

x+ iε

)
= 2πi δ(x) ,

we obtain the simple formula

km(p) = (/p+m) δ(p2 −m2) ϵ(p0) . (16.3.8)

It is convenient to transform spatial coordinates of the time evolution operator to mo-
mentum space. First, in the Minkowski vacuum, the time evolution operator can be
represented as in (16.2.3) with an integral kernel U t,t

′
(y⃗, x⃗) which depends only on the

difference vector y⃗ − x⃗. We set

U t,t
′
(k⃗) :=

ˆ
R3

U t,t
′
(y⃗, 0) e−i⃗ky⃗ d3y .

Combining (16.2.4) with (16.3.8) yields

U t,t
′
(k⃗) =

ˆ ∞

−∞
(/k +m) γ0 δ(k2 −m2)

∣∣
k=(ω,⃗k)

ϵ(ω) e−iω(t−t′) dω .

Carrying out the ω-integral, we get

U t,t
′
(k⃗) =

∑
±

Π±(k⃗) e
∓iω(t−t′) , (16.3.9)
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where we set

Π±(k⃗) := ± 1

2ω(k⃗)
(/k± +m) γ0 (16.3.10)

with ω(k⃗) =

√
|⃗k|2 +m2 and k± = (±ω(k⃗), k⃗) .

Moreover, applying Plancherel’s theorem, the scalar product (15.1.2) can be written in
momentum space as

(ψm |ϕm)m = (2π)−2

ˆ
R3

≺ψ̂m(t, k⃗) | γ0 ϕ̂m(t, k⃗)≻ d3k .

The unitarity of the time evolution operator in position space implies that the ma-

trix U t,t
′
(k⃗) is unitary (with respect to the scalar product ⟨. , .⟩C2 ≡ ≺ . |γ0 .≻), meaning

that its eigenvalues are on the unit circle and the corresponding eigenspaces are orthogo-

nal. It follows that the operators Π±(k⃗) in (16.3.9) are the orthogonal projection operators

to the eigenspaces corresponding to the eigenvalues e∓iω(t−t
′), i.e.

γ0Π∗
sγ

0 = Πs and Πs(k⃗) Πs′(k⃗) = δs,s′ Πs(k⃗) for s, s′ ∈ {+,−} (16.3.11)

(these relations can also be verified by straightforward computations using (16.3.10); see
Exercise 16.8).

The next two lemmas involve derivatives with respect to the mass parameter m. For
clarity, we again denote the m-dependence of the operators by the subscript m.

Lemma 16.3.3. The time evolution operator in the vacuum satisfies the relation

(t− t′)U t,t
′

m (k⃗) =
∂

∂m
V t,t′
m (k⃗) +W t,t′

m (k⃗) , (16.3.12)

where

V t,t′
m (k⃗) =

∑
±

i

2m
(/k± +m)γ0 e∓iω(t−t′) (16.3.13)

W t,t′
m (k⃗) =

∑
±

i

2

(/k±γ0
m2

∓ 1

ω

)
e∓iω(t−t′) . (16.3.14)

The operators V t,t′
m and W t,t′

m are estimated uniformly by

∥V t,t′
m (k⃗)∥+ ∥W t,t′

m (k⃗)∥ ≤ C

(
1 +

|⃗k|
m

)
, (16.3.15)

where the constant C is independent of m, k⃗, t and t′ (and ∥ . ∥ is any norm on the
2× 2-matrices).

Proof. First, we generate the factor t−t′ by differentiating the exponential in (16.3.9)
with respect to ω,

(t− t′)U t,t
′

m (k⃗) =
∑
±

Π±(k⃗)
(
± i

∂

∂ω
e∓iω(t−t′)

)
.

Next, we want to rewrite the ω-derivative as a derivative with respect to m. Taking the

total differential of the dispersion relation ω2 − |⃗k|2 = m2 for fixed k⃗, one finds that

∂

∂ω
=
ω

m

∂

∂m
. (16.3.16)
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Hence

(t− t′)U t,t
′

m =
∑
±

Π±

(
± i

ω

m

∂

∂m
e∓iω(t−t′)

)
=

∂

∂m

∑
±

(
±i

ω

m
Π± e∓iω(t−t′)

)
−
∑
±

(
∂

∂m

[
±i

ω

m
Π±

])
e∓iω(t−t′) .

Computing the operators in the round brackets using (16.3.10) gives the identities (16.3.13)
and (16.3.14). Estimating these formulas, one obtains bounds which are at most linear

in |⃗k|, proving (16.3.15). □

This method can be iterated to generate more factors of t − t′. In the next lemma,
we prove at least quadratic decay in time. For later use, it is preferable to formulate the
result in position space.

Lemma 16.3.4. The time evolution operator in the vacuum has the representation

U t,t
′

m =
1

(t− t′)2

(
∂2

∂m2
At,t

′
m +

∂

∂m
Bt,t′
m + Ct,t

′
m

)
(16.3.17)

with operators

At,t
′

m , Bt,t′
m , Ct,t

′
m : W 2,2(Nt′ , SM) → L2(Nt, SM) ,

which are bounded uniformly in time by

∥At,t′m (ϕ)∥t + ∥Bt,t′
m (ϕ)∥t + ∥Ct,t′m (ϕ)∥t ≤ c ∥ϕ∥W 2,2 , (16.3.18)

where c is a constant which depends only on m.

Proof. A straightforward computation using exactly the same methods as in Lem-
ma 16.3.3 yields the representation

(t− t′)2 U t,t
′

m (k⃗) =
∂2

∂m2
At,t

′
m (k⃗) +

∂

∂m
Bt,t′
m (k⃗) + Ct,t

′
m (k⃗) , (16.3.19)

where the operators At,t
′

m , Bt,t′
m and Ct,t

′
m are bounded by

∥At,t′m (k⃗)∥+ ∥Bt,t′
m (k⃗)∥+ ∥Ct,t′m (k⃗)∥ ≤ C

m

(
1 +

|⃗k|
m

+
|⃗k|2

m2

)
, (16.3.20)

with a numerical constant C > 0. We remark that, compared to (16.3.12), the right
of (16.3.20) involves an additional 1/m. This prefactor is necessary for dimensional
reasons, because the additional factor t − t′ in (16.3.19) (compared to (16.3.12)) brings
in an additional dimension of length (and in natural units, the factor 1/m also has the

dimension of length). The additional summand |⃗k|2/m2 in (16.3.20) can be understood

from the fact that applying (16.3.16) generates a factor of ω/m which for large |⃗k| scales
like |⃗k|/m.

Translating this result to position space and keeping in mind that the vector k⃗ corre-

sponds to the derivative −i∇⃗, we obtain the result. □

Proof of Lemma 16.3.1. First of all, the Schwarz inequality gives∥∥(pψ)|t∥∥t ≤ ˆ
I
∥ψm∥m dm ≤

√
|I| ∥ψ∥ .
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Thus it remains to show the decay for large t, i.e.∥∥(pψ)|t∥∥t ≤ C |I|
t2

sup
m∈I

2∑
b=0

∥∂bm(ψm)|t=0∥W 2,2 . (16.3.21)

We apply Lemma 16.3.4 and integrate by parts in m to obtain

(pψ)|t =
ˆ
I
U t,0m ψm|t=0 dm =

1

t2

ˆ
I

(
∂2mA

t,0
m + ∂mB

t,0
m + Ct,0m

)
ψm|t=0 dm

=
1

t2

ˆ
I

(
At,0m (∂2mψm|t=0)−Bt,0

m (∂mψm|t=0) + Ct,0m ψm|t=0

)
dm .

Taking the norm and using (16.3.18) gives (16.3.21). □

We finally note that the previous estimates are not optimal for two reasons. First,
the pointwise quadratic decay in (16.3.3) is more than what is needed for the convergence
of the integral in (16.3.6). Second and more importantly, the Schwarz inequality (16.3.5)

does not catch the optimal scaling behavior in k⃗. This is the reason why the constant
in (15.2.6) involves derivatives of ψm (cf. (16.3.6)), making it impossible to prove the
inequality (15.2.8) which arises in the strong mass oscillation property. In order to im-
prove the estimates, one needs to use Fourier methods both in space and time, as will be
explained in the next section.

16.4. Proof of the Strong Mass Oscillation Property in the Minkowski
Vacuum

Theorem 16.4.1. The vacuum Dirac operator in Minkowski space has the strong mass
oscillation property with domain (16.3.1).

Our proof relies on a Plancherel argument in spacetime. It also provides an alternative
method for establishing the weak mass oscillation property.

Proof of Theorem 16.4.1. Let ψ = (ψm)m∈I ∈ H∞ be a family of solutions of
the Dirac equation for a varying mass parameter in the Minkowski vacuum. Using Propo-
sition 13.6.1, one can express ψm in terms of its values at time t = 0 by

ψm(x) = 2π

ˆ
R3

km(x, (0, y⃗)) γ
0 ψm|t=0(y⃗) d3y .

We now take the Fourier transform, denoting the four-momentum by k. Using (16.3.8),
we obtain

ψm(k) = 2πkm(k) γ
0ψ̂0

m(k⃗)

= 2π δ(k2 −m2) ϵ(k0) (/k +m) γ0ψ̂0
m(k⃗) ,

where ψ̂0
m(k⃗) denotes the spatial Fourier transform of ψm|t=0 (in order to avoid an ambi-

guity of notation, the hat of the Fourier transform in spacetime was omitted). Obviously,
this is a distribution supported on the mass shell. In particular, it is not square integrable
over R4.

Integrating over m, we obtain the following function

(pψ)(k) = 2π χI(m)
1

2m
ϵ(k0) (/k +m) γ0ψ̂0

m(k⃗)
∣∣∣
m=

√
k2
, (16.4.1)

where m now is a function of the momentum variables. Since the function ψm|t=0 is

compactly supported and smooth in the spatial variables, its Fourier transform ψ̂0
m(k⃗)
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has rapid decay. This shows that the function (16.4.1) is indeed square integrable. Using
Plancherel, we see that condition (a) in Definition 15.2.2 is satisfied. Moreover, the

operator T is simply the operator of multiplication by
√
k2, so that condition (b) obviously

holds. This again shows the weak mass oscillation property.
In order to prove the strong mass oscillation property, we need to compute the inner

product <pψ|pϕ>. To this end, we first write this inner product in momentum space as

<pψ|pϕ> =

ˆ
d4k

(2π)4
4π2 χI(m)

1

4m2
≺(/k +m) γ0ψ̂0

m(k⃗) | (/k +m) γ0ϕ̂0m(k⃗)≻
∣∣∣
m=

√
k2

=

ˆ
d4k

4π2
χI(m)

1

2m
≺γ0ψ̂0

m(k⃗) | (/k +m) γ0ϕ̂0m(k⃗)≻
∣∣∣
m=

√
k2
.

Reparametrizing the k0-integral as an integral over m, we obtain

<pψ|pϕ> =
1

4π2

ˆ
I
dm

ˆ
R3

d3k

2 |k0|
≺γ0ψ̂0

m(k⃗) | (/k+m) γ0ϕ̂0m(k⃗)≻
∣∣
k0=±

√
|⃗k|2+m2

. (16.4.2)

Estimating the inner product with the Schwarz inequality and applying Plancherel’s the-
orem, one finds

|<pψ|pϕ>| ≤ 1

4π2

ˆ
I
dm

ˆ
R3

∥ψ̂0
m(k⃗)∥ ∥ϕ̂0m(k⃗)∥ d3k ≤ 2π

ˆ
I
∥ψm∥m ∥ϕm∥m dm .

Thus the inequality (15.2.8) holds. □

Apart from completing the proof of the strong mass oscillation property, the com-
putation in the above proof also tells us what the fermionic signature operator is. In
order to see this, we return to the formula (16.4.2). Applying Plancherel’s theorem and
using (15.1.2), we conclude that

<pψ|pϕ> =

ˆ
I
(ψ0

m | Sm ϕ0m)m dm , (16.4.3)

where Sm is the multiplication operator in momentum space

Sm(k⃗) :=
∑

k0=±ω(k⃗)

/k +m

2ω(k⃗)
γ0 =

k⃗γ⃗ +m

ω(k⃗)
γ0 . (16.4.4)

Comparing (16.4.3) with (15.3.3), one sees that the matrix Sm(k⃗) is indeed the fermionic
signature operator, considered as a multiplication operator in momentum space. By

direct computation, one verifies that the matrix Sm(k⃗) has eigenvalues ±1 (here one can
use that Sm = Π+ −Π− with Π± as introduced in (16.3.10)).

16.5. Exercises

Exercise 16.1. This exercise recalls basics on the principal value in one dimension

1

2
lim
ε↘0

(
1

x− iε
+

1

x+ iε

)
=:

PP

x
. (16.5.1)

(a) Repeat the method in Exercise 2.23 to show that the limit of the left side of (16.5.1)
exist for any η ∈ C1(R) ∩ L1(R). Derive a corresponding estimate which shows
that PP is a well-defined tempered distribution.
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(b) Show that for any η ∈ C1(R) ∩ L1(R),

PP(η) = lim
ε↘0

(ˆ −ε

−∞
+

ˆ ∞

ε

)
η(x)

x
dx .

Exercise 16.2. The goal of this exercise is to justify that the one-dimensional rela-
tions

lim
ε↘0

(
1

x− iε
− 1

x+ iε

)
= 2πi δ(x) (16.5.2)

1

2
lim
ε↘0

(
1

x− iε
+

1

x+ iε

)
=:

PP

x
. (16.5.3)

can be used in the four-dimensional setting to obtain the identity

lim
ε↘0

1

r2 + (ε+ it)2
= lim

ε↘0

1

r2 − t2 + iεt
= −PP

ξ2
− iπ δ(ξ2) ϵ(ξ0) , (16.5.4)

(a) Let T be a distribution on R, Ω ⊂ M be an open subset of Minkowski space and f :
Ω → R a smooth function with nowhere vanishing gradient. Show that the relation(

f∗T )(η) := T
(
ϕf (η)

)
, η ∈ C∞

0 (Ω)

with

ϕf (η)(t) :=
∂

∂t

ˆ
Ω
Θ
(
t− f(x)

)
η(x) d4x

(where Θ is the Heaviside function) defines f∗T as a distribution on Ω (this is the
so-called pullback of T under f ; for details see [89, Section 7.2]).

(b) Choosing Ω as the half space in the future, Ω = {x ∈ M, x0 > 0}, one can rewrite
the expression on the left of (16.5.4) as

lim
ε↘0

1

r2 − t2 + iε
.

Use (a) to conclude that this expression is a well-defined distribution for any ε > 0.
Show that the limit ε↘ 0 exist in the distributional sense.

(c) Repeating the procedure of (b) for the half space in the past, one obtains a distribu-
tion on M \ {t = 0}. Show that this distribution coincides with the limit in (16.5.4).
Hint: Similar as in Exercise 2.23, one can estimate the behavior at the origin with
Lebesgue’s dominated convergence theorem.

Exercise 16.3. This exercise is devoted to the advanced Green’s operator s∨m.

(a) Assume that m > 0. Show that the limit ν ↘ 0 in (16.1.4) exist in the distributional
sense.

(b) Show that the limit ν ↘ 0 in (16.1.4) also exists in the massless case m = 0 and that

lim
m↘0

s∨m(k) = s∨0 (k) as a distribution .

Hint: Proceed similar as in Exercise 16.2.
(c) Consider the Fourier integral in the q0-variableˆ ∞

−∞

1

q2 −m2 − iνq0
eiq

0t dq0 .

Show with residues that this integral vanishes for sufficiently small ν if t < 0.
(d) Argue with Lorentz invariance to prove the left side of (16.1.5).
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Exercise 16.4. Modifying the location of the poles in (16.1.4) gives rise to the dis-
tribution

sFm(k) := lim
ν↘0

/k +m

k2 −m2 + iν
.

This is the well-known Feynman propagator, which is often described intuitively by saying
that “positive frequencies move to the future and negative frequencies move to the past.”
Make this sentence precise by a computation similar to that in Exercise 16.3 (c).

Exercise 16.5. Given ω ∈ R, we consider the ordinary differential operator D =
i∂t + ω.

(a) Construct the advanced and retarded Green’s operators, which satisfy in analogy
to (16.2.1) the equation

Dts(t, t
′) = δ(t− t′) .

(b) Compute the resulting causal fundamental solution according to (16.2.2). How is it

related to the time evolution operator U t,t
′
? On which Hilbert space does the time

evolution operator act as a unitary operator?

Exercise 16.6. Consider the massless Dirac equation Dψ = 0 in the two-dimensional
spacetime cylinder R× S1, i.e.

D = i

(
0 1
1 0

)
∂t + i

(
0 1
1 0

)
∂φ

with t ∈ R and φ ∈ (0, 2π).

(a) Choose the spin inner product such that the Dirac matrices become symmetric. What
is the resulting spacetime inner product <.|.>? What is the scalar product (.|.)?

(b) Employ for k ∈ Z the separation ansatz

ψ(t, φ) = e−ikφχ(t) with χ(t) ∈ C2 .

Derive the resulting ODE for χ. Compute the time evolution operator for this ODE.
Hint: Use the result of Exercise 16.5.

(c) Use a Fourier series decomposition in order to deduce a series representation of the
time evolution operator of the Dirac operator on R×S1. Try to carry out the infinite
series to obtain a closed expression for U t,t

′
. How can one see finite propagation

speed?

Exercise 16.7. As in Exercise 16.6, we consider the two-dimensional massless Dirac
equation.

(a) Adapt the formulas for the advanced and retarded Green’s operators in momentum
space to the two-dimensional massless case.

(b) Compute the Fourier transform to obtain s∨(x, y) and s∧(x, y).
(c) Use the result of (b) to compute the causal fundamental solution and the time

evolution operator.
(d) How can one see finite propagation speed? How is the obtained formula related to

the formula in Exercise 16.6 (c)?

Exercise 16.8. Verify the relations (16.3.11) by direct computation starting from
the definition (16.3.10).
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Exercise 16.9. Verify by formal computation that in the Minkowski vacuum, the
fundamental solution km and the Green’s operator sm defined by

sm :=
1

2

(
s∨m + s∧m

)
satisfy the distributional relations in the mass parameters m and m′

km km′ = δ(m−m′) pm

km sm′ = sm′ km =
PP

m−m′ km ,

where PP denotes the principal part, and pm is the distribution

pm(k) = (/k +m) δ(k2 −m2) .

Hint: By a “formal computation” we mean that you do not need to evaluate weakly in
the mass with test functions.

Exercise 16.10. Proceed similar as in Exercise 16.9 to derive a relation for the
operator product s∨ms

∨
m′ . Derive the relation

sm sm′ =
PP

m−m′ (sm − sm′) + π2 δ(m−m′) pm .



CHAPTER 17

Methods of Scattering Theory

In Chapter 15, the fermionic signature operator and the unregularized fermionic pro-
jector were introduced abstractly. In the previous chapter, we computed them in the
Minkowski vacuum. It remains to construct them in the presence of an external poten-
tial. In order to prove the mass oscillation properties, our task is to analyze the Dirac
solutions asymptotically for large times and near spatial infinity. This can be accom-
plished with methods of scattering theory, which we now briefly introduce. We follow the
presentation in [79].

We return to the Cauchy problem in the presence of an external potential,

(D −m)ψm = 0 , ψm
∣∣
t0
= ψ0 ∈ C∞(Nt0 ≃ R3, SM) , (17.0.1)

with D as in (1.3.14). For notational clarity, we shall often denote the objects in the
presence of the external potential by a tilde (the “interacting objects”), whereas the
objects without tilde refer to the Minkowski vacuum.

17.1. The Lippmann-Schwinger Equation

The Dirac dynamics can be rewritten in terms of a symmetric operator H̃. To this
end, we multiply the Dirac equation (1.3.14) by γ0 and bring the t-derivative separately
on one side of the equation,

i∂tψm = H̃ψm , where H̃ := −γ0(iγ⃗∇⃗+B−m) (17.1.1)

(note that γj∂j = γ0∂t+ γ⃗∇⃗). We refer to (17.1.1) as the Dirac equation in Hamiltonian
form. The fact that the scalar product (15.1.2) is time independent implies that for any
two solutions ϕm, ψm ∈ C∞

sc (M, SM) ∩Hm,

0 = ∂t(ϕm |ψm)m = i
(
(H̃ϕm |ψm)m − (ϕm | H̃ψm)m

)
,

showing that the Hamiltonian is a symmetric operator on Hm.
The Lippmann-Schwinger equation can be used to compare the dynamics in the

Minkowski vacuum with the dynamics in the presence of an external potential. We
denote the time evolution operator in the Minkowski vacuum by U t,t0m .

Proposition 17.1.1. The Cauchy problem (17.0.1) has a solution ψm which satisfies
the equation

ψm|t = U t,t0m ψ0 + i

ˆ t

t0

U t,τm
(
γ0B ψm

)∣∣
τ
dτ , (17.1.2)

referred to as the Lippmann-Schwinger equation.

Proof. Obviously, the wave function ψm|t given by (17.1.2) has the correct initial
values at t = t0. Thus it remains to show that this wave function satisfies the Dirac
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equation. To this end, we rewrite the Dirac equation in the Hamiltonian form (17.1.1),
and separate the vacuum Hamiltonian H from the term involving the external potential,

(i∂t −H)ψm = −γ0Bψm with H = −iγ0γ⃗∇⃗+ γ0m . (17.1.3)

Applying the operator i∂t−H to (17.1.2) and observing that the time evolution operator
maps to solutions of the vacuum Dirac equation, only the derivative of the upper limit of
integration contributes,

(i∂t −H)ψm|t = −U t,τm
(
γ0B ψm

) ∣∣
τ=t

= −γ0B ψm|t ,

so that (17.1.3) is indeed satisfied. □

We remark that one way of solving the Lippmann-Schwinger equation is to substitute the
left side on the right side to obtain

ψm|t = U t,t0m ψ0 + i

ˆ t

t0

U t,τm
(
γ0B ψm

)∣∣
τ
dτ

= U t,t0m ψ0 + i

ˆ t

t0

U t,τm γ0B|τ U τ,t0m ψ0 dτ −
ˆ t

t0

U t,τm γ0B|τ
ˆ τ

t0

U τ,τ
′

m

(
γ0B ψm

)∣∣
τ ′

dτ ′ dτ .

Iterating this procedure, one gets a series of nested integrals referred to as the Dyson
series, which is commonly used in perturbative quantum field theory (see for exam-
ple [147, Section 3.5]). The Dyson series can be regarded as an ordered exponential (see
Exercise 17.1).

17.2. The Mass Oscillation Property in the Presence of an External
Potential

The goal of this section is to prove the following result:

Theorem 17.2.1. Assume that the external potential B is smooth and for large times
decays faster than quadratically in the sense that

|B(t)|C2 ≤ c

1 + |t|2+ε
(17.2.1)

for suitable constants ε, c > 0. Then the strong mass oscillation property holds.

In words, the condition (17.2.1) means that the potential and its up to second derivatives
must decay for large times faster than quadratically. This condition does not seem to
have any physical significance; it is needed in order for our methods to apply.

The C2-norm in (17.2.1) is defined as follows. We denote spatial derivatives by ∇ and
use the notation with multi-indices, i.e. for a multi-index α = (α1, . . . , αp) we set ∇α =

∂α1···αp and denote the length of the multi-index by |α| = p. Then the spatial Ck-norms
of the potential are defined by

|B(t)|Ck := max
|α|≤k

sup
x⃗∈R3

|∇αB(t, x⃗)| , (17.2.2)

where | . | is the sup-norm corresponding to the norm |ϕ|2 := ≺ϕ|γ0ϕ≻ on the spinors.
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17.2.1. Proof of the Weak Mass Oscillation Property. In this section, we
prove the following theorem.

Theorem 17.2.2. Assume that the time-dependent external potential B is smooth and
decays faster than quadratically for large times in the sense that (17.2.1) holds for suitable
constants c, ε > 0. Then the Dirac operator D = i∂/ + B has the weak mass oscillation
property.

We expect that this theorem could be improved by weakening the decay assumptions on
the potential. However, this would require refinements of our methods which would go
beyond the scope of this paper. Also, using that Dirac solutions dissipate, the pointwise
decay in time could probably be replaced or partially compensated by suitable spatial
decay assumptions. Moreover, one could probably refine the result of the above theorem
by working with other norms (like weighted Ck- or Sobolev norms).

The main step is the following basic estimate, which is the analog of Lemma 16.3.1
in the presence of an external potential.

Proposition 17.2.3. Under the decay assumptions (17.2.1) on the external poten-
tial B, there are constants c, ε > 0 such that for every family ψ ∈ H∞ of solutions of the
Dirac equation (1.3.14) with varying mass,∥∥(pψ)|t∥∥t ≤ c

1 + |t|1+ε
sup
m∈I

2∑
b=0

∥∥(∂bmψm)|t=0

∥∥
W 2,2 . (17.2.3)

We first show that this proposition implies the weak mass oscillation property.

Proof of Theorem 17.2.2 assuming that Proposition 17.2.3 holds. In or-
der to derive the inequality (15.2.6), we begin with the estimate

|<pψ|pϕ>| ≤ 1

2π

ˆ ∞

−∞

∣∣∣(pψ|t ∣∣ pϕ|t)∣∣t∣∣∣ dt ≤ sup
t∈R

∥∥pϕ|t∥∥t ˆ ∞

−∞

∥∥pψ|t∥∥t dt .
The last integral is finite by Proposition 17.2.3. The supremum can be bounded by the
Hilbert space norm using the Hölder inequality,

∥pϕ|t∥t =
∥∥∥∥ˆ

I
ϕm|t dm

∥∥∥∥
t

≤
ˆ
I

∥∥ϕm|t∥∥t dm ≤
√
|I|

(ˆ
I
∥ϕm|t∥2t dm

) 1
2

=
√
|I| ∥ϕ∥ ,

giving (15.2.6).
Using (1.3.13), the Dirac operator i∂/ + B is symmetric with respect to the inner

product <.|.>. Therefore, the identity (15.2.7) can be obtained just as in (16.3.7) by
integrating the Dirac operator in spacetime by parts, noting that we do not get boundary
terms in view of the time decay in Proposition 17.2.3. □

The remainder of this section is devoted to the proof of Proposition 17.2.3. We make
use of the Lippmann-Schwinger equation (17.1.2),

ψm|t = U t,0m ψm|t=0 + i

ˆ t

0
U t,τm

(
γ0B ψm

)∣∣
τ
dτ . (17.2.4)

Since the first summand of this equation is controlled by Lemma 16.3.1, it remains to
estimate the second summand. Again using (16.3.17) and integrating by parts with
respect to the mass, we obtainˆ

I
U t,τm

(
γ0B ψm

)∣∣
τ
dm =

1

(t− τ)2

ˆ
I

(
At,τm ∂2m −Bt,τ

m ∂m + Ct,τm
)(
γ0B ψm

)∣∣
τ
dm
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(where I is again the interval (15.1.4)) and thus∥∥∥∥ˆ
I
U t,τm

(
γ0B ψm

)∣∣
τ
dm

∥∥∥∥
t

≤ c |I|
(t− τ)2

sup
m∈I

2∑
b=0

∥∥B(τ) (∂bmψm)|τ
∥∥
W 2,2

≤ c |I|
(t− τ)2

|B(τ)|C2 sup
m∈I

2∑
b=0

∥∥∂bmψm|τ∥∥W 2,2 .

We now bound B(τ) with the help of (17.2.1). Moreover, we estimate the Sobolev
norm

∥∥∂bmψm|τ∥∥W 2,2 at time τ by means of Lemma 13.5.1. This gives rise to the in-
equality∥∥∥∥ˆ

I
U t,τm

(
γ0B ψm

)∣∣
τ
dm

∥∥∥∥
t

≤ c2C |I|
(t− τ)2

1 + |τ |2

1 + |τ |2+ε
sup
m∈I

2∑
b=0

∥∥∂bmψm|t=0

∥∥
W 2,2 ,

which yields the desired decay provided that τ and t are not too close to each other.
More precisely, we shall apply this inequality in the case |τ | ≤ |t|/2. Then the estimate
simplifies to∥∥∥∥ˆ

I
U t,τm

(
γ0B ψm

)∣∣
τ
dm

∥∥∥∥
t

≤ C̃

t2 (1 + |τ |ε)
sup
m∈I

2∑
b=0

∥∥∂bmψm|t=0

∥∥
W 2,2 if |τ | ≤ |t|/2 (17.2.5)

with a new constant C̃ > 0. In the remaining case |τ | > |t|/2, we use the unitarity of U t,τm
to obtain ∥∥∥∥ˆ

I
U t,τm

(
γ0B ψm

)
|τ dm

∥∥∥∥
t

≤ |I| |B(τ)|C0 sup
m∈I

∥ψm∥ .

Applying (17.2.1) together with the inequality |τ | > |t|/2, this gives∥∥∥∥ˆ
I
U t,τm

(
γ0B ψm

)
|τ dm

∥∥∥∥
t

≤ C̃

t2+ε
sup
m∈I

∥ψm∥ if |τ | > |t|/2 . (17.2.6)

This again decays for large t because τ is close to t and because |B(τ)|C0 decays for
large τ .

Comparing (17.2.5) and (17.2.6), we find that the inequality in (17.2.5) even holds
for all τ . Thus integrating this inequality over τ ∈ [0, t], we obtain the following estimate
for the second summand in (17.2.4),∥∥∥∥ˆ

I
dm

ˆ t

0
U t,τm

(
γ0B ψm

)
|τ dτ

∥∥∥∥
t

≤ C ′

t1+ε
sup
m∈I

2∑
b=0

∥∥∂bmψ|t=0

∥∥
W 2,2

(where C ′ > 0 is a new constant). Combining this inequality with the estimate (16.3.3) of
the first summand in (17.2.4), we obtain the desired inequality (17.2.3). This concludes
the proof of Proposition 17.2.3.

17.2.2. Proof of the Strong Mass Oscillation Property. In this section, we
prove the following result.
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Theorem 17.2.4. Assume that the weak mass oscillation property holds and that the
external potential B satisfies the conditionˆ ∞

−∞
|B(τ)|C0 dτ <∞ . (17.2.7)

Then the Dirac operator D = i∂/+B has the strong mass oscillation property.

Combining this theorem with Theorem 17.2.2, one immediately obtains Theorem 17.2.1.
For the proof we shall derive an explicit formula for the fermionic signature op-

erator (Proposition 17.2.5). This formula is obtained by comparing the dynamics in
the presence of the external potential with that in the Minkowski vacuum using the
Lippmann-Schwinger equation, and by employing distributional relations for products of
fundamental solutions and Green’s operators (Lemma 17.2.8).

In order to compare the dynamics in the presence of the external potential with that
in the Minkowski vacuum, we work with the Hamiltonian formulation. We decompose
the Dirac Hamiltonian (17.1.1) into the Hamiltonian in the Minkowski vacuum (17.1.3)
plus a potential,

H̃ = H + V with V := −γ0B .

Proposition 17.2.5. Assume that the potential B satisfies the condition (17.2.7).
Then for every ψ, ϕ ∈ H∞,

<pψ|pϕ> =

ˆ
I
(ψm | S̃m ϕm)m dm , (17.2.8)

where S̃m : Hm → Hm are bounded linear operators which act on the wave functions at
time t0 by

S̃m = Sm − i

2

ˆ ∞

−∞
ϵ(t− t0)

[
Sm U

t0,t
m V(t) Ũ t,t0m − Ũ t0,tm V(t) Sm U

t,t0
m

]
dt (17.2.9)

+
1

2

(ˆ ∞

t0

ˆ ∞

t0

+

ˆ t0

−∞

ˆ t0

−∞

)
Ũ t0,tm V(t) Sm U

t,t′
m V(t′) Ũ t

′,t0
m dt dt′ (17.2.10)

(and Sm is again the fermionic signature operator of the vacuum (16.4.4)).

Before entering the proof of this proposition, it is instructive to verify that the above
formula for S̃m does not depend on the choice of t0.

Remark 17.2.6. (Independence of S̃m on t0) Our strategy is to differentiate the

above formula for S̃m with respect to t0 and to verify that we obtain zero. We first
observe that taking a solution ϕm ∈ Hm of the Dirac equation in the presence of B,
evaluating at time t0 and applying the time evolution operator Ũ t,t0m gives ϕm at time t,
i.e. Ũ t,t0m ϕm|t0 = ϕm|t. Differentiating with respect to t0 yields

∂t0Ũ
t,t0
m ϕm|t0 = 0 .

The situation is different when one considers the time evolution operator of the vacuum.
Namely, in the expression U t,t0m ϕm|t0 , the wave function ϕm satisfies the Dirac equa-
tion (i∂t −H)ϕm = Vϕm, whereas the time evolution operator solves the Dirac equation
with V ≡ 0. As a consequence,

∂t0U
t,t0
m ϕm|t0 = −iU t,t0m (Vϕm)|t0 .
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Using these formulas together with U t0,t0 = 1 = Ũ t0,t0 , a straightforward computation
gives

∂t0
(
ψm | (17.2.9)ϕm

)∣∣
t0
=− i(ψm | [Sm,V]ϕm)|t0

− i

2
(−2)

(
ψm

∣∣ (Sm V(t0)− V(t0) Sm
)
ϕm

)∣∣
t0

− i

2

ˆ ∞

−∞
ϵ(t− t0)

(
(−iV(t0))ψm

∣∣ Sm U t0,tm V(t) Ũ t,t0m ϕm
)∣∣
t0
dt

+
i

2

ˆ ∞

−∞
ϵ(t− t0)

(
ψm

∣∣ Ũ t0,tm V(t) Sm U
t,t0
m (−iV(t0))ϕm

)∣∣
t0
dt

∂t0
(
ψm | (17.2.10)ϕm

)∣∣
t0
=− 1

2

ˆ ∞

−∞
ϵ(t′ − t0)

(
ψm

∣∣V(t0) Sm U t0,t′m V(t′) Ũ t
′,t0
m ϕm

)∣∣
t0

dt′

− 1

2

ˆ ∞

−∞
ϵ(t− t0)

(
ψm

∣∣ Ũ t0,tm V(t) Sm U
t,t0
m V(t0)ϕm

)∣∣
t0

dt ,

where for notational simplicity we here omitted the restrictions |t0 for the solutions ψm
and ϕm. Adding the terms gives zero. ♢

The remainder of this section is devoted to the proof of Proposition 17.2.5. Our
strategy is to combine the Lippmann-Schwinger equation with estimates in momentum
space. We begin with two technical lemmas.

Lemma 17.2.7. Assume that the external potential B satisfies condition (17.2.7). For
any t0 ∈ R, we denote the characteristic functions in the future respectively past of this
hypersurface t = t0 by χ±

t0
(x) (i.e. χ±

t0
(x) = Θ(±(x0 − t0)), where Θ is the Heaviside

function). Then for any ψm ∈ C∞
sc (M, SM) ∩Hm, the wave function km(χ

±
t0
Bψm) is a

well-defined vector in Ht0 and

∥km(χ±
t0
Bψm)∥t0 ≤ 1

2π
∥ψm∥m

ˆ ∞

−∞
χ±
t0
(τ) |B(τ)|C0 dτ .

Proof. Using the integral kernel representation (16.2.3) and (16.2.4) together with
the fact that the time evolution in the vacuum is unitary, we obtain

2π

∥∥∥∥ˆ
R3

km
(
(t0, .), (τ, y⃗)

) (
χ±
t0
Bψm

)
(τ, y⃗) d3y

∥∥∥∥
t0

=
∥∥U t0,τm γ0(χ±

t0
Bψm)|τ

∥∥
t0
=

∥∥γ0(χ±
t0
Bψm)|τ

∥∥
τ
≤ |B(τ)|C0 ∥ψm∥m .

Integrating over τ and using (17.2.7) gives the result. □

The following lemma is proved in [55, Eqs. (2.13)–(2.17)] (see Exercises 16.9 and 16.10).

Lemma 17.2.8. In the Minkowski vacuum, the fundamental solution km and the
Green’s operator sm defined by

sm :=
1

2

(
s∨m + s∧m

)
(17.2.11)
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satisfy the distributional relations in the mass parameters m and m′

km km′ = δ(m−m′) pm

km sm′ = sm′ km =
PP

m−m′ km

sm sm′ =
PP

m−m′ (sm − sm′) + π2 δ(m−m′) pm ,

where PP denotes the principal part, and pm is the distribution

pm(k) = (/k +m) δ(k2 −m2) . (17.2.12)

Proof of Proposition 17.2.5. Let ψ ∈ H∞ be a family of solutions of the Dirac
equation for varying mass. We denote the boundary values at time t0 by ψ0

m := ψm|t0 .
Then we can write the Lippmann-Schwinger equation (17.1.2) as

ψm|t = U t,t0m ψ0
m + i

ˆ t

t0

U t,τm
(
γ0B ψm

)∣∣
τ
dτ .

We now bring this equation into a more useful form. Expressing the time evolution
operator with the help of (16.2.4) in terms of the fundamental solution, we obtain

ψm(x) = 2π

ˆ
R3

km
(
x, (t0, y⃗)

)
γ0ψ0

m(t0, y⃗) d3y

+ 2πi

ˆ x0

t0

dy0
ˆ
R3

d3y km(x, y)(B ψm)(y) .

Applying (16.2.2) and using that the advanced and retarded Green’s operators are sup-
ported in the future and past light cones, respectively, we can rewrite the last integral in
terms of the advanced and retarded Green’s operators,

ψm = 2π km
(
γ0δt0ψ

0
m

)
− s∧m

(
χ+
t0
Bψm

)
− s∨m

(
χ−
t0
Bψm

)
,

where δt0(x) := δ(t0 − x0) is the δ distribution supported on the hypersurface x0 = t0.
Next, we express the advanced and retarded Green’s operators in terms of the Green’s
operator (17.2.11): According to (16.2.2), we have the relations

sm = s∨m − iπkm = s∧m + iπkm

and thus

ψm = kmgm − smBψm with gm := 2π γ0δt0ψ
0
m + iπ ϵt0Bψm , (17.2.13)

where ϵt0 is the step function

ϵt0(x) := ϵ(x0 − t0)

(and we omitted the brackets in expressions like kmgm ≡ km(gm)). Note that the expres-
sion kmgm is well-defined according to Lemma 17.2.7. We also remark that by applying
the operator (i∂/−m) to the distribution gm in (17.2.13), one immediately verifies that ψm
indeed satisfies the Dirac equation (i∂/−m)ψm = −Bψm.
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Now we can compute the inner product <pψ|pψ> with the help of Lemma 17.2.8.
Namely, using (17.2.13),

<pψ|pψ> =

¨
I×I

<kmgm − smBψm | km′gm′ − sm′Bψm′> dm dm′

=

ˆ
I

(
<gm | pmgm>+ π2<Bψm | pmBψm>

)
dm

+

¨
I×I

PP

m−m′

(
<Bψm | km′gm′>−<kmgm |Bψm′>

+<Bψm | (sm − sm′)Bψm′>
)
dm dm′ .

Note that this computation is mathematically well-defined in the distributional sense
because ψm and gm are smooth and compactly supported in the mass parameter m.
Employing the explicit formula for gm in (17.2.13), we obtain

<pψ|pψ> =

ˆ
I

(
<gm | pmgm>+ π2<Bψm | pmBψm>

)
dm .

Comparing (16.3.8) with (17.2.12) and taking into account that the operator Sm defined
by (16.4.4) gives a minus sign for the states of negative frequency, we get

pm = Sm km .

Using this identity together with Proposition 13.4.4 in the vacuum yields the relations

<gm | pmgm> = (kmgm | Sm kmgm)|t0
<Bψm | pmBψm> = (kmBψm | Sm kmBψm)|t0 .

We finally apply Proposition 13.6.1 to obtain the representation

<pψ|pψ> =

ˆ
I

(
(hm | Sm hm)|t0 + π2 (kmBψm | Sm kmBψm)|t0

)
dm , (17.2.14)

where
hm := ψm + iπ km(ϵt0Bψm) .

Comparing (17.2.8) with (17.2.14), we get

(ψm | S̃m ψm)m = (hm | Sm hm)|t0 + π2 (kmBψm | Sm kmBψm)|t0 .
Expressing the operators km according to (16.2.4) by the time evolution operator and
writing ψm in terms of the initial data as

ψm|t = Ũ t,t0ψ|t0 ,
we obtain

(ψm | S̃m ψm)m = (ψ|Smψ)|t0 −
i

2

ˆ ∞

−∞
ϵ(t− t0)

(
ψ
∣∣ Sm U t0,t V(t) Ũ t,t0 ψ)∣∣t0 dt

+
i

2

ˆ ∞

−∞
ϵ(t− t0)

(
U t0,t V(t) Ũ t,t0 ψ

∣∣ Sm ψ)∣∣t0 dt

+
1

4

¨
R×R

ϵ(t− t0) ϵ(t
′ − t0)

(
U t0,t V(t) Ũ t,t0 ψ

∣∣ Sm U t0,t′ V(t′) Ũ t′,t0 ψ)∣∣t0 dt dt′

+
1

4

¨
R×R

(
U t0,t V(t) Ũ t,t0 ψ

∣∣ Sm U t0,t′ V(t′) Ũ t′,t0 ψ)∣∣t0 dt dt′ .

Rearranging the terms and polarizing gives the result. □
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Proof of Theorem 17.2.4. Since the time evolution operators are unitary and the
operators Sm have norm one (see (16.4.4)), the representation (17.2.9) and (17.2.10) gives

rise to the following estimate for the sup-norm of S̃m,∥∥S̃m∥∥ ≤ 1 +

ˆ
R
|V(t)|C0 dt+

¨
R×R

|V(t)|C0 |V(t′)|C0 dt dt′ .

The decay assumption (17.2.7) implies that the sup-norm of S̃m is bounded uniformly
in m. Using this fact in (17.2.8) gives the inequality (15.2.8), thereby establishing the
strong mass oscillation property. □

We finally remark that the uniqueness statement in Proposition 15.3.3 implies that the
relations (17.2.9) and (17.2.10) yield an explicit representation of the fermionic signature
operator in the presence of a time-dependent external potential.

17.3. Exercises

Exercise 17.1. For a smooth one-parameter family of matrices F (α), α ∈ R, the
ordered exponential Pexp(

´
F (α) dα)

Pexp

(ˆ b

a
F (α) dα

)
= 1+

ˆ b

a
F (t0) dt0 +

ˆ b

a
dt0 F (t0)

ˆ b

t0

dt1 F (t1)

+

ˆ b

a
dt0 F (t0)

ˆ b

t0

dt1 F (t1)

ˆ b

t1

dt2 F (t2) + · · · .

In this exercise we collect a few elementary properties of the ordered exponential.

(a) Assume that the matrix-valued function F is commutative in the sense that[
F (α), F (β)

]
= 0 for all α, β ∈ [a, b] .

Show that the ordered exponential reduces to the ordinary exponential,

Pexp

(ˆ b

a
F (α) dα

)
= exp

(ˆ b

a
F (α) dα

)
.

Hint: Show inductively that
ˆ b

a
dt0 F (t0)

ˆ b

t0

dt1 F (t1) · · ·
ˆ b

tn−1

dtn F (tn) =
1

(n+ 1)!

( ˆ b

a
F (t) dt

)n+1

.

(b) Assume that F is continuous on [a, b]. Show that the Dyson series converges abso-
lutely and that∥∥∥∥Pexp(ˆ b

a
F (α) dα

)∥∥∥∥ ≤ exp

( ˆ b

a

∥∥F (α)∥∥ dα

)
.

Hint: Estimate the integrals and apply (a).
(c) Show by direct computation that the ordered exponential satisfies the equations

d

da
Pexp

(ˆ b

a
F (α) dα

)
= −F (a) Pexp

(ˆ b

a
F (α) dα

)
(17.3.1)

Pexp

( ˆ a

a
F (α) dα

)
= 1 . (17.3.2)
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Use the uniqueness theorem for solutions of ordinary differential equations to give
an alternative definition in terms of the solution of an initial-value problem. Use this
reformulation to show the group property

Pexp

( ˆ b

a
F (α) dα

)
Pexp

( ˆ c

b
F (α) dα

)
= Pexp

(ˆ c

a
F (α) dα

)
. (17.3.3)

(d) Show that

d

db
Pexp

( ˆ b

a
F (α) dα

)
= Pexp

( ˆ b

a
F (α) dα

)
F (b) . (17.3.4)

Hint: Differentiate the identity (17.3.3) in the case c = a and use the group proper-
ties (17.3.2) and (17.3.3).

(e) Show that

Pexp

( ˆ b

a
F (α) dα

)∗
= Pexp

(ˆ a

b

(
− F (α)∗

)
dα

)
.

Deduce that if F (α) is an anti-Hermitian matrix, then the ordered exponential is a
unitary matrix. Hint: There are two alternative methods. One method is to argue
using the differential equations (17.3.1) and (17.3.4) or with the group property.
A more computational approach is to take the adjoint of the Dyson series and re-
parametrize the integrals.

Exercise 17.2. Given ω ∈ R and a smooth function V (t), we consider the ordinary
differential equation (

i∂t + ω
)
ϕ(t) = V (t) ϕ(t) .

(a) Write down the Lippmann-Schwinger equation, taking the right side of the equation

as the perturbation. Hint: The free time evolution operator U t,t
′
was computed in

Exercise 16.5.
(b) Express the Lippmann-Schwinger equation in the case ω = 0 explicitly as an integral

equation. How is it related to the integral equation used in the Picard iteration (in
the proof of the Picard-Lindelöf theorem)?



CHAPTER 18

Methods of Perturbation Theory

In Chapter 15, the unregularized kernel of the fermionic projector was constructed
abstractly with functional analytic methods. In order to fill these constructions with life,
one can analyze this kernel with methods of perturbation theory. The resulting explicit
formulas give a detailed understanding of the structure of this kernel. We now outline
the perturbative methods; more details can be found in [45, Chapter 2] or in the original
papers [37, 55, 86].

As the general setting we consider the Dirac equation in Minkowski space (1.3.14) in
the presence of an external potential B which we assume to be symmetric (1.3.13). In
preparation, we rewrite the definition of the fermionic signature operator constructed in
Chapter 15 in a way suitable for the perturbative treatment. Our starting point is the
representation (15.3.3) of the spacetime inner product in terms of the scalar product,

<pψ|pψ′> =

ˆ
I
(ψm | Sm ψ′

m)m dm , (18.0.1)

where Sm is the fermionic signature operator. Here ψ = (ψm)m∈I and similarly ψ′ are
families of solutions of the Dirac equation for a varying mass parameter. More specifically,
we now consider families obtained by acting with the causal fundamental solution on given
test wave functions, i.e.

ψm = k̃mϕ and ψ′
m = k̃mϕ

′ with ϕ, ϕ′ ∈ C∞
0 (M, SM) .

Using this ansatz in (18.0.1) and pulling the mass integrals outside, we obtain the formulaˆ
I
dm

ˆ
I
dm′<k̃mϕ | k̃m′ϕ′> =

ˆ
I
(k̃mϕ | Sm k̃mϕ′)m dm . (18.0.2)

Next, we rewrite the integrand on the left side by using that the fundamental solution is
symmetric with respect to the spacetime inner product (see Corollary 13.4.5),

<k̃mϕ|k̃m′ϕ′> = <ϕ | k̃mk̃m′ϕ′> .

Moreover, the integrand on the right can be rewritten with the help of Proposition 13.4.4
as

(k̃mϕ | Sm k̃mϕ′)m = ⟨ϕ | Sm k̃mϕ′⟩ .
Thus (18.0.2) becomesˆ

I
dm

ˆ
I
dm′<ϕ | k̃m k̃m′ψ′> =

ˆ
I
⟨ϕ | Sm k̃mϕ′⟩ dm .

Here one should keep in mind the product k̃m k̃m′ is an operator product in spacetime,(
k̃m k̃m′

)
(x, y) =

ˆ
M
k̃m(x, z) k̃m′(z, y) d4z , (18.0.3)

293
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whereas in the product Sm k̃m we multiply by an operator on the Hilbert space Hm

defined for example at time t. In order to clarify the notation, we write this product as

Sm |t k̃m .

Then the relation (18.0.3) can be written in the short form

k̃mk̃m′ = δ(m−m′) Sm |t k̃m . (18.0.4)

In this way, one is led to considering products of operators in spacetime which involve
the mass as a parameter. Carrying out the products gives rise to δ distributions in the
respective mass parameters.

This computational procedure was introduced in [37]. In the Minkowski vacuum, it
can be carried out most conveniently in momentum space. We begin with the formula
for the causal fundamental solution in momentum space (16.3.8),

km(p) = (/p+m) δ(p2 −m2) ϵ(p0) .

Then, using Plancherel together as well as the anti-commutation relations of the Dirac
matrices, we obtain(

km km′
)
(p) = km(p) km′(p) = (/p+m) δ(p2 −m2) ϵ(p0) (/p+m′) δ(p2 − (m′)2) ϵ(p0)

=
(
p2 + (m+m′) /p+mm′) δ(m2 − (m′)2

)
δ(k2 −m2)

=
(
p2 + (m+m′) /p+mm′)

1

2m
δ(m−m′) δ(k2 −m2)

= δ(m−m′) (/p+m) δ(p2 −m2) = δ(m−m′) ϵ
(
p0
)
km(p) .

Comparing with (18.0.4), we can read off that that the fermionic signature operator
simply is the operator of multiplication operator by the sign of the frequency,

Sm(p) = ϵ
(
p0
)
.

This computation is an efficient way of seeing that, in the Minkowski vacuum, the
fermionic signature operator gives back the frequency splitting.

We proceed by explaining how this computation can be extended to the situation of
the Dirac equation (1.3.14) when an external potential B is present. We want to proceed
order by order in a perturbation expansion in B. Before entering the details, we point
out that by a “perturbation expansion” we mean a formal expansion in powers of B. The
resulting formulas will be well-defined and finite to every order. But it is unknown whether
the power series converges. This procedure is convincing because we already know from
our functional analytic constructions in Chapter 15 that the fermionic signature operator
and the unregularized fermionic projector are well-defined mathematical objects. With
this in mind, the only purpose of the constructions in this chapter is to compute these
objects more explicitly. For this purpose, a perturbative treatment order by order in
perturbation theory is most suitable.

18.1. Perturbation Expansion of the Causal Green’s Operators

We already encountered the causal Green’s operators for the Dirac equation several
times in this book. In Section 13.4, they were constructed with methods of hyperbolic
partial differential equations (see Theorem 13.4.3). In Section 16.1, on the other hand,
we used Fourier methods to derive explicit formulas for the causal Green’s operator in
the Minkowski vacuum (see (16.1.4)). Taking these explicit formulas as the starting
point, one can also write down closed formulas for the causal Green’s operators in the
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presence of an external potential. In order to state these formulas, we consider the Dirac
equation (1.3.14) in the presence of an external potential B. We always denote the objects
in the presence of the external potential with a tilde, whereas the objects without tilde
refer to the vacuum. Then the advanced and retarded Dirac Green’s operators have the
perturbation expansions

s̃∨m =

∞∑
n=0

(
− s∨mB

)n
s∨m , s̃∧m =

∞∑
n=0

(
− s∧mB

)n
s∧m , (18.1.1)

as can be verified as follows. First, one sees by direct computation using the defining
equation of the Green’s operator (16.1.1) that they are formal solutions of (16.2.1). For
example, for the advanced Green’s operator,

(i∂/x +B−m)

( ∞∑
n=0

(
− s∨mB

)n
s∨m

)

= (i∂/x −m) s∨m

( ∞∑
n=0

(
−Bs∨m

)n)
+B

( ∞∑
n=0

(
− s∨mB

)n
s∨m

)

=

∞∑
n=0

(−Bs∨m)
n +B

( ∞∑
n=0

(
− s∨mB

)n
s∨m

)
= 1 .

Second, the fact that the Green’s operators in (18.1.1) are either all advanced or all
retarded implements the causal properties of the respective Green’s operators. Let us
consider for example the integral kernel of the first order contribution to the advanced
Green’s operator (

− s∧mBs
∧
m

)
(x, y) = −

ˆ
M
s∧m(x, z)B(z) s∧m(z, y) d4z . (18.1.2)

The integrand vanishes unless z lies in the causal future of y and x lies in the causal
future of z. Using transitivity of the causal relations, one concludes that the integral is
zero unless x lies in the causal future of y. In this sense, the expression (18.1.2) is again
causal and retarded. The higher orders can be treated similarly by induction.

We finally explain in which sense the perturbation series (18.1.1) are mathematically
well-defined. To every order in perturbation theory, the operator products are well-defined
and finite, provided that the potential B is smooth and decays so fast at infinity that
the functions B(x), xiB(x), and xixjB(x) are integrable (for an inductive proof see [45,
Lemma 2.1.2]). Knowing that the Green’s operators are well-defined non-perturbatively
(see Chapter 13), we disregard the issue of convergence of the perturbation series.

18.2. The Causal Perturbation Expansion of the Fermionic Projector

Using (13.4.7), we also have a unique perturbation expansion for the causal funda-
mental solution,

k̃m =
1

2πi
(s̃∨m − s̃∧m) . (18.2.1)

Using the identities

s∨m = sm + iπkm , s∧m = sm − iπkm , (18.2.2)

where we introduced the symmetric Green’s operator

sm :=
1

2

(
s∨m + s∧m

)
, (18.2.3)
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one can write the above perturbation series as operator product expansions. More pre-
cisely, the operator k̃m has the series expansion

k̃m =
∞∑
β=0

(iπ)2β b<m km (bmkm)
2β b>m , (18.2.4)

where the factors b•m are defined by

b<m =
∞∑
n=0

(−smB)n , bm =
∞∑
n=0

(−Bsm)
nB , b>m =

∞∑
n=0

(−Bsm)
n . (18.2.5)

In the following constructions, we need to multiply the operator products in (18.2.4).
These products have a mathematical meaning as distributions in the involved mass pa-
rameters,

pm pm′ = km km′ = δ(m−m′) pm (18.2.6)

pm km′ = km pm′ = δ(m−m′) km (18.2.7)

km b
>
m b

<
m′ km′ = δ(m−m′)

(
pm + π2 km bm pm bm km

)
, (18.2.8)

where

pm(q) = (/q +m) δ(q2 −m2) (18.2.9)

km(q) = (/q +m) δ(q2 −m2) ϵ(q0) . (18.2.10)

Since all these formulas involve a common prefactors δ(m − m′), we can introduce a
convenient notation by leaving out this factor and omitting the mass indices. For clarity,
we denote this short notation with a dot, i.e. symbolically

A ·B = C stands for AmBm′ = δ(m−m′) Cm . (18.2.11)

With this short notation, the multiplication rules can be written in the compact form

p · p = k · k = p , p · k = k · p = k , k b> · b<k = p+ π2kbpbk . (18.2.12)

In all the subsequent calculations, the operator products are well-defined provided that
the potential B is sufficiently smooth and has suitable decay properties at infinity (for
details see again [45, Lemma 2.1.2]). But again, all infinite series are to be understood
merely as formal power series in the potential B.

Using this notation, we can write (18.2.4) as

k̃ = k +∆k with ∆k̃ =
∞∑
β=0

(iπ)2β b< k (bk)2β b> − k (18.2.13)

(note that ∆k̃ is at least linear in B). Powers of the operator k̃ with the product (18.2.11)
are well-defined using the multiplication rules (18.2.12). This makes it possible to develop

a spectral calculus for k̃, which is formulated most conveniently with contour integrals.
To this end, we introduce the resolvent by

R̃λ = (k̃ − λ)−1 . (18.2.14)

We choose a contour Γ+ which encloses the point 1 in counter-clockwise direction and
does not enclose the points −1 and 0. Likewise, Γ− is chosen as a contour which encloses
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the point −1 in counter-clockwise direction and does not enclose the points 1 and 0.
Given a holomorphic function f we define f(k̃) by

f
(
k̃
)
:= − 1

2πi

‰
Γ+∪Γ−

f(λ) R̃λ dλ . (18.2.15)

Before going on, we need to explain how the resolvent and these contour integrals are
to be understood mathematically. First, the resolvent can be expressed in terms of the
vacuum resolvent with a a perturbation series being a formal Neumann series,

R̃λ = (k − λ+∆k)−1 = (1 +Rλ ·∆k)−1 ·Rλ =
∞∑
n=0

(−Rλ ·∆k)n ·Rλ . (18.2.16)

In order to define Rλ, we note that, according to (18.2.12), the operator k has the
eigenvalues ±1 and 0 with corresponding spectral projectors (p± k)/2 and 1− p. Hence
we can write the free resolvent as

Rλ =
p+ k

2

(
1

1− λ

)
+
p− k

2

(
1

−1− λ

)
− 1− p

λ
. (18.2.17)

Substituting this formula in (18.2.16), to every order in perturbation theory we obtain
a meromorphic function in λ having poles only at λ = 0 and λ = ±1. Therefore, the
contour integral in (18.2.15) can be computed with residues, and the result is independent

of the choice of the contours Γ− and Γ+. In this way, the operator f(k̃) is uniquely
defined as a formal perturbation series. As explained at the end of the previous section
(in the paragraph after (18.1.2)), this series is well-defined and finite to every order in
perturbation theory.

We now establish the functional calculus.

Theorem 18.2.1. (functional calculus) For any functions f, g which are holomor-
phic in discs around ±1 which contain the contours Γ±,

(i∂/+B−m) f
(
k̃
)
= 0 (18.2.18)

f
(
k̃
)∗

= f
(
k̃
)

(18.2.19)

f
(
k̃
)
· g
(
k̃
)
= (fg)

(
k̃
)
. (18.2.20)

Proof. Since the image of the operator k̃ lies in the kernel of the Dirac operator, we
know that

(i∂/+B−m) R̃λ = (i∂/+B−m)
(
− λ−1

)
.

Taking the contour integral (18.2.15) gives (18.2.18).
The operators pm, km and sm are obviously symmetric (see the relations (18.2.9),

(18.2.10) and (18.2.3)). According to (18.2.4), the operator k̃m is also symmetric. Hence

the resolvent R̃λ defined by (18.2.14) has the property

R̃∗
λ = R̃λ .

The relation (18.2.19) follows by taking the adjoint of (18.2.15) and reparametrizing the
integral.

The starting point for proving (18.2.20) is the resolvent identity (see Exercise 3.3)

R̃λ · R̃λ′ =
1

λ− λ′

(
R̃λ − R̃λ′

)
. (18.2.21)
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We set Γ = Γ+ ∪ Γ− and denote the corresponding contour for λ′ by Γ′. Since the
integral (18.2.15) is independent of the precise choice of the contour, we may choose

Γ = ∂Bδ(1) ∪ ∂Bδ(−1) and Γ′ = ∂B2δ(1) ∪ ∂B2δ(−1)

for sufficiently small δ < 1/2. Then Γ does not enclose any point of Γ′, implying that‰
Γ

f(λ)

λ− λ′
dλ = 0 for all λ′ ∈ Γ′ . (18.2.22)

On the other hand, Γ′ encloses every point of Γ, so that‰
Γ′
f(λ) g(λ′)

R̃λ
λ− λ′

dλ′ = −2πi f(λ) g(λ) R̃λ for all λ ∈ Γ . (18.2.23)

Combining (18.2.21) with (18.2.22) and (18.2.23), we obtain

f
(
k̃
)
· g
(
k̃
)
= − 1

4π2

‰
Γ
f(λ) dλ

‰
Γ′
g(λ′) dλ′

1

λ− λ′

(
R̃λ − R̃λ′

)
= − 1

2πi

‰
Γ
f(λ) g(λ) R̃λ dλ = (fg)

(
k̃
)
.

This concludes the proof. □

This functional calculus makes it possible to compute the unregularized kernel of the
fermionic projector, as we now explain. Our starting point is the defining equation for
the fermionic signature operator (18.0.4), which we can now write in the short from

k̃ · k̃ = S̃m |t k̃ .

Iterating this relation, we obtain for any p ∈ N(
k̃ ·

)p
k̃ =

(
S̃m |t

)p
k̃ =

(
S̃m

)p ∣∣
t
k̃ for all p ∈ N .

Consequently, this formula also holds for the functional calculus, i.e.

f
(
k̃
)
· k̃ = f

(
S̃m

) ∣∣
t
k̃ .

This formula makes it possible to express the unregularized kernel P̃− in (15.4.1) by

P̃− = −χ(−∞,0)

(
S̃m

)
k̃m = −χ(−∞,0)

(
S̃m

)
|t k̃ = χ(−∞,0)

(
k̃
)
· k̃

= −
( 1

2πi

‰
Γ−

R̃λ dλ
)
· k̃ = − 1

2πi

‰
Γ−

(−λ) R̃λ dλ

Substituting the perturbation expansion for R̃λ in (18.2.16) and writing the vacuum
resolvent in the form (18.2.17), one can carry out the contour integral with residues.
This gives the desired perturbation expansion for P−. More details on this method and
explicit formulas can be found in [86, Section 3.3 and Appendix A].

18.3. Exercises

Exercise 18.1. (Perturbative description of gauge transformations) We consider the
perturbation expansion for the Dirac Green’s operators (18.1.1) for a perturbation by a
pure gauge potential, i.e.

B(x) = ∂/Λ(x)

with a real-valued function Λ.
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(a) Show that the Dirac operator with interaction can be written as

i∂/+ (∂/Λ)−m = eiΛ(x)
(
i∂/−m

)
e−iΛ(x) .

Conclude that the perturbation of the Dirac solutions amounts to multiplication by
a phase function, i.e.

Ψ̃(x) = eiΛ(x) Ψ(x) .

Explain why these findings are a manifestation of the local gauge freedom of electro-
dynamics.

(b) Show that the gauge phases also appear in the perturbation expansion (18.1.1) in
the sense that

s̃∧m(x, y) = eiΛ(x) s∧m(x, y) e
−iΛ(y) .

Hint: To first order, one needs to show that

−
(
s∧mB s∧m

)
(x, y) = i

(
Λ(x)− Λ(y)

)
s∧m(x, y) .

To this end, it is convenient to write the perturbation operator as a commutator,

B = −i
[
(i∂/−m), Λ

]
and use the defining equation of the Green’s operator (16.1.1). To higher order, one
can proceed inductively.

Exercise 18.2. Prove the identity (18.2.8). Hint: Use the multiplication rules derived
in Exercises 16.9 and 16.10. Make use of the fact that one gets telescopic sums.

Exercise 18.3. Verify the identity (18.2.20) in a perturbation expansion to first and
second order. To this end, compute both sides of this equation using the perturbation
expansion of R̃λ and carrying out the contour integrals. Hint: Similar formulas can be
found in the appendices of [55] and [86].





CHAPTER 19

Methods of Microlocal Analysis

19.1. The Hadamard Expansion in Minkowski Space

In Chapter 15, the unregularized kernel of the fermionic projector P (x, y) = P−(x, y)
was constructed abstractly. In Chapter 18, we saw how this kernel can be expanded in
a perturbation series in powers of the external potential. In order to gain more explicit
information on the form of the unregularized kernel, it is very useful to analyze its singu-
larity structure on the light cone. It turns out that P (x, y) has singularities on the light
cone, which can be described by the so-called Hadamard expansion of the form

P (x, y) = lim
ε↘0

i∂/x

(
U(x, y)

Γε(x, y)
+ V (x, y) log Γε(x, y) +W (x, y)

)
, (19.1.1)

where

Γε(x, y) := (y − x)j (y − x)j − iε (y − x)0 , (19.1.2)

and U , V andW are smooth functions on M×M taking values in the 4×4-matrices acting
on the spinors (we always denote spacetime indices by latin letters running from 0, . . . , 3).
This local expansion is based on the method of integration along characteristics which
will be explained below (see after (19.1.8) or also [99, 88] or [6]). In Minkowski space,
the light-cone expansion [39, 40] (see also [45, Section 2.2]) gives an efficient procedure
for computing an infinite number of Hadamard coefficients in one step. The Hadamard
form (19.1.1) carries over to curved spacetime. Moreover, there is an interesting connec-
tion to the so-called wave front set in microlocal analysis. These generalizations will be
briefly outlined in Section 19.3 below. In all the other sections of this chapter, we restrict
attention to Minkowski space.

It turns out that, for an external potential in Minkowski space, the kernel of the
fermionic projector is indeed of Hadamard form.

Theorem 19.1.1. Assume that the external potential B is smooth, and that its time
derivatives decay at infinity in the sense that (17.2.1) holds and in addition thatˆ ∞

−∞
|∂ptB(t)|C0 dt <∞ for all p ∈ N

(with the C0-norm as defined in (17.2.2)). Moreover, assume that the potential satisfies
the bound ˆ ∞

−∞
|B(t)|C0 dt <

√
2− 1 . (19.1.3)

Then the fermionic projector P (x, y) is of Hadamard form.

The proof of this theorem will be given in Section 19.4 below.
We conclude this section by explaining how the expansion (19.1.1) comes about and

how the involved functions U , V andW , at least in principle, can be computed iteratively

301
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using the method of integration along characteristics. We begin by computing the unreg-
ularized kernel in the Minkowski vacuum. To this end, one rewrites the factor (/k +m)
in (5.8.1) in terms of a differential operator in position space,

P (x, y) = (i∂/x +m)Tm2(x, y) , (19.1.4)

where Tm2 is the scalar bi-distribution

Tm2(x, y) :=

ˆ
d4k

(2π)4
δ(k2 −m2) Θ(−k0) e−ik(x−y) .

We remark that the distribution Tm2 solves the Klein-Gordon equation (−□−m2)Tm2 =
0; in quantum field theory it is sometimes denoted by ∆− (see for example [147, Sec-
tion 5.2]). Away from the light cone (i.e. for ξ2 ̸= 0), the distribution Tm2(x, y) is a
smooth function given by

Tm2(x, y) =


m

16π2
Y1

(
m
√
ξ2

)√
ξ2

+
im

16π2
J1
(
m
√
ξ2

)√
ξ2

ϵ(ξ0) if ξ is timelike

m

8π3
K1

(
m
√
−ξ2

)√
−ξ2

if ξ is spacelike ,

(19.1.5)

where we set

ξ := y − x ,

and J1, Y1 and K1 are Bessel functions. Expanding the Bessel functions in (19.1.5) in a
power series, one obtains (see [124, (10.2.2), (10.8.1) and (10.25.2), (10.31.1)])

Tm2(x, y) = − 1

8π3

(
PP

ξ2
+ iπδ

(
ξ2
)
ϵ
(
ξ0
))

+
m2

32π3

∞∑
j=0

(−1)j

j! (j + 1)!

(
m2ξ2

)j
4j

(
log

∣∣m2ξ2
∣∣+ cj + iπ Θ

(
ξ2
)
ϵ
(
ξ0
))

with real coefficients cj (here Θ and ϵ are again the Heaviside and the sign function,
respectively). In particular, one sees that Tm2 is a distribution which is singular on the
light cone. These singularities can be written in a shorter form using residues as

Tm2(x, y) = lim
ε↘0

(
− 1

8π3
1

Γε(x, y)

+
m2

32π3

∞∑
j=0

(−1)j

j! (j + 1)!

(
m2Γε(x, y)

)j
4j

(
log

(
m2 Γε(x, y)

)
+ cj

)) (19.1.6)

(where Γε is again defined by (19.1.2); for the proof one uses the distributional rela-
tion limε↘0(r

2 + (ε+ it)2)−1 = −PP/ξ2 − iπ δ(ξ2) ϵ(ξ0) and similarly the behavior of the
logarithm in the complex plane). Noting that the series converge, one obtains a function
of the desired form as in the brackets in (19.1.1). This shows that the term i∂/x Tm2(x, y)
in (19.1.4) is of Hadamard form. For the term mTm2(x, y), this can be shown by pulling
out one derivative and working with matrix-valued kernels. Indeed,

mTm2(x, y) = − 1

m
□x

(
Tm2(x, y)− T0(x, y)

)
= ∂/x

{
− 1

m
∂/x

(
Tm2(x, y)− T0(x, y)

)}
,

and computing the curly brackets by differentiating (19.1.6) one obtains again an expres-
sion of the Hadamard form (19.1.1).
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The summands in (19.1.6) can be understood by verifying that Tm2 satisfies the
Klein-Gordon equation. Indeed, using the abbreviation ξ := y − x, we obtain

∂

∂xj

( 1

Γε(x, y)

)
= −∂jΓε(x, y)

Γε(x, y)2
=

1

Γε(x, y)2

(
2ξj − iεδj,0

)
□x

( 1

Γε(x, y)

)
=

2

Γε(x, y)3

(
2ξj − iεδj,0

)(
2ξj − iεδj0

)
− 8

Γε(x, y)2

=
2

Γε(x, y)3

(
4ξ2 − 4iε ξ0 − ε2

))
− 8

Γε(x, y)2
= − 2ε2

Γε(x, y)3
,

and this tends to zero as ε↘ 0. Thus the leading term in (19.1.6) satisfies the scalar wave
equation. In the Klein-Gordon equation, however, the term involving the mass remains,

−m2 1

Γε(x, y)
. (19.1.7)

This term is compensated by the next term in the expansion (19.1.6), because

∂

∂xj
log

(
Γε(x, y)

)
=
∂jΓε(x, y)

Γε(x, y)
= − 1

Γε(x, y)

(
2ξj − iεδj,0

)
□x log

(
Γε(x, y)

)
= − 1

Γε(x, y)2

(
2ξj − iεδj,0

)(
2ξj − iεδj0

)
+

8

Γε(x, y)

= − 1

Γε(x, y)2

(
4ξ2 − 4iε ξ0 − ε2

))
+

8

Γε(x, y)

=
4

Γε(x, y)
+

ε2

Γε(x, y)2
.

Now the first summand in the last line cancels the term (19.1.7) in the Klein-Gordon equa-
tion. Proceeding order by order in powers of Γε(x, y), one can verify all the coefficients
in (19.1.6).

This method of applying the wave operator term by term is also useful for computing
the functions U , V and W in (19.1.1) in the case that an external potential is present. In
fact, these functions can be expressed in terms of line integrals along the light cone. This
method of integration along characteristics goes back go Hadamard [99] and is described
in the classic textbook [88] in curved spacetime. In order to explain the method in the
simplest possible context, let us assume that we consider the wave equation with an
external scalar potential a(x), i.e.(

−□x − a(x)
)
T̃ (x, y) = 0

(the Dirac equation will be treated more systematically in Section 19.2). In modification
of the series in (19.1.6) we make the ansatz

T̃ (x, y) = lim
ε↘0

(
1

Γε(x, y)
+

∞∑
n=1

fn(x, y) Γε(x, y)
n log

(
Γε(x, y)

))
(19.1.8)

Compared to (19.1.7), now the error term of the first summand involves the potential a(x),

− a(x)

Γε(x, y)
. (19.1.9)
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The hope is to compensate this term by a suitable choice of f1(x, y). Indeed,

∂

∂xj

(
f1(x, y) log Γε(x, y)

)
= f1(x, y)

∂jΓε(x, y)

Γε(x, y)
+ ∂jf1(x, y) log Γε(x, y)

□x

(
f1(x, y) log Γε(x, y)

)
= f1(x, y)

4

Γε(x, y)
− 2 ∂jf1(x, y)

2ξj
Γε(x, y)

+ · · · ,

where · · · stands for all terms which either have a lower order singularity on the light
cone or tend to zero as ε↘ 0. In order for this contribution to compensate (19.1.9), the
function f1 must satisfy the equation

4 f1(x, y)− 4 ξj ∂jf1(x, y) = a(x) .

Such a differential equation of first order can be solved with the method of characteristics
(see for example [32, Section I.3.2]). More specifically, the solution is an integral along
the straight line ξR. In order to describe the singular behavior on the light cone, it suffices
to consider the case that ξ is tangential to the light cone. Similarly, also to higher order
in the expansion parameter n, we obtain transport equations along the light cone, which
can be solved iteratively order by order.

19.2. The Light-Cone Expansion

We first give the basic definition of the light-cone expansion and explain it afterward.

Definition 19.2.1. A distribution A(x, y) on M × M is of the order O((y − x)2p)
for p ∈ Z if the product

(y − x)−2p A(x, y)

is a regular distribution (i.e. a locally integrable function). An expansion of the form

A(x, y) =
∞∑
j=g

A[j](x, y) (19.2.1)

with g ∈ Z is called light-cone expansion if the A[j](x, y) are distributions of the order
O((y− x)2j) and if A is approximated by the partial sums in the sense that for all p ≥ g,

A(x, y)−
p∑
j=g

A[j](x, y) is of the order O
(
(y − x)2p+2

)
. (19.2.2)

The parameter g gives the leading order of the singularity of A(x, y) on the light cone.
We point out that we do not demand that the infinite series in (19.2.1) converges. Thus,
similar to a formal Taylor series, the series in (19.2.1) is defined only via the approximation
by the partial sums (19.2.2). The notion of the light-cone expansion is illustrated in
Exercise 19.1.

As a concrete example, due to the factors Γε(x, y), the series (19.1.6) is a light-cone
expansion. The term with the leading singularity becomes integrable after multiplying
by (y − x)2, showing that g = −1.

Our task is to perform the light-cone expansion of the unregularized kernel of the
fermionic projector. Schematically, this construction consists of several steps:

(1) Perform the light-cone expansion of the causal Green’s operators s̃∨m and s̃∧m. Here
one proceeds inductively for each summand of the perturbation series (18.1.1).

(2) Using the relation (18.2.1), one obtains a corresponding light-cone expansion for the

causal fundamental solution k̃m.
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(3) Finally, the so-called residual argument relates the sought-after light-cone expansion

of P̃ (x, y) to that of k̃m.

This procedure is described in detail in [45, Chapter 2]. In order to avoid an unnecessary
overlap, we here focus on the light-cone expansion of the causal Green’s operators and
only introduce the concepts needed for the basics on the continuum limit in Chapter 21.
Before doing so, we illustrate the light-cone expansion by a simple example.

Example 19.2.2. Consider the massless Dirac equation in the presence of an external
electromagnetic potential A, (

i∂/+ /A
)
P̃ (x, y) .

For simplicity assume that A is smooth and compactly supported in spacetime. Then,
to first order in perturbation theory, the light-cone expansion of the unregularized ker-
nel P̃ (x, y) takes the form

P̃ (x, y) =
i

2
exp

(
− i

ˆ 1

0
Aj

∣∣
αy+(1−α)x ξ

j dα

)
P (x, y) (19.2.3)

− 1

2
/ξ ξi

ˆ 1

0
(α− α2) ji

∣∣
αy+(1−α)x dα T (0) (19.2.4)

+
1

4
/ξ

ˆ 1

0
F ij

∣∣
αy+(1−α)x γiγj dα T (0) (19.2.5)

− ξi

ˆ 1

0
(1− α)F ij

∣∣
αy+(1−α)x γj dα T (0) (19.2.6)

− ξi

ˆ 1

0
(1− α)(α− α2) ∂/ji

∣∣
αy+(1−α)x dα T (1) (19.2.7)

−
ˆ 1

0
(1− α)2 ji

∣∣
αy+(1−α)x γi dα T

(1) (19.2.8)

+ /ξ (deg < 1) + (deg < 0) + O(A2) ,

where F jk = ∂jAk − ∂kAj is the field tensor and jk = ∂kjA
j − □Ak is the correspond-

ing Maxwell current. Moreover, the factors T (0) and T (1) are the leading summands
in (19.1.6); more precisely,

T (0)(x, y) = − 1

8π3
lim
ε↘0

1

Γε(x, y)

T (1)(x, y) =
1

32π3
lim
ε↘0

log Γε(x, y) .

(19.2.9)

Each summand has the general structure of being the product of a smooth function
and a distribution which is singular on the light cone. The smooth factor is an integral
along the straight line segment joining the points x and y. The integrand involves the
electromagnetic potential and its partial derivatives. We remark for clarity that the
term (19.2.3) involves a gauge phase as needed for gauge invariance (as already mentioned
in (5.8.5) in Section 5.8). All the other integrands are gauge invariant, as is obvious from
the fact that they are expressed in terms of the electromagnetic field tensor and the
Maxwell current.

To higher order on the light cone or to higher order in the mass or the external
potentials, the formulas of the light-cone expansions have a similar structure. More
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detailed formulas can be found in the original papers [39, 40], in [41, Appendix B]
and [45, Appendix B]. ♢

We now explain how to perform the light-cone expansion of the causal Green’s oper-
ators. In order to get a first idea for how to proceed, we begin by considering the free
advanced Green’s operator s∨m of the Dirac equation of mass m in position space: Similar
to (19.1.4), it is again convenient to pull the Dirac matrices out of s∨m by setting

s∨m(x, y) = (i∂/x +m) S∨
m2(x, y) , (19.2.10)

where S∨
m2 is the advanced Green’s operator of the Klein-Gordon operator,

S∨
m2(x, y) = lim

ν↘0

ˆ
d4p

(2π)4
1

p2 −m2 − iνp0
e−ip(x−y) . (19.2.11)

Computing this Fourier integral and expanding the resulting Bessel function in a power
series gives (for details see Exercise 19.3)

S∨
m2(x, y) = − 1

2π
δ
(
ξ2
)
Θ
(
ξ0
)

+
m2

4π

J1

(√
m2 ξ2

)
√
m2 ξ2

Θ
(
ξ2
)
Θ
(
ξ0
)

(19.2.12)

= − 1

2π
δ
(
ξ2
)
Θ
(
ξ0
)

+
m2

8π

∞∑
j=0

(−1)j

j! (j + 1)!

(
m2ξ2

)j
4j

Θ
(
ξ2
)
Θ
(
ξ0
)
. (19.2.13)

This computation shows that S∨
m2(x, y) has a δ(ξ2)-like singularity on the light cone.

Furthermore, one sees that S∨
m2 is a power series in m2. The important point for what

follows is that the higher order contributions in m2 contain more factors ξ2 and are thus
of higher order on the light cone. More precisely,(

d

da

)n
S∨
a (x, y)

∣∣∣
a=0

is of the order O
(
ξ2n−2

)
(19.2.14)

(here and in what follows, we often use the abbreviation a = m2). According to (19.2.10),
the Dirac Green’s operator is obtained by taking the first partial derivatives of (19.2.13).
Therefore, s∨m(x, y) has a singularity on the light cone which is even ∼ δ′(ξ2). The higher
order contributions in m are again of increasing order on the light cone. This means that
we can view the Taylor expansion of (19.2.10) in m,

s∨m(x, y) =

∞∑
n=0

(i∂/+m)
m2n

n!

(
d

da

)n
S∨
a (x, y)

∣∣∣
a=0

,

as a light-cone expansion of the free Green’s operator. Our idea is to generalize this
formula to the case with interaction. More precisely, we want to express the perturbed
Green’s operator in the form

s̃∨(x, y) =

∞∑
n=0

Fn(x, y)

(
d

da

)n
S∨
a (x, y)

∣∣∣
a=0

(19.2.15)

with factors Fn which depend on the external potential. We will see that this method is
very convenient; especially, we can in this way avoid working with the rather complicated
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explicit formula (19.2.13). Apart from giving a motivation for the desired form (19.2.15)
of the formulas of the light-cone expansion, the mass expansion (19.2.13) leads to the
conjecture that even the higher order contributions in the mass to the perturbed Green’s
operators might be of higher order on the light cone. If this conjecture were true, it
would be a good idea to expand the perturbation expansion of s̃ with respect to the
parameter m. Therefore, our strategy is to first expand (18.1.1) with respect to the
mass and to try to express the contributions to the resulting expansion in a form similar
to (19.2.15).

The expansion of (18.1.1) with respect to m gives a double sum over the orders in
the mass parameter and in the external potential. It is convenient to combine these two
expansions in a single perturbation series. To this end, we rewrite the Dirac operator as

i∂/+B−m = i∂/+B with B := B−m .

For the light-cone expansion of the Green’s operators, we will always view B as the
perturbation of the Dirac operator. This has the advantage that the unperturbed objects
are massless. Expanding in powers of B gives the mass expansion and the perturbation
expansion in one step. In order to further simplify the notation, for the massless objects
we usually omit the index m. Thus we write the Green’s operator of the massless Dirac
equation in the Minkowski vacuum as

s∨(x, y) = i∂/x S
∨
m2(x, y)

∣∣
m=0

, s∧(x, y) = i∂/x S
∧
m2(x, y)

∣∣
m=0

.

Then the interacting Green’s operators are given by the perturbation series

s̃∨ =
∞∑
k=0

(−s∨B)ks∨ , s̃∧ =
∞∑
k=0

(−s∧B)ks∧ . (19.2.16)

The constructions of the following subsections are exactly the same for the advanced and
retarded Green’s operators. In order to treat both cases at once, in the remainder of
this section we will omit all superscripts ‘∨’ and ‘∧’. The formulas for the advanced and
retarded Green’s operators are obtained by either adding ‘∨’ or ‘∧’ to all factors s and S.

We now explain how each contribution to the perturbation expansion (19.2.16) can
be written similar to the right side of (19.2.15) as a sum of terms of increasing order on
the light cone. For the mass expansion of Sm2 , we again set a = m2 and use the notation

S(l) =

(
d

da

)l
Sa

∣∣
a=0

.

In preparation, we derive some computation rules for the S(l): Sa satisfies the defining
equation of a Klein-Gordon Green’s operator

(−□x − a) Sa(x, y) = δ4(x− y) .

Differentiating with respect to a and setting a = 0 gives

−□xS
(l)(x, y) = δl,0 δ

4(x− y) + l S(l−1)(x, y) , l ≥ 0. (19.2.17)

(For l = 0, this formula does not seem to make sense because S(−1) is undefined. The
expression is meaningful, however, if one keeps in mind that in this case the factor l is
zero, and thus the whole second summand vanishes. We will also use this convention
in the following calculations.) Next, we differentiate the formulas for Sa in momentum
space,

S∨
a (p) =

1

p2 − a− iνp0
, S∧

a (p) =
1

p2 − a+ iνp0
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with respect to both p and a. Comparing the results gives the relation

∂

∂pk
Sa(p) = −2pk

d

da
Sa(p) ,

or, after expanding in the parameter a,

∂

∂pk
S(l)(p) = −2pk S

(l+1)(p) , l ≥ 0. (19.2.18)

This formula also determines the derivatives of S(l) in position space; namely

∂

∂xk
S(l)(x, y) =

ˆ
d4p

(2π)4
S(l)(p) (−ipk) e

−ip(x−y)

(19.2.18)
=

i

2

ˆ
d4p

(2π)4
∂

∂pk
S(l−1)(p) e−ip(x−y)

= − i

2

ˆ
d4p

(2π)4
S(l−1)(p)

∂

∂pk
e−ip(x−y)

=
1

2
(y − x)k S

(l−1)(x, y) , l ≥ 1. (19.2.19)

We iterate this relation to calculate the Laplacian,

−□xS
(l)(x, y) = −1

2

∂

∂xk

(
(y − x)k S(l−1)(x, y)

)
= 2 S(l−1)(x, y) +

1

4
(y − x)2 S(l−2)(x, y) , l ≥ 2

(in the last step we used the product rule and applied (19.2.19) for l replaced by l − 1).
After comparing with (19.2.17), we conclude that

(y − x)2 S(l)(x, y) = −4l S(l+1)(x, y) , l ≥ 0 .

Finally, S(l)(x, y) is only a function of (y − x), which implies that

∂

∂xk
S(l)(x, y) = − ∂

∂yk
S(l)(x, y) , l ≥ 0 .

The following lemma gives the light-cone expansion of an operator product which
is linear in the external potential. It can be used iteratively to perform the light-cone
expansion of more complicated operator products; in this case, the potential is a composite
expression in B and its partial derivatives. With this in mind, in the next lemma we
denote the external potential by V .

Lemma 19.2.3. (light-cone expansion to first order) For any l, r ≥ 0, the

operator product S(l) V S(r) has the light-cone expansion

(S(l) V S(r))(x, y)

=

∞∑
n=0

1

n!

ˆ 1

0
αl (1− α)r (α− α2)n (□nV )|αy+(1−α)x dα S(n+l+r+1)(x, y) . (19.2.20)

Before coming to the proof, we briefly explain this lemma. We first recall that,
according to (19.2.14), the higher a-derivatives of Sa(x, y) are of higher order on the light
cone. Thus the summands in (19.2.20) are of increasing order on the light cone, and
the infinite sum is mathematically well-defined in the sense of Definition 19.2.1 via the
approximation by the partial sums (19.2.2).
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The second point which requires an explanation is related to the arbitrariness in
choosing the potential V in the case l = 0 (and analogously in the case r = 0). In

this case, accothe distribution S(l) = S0 is supported on the light cone (see (19.2.12)).
Therefore, the function V enters the operator product on the left side of (19.2.20) only
evaluated on the light cone Lx = {z | (x − z)2 = 0}. This means that we may modify
the function V arbitarily outside this light cone. When doing so, the argument □V

in the integrand on the right side of (19.2.20) does in general change. Therefore, the
individual summands in (19.2.20) do in general change. But, clearly, in order for the
identity (19.2.20) to remain valid, the whole series must remain unchanged. This is
indeed the case due to cancellations in the series (this is illustrated in Exercise 19.4).
With this in mind, one can sometimes simplify the application of the above lemma in the
case l = 0 by choosing V outside the light cone Lx in such a way that the computation
of the right side simplifies.

Proof of Lemma 19.2.3. The method of proof is to compute the Laplacian of both
sides of (19.2.20). The resulting formulas will have a similar structure, making it possible
to proceed inductively.

On the left side of (19.2.20), we calculate the Laplacian with the help of (19.2.17) to

−□x(S
(l) V S(r))(x, y) = δl,0 V (x) S(r)(x, y) + l (S(l−1) V S(r))(x, y) . (19.2.21)

The Laplacian of the integral on the right side of (19.2.20) can be computed with the
help of (19.2.19) and (19.2.17),

−□x

ˆ 1

0
αl (1− α)r (α− α2)n (□nV )|αy+(1−α)x dα S(n+l+r+1)(x, y) (19.2.22)

= −
ˆ 1

0
αl (1− α)r+2 (α− α2)n (□n+1V )|αy+(1−α)x dα S(n+l+r+1)(x, y)

−
ˆ 1

0
αl (1− α)r+1 (α− α2)n (∂k□

nV )|αy+(1−α)x dα (y − x)k S(n+l+r)(x, y)

+ (n+ l + r + 1)

ˆ 1

0
αl (1− α)r (α− α2)n (□nV )|αy+(1−α)x dα S(n+l+r)(x, y) .

In the second summand, we rewrite the partial derivative as a derivative with respect
to α,

(y − x)k(∂k□
nV )|αy+(1−α)x =

d

dα
(□nV )|αy+(1−α)x

(as is verified immediately by computing the right side with the chain rule). This makes
it possible to integrate in α by parts. We thus obtainˆ 1

0
αl (1− α)r+1 (α− α2)n (∂k□

nV )|αy+(1−α)x dα (y − x)k

=

ˆ 1

0
αl (1− α)r+1 (α− α2)n

d

dα

(
(□nV )

∣∣
αy+(1−α)x

)
dα

= −δn,0 δl,0 V (x)− (n+ l)

ˆ 1

0
αl (1− α)r+2 (α− α2)n−1 (□nV )|αy+(1−α)x dα

+ (n+ r + 1)

ˆ 1

0
αl (1− α)r (α− α2)n (□nV )|αy+(1−α)x dα

= −δn,0 δl,0 V (x)
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− n

ˆ 1

0
αl (1− α)r+2 (α− α2)n−1 (□nV )|αy+(1−α)x dα

+ (n+ l + r + 1)

ˆ 1

0
αl (1− α)r (α− α2)n (□nV )|αy+(1−α)x dα

− l

ˆ 1

0
αl−1 (1− α)r (α− α2)n (□nV )|αy+(1−α)x dα .

We substitute back into the original equation to obtain

(19.2.22) = δn,0 δl,0 V (x) S(r)(x, y)

+ l

ˆ 1

0
αl−1 (1− α)r (α− α2)n (□nV )|αy+(1−α)x dα S(n+l+r)(x, y)

−
ˆ 1

0
αl (1− α)r+2 (α− α2)n (□n+1V )|αy+(1−α)x dα S(n+l+r+1)(x, y)

+ n

ˆ 1

0
αl (1− α)r+2 (α− α2)n−1 (□nV )|αy+(1−α)x dα S(n+l+r)(x, y) .

After dividing by n! and summation over n, the last two summands are telescopic and
cancel each other. Thus one gets

−□
∞∑
n=0

1

n!

ˆ 1

0
αl (1− α)r (α− α2)n (□nV )|αy+(1−α)x dα S(n+l+r+1)(x, y)

= δl,0 V (x) S(r)(x, y)

+ l
∞∑
n=0

1

n!

ˆ 1

0
αl−1 (1− α)r (α− α2)n (□nV )|αy+(1−α)x dα S(n+l+r)(x, y) .

(19.2.23)

We now compare the formulas (19.2.21) and (19.2.23) for the Laplacian of both sides
of (19.2.20). In the special case l = 0, these formulas coincide, and we can use a uniqueness
argument for the solutions of the wave equation to prove (19.2.20): We assume that we
consider the advanced Green’s operator (for the retarded Green’s operator, the argument
is analogous). For given y, we denote the difference of both sides of (19.2.20) by F (x).
Since the support of F (x) is in the past light cone x ∈ L∧

y , F vanishes in a neighborhood

of the hypersurface H = {z ∈ R4 |z0 = y0+1}. Moreover, the Laplacian of F is identically
zero according to (19.2.21) and (19.2.23). We conclude that

□F = 0 and F|H = ∂kF|H = 0 .

Since the wave equation has a unique solution for given initial data on the Cauchy sur-
face H, F vanishes identically.

The general case follows by induction in l: Suppose that (19.2.20) holds for given l̂
(and arbitrary r). Then, according to (19.2.21), (19.2.23), and the induction hypothesis,

the Laplacian of both sides of (19.2.20) coincides for l = l̂ + 1. The above uniqueness
argument for the solutions of the wave equation again gives (19.2.20). □

We finally remark that the method of the previous lemma generalizes to other operator
products. In particular, in [52, Appendix C] light-cone expansions are derived which
involve unbounded line integrals.
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19.3. The Hadamard Form in Curved Spacetime and the Wave Front Set

The Hadamard expansion (19.1.1) can also be formulated in curved spacetime. To
this end, one simply replaces the function (19.1.2) by

Γε(x, y) := Γ(x, y)− iε
(
t(y)− t(x)

)
,

where t is a time function and Γ(x, y) is the geodesic distance squared, with the sign
convention that Γ is positive in timelike and negative in spacelike directions. It turns out
that if a bi-distribution is of Hadamard form in one chart, it is also of Hadamard form in
any other chart. More details on the Hadamard expansion for Dirac fields can be found
in [138, 98] or [56, Appendix A].

The Hadamard form can be formulated alternatively in terms of the wave front set,
as we we now briefly mention. We work in an open subset U ⊂ Rn. We denote the
distributions in U by D′(U) (being the dual space of C∞(U,C) with the topology induced
by the Ck-norms). An open conic neighborhood of a point ξ ∈ Rn is defined to be an open
neighborhood which is invariant under the action of R+ by multiplication. Thus an open
conic neighborhood can be written in the form

{λx | x ∈ S, λ ∈ R+} ,

where S is an open subset of Sn−1 ⊂ Rn.

Definition 19.3.1. Let ϕ ∈ D′(U). The wave front set WF(ϕ) is the complement
in U × Rn \ {0} of all points (x, ξ) ∈ U × Rn \ {0} with the following property: There
exists a function f ∈ C∞(U,R) with f(x) = 1 and an open conic neighborhood V of ξ
such that

sup
ζ∈V

(
1 + |ζ|

)N ∣∣∣(f̂ϕ)(ζ)∣∣∣ <∞ for all N ∈ N . (19.3.1)

In simple terms, the wave front set consists of all points x ∈ U where the distribution is
singular, together with the directions ξ into which the singularity points. More precisely,
the above definition can be understood as follows. First, in view of taking the complement,
the condition (19.3.1) ensures that the point (x, ξ) does not lie in the wave front set. With
the help of the cutoff function f one can disregard the behavior of ϕ away from x. In
other words, the condition 19.3.1 only depends on the behavior of ϕ in an arbitrarily small
neighborhood of x. This condition states that the Fourier transform has rapid decay in a
cone around ξ. Since decay properties of the Fourier transform correspond to smoothness
properties in position space, we obtain a smoothness statement for ϕ at x, but only along
the “wave front” described by ξ.

Definition 19.3.1 readily extends to a distribution ϕ on a manifold M, in which case
the wave front set is a subset of the cotangent bundle,

WF(ϕ) ⊂ T ∗M \ 0

(where 0 is the zero section). The wave front set can also be defined for bundle-valued
distributions by choosing a local trivialization and taking the wave front sets of the
component functions. The unregularized kernel of the fermionic projector P is a bi-
distribution on M × M. Therefore, its wave front set takes values in the product of the
cotangent bundles,

WF(P ) ⊂
(
T ∗M \ 0

)
×
(
T ∗M \ 0

)
.
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Definition 19.3.2. The unregularized kernel P ∈ D′(M × M) is said to be of
Hadamard form if its wave front set has the property

WF(P ) ⊂
{
(x1, ξ1, x2,−ξ2)

∣∣∣ there is a null geodesic γ : I → M with a, b ∈ I,

γ(a) = x1, γ(b) = x2 and ξ1 = γ̇(a), ξ2 = γ̇(b) past-directed
}
.

In words, this definition means that there are singularities only on the light cone, and
that these singularities are formed only of negative frequencies. The equivalence of this
definition with the local Hadamard expansion (19.1.1) has been established in [129].
Physically, the Hadamard condition can be understood as a microlocal formulation of an
energy condition, noting that “frequencies” can also be interpreted as “energies.” Good
references on microlocal analysis and the wave front set are [105] and [4, Chapter 4].

19.4. Proof of the Hadamard Property in an External Potential

In this section, we give the proof of Theorem 19.1.1. We closely follow the presentation
in [79]. In preparation, we derive so-called frequency splitting estimates which give
control of the “mixing” of the positive and negative frequencies in the solutions of the
Dirac equation as generated by the time-dependent external potential (Theorem 19.4.1).
Based on these estimates, we will complete the proof of Theorem 19.1.1 at the end of
Section 19.4.2.

19.4.1. Frequency Mixing Estimates. For the following constructions, we again
choose the hypersurface N := Nt0 at some given time t0. Moreover, we always fix the
mass parameter m > 0. Since we are no longer considering families of solutions, for ease
of notation we omit the index m at the Dirac wave functions, the scalar products and the
corresponding norms. We also identify the solution space Hm with the Hilbert space Ht0

of square integrable wave functions on N . On Ht0 , we can act with the Hamiltonian H
of the vacuum, and using the above identification, the operator H becomes an operator
on Hm (which clearly depends on the choice of t0).

We work with a so-called frequency splitting with respect to the vacuum dynamics.
To this end, we decompose the Hilbert space Hm as

Hm = H+
m ⊕H−

m with H± = χ±(H)Hm ,

where χ± are the characteristic functions

χ+ := χ[0,∞) and χ− := χ(−∞,0) . (19.4.1)

For convenience, we write this decomposition in components and use a block matrix
notation for operators, i.e.

ψ =

(
ψ+

ψ−

)
and A =

(
A+

+ A+
−

A−
+ A−

−

)
,

where Ass′ = χs(H)Aχs
′
(H) and s, s′ ∈ {±}.

The representation in Proposition 17.2.5 makes it possible to let the fermionic signa-
ture operator S̃m act on the Hilbert space Hm (for fixed m). We decompose this operator
with respect to the above frequency splitting,

S̃m = SD +∆S̃ , where SD := S̃++ + S̃−− and ∆S̃ := S̃+− + S̃−+ .

Thus the operator SD maps positive to positive and negative to negative frequencies. The
operator ∆S̃, on the other hand, mixes positive and negative frequencies. In the next the-
orem, it is shown under a suitable smallness assumption on B that the operators χ±(S̃m)
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coincide with the projections χ±(H), up to smooth contributions. The main task in the

proof is to control the “frequency mixing” as described by the operator ∆S̃.

Theorem 19.4.1. Under the assumptions of Theorem 19.1.1, the operators χ±(S̃m)
have the representations

χ±(S̃m) = χ±(H) +
1

2πi

‰
∂B 1

2
(±1)

(S̃m − λ)−1∆S̃ (SD − λ)−1 dλ , (19.4.2)

where the contour integral is an integral operator with a smooth integral kernel.

Here B 1
2
denotes the open ball of radius 1/2. The operator (S̃m−λ)−1 is also referred to

as the resolvent of S̃m.
This theorem will be proved in several steps. We begin with a preparatory lemma.

Lemma 19.4.2. Under the assumptions (17.2.1) and (19.1.3), the spectrum of SD is
located in the set

σ(SD) ⊂
[
− 3

2
,−1

2

]
∪
[
1

2
,
3

2

]
. (19.4.3)

Moreover,

χ±(SD) = χ±(H) , (19.4.4)

and the operators χ±(S̃m) have the representations (19.4.2).

Proof. Since the subspaces H± are invariant under the action of SD, our task is to
show that the spectrum of SD|H± is positive and negative, respectively. This statement
would certainly be true if we replaced SD by Sm, because the operator Sm has the eigen-
values ±1 with H± as the corresponding eigenspaces. Estimating the representation in
Proposition 17.2.5 with the Schwarz inequality, we obtain∣∣(ψ|SDϕ)− (ψ|Smϕ)

∣∣ ≤ (
c+

c2

2

)
∥ψ∥ ∥ϕ∥ with c :=

ˆ ∞

−∞
|B(τ)|C0 dτ .

Using the assumption (19.1.3), we conclude that∣∣(ψ|SDϕ)− (ψ|Smϕ)
∣∣ < 1

2
∥ψ∥ ∥ϕ∥ for all ψ, ϕ ∈ Hm .

Standard estimates on the continuity of the spectrum (see for example [108, §IV.3])
yield that the spectrum of SD differs by that of the operator Sm at most by 1/2. This
gives (19.4.3) and (19.4.4).

In order to prove the representation (19.4.2), we take the resolvent identity

(S̃m − λ)−1 = (SD − λ)−1 − (S̃m − λ)−1∆S̃ (SD − λ)−1 ,

form the contour integral and apply (19.4.4). This gives the result. □

The next lemma relates the smoothness of an integral kernel to the boundedness of
the product of the operator with powers of the vacuum Hamiltonian.

Lemma 19.4.3. Let A ∈ L(Hm) be an operator which maps smooth functions to smooth
functions and has the property that for all p, q ∈ N, the operator product

Hq AHp : C∞
0 (N , SM) → C∞(N , SM) (19.4.5)



314 19. METHODS OF MICROLOCAL ANALYSIS

extends to a bounded linear operator on Hm. Then, considering A as an operator on Hm,
this operator can be represented as an integral operator with a smooth integral kernel, i.e.

(Aψ)(x) =

ˆ
N

A
(
x, (t0, y⃗)

)
γ0 ψ(t0, y⃗) d

3y with A ∈ C∞(M × M) .

Proof. Since in momentum space, the square of the Hamiltonian takes the form

H
(
k⃗
)2

=
(
γ0

(
γ⃗k⃗ +m

))2
=

(
− γ⃗k⃗ +m

)(
γ⃗k⃗ +m

)
= |⃗k|2 +m2 ,

the wave function ψ̂ defined by

ψ̂(k⃗) :=
1

|⃗k|2 +m2
ei⃗kx⃗0 Ξ

for a constant spinor Ξ and x⃗0 ∈ R3, satisfies the equation

H2 ψ(x⃗) = δ3(x⃗− x⃗0) Ξ .

Moreover, one verifies immediately that ψ ∈ Ht0 is square-integrable. Using the last
equation together with (19.4.5), we conclude that

HqA
(
δ3(x⃗− x⃗0) Ξ

)
= HqAH2ψ ∈ Ht0 .

Since q is arbitrary, it follows that A has an integral representation in the spatial variables,

(Aϕ)(x⃗) =

ˆ
N

A(x⃗, y⃗) γ0 ϕ(y⃗) d3y with A ∈ C∞(N × N) .

We now extend this integral kernel to M × M by solving the Cauchy problem in the
variables x and y. This preserves smoothness by the global existence and regularity
results for linear hyperbolic equations, giving the result. □

Lemma 19.4.4. Under the assumptions of Theorem 19.1.1, for all p ∈ N the iterated
commutator

S(p) :=
[
H,

[
H, . . . , [H︸ ︷︷ ︸
p factors

, S̃m] · · ·
]]

is a bounded operator on Hm.

Proof. In the vacuum, the Hamiltonian clearly commutes with the time evolution
operator, [

H,U t,t
′

m

]
= 0 . (19.4.6)

In order to derive a corresponding commutator relation in the presence of the external
potential, one must take into account that H̃ is time-dependent. For ease of notation, we
do not write out this dependence, but instead understand that the Hamiltonian is to be
evaluated at the correct time, i.e.

Ũ t,t
′

m H̃ ≡ Ũ t,t
′

m H̃(t′) and H̃ Ũ t,t
′

m ≡ H̃(t) Ũ t,t
′

m .

Then

(i∂t − H̃)
(
H̃ Ũ t,t

′
m − Ũ t,t

′
m H̃

)
= i ˙̃H Ũ t,t

′
m and H̃ Ũ t,t

′
m − Ũ t,t

′
m H̃

∣∣
t=t′

= 0

(here and in what follows the dot denotes the partial derivative with respect to t). Solving
the corresponding Cauchy problem gives[

H̃, Ũ t,t
′

m

]
=

ˆ t

t′
Ũ t,τm

˙̃H Ũ τ,t
′

m dτ . (19.4.7)
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In order to compute the commutator of H with the operator products in (17.2.9)

and (17.2.10), we first differentiate the expression U t
′′,t
m V Ũ t,t

′
m with respect to t,

i∂t
(
U t

′′,t
m V Ũ t,t

′
m

)
= iU t

′′,t
m V̇ Ũ t,t

′
m + U t

′′,t
m V H̃ Ũ t,t

′
m − U t

′′,t
m H V Ũ t,t

′
m . (19.4.8)

Moreover, using the commutation relations (19.4.6) and (19.4.7), we obtain

H (U t
′′,t
m V Ũ t,t

′
m )− (U t

′′,t
m V Ũ t,t

′
m ) H̃

= U t
′′,t
m H V Ũ t,t

′
m − U t

′′,t
m V H̃ Ũ t,t

′
m + U t

′′,t
m V [H̃, Ũ t,t

′
m ]

= iU t
′′,t
m V̇ Ũ t,t

′
m − i∂t

(
U t

′′,t
m V Ũ t,t

′
m

)
+

ˆ t

t′
U t

′′,t
m V Ũ t,τm

˙̃H Ũ τ,t
′

m dτ ,

where in the last step we applied (19.4.8). It follows that[
H,U t

′′,t
m V Ũ t,t

′
m

]
= H (U t

′′,t
m VŨ t,t

′
m )− (U t

′′,t
m VŨ t,t

′
m ) H̃ + (U t

′′,t
m VŨ t,t

′
m )V

= iU t
′′,t
m V̇ Ũ t,t

′
m + (U t

′′,t
m VŨ t,t

′
m )V− i∂t

(
U t

′′,t
m V Ũ t,t

′
m

)
+

ˆ t

t′
U t

′′,t
m V Ũ t,τm

˙̃H Ũ τ,t
′

m dτ .

Proceeding in this way, one can calculate the commutator of H with all the terms
in (17.2.9) and (17.2.10). We write the result symbolically as

[H, S̃m] = S(1) ,

where S(1) is a bounded operator. Higher commutators can be computed inductively,
giving the result. □

We point out that this lemma only makes a statement on the iterative commutators.
Expressions like [Hp, S̃m] orH

q S̃mH
p will not be bounded operators in general. However,

the next lemma shows that the operator ∆S̃ has the remarkable property that multiplying
by powers of H from the left and/or right again gives a bounded operator.

Lemma 19.4.5. Under the assumptions of Theorem 19.1.1, for all p, q ∈ N ∪ {0} the

product Hq∆S̃Hp is a bounded operator on Hm.

Proof. We only consider the products Hq S−+H
p because the operator S+− can be

treated similarly. Multiplying (19.4.7) from the left and right by the resolvent of H, we
obtain [

(H − µ)−1, S̃m
]
= −(H − µ)−1 S(1) (H − µ)−1 .

Writing the result of Lemma 19.4.4 as

[H, S(p)] = S(p+1) with S(p+1) ∈ L(H)

yields more generally the commutation relations[
(H − µ)−1, S(p)

]
= −(H − µ)−1 S(p+1) (H − µ)−1 for p ∈ N . (19.4.9)

Choosing a contour γ which encloses the interval (−∞,−m] as shown in Figure 19.1,
one finds

HS−+ = − 1

2πi

ˆ
γ
µ (H − µ)−1 S̃m χ+(H) dµ

= SH χ−(H) χ+(H) +
1

2πi

ˆ
γ
µ (H − µ)−1 S(1)(H − µ)−1 χ+(H) dµ

=
1

2πi

ˆ
γ
µ (H − µ)−1 S(1)(H − µ)−1 χ+(H) dµ ,



316 19. METHODS OF MICROLOCAL ANALYSIS

σ(H)σ(H)

m−m

γ

Figure 19.1. The contour γ.

where in the last step we used that χ−(H)χ+(H) = 0. In order to show that this operator
product is bounded, it is useful to employ the spectral theorem for H, which we write as

f(H) =

ˆ
R\[−m,m]

f(λ) dEλ , (19.4.10)

where dEλ is the spectral measure of H. This gives

H S−+ =

¨
R×R

(
1

2πi

ˆ
γ

µ

λ− µ

1

λ′ − µ
χ+(λ′) dEλ

)
S(1) dEλ′ dµ

= −
¨

R×R

λ

λ− λ′
χ−(λ) χ+(λ′) dEλ S

(1) dEλ′ . (19.4.11)

Note that the term λ − λ′ is bounded away from zero. Thus the factor λ/(λ − λ′) is
bounded, showing that the operator HS−+ is in L(Hm).

This method can be iterated. To this end, we first rewrite the product with commu-
tators,

Hq S−+ = χ−(H)
(
H− χ−(H)

)p
S̃m χ

+(H)

= χ−(H)
[
H−,

[
H−, . . . , [H−, S] · · ·

]]
χ+(H) ,

where we used the abbreviation H− := H χ−(H). Multiplying from the right by Hp, we
can commute factors H+ := H χ+(H) to the left to obtain

Hq S−+H
p = (−1)p χ−(H)

[
H+, . . . ,

[
H+︸ ︷︷ ︸

p factors

,
[
H−, . . . ,

[
H−︸ ︷︷ ︸

q factors

, S̃m
]
· · ·

]]
· · ·

]
χ+(H) .

Representing each factor H± by a contour integral, one can compute the commutators
inductively with the help (19.4.9). Applying the spectral theorem (19.4.10) to the left

and right of the resulting factor S(p+q) yields a constant times the expression¨
R×R

χ−(λ) χ+(λ′) dEλ S
(p+q) dEλ′

×
‰
γ1

µ1 dµ1
(λ− µ1)(λ′ − µ1)

· · ·
‰
γp+q

µp+q dµp+q
(λ− µp+q)(λ′ − µp+q)

.

Carrying out the contour integrals with residues, we obtain similar to (19.4.11) an ex-
pression of the form

Hq S−+H
p =

¨
R×R

f(λ, λ′) χ−(λ) χ+(λ′) dEλ S
(p+q) dEλ′

with a bounded function f . This concludes the proof. □
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Proof of Theorem 19.4.1. It remains to show that the contour integral in (19.4.2)
has a smooth integral kernel. To this end, we multiply the integrand from the left by Hq

and from the right by Hp and commute the factors H iteratively to the inside. More
precisely, we use the formula

Hq(S̃m − λ)−1 =

q∑
a=0

[
H, . . . , [H︸ ︷︷ ︸
a factors

, (S̃m − λ)−1] · · ·
]
Hq−a

(note that the sum is telescopic; here we use the convention that the summand for a = 0

is simply (S̃m − λ)−1Hq). Hence

Hq (S̃m − λ)−1∆S̃ (SD − λ)−1Hp

=

q∑
a=0

p∑
b=0

[
H, . . . ,

[
H︸ ︷︷ ︸

a factors

, (S̃m − λ)−1
]
· · ·

]
Hq−a∆S̃Hp−b

[
· · ·

[
(SD − λ)−1, H

]
, . . . ,H

]
︸ ︷︷ ︸

b factors

.

According to Lemma 19.4.5, the intermediate product Hq−a∆S̃Hp−b is a bounded opera-
tor. Moreover, the commutators can be computed inductively by applying Lemma 19.4.4
and the formula [

H, (S̃m − λ−1)
]
= −(S̃m − λ−1)

[
H, S̃m

]
(S̃m − λ−1)

(and similarly for SD). This gives operators which are all bounded for λ ∈ ∂B 1
2
(±1).

Since the integration contour is compact, the result follows. □

19.4.2. Proof of the Hadamard Form. Relying on the frequency mixing esti-
mates of the previous section, we can now give the proof of Theorem 19.1.1. Recall that
the fermionic projector is given by (see (15.4.1))

P = −χ−(S̃m) k̃m , (19.4.12)

where we again used the short notation (19.4.1). Here again the operator χ−(S̃m) acts on
the solution space Hm of the Dirac equation, which can be identified with the space Ht0

of square integrable wave functions at time t0 (see the beginning of Section 19.4.1). For
the following arguments, it is important to note that this identification can be made at
any time t0.

In order to prove that the bi-distribution corresponding to P is of Hadamard form, we
compare the fermionic projectors for three different Dirac operators and use the theorem
on the propagation of singularities in [138]. More precisely, we consider the following
three fermionic projectors:

(1) The fermionic projector P vac in the Minkowski vacuum.

(2) The fermionic projector P̆ in the presence of the external potential

B̆(x) := η
(
x0

)
B(x) ,

where η ≥ 0 is a smooth function with η|(−∞,0) ≡ 0 and η|(1,∞) ≡ 1.

(3) The fermionic projector P in the presence of the external potential B(x).

The potential B̆ vanishes for negative times, whereas for times x0 > 1 it coincides with B.
Thus it smoothly interpolates between the dynamics with and without external potential.

The specific form of the potential B̆ in the transition region 0 ≤ x0 ≤ 1 is of no relevance
for our arguments.
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In the Minkowski vacuum, the relation (19.4.12) gives the usual two-point function
composed of all negative-frequency solutions of the Dirac equation. It is therefore obvious
that the bi-distribution P vac(x, y) is of Hadamard form.

We now compare P vac with P̆ . To this end, we choose an arbitrary time t0 < 0.
Then, applying the result of Theorem 19.4.1 to (19.4.12), we get

P vac = −χ−(H) km and P̆ = −χ−(H) k̆m + (smooth) ,

where k̆m is the causal fundamental solution in the presence of the potential B̆. Since B̆

vanishes in a neighborhood of the Cauchy surface at time t0, we conclude that P
vac and P̆

coincide in this neighborhood up to a smooth contribution. It follows that also P̆ (x, y) is
of Hadamard form in this neighborhood. Using the theorem on the propagation of singu-
larities [138, Theorem 5.5], we conclude that P̆ (x, y) is of Hadamard form for all x, y ∈ M.

Next, we compare P̆ with P . Thus we choose an arbitrary time t0 > 1. Using again
the result of Theorem 19.4.1 in (19.4.12), we obtain

P̆ = −χ−(H) k̆m + (smooth) and P = −χ−(H) k̃m + (smooth)

(where the smooth contributions may of course be different). Since B̆ and B coincide in

a neighborhood of the Cauchy surface at time t0, we infer that P̆ and P coincide in this
neighborhood up to a smooth contribution. As a consequence, P (x, y) is of Hadamard
form in this neighborhood. Again applying [138, Theorem 5.5], it follows that P (x, y) is
of Hadamard form for all x, y ∈ M. This concludes the proof of Theorem 19.1.1.

19.5. Exercises

Exercise 19.1. This exercise explains the notion of the light-cone expansion in simple
examples.

(a) What is the light-cone expansion of a smooth function on M × M? In which sense
is it trivial? In which sense is it non-unique?

(b) Show that A(x, y) = log
(
|y− x|2

)
is a well-defined distribution on M×M. What is

the order on the light cone? Write down a light-cone expansion.
(c) Now consider the distributional derivatives( ∂

∂x0

)p
A(x, y) with p ∈ N

and A(x, y) as in part (b). What is the order on the light cone? Write down a
light-cone expansion.

(d) Consider the function

E(x, y) = sin
(
(y − x)2

)
log

(
|y − x|2

)
.

Determine the order on the light cone and give a light-cone expansion.
(e) Consider the function

E(x, y) =

{
e
− 1

(y−x)2 if (y − x)2 ≥ 0

0 otherwise .

Determine the order on the light cone and give a light-cone expansion.
(f) Show that the expression

lim
ε↘0

log
(
|y − x|2

)
(y − x)4 + iε

is a well-defined distribution on M × M. Derive its light-cone expansion.
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Exercise 19.2. (Understanding the light-cone expansion) This exercise aims to fa-
miliarize you with some of the particularities of the light-cone expansion.

(a) Let A(x, y) := (x − y)2k0 with k0 ∈ Z. Which order(s) on the light cone is this?
(Prove your answer.) Construct a light-cone expansion of A(x, y) and prove that it
is one.

(b) Let B(x, y) := (x− y)2k0 + (x− y)2k1 , where k0, k1 ∈ Z and k0 < k1. Which order(s)
on the light cone is this? (Prove your answer.) Construct a light-cone expansion
of B(x, y) and prove that it is one.

(c) Let C(x, y) := (x−y)2k0f(x, y)+(x−y)2k1g(x, y), where f and g are smooth functions
in x and y and k0, k1 as above. Construct a light-cone expansion of C(x, y) and prove
that it is one.

(d) Let D(x, y) := sin
(
(x− y)2

)
(x− y)2. Use your results from (b) and (c) to construct

two different light-cone expansions of D(x, y). Why might this non-uniqueness not
be a problem for the scope of this book?

(e) Finally, consider the function

E(x, y) = sin
(
(y − x)2

)
+

{
e
− 1

(y−x)2 if (y − x)2 ≥ 0

0 else
,

Determine its order on the light cone and derive a light-cone expansion.

Hint: For (d) and (e): Expand the sine function.

Exercise 19.3. This exercise is devoted to computing the Fourier transform of the
advanced Green’s operator (19.2.11) and deriving the series expansion (19.2.13).

(a) We again set ξ = y − x and ξ = (t, ξ⃗) with t > 0. Moreover, we choose polar

coordinates r = (|ξ⃗|, ϑ, φ). Carry out the ω-integration with residues and compute
the angular integrals to obtain

S∨
m2(x, y) =

i

8πr

ˆ ∞

0

p

ω(p)

(
e−ipr − eipr

)(
eiω(p) t − e−iω(p) t

)
dp ,

where p = |p⃗| and ω(p) :=
√

|p⃗2|+m2. Justify this integral as the Fourier transform
of a distribution and show that

S∨
m2(x, y) =

i

8πr
lim
ε↘0

ˆ ∞

0
e−εp

p

ω(p)

(
e−ipr − eipr

)(
eiω(p) t − e−iω(p) t

)
dp

with convergence as a distribution.
(b) Verify (19.2.12) in the case m = 0 by setting ω(p) = p and using (16.5.2).
(c) In order to analyze the behavior away from the light cone, it is most convenient to

take the limit r ↘ 0 and use Lorentz invariance. Show that in this limit,

S∨
m2(x, y) =

1

4π
lim
ε↘0

ˆ ∞

0
e−εp

p2

ω(p)

(
eiω(p) t − e−iω(p) t

)
dp (19.5.1)

=
1

4π
lim
ε↘ω

ˆ ∞

m
e−εp

√
ω2 −m2

(
eiωt − e−iωt

)
dω . (19.5.2)

Compute this integral using [96, formula (3.961.1)]. Use the relations between Bessel
functions [124, (10.27.6), (10.27.11)] to obtain (19.2.12) away from the light cone.

As an alternative method for computing the Fourier integral, one can begin from
the integral representation for J0 in [124, (10.9.12)], differentiate with respect to x
and use [124, (10.6.3)].
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(d) Combine the results of (b) and (c) to prove (19.2.12). Why is there no additional
contribution at ξ = 0?

(e) Use the series expansion [124, (10.2.2)] to derive (19.2.13).
(f) The series expansion (19.2.13) can also be derived without using Bessel functions. To

this end, one expands (19.5.1) in powers of m2 and computes the Fourier transform
term by term. Verify explicitly that this procedure really gives (19.2.13).

Exercise 19.4. In this exercise we illustrate the dependence of the light-cone ex-
pansion (19.2.20) on the the function V . We choose l = 0, r ∈ N0 arbitary, x = 0
and V (z) = z2.

(a) Show that the left side of (19.2.20) vanishes for all y ∈ M . Hint: Use the causal
structure of Sa as given in (19.2.12) in the massless case.

(b) Show that all the summands in (19.2.20) for n ≥ 2 vanish.
(c) Show that the summands in (19.2.20) for n = 0 and n = 1 are both non-zero and

cancel each other. Hint: Compute □zz
2. Moreover, make use of the relation between

the coefficients of the power series (19.2.13) for j = r+1 and j = r+2. It might be
a good idea to begin with the case r = 0.
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CHAPTER 20

A Few Explicit Examples of Causal Variational Principles

In this chapter we introduce a few examples of causal variational principles and ana-
lyze them in detail. These examples are too simple for being of direct physical interest.
Instead, they are chosen in order to illustrate the different mathematical structures in-
troduced previously. It is a specific feature of these examples that a minimizing measure
can be given in closed form, making it possible to analyze the system explicitly. Similar
examples were first given in [77].

When constructing simple explicit examples, it is often convenient to choose non-
smooth Lagrangians, which involve for example characteristic functions or are even dis-
tributional. In order to treat this non-smooth setting in a mathematically convincing
way, one needs to work with additional jet spaces, which we now introduce (for more
details see for example [71, 61]).

Clearly, the fact that a jet u is smooth does not imply that the functions ℓ or L are
differentiable in the direction of u. This must be ensured by additional conditions which
are satisfied by suitable subspaces of J which we now define. First, we let Γdiff be those
vector fields for which the directional derivative of the function ℓ exists,

Γdiff =
{
u ∈ C∞(M,TF)

∣∣ Duℓ(x) exists for all x ∈M
}
.

This gives rise to the jet space

Jdiff := C∞(M,R)⊕ Γdiff ⊂ J .

For the jets in Jdiff, the combination of multiplication and directional derivative in (7.2.2)
is well-defined. We choose a linear subspace Jtest ⊂ Jdiff with the property that its scalar
and vector components are both vector spaces, i.e.

Jtest = Ctest(M,R)⊕ Γtest ⊆ Jdiff

for suitable subspaces Ctest(M,R) ⊂ C∞(M,R) and Γtest ⊂ Γdiff. We then write the
restricted EL equations (7.2.4) in the weaker form

∇uℓ|M = 0 for all u ∈ Jtest .

Finally, when considering weak solutions of the linearized field equations, it is sometimes
useful to restrict attention to jets in a suitably chosen subspace of Jtest, which in agreement
with (14.2.6) we denote by

Jvary ⊂ Jtest .

To summarize, we have the inclusions

Jvary ⊂ Jtest ⊂ Jdiff ⊂ J .

The compactly supported jets are always denoted by an additional subscript zero.

323
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20.1. A One-Dimensional Gaussian

We let F = R and choose the Lagrangian as the Gaussian

L(x, y) = 1√
π
e−(x−y)2 . (20.1.1)

Lemma 20.1.1. The Lebesgue measure

dρ = dx

is a minimizer of the causal action principle for the Lagrangian (20.1.1) in the class of
variations of finite volume (see (6.3.2) and (6.3.1)). It is the unique minimizer within
this class of variations.

Proof. Writing the difference of the actions as in (6.3.2), we can carry out the
integrals over ρ using that the Gaussian is normalized (see Exercise 20.1),ˆ

F

L(x, y) dρ(y) = 1 .

We thus obtain

S(ρ)− S(ρ̃) = 2

ˆ
N

d(ρ− ρ̃)(x) +

ˆ
N

d(ρ− ρ̃)(x)

ˆ
N

d(ρ− ρ̃)(y) L(x, y)

=

ˆ
N

d(ρ− ρ̃)(x)

ˆ
N

d(ρ− ρ̃)(y) L(x, y) ,

where in the last line we used the volume constraint (6.3.1). In order to show that the
last double integral is positive, we take the Fourier transform and use that the Fourier
transform of a Gaussian is again a Gaussian. More precisely,ˆ

N
e−ip(x−y) L(x, y) dy = e−

p2

4 =: f(p) . (20.1.2)

Moreover, the estimate ∣∣∣ ˆ
N
eipx d(ρ− ρ̃)(x)

∣∣∣ ≤ ∣∣ρ̃− ρ
∣∣(F) <∞

shows that the Fourier transform of the signed measure ρ̃− ρ is a bounded function g ∈
L∞(R). Approximating this function in L2(R), we can apply Plancherel’s theorem and
use the fact that convolution in position space corresponds to multiplication in momentum
space. We thus obtainˆ

N
d(ρ− ρ̃)(x)

ˆ
N

d(ρ− ρ̃)(y) L(x, y)

=

ˆ
N

(
F−1(fg)

)
(x) d(ρ− ρ̃)(x) =

ˆ ∞

−∞
g(p) e−

p2

4 g(p) dp ≥ 0 , (20.1.3)

and the inequality is strict unless ρ̃ = ρ. This concludes the proof. □

The EL equations readˆ
F

L(x, y) dρ(y) = 1 for all x ∈ R . (20.1.4)

We now specify the jet spaces. Since the Lagrangian is smooth, it is obvious that

Jdiff = J = C∞(R)⊕ C∞(R)
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(where we identify a vector field a(x)∂x on R with the function a(x)). The choice of Jtest is
less obvious. For simplicity, we restrict attention to functions which are bounded together
with all their derivatives, denoted by

C∞
b :=

{
f ∈ C∞(R)

∣∣ f (n) ∈ L∞(R) for all n ∈ N0

}
.

Now different choices are possible. Our first choice is to consider jets whose scalar com-
ponents are compactly supported,

Jtest = C∞
0 (R)⊕ C∞

b (R) . (20.1.5)

The linearized field equations (8.1.7) reduce to the scalar equationˆ
N

(
∇1,v +∇2,v

)
L(x, y) dρ(y)−∇v 1 = 0 for all x ∈ R , (20.1.6)

because if this equation holds, then the x-derivative of the left side is also zero. Differen-
tiating the EL equations (20.1.4) with respect to x, we find thatˆ

N
∇1,vL(x, y) dρ(y)−∇v 1 = 0 for all x ∈ R .

Subtracting this equation from (20.1.6), the linearized field simplify toˆ
N
∇2,vL(x, y) dρ(y) = 0 for all x ∈ R .

A specific class of solutions can be given explicitly. Indeed, choosing

u = (a,A) with a ∈ C∞
0 (R) and A(x) :=

ˆ x

∞
a(t) dt ∈ C∞

b (R) , (20.1.7)

integration by parts yieldsˆ
N
∇2,uL(x, y) dρ(y) =

ˆ
N

(
A′(y) +A(y) ∂y

)
L(x, y) dy = 0 . (20.1.8)

These linearized solutions are referred to as inner solutions, as introduced in a more
general context in Section 8.3 and [61]. Inner solutions can be regarded as infinitesimal
generators of transformations of M which leave the measure ρ unchanged. Therefore,
inner solutions do not change the causal fermion system, but merely describe symmetry
transformations of the measure. With this in mind, inner solutions are not of interest
by themselves. But they can be used in order to simplify the form of the jet spaces.
For example, by adding suitable inner solutions one can arrange that the test jets have
vanishing scalar components. Indeed, given a jet v = (b, v) ∈ Jtest (with Jtest according
to (20.1.5)), taking an indefinite integral of b,

B(t) :=

ˆ t

−∞
b(τ) dτ ∈ C∞

b (R) ,

the resulting jet u := (−b,−B) is an inner solution (20.1.7). Adding this jet to v gives

ṽ := v+ u = (0, v −B) ∈ Jtest ,

which is physically equivalent to v and, as desired, has a vanishing scalar component.
In our example, we can use the inner solutions alternatively in order to eliminate the

vector component of the test jets. To this end, it is preferable to choose the space of test
jets as

Jtest = C∞
b (R)⊕ C∞

b (R) . (20.1.9)
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Now the vector component disappears under the transformation

v = (b, v) 7→ ṽ := v+ u with u = (−v′,−v) ∈ Jtest .

Therefore, it remains to consider the scalar components of jets. For technical simplicity,
we restrict attention to compactly supported functions. Thus we choose the jet space Jvary

as
Jvary = C∞

0 (R)⊕ {0} .
Then the linearized field operator in (8.1.7) reduces to the integral operator with ker-
nel L(x, y), (

∆(b, 0)
)
(x) =

ˆ
F

L(x, y) b(y) dy .

20.2. A Minimizing Measure Supported on a Hyperplane

In the previous example, the support of the minimizing measure was the whole
space F. In most examples motivated from the physical applications, however, the min-
imizing measure will be supported on a low-dimensional subset of F (see for instance
the minimizers with singular support for the causal variational principle on the sphere
in [84, 10] discussed in Section 6.1). We now give a simple example where the minimizing
measure is supported on a hyperplane of F. We let F = R2 and choose the Lagrangian as

L(x, y;x′, y′) = 1√
π
e−(x−x′)2(1 + y2

)(
1 + y′2

)
, (20.2.1)

where (x, y), (x′, y′) ∈ F.

Lemma 20.2.1. The measure
dρ = dx× δy (20.2.2)

(where δy is the Dirac measure) is the unique minimizer of the causal action principle for
the Lagrangian (20.2.1) under variations of finite volume (see (6.3.2) and (6.3.1)).

Note that this measure is supported on the x-axis,

M := supp ρ = R× {0} .

Proof of Lemma 20.2.1. Let ρ̃ be a regular Borel measure on F satisfying (6.3.1).
Then the difference of actions (6.3.2) is computed by

S(ρ̃)− S(ρ) = 2√
π

ˆ
F

d(ρ̃− ρ)(x, y)

ˆ
N

dx′ e−(x−x′)2 (1 + y2) (20.2.3)

+
1√
π

ˆ
F

d(ρ̃− ρ)(x, y)

ˆ
F

d(ρ̃− ρ)(x′, y′) e−(x−x′)2 (1 + y2
)(
1 + y′2

)
. (20.2.4)

Using that the negative part of the measure ρ̃ − ρ is supported on the x-axis, the first
term (20.2.3) can be estimated by

2√
π

ˆ
F

d(ρ̃− ρ)(x, y)

ˆ
N

dx′ e−(x−x′)2 (1 + y2)

(∗)
≥ 2√

π

ˆ
F

d(ρ̃− ρ)(x, y)

ˆ
N

dx′ e−(x−x′)2 =

ˆ
F

d(ρ̃− ρ)(x, y) = 0 ,

where in the last step we used the volume constraint. The second term (20.2.4), on the
other hand, can be rewritten as

1√
π

ˆ
F

dµ(x, y)

ˆ
F

dµ(x′, y′) e−(x−x′)2



20.2. A MINIMIZING MEASURE SUPPORTED ON A HYPERPLANE 327

with the signed measure ρ defined by

dµ(x, y) :=
(
1 + y2

)
d(ρ̃− ρ)(x, y) .

Now we can proceed as in the proof of Lemma 20.1.1 and use that the Fourier transform
of the integral kernel is strictly positive. For the uniqueness statement one uses that the
inequality in (∗) is strict unless ρ̃ is supported on the x-axis. Then one can argue as in
the proof of Lemma 20.1.1. □

For the minimizing measure (20.2.2), the function ℓ takes the form

ℓ(x, y) =

ˆ
F

L(x, y;x′, y′) dρ(x′, y′)− 1 = y2 ,

showing that the EL equations (7.1.2) are indeed satisfied. We now specify the jet spaces.
Since the Lagrangian is smooth, it is obvious that

Jdiff = J = C∞(R)⊕ C∞(R,R2) ,

where C∞(R,R2) should be regarded as the space of two-dimensional vector fields along
the x-axis. Similar as explained after (20.1.9), we want to use the inner solutions for
simplifying the vector components of the jets. To this end, in analogy to (20.1.9) we
choose

Jtest = C∞
b (R)⊕ C∞

b (R,R2) . (20.2.5)

The linearized field equations (8.1.7) read

0 = ∇u

( ˆ ∞

−∞

(
∇1,v +∇2,v

)
e−(x−x′)2(1 + y2

)(
1 + y′2

)
dρ(x′, y′)−∇v

√
π

)∣∣∣∣
y=y′=0

= ∇u

((
1 + y2

) ˆ ∞

−∞

(
∇1,v +∇2,v

)
e−(x−x′)2 dx′ −∇v

√
π

)∣∣∣∣
y=y′=0

.

Now the inner solutions are generated by the vector fields tangential to the x-axis. More
precisely, in analogy to (20.1.7), we consider the jet

v =
(
b, (B, 0)

)
with b ∈ C∞

0 (R) and B(x) :=

ˆ x

∞
b(t) dt ∈ C∞

b (R) .

Exactly as in the example of the one-dimensional Gaussian, integrating by parts as
in (20.1.8) one sees that the jet v indeed satisfies the linearized field equations.

By suitably subtracting inner solutions, we can compensate the tangential components
of the jets. This leads us to choose

Jvary = C∞
0 (R)⊕

(
{0} ⊕ C∞

0 (R)
)
.



328 20. A FEW EXPLICIT EXAMPLES OF CAUSAL VARIATIONAL PRINCIPLES

Then the Laplacian simplifies as follows,

⟨u,∆v⟩(x)

=
1√
π
∇u

( ˆ ∞

−∞

(
∇1,v +∇2,v

)
e−(x−x′)2 (1 + y2

)(
1 + y′2

)
dx′ −∇v

√
π

)∣∣∣∣
y=y′=0

=
2√
π
u(x) v(x)

ˆ ∞

−∞
e−(x−x′)2 dx′ +

1√
π
a(x)

ˆ ∞

−∞
e−(x−x′)2 b(x′) dx′

+ a(x)

(
1√
π

ˆ ∞

−∞
b(x) e−(x−x′)2 dx′ − b(x)

)
= 2u(x) v(x) +

1√
π
a(x)

ˆ ∞

−∞
e−(x−x′)2 b(x′) dx′ ,

where u = (a, (0, u)) and v = (b, (0, v)). Hence the inhomogeneous linearized field equa-
tions (8.1.8) with w = (e, w) give rise to separate equations for the scalar and vector
components,

1√
π

ˆ ∞

−∞
e−(x−x′)2 b(x′) dx′ = e(x) , v(x) =

w(x)

2
.

20.3. A Non-Homogeneous Minimizing Measure

In the previous examples, the minimizing measure ρ was translation invariant in the
direction of the x-axis. We now give a general procedure for constructing examples of
causal variational principles where the minimizing measure has no translational symme-
try. In order to work in a concrete example, our starting point is again the one-dimensional
Gaussian (20.1.1). But our method can be adapted to other kernels in a straightforward
way. In view of these generalizations, we begin with the following abstract result.

Lemma 20.3.1. Let µ be a measure on the m-dimensional manifold F whose support
is the whole manifold,

suppµ = F .

Moreover, let L(x, y) ∈ L1
loc(F × F,R+

0 ) be a symmetric, non-negative kernel on F × F.
Next, let h ∈ C0(F,R+) be a strictly positive, continuous function on F. Assume that:

(i)

ˆ
F

L(x, y) h(y) dµ(y) = 1 for all x ∈ F.

(ii) For all compactly supported bounded functions with zero mean,

g ∈ L∞
0 (F,R+) and

ˆ
F

g dµ = 0 ,

the following inequality holds,ˆ
F

dµ(x)

ˆ
F

dµ(y) L(x, y) g(x) g(y) ≥ 0 . (20.3.1)

Then the measure dρ := hdµ is a minimizer of the causal action principle under varia-
tions of finite volume (see (6.3.2) and (6.3.1)). If the inequality (20.3.1) is strict for any
non-zero g, then the minimizing measure is unique within the class of such variations.

Proof. We consider the variation

ρ̃τ = ρ+ τ g dµ = (h+ τg) dµ . (20.3.2)
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Since h is continuous and strictly positive and g is bounded and compactly supported, the
function h + τg is non-negative for sufficiently small |τ |. Furthermore, using that g has
mean zero, we conclude that (20.3.2) is an admissible variation of finite volume (6.3.1).
Moreover, the difference of the actions (6.3.2) is well-defined and computed by

S(µ̃τ )− S(ρ)

= 2τ

ˆ
dρ(x) g(x)

ˆ
N
dρ(y) h(y) L(x, y) + τ2

ˆ
N
dρ(x)

ˆ
N
dρ(x) L(x, y) g(x) g(y)

≥ 2τ

ˆ
N
g(y) dρ(y) = 0 , (20.3.3)

where in the second step we used the above assumptions (i) and (ii). The last step follows
from the fact that g has mean zero. If the inequality (20.3.1) is strict, so is the inequality
in (20.3.3), showing that the minimizer ρ is unique.

We conclude that the measure ρ is a minimizer under variations of the form (20.3.2).
In order to treat a general variation of finite volume (6.3.1), we approximate ρ̃ by a
sequence of functions gn with the property that the measures gnρ converge to ρ̃ (here
one can work with the notion of vague convergence; for details see [8, Definition 30.1]
or [31]). □

Our goal is to apply this lemma to kernels of the form

L(x, y) = f(x) e−(x−y)2f(y) (20.3.4)

with a strictly positive function f , which for convenience we again choose as a Gaussian,

f(x) = eαx
2

with α ∈ R . (20.3.5)

This kernel has the property (ii) because for all non-trivial g ∈ L∞
0 (F,R+),ˆ

F

dµ(x)

ˆ
F

dµ(y) L(x, y) g(x) g(y) =
ˆ
F

dµ(x)

ˆ
F

dµ(y) e−(x−y)2 (fg)(x) (fg)(y) > 0 ,

where the last step is proved exactly as in the example of the Gaussian (see (20.1.3)). In
order to arrange (i), for h we make an ansatz again with a Gaussian,

h(x) = c eβx
2
. (20.3.6)

Thenˆ
F

L(x, y) h(y) dµ(y) = c

ˆ ∞

−∞
eαx

2
e−(x−y)2 e(α+β)y

2
dy

= c exp
(
αx2 − x2 − x2

α+ β − 1

)ˆ ∞

−∞
exp

{
(α+ β − 1)

(
y − x

α+ β − 1

)2
}

dy

= c

√
π

1− α− β
exp

(
αx2 − x2 − x2

α+ β − 1

)
.

In order to arrange that this function is constant one, we choose

c =

√
1− α− β

π
and β = −α(2− α)

1− α
. (20.3.7)

For the above Gaussian integral to converge, we need to ensure that 1 − α − β > 0. In
view of the formula

1− α− β =
1

1− α
,
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this can be arranged simply by choosing α < 1. Our finding is summarized as follows.

Proposition 20.3.2. For any α < 1, we let f and h be the Gaussians (20.3.5)
and (20.3.6) with c and β according to (20.3.7). Then the measure dρ = h dx is the
unique minimizer of the causal action corresponding to the Lagrangian (20.3.4) within
the class of variations of finite volume.

As a concrete example, we consider the well-knownMehler kernel (see for example [93,
Section 1.5])

E(x, y) =
1√

1− µ2
exp

(
− µ2(x2 + y2)− 2µxy

(1− µ2)

)
with µ > 0. Rescaling x and y according to

x, y →

√
1− µ2

µ
x, y ,

the Mehler kernel becomes

E(x, y) =
1√

1− µ2
exp

(
− µ(x2 + y2)− 2xy

)
.

This kernel is of the desired form (20.3.4) if we choose

α = 1− µ < 1 , β =
µ2 − 1

µ
.

We finally remark that this non-homogeneous example can be used as the start-
ing point for the construction of higher-dimensional examples with minimizing measures
supported on lower-dimensional subsets, exactly as explained for the Gaussian in Sec-
tion 20.2.

20.4. A Minimizing Measure in Two-Dimensional Minkowski Space

In the previous examples, the Lagrangian was strictly positive (see (20.1.1), (20.2.1),
(20.3.4)). Therefore, the causal structure of the resulting spacetime was trivial, because
all pairs or points were timelike separated. We now give examples where the minimizing
measure gives rise to nontrivial causal relations in spacetime. We let F = R2, denote the
coordinates by (t, x) and choose the Lagrangian

L
(
t, x; t′, x

)
= e−(t−t′)2

(
δ
(
(t− t′)− (x− x′)

)
+ δ

(
(t− t′) + (x− x′)

))
. (20.4.1)

The Lagrangian is non-negative, and it is strictly positive on the “light rays” (t − t′) =
±(x− x′).

Lemma 20.4.1. The Lebesgue measure

dρ = dt dx

is a minimizer of the causal action principle for the Lagrangian (20.4.1) in the class of
variations of finite volume (see (6.3.2) and (6.3.1)). It is the unique minimizer within
this class of variations.

Proof. Proceeding as in the proof of Lemma 20.1.1, our task is to show that the
Fourier transform of the Lagrangian is strictly positive. To this end, we note thatˆ

R2

δ(t− x) eiωt−ikx dt dx =

ˆ ∞

−∞
eiωx−ikx dx = 2π δ(ω − k) .
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We thus obtainˆ
R2

(
δ
(
(t− t′)− (x− x′)

)
+ δ

(
(t− t′) + (x− x′)

))
eiωt−ikx dt dx

= 2π
(
δ(ω + k) + δ(ω − k)

)
.

Multiplying by the Gaussian in (20.4.1) corresponds to a convolution in momentum space
again by a Gaussian. This convolution gives a strictly positive function, as desired. □

The Lagrangian (20.4.1) has the shortcoming that it is supported only on the bound-
ary of the light cone. In order to improve the situation, we next consider the example

L
(
t, x; t′, x

)
= e−(t−t′)2

(
δ
(
(t− t′)− (x− x′)

)
+ δ

(
(t− t′) + (x− x′)

))
+ a e−

(t−t′)2
2 Θ

(
(t− t′)2 − (x− x′)2

)
.

(20.4.2)

Lemma 20.4.2. Choosing |α| < 1, the Lebesgue measure

dρ = dt dx

is a minimizer of the causal action principle for the Lagrangian (20.4.2) in the class of
variations of finite volume (see (6.3.2) and (6.3.1)). It is the unique minimizer within
this class of variations.

Proof. We compute the Fourier transform of the Heaviside function.ˆ
R2

Θ
(
t2 − x2

)
eiωt−ikx e−ε |t| dt dx

= 4

ˆ ∞

0
dx

ˆ ∞

−∞
dtΘ(t− x) cos(ωt) cos(kx) e−εt dt dx

= 2

ˆ ∞

0

(
− eiωx−εx

iω − ε
− e−iωx−εx

−iω − ε

)
cos(kx) dx

= − 1

iω − ε

(
1

iω + k − ε
+

1

iω − k − ε

)
− 1

−iω − ε

(
1

−iω + k − ε
+

1

−iω − k − ε

)
.

In the limit ε↘ 0, this converges to a tempered distribution which is singular on the light
cone. Taking the convolution with the Gaussian and choosing a sufficiently small, the
resulting function is dominated near the light cone by the Fourier transform computed
in the proof of Lemma 20.4.1. Moreover, due to its decay properties at infinity, the same
is true away from the light cone. This concludes the proof. □

20.5. A Nonlinear Wave Equation in Two-Dimensional Minkowski Space

In the previous examples the minimizing measures were unique. This means in par-
ticular that the systems had no dynamical degrees of freedom, and the linearized field
equations only admitted trivial solutions. We now explain how one can build in dynamical
degrees of freedom. For simplicity, we consider the example of a nonlinear wave equation
on a spacetime lattice, but the method can be generalized to many other situations. We
choose F = R2 × S1 and denote the coordinates by (t, x) ∈ R2 and eiα ∈ S1. We choose

L
(
t, x, α; t′, x′, α′) = e−(t−t′)2 e−(x−x′)2 + δ(t− t′) δ(x− x′) (sinα− sinα′)2

+ g
(
t− t′, x− x′

)
sinα sinα′ ,
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where g is the convolution g = h ∗ h with

h(t, x) := δ(t− 1) δ(x) + δ(t+ 1) δ(x)− δ(t) δ(x+ 1)− δ(t) δ(x− 1)

(thus h is the kernel of a discretized wave operator). We remark that this Lagrangian
violates our usual positivity assumption L

(
t, x, α; t′, x′, α′) ≥ 0. However, this inequality

could be arranged without changing the qualitative properties of the example by molli-
fying the δ distributions and adding a constant.

Proposition 20.5.1. Every minimizing measure ρ has the form

dρ(t, x, α) = dt dx δ
(
α− ϕ(t, x)

)
dα ,

where ϕ(t, x) solves the nonlinear discrete wave equation

sin
(
ϕ(t+ 1, x)

)
+ sin

(
ϕ(t− 1, x)

)
− sin

(
ϕ(t, x+ 1)

)
− sin

(
ϕ(t, x− 1)

)
= 0 .

We begin with a preparatory lemma.

Lemma 20.5.2. Every minimizing measure has the form

dρ(t, x, α) = dµ(t, x) δ
(
α− ϕ(t, x)

)
dα , (20.5.1)

with µ the push-forward to the first two variables, i.e.

µ = π∗ρ with π : R2 × S1 → R2 , (t, x, α) 7→ (t, x) ,

and ϕ : R2 → R is a µ-measurable function.

Proof. Let ρ be a measure on F. We introduce the function ϕ(t, x) by

sinϕ(t, x) dµ(t, x) =

ˆ 2π

0
sinα dρ(t, x, α) .

In words, sinϕ(t, x) coincides with the mean of sinα integrated over the circle. The
function ϕ(t, x) exists because this mean lies in the interval [−1, 1] and because the sine
takes all values in this interval. Denoting the resulting measure of the form (20.5.1) by ρ̃,
we obtain Then

S(ρ)− S(ρ̃) =
ˆ
F

dρ(t, x, α)

ˆ
F

dρ(t′, x′, α) δ(t− t′) δ(x− x′)
(
sinα− ϕ(t, x)

)2
.

Therefore, ρ is a minimizer if and only if ρ = ρ̃. □

Proof of Proposition 20.5.1. For measures of the form (20.5.1), the action takes
the form

S =

ˆ
R2

dµ(t, x)

ˆ
R2

dµ(t′, x′) e−(t−t′)2 e−(x−x′)2

+

ˆ
R2

dµ(t, x)

ˆ
R2

dµ(t′, x′) g
(
t− t′, x− x′

)
sinϕ(t, x) sinϕ(t′, x′) .

Using that g is a convolution,

g
(
t− t′, x− x′

)
=

ˆ
R2

h(t− τ, x− z) h(t′ − τ, x′ − z) dτ dz ,
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the action can be rewritten as

S =

ˆ
R2

dµ(t, x)

ˆ
R2

dµ(t′, x′) e−(t−t′)2 e−(x−x′)2 (20.5.2)

+

ˆ
R2

(ˆ
R2

h(t− τ, x− z) sinϕ(t, x) dµ(t, x)

)2

dτ dz . (20.5.3)

Exactly as shown in Section 20.1, the minimizer of (20.5.2) is given by the Lebesgue
measure. The contribution (20.5.3), on the other hand, is minimal if sinϕ(t, x) satisfies
the discrete wave equation. This concludes the proof. □

20.6. Exercises

Exercise 20.1. (Functions with self-similar Fourier transform) The example of
Lemma 20.1.1 was based on the fact that the Fourier transform of a Gaussian is again
Gaussian (20.1.2).

(a) Prove (20.1.2) by direct computation.
(b) Another example of a function which is self-similar under Fourier transforms is the

distribution in Minkowski space

K0(p) = δ(k2) ϵ(k0) .

Show that its Fourier transform indeed give, up to a constant, the same distribution
back. Hint: The distribution K0(p) is the analog of the causal fundamental solu-
tion (13.6.2) for the scalar wave equation (see also (16.3.8)). Using this fact, one
can make use of the explicit form of the causal Green’s operators for the scalar wave
equation.

(c) Can you think of other functions which are self-similar under the Fourier transform
in the above sense? Is there a systematic way to characterize them all?

Exercise 20.2. (Non-negative functions with non-negative Fourier transforms) An-
other specific feature of the Gaussian in (20.1.1) which was used in Lemma 20.1.1 is that
it is a positive function whose Fourier transform is again positive.

(a) Show that the same is true for the δ distribution. Can you come up with other
functions with this property.

(b) The Lagrangian (20.4.1) involves of a function of two variables with the properties
that it is non-negative and has a non-negative Fourier transform. How can this idea
be used to construct other Lagrangians with the property that the Lebesgue measure
is a minimizer?





CHAPTER 21

Basics on the Continuum Limit

In the continuum limit one analyzes the EL equations of the causal action principle for
systems of Dirac seas in the presence of classical bosonic fields. As worked out in detail
in [45, Chapters 3-5], this limiting case yields the interactions of the standard model and
gravity on the level of second-quantized fermionic fields interacting with classical bosonic
fields. In this chapter we explain schematically how the analysis of the continuum limit
works and give an overview of the obtained results.

21.1. Causal Fermion Systems in the Presence of External Potentials

In Chapters 15–19 it was explained how to construct and analyze the unregularized
kernel of the fermionic projector P̃ (x, y) in Minkowski space in the presence of an external
potential B. The general question is whether the causal fermion system corresponding
to this kernel satisfies the EL equations corresponding to the causal action principle.
Thus we would like to evaluate the EL equations as stated abstractly in Theorem 7.1.1
for P̃ (x, y). The basic procedure is to form the closed chain (see (5.7.4)) and to compute
its eigenvalues λxy1 , . . . λ

xy
2n ∈ C. This, in turn, makes it possible to compute the causal

action and the constraints (see (5.6.1)–(5.6.5)). Considering first variations of P (x, y),
one then obtains the EL equations.

The main obstacle before one can carry out this program is that, in order to obtain
mathematically well-defined quantities, one needs to introduce an ultraviolet regulariza-
tion. As explained in detail in Chapter 5, this regularization is not merely a technical
procedure, but it corresponds to implementing a specific microscopic structure of space-
time. In the vacuum, the regularization was introduced with the help of a regularization
operator Rε (see (5.5.1)). Different choices of regularization operators correspond to dif-
ferent microscopic structures of spacetime. Since the structure of our physical spacetime
on the Planck scale is largely unknown, the strategy is to allow for a general class of
regularization operators, making it possible to analyze later on how the results depend
on the regularization (for more details on this so-called method of variable regularization
see [45, §1.2.1]).

In more detail, we proceed as follows. In the vacuum, we can follow the procedure
explained in Section 5, choosing H as the subspace of all negative-frequency solutions
of the Dirac equation. In preparation of extending this construction to the interacting
situation, it is useful to note that the causal action principle can be formulated in terms
of the kernel of the fermionic projector given abstractly by (5.7.3). Therefore, our task is
to compute this kernel. It can be obtained alternatively by starting from unregularized
kernel of the fermionic projector constructed in Section 15.4 and introducing a regular-
ization. In the simplest case, working with a regularization which preserves the Dirac
equation, i.e.

Rε : Hm → Hm ∩ C0(M, SM) ,

335
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the regularization can be introduced similar to (15.4.1) by

P ε := −Rε πH R∗
ε km : C∞

0 (M, SM) → Hm .

For more general regularization operators which do not preserve the Dirac equation, one
can introduce the regularization by modifying the right side of (5.7.14) to

P ε(x, y) := −
(
RεΨ

)
(x)

(
RεΨ

)
(y)∗ .

where Ψ : Hm → L2
loc(M, SM) is the unregularized wave evaluation operator, and reg-

ularization operator Rε : Hm → C0(M, SM) now maps more generally to continuous
wave functions (not necessarily Dirac solutions).

The latter construction has the advantage that it also applies in the presence of an
external potential. In a perturbative treatment, it gives rise to the causal perturbation
expansion developed in Section 18.2. In this way, we obtain the regularized kernel P̃ ε(x, y)
in the presence of an external potential. Following the procedure explained in Chapter 5,
we obtain a corresponding causal fermion system. After suitable identifications (as worked
out in [45, Section 1.2]), this regularized kernel coincides with the kernel of the fermionic
projector as defined abstractly in (5.7.3).

The subtle question is whether a chosen regularization of the vacuum also deter-
mines the regularization of the kernel P̃ ε(x, y) in the presence of an external potential.
The general answer to this question is no, simply because the interaction introduces
additional freedoms for regularizing. Moreover, it is not clear a-priori whether the regu-
larized objects should still satisfy the Dirac equation. But at least, in [45, Appendix F]
and [41, Appendix D] a canonical procedure is given for regularizing the light-cone ex-
pansion (see [73] for related constructions in curved spacetime). It consists in taking the
formulas of the (unregularized) light-cone expansion (like for example (19.2.3)–(19.2.8)

in Example 19.2.2) and replacing the singular factors T (n) (like for example (19.2.9)) by
corresponding functions where the singularities on the light cone have been regularized
on the scale ε. The precise procedure will be explained in the next section.

21.2. The Formalism of the Continuum Limit

We now give a brief summary of the formalism of the continuum limit. More details
can be found in [45, Section 2.4]. The reader interested in the derivation of this formalism
is referred to [41, Chapter 4].

Having introduced the regularized kernel of the fermionic projector P̃ ε(x, y), we can
form the closed chain

Aεxy := P̃ ε(x, y) P̃ ε(y, x) ,

compute its eigenvalues and proceed by analyzing the EL equations. In the continuum
limit, one focuses on the limiting case ε ↘ 0 when the ultraviolet regularization is re-
moved. This limiting case is comparatively easy to analyze. This can be understood from
the fact that, in the limit ε↘ 0, the closed chain Aεxy becomes singular on the light cone.
Therefore, asymptotically for small ε, it suffices to take into account the contributions
to Aεxy on the light cone. These contributions, on the other hand, are captured precisely

by the light-cone expansion of the unregularized kernel P̃ (x, y) (see Section 19.2 or the
explicit formulas in Example 19.2.2). This is the basic reason why, in the continuum limit,
the EL equations can be rewritten as field equations involving fermionic wave functions
as well as derivatives of the bosonic potentials.

More specifically, the asymptotics ε ↘ 0 is captured by the formalism of the contin-
uum limit, which we now outline (for more details see [45, Section 2.4] or the derivation
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of the formalism in [41, Chapter 4]). In the first step, one regularizes the light-cone
expansion symbolically by leaving all smooth contributions unchanged, whereas to the
singular factors T (n) we employ the replacement rule

mp T (n) → mp T
(n)
[p] .

Thus for the formulas of Example 19.2.2, the factors T (n) get an additional index [0]. If
the light-cone expansion involves powers of the rest mass, these powers are taken into

account in the lower index. The resulting factors T
(n)
[p] are smooth functions, making

all the subsequent computations well-defined. The detailed form of these functions does
not need to be specified, because all we need are the following computation rules. In

computations one may treat the factors T
(n)
[p] as complex functions. However, one must

be careful when tensor indices of factors /ξ are contracted with each other. Naively,
this gives a factor ξ2 which vanishes on the light cone and thus changes the singular
behavior on the light cone. In order to describe this effect correctly, we first write every
summand of the light-cone expansion such that it involves at most one factor /ξ (this can
always be arranged using the anti-commutation relations of the Dirac matrices). We now

associate every factor /ξ to the corresponding factor T
(n)
[p] . In short calculations, this can

be indicated by putting brackets around the two factors, whereas in the general situation
we add corresponding indices to the factor /ξ, giving rise to the replacement rule

mp /ξT (n) → mp /ξ
(n)
[p] T

(n)
[p] .

For example, we write the regularized fermionic projector of the vacuum as

P ε =
i

2

∞∑
n=0

m2n

n!
/ξ
(−1+n)
[2n] T

(−1+n)
[2n] +

∞∑
n=0

m2n+1

n!
T
(n)
[2n+1] .

The kernel P (y, x) is obtained by taking the conjugate (see (5.7.7)). The conjugates

of the factors T
(n)
[p] and ξ

(n)
[p] are the complex conjugates,

T
(n)
[p] :=

(
T
(n)
[p]

)∗
and ξ

(n)
[p] :=

(
ξ
(n)
[p]

)∗
.

One must carefully distinguish between the factors with and without complex conjugation.

In particular, the factors /ξ
(n)
[p] need not be symmetric, i.e., in general,(

/ξ
(n)
[p]

)∗ ̸= /ξ
(n)
[p] .

When forming composite expressions, the tensor indices of the factors ξ are con-
tracted to other tensor indices. The factors ξ which are contracted to other factors ξ are
called inner factors. The contractions of the inner factors are handled with the so-called
contraction rules

(ξ
(n)
[p] )

j (ξ
(n′)
[p′] )j =

1

2

(
z
(n)
[p] + z

(n′)
[p′]

)
(21.2.1)

(ξ
(n)
[p] )

j (ξ
(n′)
[p′] )j =

1

2

(
z
(n)
[p] + z

(n′)
[p′]

)
(21.2.2)

z
(n)
[p] T

(n)
[p] = −4

(
n T

(n+1)
[p] + T

(n+2)
{p}

)
, (21.2.3)
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which are to be complemented by the complex conjugates of these equations. Here the

factors z
(n)
[p] can be regarded simply as a book-keeping device to ensure the correct appli-

cation of the rule (21.2.3). The factors T
(n)
{p} have the same scaling behavior as the T

(n)
[p] ,

but their detailed form is somewhat different; we simply treat them as a new class of

symbols. In cases where the lower index does not need to be specified we write T
(n)
◦ .

After applying the contraction rules, all inner factors ξ have disappeared. The remaining
so-called outer factors ξ need no special attention and are treated like smooth functions.

Next, to any factor T
(n)
◦ we associate the degree deg T

(n)
◦ by

deg T
(n)
◦ = 1− n .

The degree is additive in products, whereas the degree of a quotient is defined as the
difference of the degrees of numerator and denominator. The degree of an expression can
be thought of as describing the order of its singularity on the light cone, in the sense
that a larger degree corresponds to a stronger singularity (for example, the contraction
rule (21.2.3) increments n and thus decrements the degree, in agreement with the naive
observation that the function z = ξ2 vanishes on the light cone). Using formal Taylor
series, we can expand in the degree. In all our applications, this will give rise to terms of
the form

η(x, y)
T
(a1)
◦ · · ·T (aα)

◦ T
(b1)
◦ · · ·T (bβ)

◦

T
(c1)
◦ · · ·T (cγ)

◦ T
(d1)
◦ · · ·T (dδ)

◦

with η(x, y) smooth . (21.2.4)

The quotient of the two monomials in this equation is referred to as a simple fraction.
A simple fraction can be given a quantitative meaning by considering one-dimensional

integrals along curves which cross the light cone transversely away from the origin ξ = 0.
This procedure is called weak evaluation on the light cone. For our purpose, it suffices to

integrate over the time coordinate t = ξ0 for fixed ξ⃗ ̸= 0. Moreover, using the symmetry

under reflections ξ → −ξ, it suffices to consider the upper light cone t ≈ |ξ⃗|. The resulting
integrals diverge if the regularization is removed. The leading contribution for small ε
can be written as

ˆ |ξ⃗|+ε

|ξ⃗|−ε
dt η(t, ξ⃗)

T
(a1)
◦ · · ·T (aα)

◦ T
(b1)
◦ · · ·T (bβ)

◦

T
(c1)
◦ · · ·T (cγ)

◦ T
(d1)
◦ · · ·T (dδ)

◦

≈ η(|ξ⃗|, ξ⃗) creg

(i|ξ⃗|)L
logr(ε|ξ⃗|)
εL−1

, (21.2.5)

where L is the degree of the simple fraction and creg, the so-called regularization param-

eter, is a real-valued function of the spatial direction ξ⃗/|ξ⃗| which also depends on the
simple fraction and on the regularization details (the error of the approximation will be
specified below). The integer r describes a possible logarithmic divergence. Apart from
this logarithmic divergence, the scalings in (21.2.5) in both ξ and ε are described by the
degree.

When analyzing a sum of expressions of the form (21.2.4), one must know if the
corresponding regularization parameters are related to each other. In this respect, the
integration-by-parts rules are important, which are described symbolically as follows. On

the factors T
(n)
◦ we introduce a derivation ∇ by

∇T (n)
◦ = T

(n−1)
◦ .
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Extending this derivation with the product and quotient rules to simple fractions, the
integration-by-parts rules state that

∇

T
(a1)
◦ · · ·T (aα)

◦ T
(b1)
◦ · · ·T (bβ)

◦

T
(c1)
◦ · · ·T (cγ)

◦ T
(d1)
◦ · · ·T (dδ)

◦

 = 0 . (21.2.6)

Carrying out the derivative with the product rule, one gets relations between simple frac-
tions. Simple fractions which are not related to each other by the integration-by-parts
rules are called basic fractions. As shown in [41, Appendix E], there are no further rela-
tions between the basic fractions. Thus the corresponding basic regularization parameters
are independent.

The above symbolic computation rules give a convenient procedure to evaluate com-
posite expressions in the fermionic projector, referred to as the analysis in the continuum
limit: After applying the contraction rules and expanding in the degree, the EL equations
can be rewritten as equations involving a finite number of terms of the form (21.2.4). By
applying the integration-by-parts rules, we can arrange that all simple fractions are basic
fractions. We evaluate weakly on the light cone (21.2.5) and collect the terms accord-
ing to their scaling in ξ. Taking for every given scaling in ξ only the leading pole in ε,
we obtain equations which involve linear combinations of smooth functions and basic
regularization parameters. We consider the basic regularization parameters as empirical
parameters describing the unknown microscopic structure of spacetime. We thus end up
with equations involving smooth functions and a finite number of free parameters.

We finally specify the error of the above expansions. By not regularizing the bosonic
potentials and fermionic wave functions, we clearly disregard the

higher orders in ε/ℓmacro . (21.2.7)

Furthermore, in (21.2.5) we must stay away from the origin, meaning that we neglect the

higher orders in ε/|ξ⃗| . (21.2.8)

The higher order corrections in ε/|ξ⃗| depend on the fine structure of the regulariza-
tion and thus seem unknown for principal reasons. Neglecting the terms in (21.2.7)
and (21.2.8) also justifies the formal Taylor expansion in the degree. Clearly, leaving

out the terms (21.2.8) is justified only if |ξ⃗| ≫ ε. Therefore, whenever using the above

formalism, we must always ensure that |ξ⃗| is much larger than ε.
We finally remark that, when working out the Einstein equations, one must go beyond

error terms of the form (21.2.7) and (21.2.8). The reason is that the gravitational scales
like κ ∼ δ2 ≈ ε2. In order not to loose the relevant terms in the error terms, one must
take certain higher order contributions into account. This is done by using the so-called
ι-formalism. Here we do not enter the details but merely refer the interested reader to [45,
§4.2.7].

21.3. Overview of Results of the Continuum Limit Analysis

The formalism of the continuum limit makes it possible to evaluate the EL equations
of the causal action for the regularized kernel P̃ ε(x, y) in the presence of an external
potential B. In order to avoid confusion, we point out that, a-priori, the external potential
can be chosen arbitrarily; in particular, it does need to satisfy any field equations. We find
that the EL equations of the causal action are satisfied in the continuum limit if and only
if the potential B has a specific structure and satisfies dynamical equations. Restricting
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attention to potentials of this form and complementing the Dirac equation (1.3.14) by
the dynamical equations for B, the potentials are no longer given as external potentials,
but instead one gets a coupled system of equations describing a mutual interaction of the
Dirac wave functions with classical bosonic fields. The dynamical equations for B are
referred to as the classical field equations. In this way, the classical field equations are
derived from the causal action principle.

We now outline the main results of the continuum limit analysis as obtained in [45,
Chapters 3-5]. The main input is to specify the regularized kernel P ε(x, y)) of the vacuum.
This involves:

▶ The fermion configuration in the vacuum, including the masses of the leptons and
quarks. Moreover, it is built in that the neutrinos break the chiral symmetry.

▶ The vacuum kernel should satisfy the EL equations. This poses a few constraints on
the regularization operator.

The output of the continuum limit are the following results:

▶ The structure of the interaction on the level of classical gauge theory.
▶ The gauge groups and their coupling to the fermions.
▶ The equations of linearized gravity.

In [45] the continuum limit is worked out in three steps for systems of increasing
complexity. In Chapter 3, a system formed of a sum of three Dirac seas is considered. This
configuration, referred to as a sector, can be thought of as a simplified model describing
the three generations of charged leptons (e, µ, τ). In the continuum limit, we obtain the
following results for the interaction as described by the causal action principle:

▶ The fermions interact via an axial gauge field.
▶ This axial gauge field is massive, with the mass determined by the masses of the

fermions and the regularization.
▶ We find that the field equations for the axial gauge field arise in the continuum

limit only if the number of generations equals three. For one or two generations, the
resulting equations are overdetermined, whereas for more than three generations,
the equations are under-determined (which means in particular that there is no well-
posed Cauchy problem).

▶ We obtain nonlocal corrections to the classical field equations described by integral
kernels which decay on the Compton scale. It seems that these nonlocal corrections
capture certain features of the underlying quantum field theory. But the detailed
connection has not been worked out.

▶ There is no gravitational field and no Higgs field.

In Chapter 4, a system formed as a direct sum of two sectors is considered. This
system is referred to as a block. The first sector looks as in Chapter 3. In the second
sector, however, the chiral symmetry is broken. This system can be regarded as a model
for the leptons, including the three generations of neutrinos. In the continuum limit, we
obtain the following results for the interaction as described by the causal action principle:

▶ The fermions interact via an SU(2) gauge field, which couples only to one chirality
(say, the left-handed fermions).

▶ The corresponding gauge field is again massive.
▶ Moreover, the fermions interact linearly via the linearized Einstein equations, where

the coupling constant is related to the regularization length.
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Finally, in Chapter 5 a realistic system involving leptons and quarks is considered.
To this end, one considers a direct sum of eight sectors, one of which with broken chiral
symmetry (the neutrino sector). These eight sectors form pairs, referred to as blocks.
The block containing the neutrino sector describes the leptons, whereas the other three
blocks describe the quarks. Moreover, we obtain the following results:

▶ The fermions interact via the gauge group U(1)× SU(2)L× SU(3). The correspond-
ing gauge fields couple to the fermions as in the standard model. The SU(2)-field
couples only to the left-handed component and is massive. The other gauge fields
are massless.

▶ Moreover, the fermions interact linearly via the linearized Einstein equations.
▶ The EL equations corresponding to the causal action principle coincide with those

of the standard model after spontaneous symmetry breaking, plus linearized gravity.
▶ There are scalar degrees of freedom which can be identified with the Higgs potential.

However, the corresponding dynamical equations have not yet been worked out.
▶ Again, the fermions interact linearly via the linearized Einstein equations, where

the coupling constant is related to the regularization length. Taking into account
that the causal action principle is diffeomorphism invariant, we obtain the Einstein
equations, up to possible higher order corrections in curvature (which scale in pow-
ers of (δ2 Riem), where δ is the Planck length and Riem is the curvature tensor).
Thus, including error terms, the derived Einstein equations take the form (see [45,
Theorems 4.9.3 and 5.4.4])

Rjk −
1

2
R gjk + Λ gjk = GTjk + O

(
δ4Riem2

)
(where Tjk is the energy-momentum tensor and G is the gravitational coupling con-
stant).

We conclude this section by discussing a few aspects of the derivation of these results.
We begin with the system of one sector as considered in [45, Chapter 3]. In this case, the
kernel of the fermionic projector is the sum of g ∈ N Dirac seas of masses m1, . . . ,mg, i.e.

P (x, y) =

g∑
β=1

Pmα(x, y) , (21.3.1)

where again

Pm(x, y) =

ˆ
d4k

(2π)4
(/k +m) δ

(
k2 −m2

)
Θ(−k0) e−ik(x−y) .

In order to perturb the system by gauge potentials, we first introduce the kernel of the
auxiliary fermionic projector P aux(x, y), which is obtained from P (x, y) by replacing the
sums by direct sums,

P aux(x, y) =

g⊕
β=1

Pmα(x, y)

(this means that P aux(x, y) is represented by a (4g × 4g)-matrix). The auxiliary kernel
satisfies the Dirac equation

(
i∂/x −

m1 0 0

0
. . . 0

0 0 mg

)
P aux(x, y) = 0 .
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Therefore, it can be perturbed as usual by inserting a potential B into the Dirac equation

(
i∂/x +B(x)−

m1 0 0

0
. . . 0

0 0 mg

)
P̃ aux(x, y) = 0

(where B(x) is a matrix potential acting on C4g). The perturbed kernel P̃ aux can be
computed with the methods explained in Chapters 18 and 19. Finally, we obtain the
perturbed kernel of the fermionic projector by summing over the generation indices in an
operation referred to as the sectorial projection,

P̃ (x, y) :=

g∑
α,β=1

P̃αβ (x, y) .

After introducing an ultraviolet regularization, this kernel can be analyzed in the EL
equations of the causal action principle, exactly as outlined in Section 21.2 above.

In order to gain the largest possible freedom in perturbing the system, the operator B
should be chosen as general as possible. For this reason, in [45, Chapter 4] a general
class of potential was considered, including nonlocal potentials (i.e. integral operators).
A general conclusion of the analysis is that, in order to satisfy the EL equations, the
potential B must be local, i.e. a differential operator or a multiplication operator by a
potential which may involve left- and right-handed potentials, but also bilinear, scalar or
pseudo-scalar potentials,

B(x) = χL /AR(x) + χR /AL(x) + σij Λij(x) + Φ(x) + iΓΞ(x) (21.3.2)

(where each of the potentials is a g × g-matrix acting on the generations, and Γ is the
pseudo-scalar matrix, which in physics textbooks is often denoted by γ5). Analyzing the
continuum limit for such multiplication operators, one gets the above-mentioned results.

One feature which at first sight might be surprising is that, despite local gauge sym-
metry, we get massive gauge fields. In order to understand how this comes about, we
need to consider local gauge symmetries in connection with the chiral gauge potentials
in (21.3.2). On the fundamental level of the causal fermion system, local gauge transfor-
mations arise from the freedom in choosing bases of the spin spaces (see (5.9.1) and (5.9.2)
in Section 5.9). In the present setting with four-component Dirac spinors, the local gauge
transformations take the form

ψ(x) → U(x)ψ(x) with U(x) ∈ U(2, 2) , (21.3.3)

where U(2, 2) is the group of unitary transformations of the spinors at the spacetime
point x. The causal action principle is gauge invariant in the sense that the causal action
is invariant under such gauge transformations. The group U(2, 2) can be used to describe
gravity as a gauge theory (for details see Section 4.2 or [38]). Restricting attention
to flat spacetime, the main interest is that U(2, 2) contains the gauge group U(1) of
electrodynamics as a subgroup. In other words, the causal action principle is gauge
invariant under local phase transformations

ψ(x) → e−iΛ(x) ψ(x)

with a real-valued function Λ.
The chiral potentials in (21.3.2) also give rise to generalized phase transformations.

This can be seen for example by working out the leading term to the light-cone expansion
(similar to (19.2.3) for the electromagnetic potential). One finds that the chiral gauge
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potentials lead to phase transformations of the left- and right-handed components of the
wave functions, i.e.

ψ(x) → U(x)ψ(x) with U(x) := χL e
−iΛL(x) + χR e−iΛR(x) (21.3.4)

(again with real-valued functions ΛL and ΛR). The point is that this transformation is
not unitary with respect to the spin inner product, because the chirality flips when taking
the adjoint

U∗ = χR eiΛL(x) + χL e
−iΛR(x) but U−1 = χL e

iΛL(x) + χR e−iΛR(x)

(note that χ∗
L = (1 − Γ)∗/2 = (1 + Γ)/2 = χR because Γ∗ = −Γ). Therefore, as

soon as AL ̸= AR, the generalized phase transformation U(x) in (21.3.4) is not a local
transformation of the form (21.3.3). Consequently, the local transformation in (21.3.4)
does not correspond to a symmetry of the causal action principle. Therefore, it is not a
contradiction if these gauge potentials arise in the effective field equations as mass terms.

More specifically, the relative phases between left- and right-handed potentials do
come up in the closed chain Axy = P (x, y)P (y, x), as one sees immediately from the fact
that, if P (x, y) is vectorial, then the chirality flips at the corresponding factor, i.e.

χLAxy = χLP (x, y) χRP (y, x)

→ exp
(
− i

(
ΛL(x)− ΛR(x)

))
exp

(
i
(
ΛL(y)− ΛR(y)

))
Axy .

(21.3.5)

Working out the corresponding contribution to the EL equations in the continuum limit,
one finds that the axial current and a corresponding axial mass term come up in the
effective field equations. The coupling constant and the bosonic mass depend on the
detailed form of the regularization. But they can be computed for specific choices of the
regularization, as is exemplified in [45, Chapter 3] for a hard cutoff in momentum space
and the iε-regularization.

We now move on to the system of two sectors as analyzed in [45, Chapter 4]. The
vacuum is described by a kernel of the fermionic projector P (x, y) being a direct sum
of two summands, each of which is of the form (21.3.1), where we choose the number of
generations as g = 3. Hence P (x, y) is a 8 × 8-matrix. Replacing the sums by direct
sums, one obtains the corresponding auxiliary kernel P aux(x, y) (being represented by a
24 × 24-matrix). In order to account for the observational fact that neutrinos are left-
handed particles, one must break the chiral symmetry of one of the sectors (the neutrino
sector). To this end, we assume that the regularization of the neutrino sectors is different
from that of the other sector (the charged sector) by contributions which are not left-right
invariant. The relevant length scale is denoted by δ ≳ ε. This procedure is very general
and seems the right thing to do, because the regularization effects on the scale δ are also
needed in order to obtain the correct form of the curvature term in the Einstein equations.
In fact, the obtained linearized Einstein equations involve the coupling constant G ∼ δ2.
As briefly mentioned at the end of Section 10.2, the derivation of the Einstein equations
uses the ι-formalism, which goes beyond the standard formalism of the continuum limit.

The system analyzed in [45, Chapter 5] is obtained similarly by adding direct sum-
mands to P (x, y) describing the three generations of quarks. We begin with eight sectors.
These eight sectors form pairs, giving rise to four blocks. We conclude by outlining how
this mechanism of spontaneous block formation comes about. For this purpose, we re-
turn to the gauge phases as already mentioned in (21.3.3) and (21.3.4). We already saw
in (21.3.5) that, if the kernel of the fermionic projector is vectorial, then the relative



344 21. BASICS ON THE CONTINUUM LIMIT

phases (i.e. the difference of left- and right-handed gauge phases) show up in the eigen-
values of the closed chain. Such phase factors drop out of the causal Lagrangian because
of the absolute values in (5.6.1). However, the situation becomes more involved if the
kernel of the fermionic projector is not vectorial. Indeed, expanding the vacuum kernel
in powers of the rest mass, the zero order contribution to P (x, y) is vectorial, whereas
the first order contribution is scalar (more generally, one sees from (19.1.1) that the even
orders in the mass are vectorial, whereas the odd orders are scalar). As a consequence,
the absolute values of the eigenvalues |λxyi | depend in a rather complicated way on the
chiral gauge phases. Moreover, considering a direct sum of Dirac seas, one must keep
into account that the gauge phases in the above formulas must be replaced by generalized
phases which can be described in terms of ordered exponentials of the gauge potentials.
Evaluating the causal Lagrangian (5.6.1), one gets conditions for the chiral gauge phases.
In simple terms, these conditions can be stated by demanding that matrices formed of
ordered exponentials of the gauge potentials must have degeneracies. Qualitatively speak-
ing these degeneracies mean that the left-handed gauge potential must be the same in
each block, and this condition even makes it possible to explain why such blocks form.
A more detailed and more precise explanation can be found in [45, Chapter 5].

21.4. Exercises

Exercise 21.1. This exercise explains in a simple example how the regularization of
the Hadamard expansion works.

(a) Consider the singular term of the first summand of the Hadamard expansion (19.1.1)
in Minkowski space,

lim
ν↘0

1

ξ2 − iν ξ0
(21.4.1)

(where again ξ := y − x). A simple method to remove the pole is not to take the
limit ν ↘ 0, but instead to set ν = 2ε,

1

ξ2 − 2iε ξ0
. (21.4.2)

Show that this regularization can be realized by the replacement

ξ0 → ξ0 − iε ,

up to a multiplicative error of the order(
1 + O

(ε2
ξ2

))
. (21.4.3)

The basic concept behind the regularized Hadamard expansion is to regularize all
singular terms in this way, leaving all smooth functions unchanged. This gives a
consistent formalism is one works throughout with error terms of the form (21.4.3).
Hint: This is the so-called iε-regularization introduced in [45, Section 2.4]. For
details in curved spacetime see [73].

(b) Show that for kernels written as Fourier transforms

K(x, y) =

ˆ
M

d4p

(2π)4
K̂(p) e−ip(y−x)

(with K̂ supported in say the lower half plane {p0 < 0}), the replacement rule (21.4.2)

amounts to inserting a convergence-generating factor eεp
0
into the integrand.
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Exercise 21.2. The goal of this exercise is to explore weak evaluation on the light
cone in a simple example.

(a) Show that, setting t = ξ0 and choosing polar coordinates with r = |ξ⃗|, regularizing
the pole in (21.4.1) according to (21.4.2) gives the function

1

(t− iε)2 − r2
.

(b) As a simple example of a composite expression, we take the absolute square of the
regularized function

1∣∣(t− iε)2 − r2
∣∣2 . (21.4.4)

Show that this expression is ill-defined in the limit ε↘ 0 even as a distribution.
(c) Use the identity

1

(t− iε)2 − r2
=

1

(t− iε− r)(t− iε+ r)
=

1

2r

(
1

t− iε− r
− 1

t− iε+ r

)
to rewrite the integrand in (21.4.4) in the form

1∑
p,q=0

ηp,q(t, r, ε)

(t− iε− r)p (t+ iε− r)q
,

with functions ηp,q(t, r, ε) which in the limit ε ↘ 0 converge to smooth functions.
Compute the functions ηp,q.

(d) We now compute the leading contributions and specify what we mean by “leading.”
First compute the following integrals with residues:

I0(ε) :=

ˆ ∞

−∞

1

(t− iε− r) (t+ iε− r)
dt .

Show thatˆ ∞

−∞

η1,1(t, r)

(t− iε− r)2 (t+ iε− r)2
dt = I0(ε) η2,2(r, r) + O(ε) .

Explain in which sense this formula is a special case of the weak evaluation for-
mula (21.2.5).





CHAPTER 22

Connection to Quantum Field Theory

In this chapter we give an outlook on how to get a connection between the causal
action principle and the dynamics of quantum fields. Since this direction of research is
very recent and partly work in progress, we do not enter any details but instead try to
explain a few basic concepts and ideas. Our presentation is based on the recent research
papers [61, 62, 65, 23]. Partly, our methods were already explored in the alternative
approach in [44], which is more closely tied to the analysis of the continuum limit (as
outlined in Chapter 21).

22.1. Convex Combinations of Measures and Dephasing Effects

Before beginning, we point out that in most examples of causal fermion systems
considered in this book, the measure ρ was the push-forward of the volume measure on
Minkowski space or a Lorentzian manifold. Thus we first constructed a local correlation
map (see (5.5.4))

F ε : M → F ,

and then introduced the measure ρ on F by (see (5.5.5))

ρ = (F ε)∗µM , (22.1.1)

where µM is the four-dimensional volume measure on M. In all these examples, the
measure ρ had the special property that it was supported on a smooth four-dimensional
subset of F given by (for details see Exercise 8.1)

M := supp ρ = F ε(M) .

Also when varying the measure in the derivation of the linearized field equations or in
the study of interacting systems in the continuum limit, we always restricted attention
to measures having this property (see (8.1.3) in Section 8.1 or Chapter 21). While this
procedure seems a good starting point for the analysis of the causal action principle
and gives good approximate solutions of the EL equations, we cannot expect that true
minimizers are of this particular form.

With this in mind, our strategy is to allow for more general measures on F and
to analyze the causal action principle for these general measures. As we will see, this
analysis gives rise to close connections to quantum field theory. We proceed step by step
and begin by explaining a construction which explains why going beyond push-forward
measures of the form (22.1.1) makes it possible to further decrease the causal action. In
other words, the following argument shows that minimizers of the causal action will not
have the form of a push-forward measures (22.1.1), but will have a more complicated
structure. This argument is given in more detail in [45, §1.5.3]. Assume that we are

347
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given L measures ρ1, . . . , ρL on F. Then their convex combination ρ̃ given by

ρ̃ :=
1

L

L∑
a=1

ρa (22.1.2)

is again a positive measure on F. Moreover, if the ρa satisfy the linear constraints (i.e.
the volume constraint (5.6.3) and the trace constraint (5.6.4)), then these constraints are
again respected by ρ̃.

Next, we let ρ be a minimizing measure (describing for example the vacuum). Choos-
ing unitary transformations U1, . . . , UL, we introduce the measures ρa in (22.1.2) as

ρa(Ω) := ρ
(
U−1ΩU

)
.

Thus, in words, the measures ρa are obtained from ρ by taking the unitary transforma-
tions by Ua. Since the causal action and the constraints are unitarily invariant, each of
the measures ρa is again minimizing. Let us compute the action of the convex combina-
tion (22.1.2). First, by (5.6.2),

S(ρ̃) = 1

L2

L∑
a,b=1

¨
F×F

L(x, y) dρa(x) dρb(y) .

If a = b, we obtain the action of the measure ρa which, due to unitary invariance, is equal
to the action of ρ. We thus obtain

S(ρ̃) = S(ρ)
L

+
1

L2

∑
a̸=b

¨
F×F

L(x, y) dρa(x) dρb(y) . (22.1.3)

Let us consider the contributions for a ̸= b in more detail. In order to simplify the
explanations, it is convenient to assume that the measures ρa have mutually disjoint
supports (this can typically be arranged by a suitable choice of the unitary transforma-

tions Ua). Then the spacetime M̃ := supp ρ̃ can be decomposed into L “sub-spacetimes”
Ma := supp ρa,

M̃ =M1 ∪ · · · ∪ML and Ma ∩Mb = ∅ if a ̸= b .

The Lagrangian of the last summand in (22.1.3) is computed from the fermionic pro-
jector Pa,b(x, y), where x ∈ Ma and y ∈ Mb are in different sub-spacetimes. Similar
to (5.7.10), it can be expressed in terms of the physical wave functions by (for details
see [45, Lemma 1.5.2])

Pa,b(x, y) = −
∑
i,j

|ψei(x)≻ (Ua U
∗
b )
i
j ≺ψej (y)| . (22.1.4)

The point is that this fermionic projector involves the operator product UaU
∗
b . By choos-

ing the unitary operators Ua and Ub suitably, one can arrange that this operator product
involves many phase factors. Moreover, one can arrange that, when carrying out the
sums in (22.1.4), these phases cancel each other due to destructive interference. In this
way, the kernel P (x, y) can be made small if x and y lie in different sub-spacetimes. As
a consequence, the last summand in (22.1.3) can be arranged to be very small. Taking
into account the factor 1/N in the first summand in (22.1.3), also the causal action of ρ̃
becomes small. Clearly, this argument applies only if the number L of sub-spacetimes
is not too large, because otherwise it becomes more and more difficult to arrange de-
structive interference for all summands of the sum in (22.1.3) (estimating the optimal
number L of subsystems is a difficult problem which we do not enter here). Also, we
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supp ρ̃

F

supp ρ̃

F

Figure 22.1. A measure obtained by fragmentation (left) and by holo-
graphic mixing with fluctuations (right).

cannot expect that the simple ansatz (22.1.2) will already give a minimizer. But at least,
the above argument explains why it is too naive to think of a minimizing measure as being
the push-forward measure of a volume measure under a smooth local correlation map.
Instead, a minimizing measure could be composed of a large number of sub-spacetimes.

In the above consideration, it is crucial that the kernels Pa,b(x, y) for a ̸= b are very
small due to decoherence effects. It is a subtle point how small these kernels are. If
they are so small that we may assume that they vanishes, then this means that the sub-
spacetimes do not interact with each other. Therefore, one can take the point of view that,
in order to describe all physical phenomena, it suffices to restrict attention to one sub-
spacetime. The appearance of many sub-spacetimes which are completely decoherent is
an intriguing mathematical effect which may have interesting philosophical implications,
but it is of no relevance as far as physical predictions are concerned. For this reason, here
we shall not discuss these decoherent sub-spacetimes further. Also, we leave the question
open whether they really occur for minimizing measures. Instead, we take the point of
view that, in case our minimizing measure consists of several decoherent sub-spacetimes,
we restrict it to one sub-spacetime and denote the resulting measure by ρ.

In order to understand the dynamics of a causal fermion system, it is more interesting
to consider convex combinations of measures which are not completely decoherent. In
order to explain the resulting effects in a simple example, suppose we choose electromag-
netic potentials A1, . . . , AL in Minkowski space (which do not need to satisfy Maxwell’s
equations). Constructing the regularized kernels P εa (x, y) (as explained in Chapters 18
and 21), one gets corresponding causal fermion systems described by measures ρa. Ab-
stractly, these measures can be written similar as explained in the context of the linearized
field equations (see (8.1.9) in Section 8.1) as

ρ̃ =
L∑

a=1

(Fa)∗
(
fa ρ

)
, (22.1.5)

where Fa is the corresponding local correlation map, and fa is a weight function. Since
these measure are obtained from each other by small perturbations, it seems a good
idea to depict the corresponding supports Ma := supp ρa as being close together (see
Figure 8.1 (b)). The convex combination of these measures (22.1.2) is referred to as a
measure with fragmentation (see [49, Sections 1 and 5] or [51, Section 5]). The reason
why we consider convex combinations (rather than general linear combinations) is that
we need to preserve the positivity of the measure. In the limit when N gets large, the
fragmented measure ρ̃ goes over to a measure with enlarged support (see Figure 8.1 (c)).
Integrating with respect to this measure also involves an integration over the “internal
degrees of freedom” corresponding to the directions which are transverse to M := supp ρ
(see the left of Figure 22.1). This integral with respect to ρ̃ bears similarity to the path
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integral formulation of quantum field theory if one identifies the above “internal degrees
of freedom” with field configurations.

22.2. The Mechanism of Holographic Mixing

For the mathematical description of the interacting measure ρ̃, working with frag-
mented measures as introduced in the previous section does not seem to be the best
method. One difficulty is that it is a-priori not clear how large the number L of frag-
ments is to be chosen. Moreover, mechanisms where L changes dynamically are difficult
to implement, at least perturbatively. For these reasons, it seems preferable to describe ρ̃
with a different method, referred to as holographic mixing. At first sight, this method
seems very different from fragmentation. However, as we will explain at the very end
of this section, fragmentation also allows for the description of fragmented measures, at
least if the construction is carried out in sufficiently large generality. We now explain the
general idea and a few related constructions.

Let (H,F, ρ) be a causal fermion system (for example describing the Minkowski vac-
uum). The wave evaluation operator Ψ introduced in (5.7.11) is a mapping which to every
vector in H associates the corresponding physical wave function (for more details see for
example [45, §1.1.4])

Ψ : H → C0(M,SM) , u 7→ ψu ,

where the physical wave function ψu is again given by (5.7.9). Evaluating at a fixed
spacetime point gives the mapping

Ψ(x) : H → SxM , u 7→ ψu(x) .

Working with the wave evaluation operator makes it possible to write the kernel of the
fermionic projector (5.7.10) in the short form (for a detailed proof see [45, Lemma 1.1.3])

P (x, y) = −Ψ(x)Ψ(y)∗ .

The general procedure of holographic mixing is to replace the wave evaluation operator
by a linear combination of wave evaluation operators Ψa,

Ψ̃ :=

L∑
a=1

Ψ̃a , (22.2.1)

which in turn are all obtained by perturbing Ψ (more details see below). Now we form
the corresponding local correlation map,

F̃ : M → F , F̃ (x) := −Ψ̃(x)∗ Ψ̃(x) ,

and take the corresponding push-forward measure,

ρ̃ := F̃∗ρ . (22.2.2)

In this way, we have constructed a new measure ρ which incorporates the perturbations
described all the wave evaluation operators Ψ̃1, . . . , Ψ̃L. However, in contrast to the
convex combination of measures (22.1.5), the support of the measure (22.2.2) in general

does not decompose into several fragments. In fact, if the mapping F̃ is continuous,
injective and closed, the support of ρ̃ will again be homeomorphic to M . In other words,
the topological structure of spacetime remains unchanged by the above procedure.

More concretely, the perturbed wave evaluation operators Ψa can be obtained as
follows. Suppose that the causal fermion system (H,F, ρ) was constructed similar as
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in Section 5.5 from a system of Dirac wave functions satisfying for example the Dirac
equation (

D −m
)
ψ = 0 .

Then one can perturb the system by considering the Dirac equation in the presence of
classical potentials B1, . . . ,BL, (

D +Ba −m
)
ψ̃a = 0 . (22.2.3)

The corresponding wave evaluation operators Ψ̃a are built up of all these Dirac solutions.
In this way, the resulting wave evaluation operator (22.2.1) involves all the classical

potentials Ba. Qualitatively speaking, the resulting spacetime M̃ can be thought of as
being in a “superposition” of all these potentials. But this analogy does not carry over
to a more technical level.

As already mentioned after (22.2.2), taking the push-forward with respect to a map-
ping F does not change the topological structure of spacetime. Even more, if F is smooth
and varies only on macroscopic scales, then all microscopic structures of spacetime re-
main unchanged. This does not account for the picture of a measure ρ̃ which accounts
for additional “internal degrees of freedom” as shown in Figure 8.1 (c) and the left of
Figure 22.1. In order to allow the description of such measures, one needs to consider
mappings F which are not smooth but instead “fluctuate” on a microscopic scale (as is
shown symbolically on the right of Figure 22.1). If we allow for such fluctuations even on
the Planck scale, then the procedure (22.2.1) does allow for the description of all mea-
sures described previously with fragmentation (22.1.5). This considerations explains why

the wave evaluation operators Ψ̃a should be constructed not only by introducing classical
potentials (22.2.3), but in addition by introducing small-scale fluctuations. This can be
realized as follows. We choose operators Aa on H which add up to the identity,

N∑
a=1

Aa = 1 ,

and then decompose the local correlation operator by multiplying from the right by Aa,

Ψa := ΨAa . (22.2.4)

In the second step, the physical wave functions in Ψa are perturbed by classical poten-
tials Aa, again by considering the Dirac equation (22.2.3). In the last step, we again
take the sum of the wave evaluation operators (22.2.1) and form the push-forward mea-
sure (22.2.2). This procedure is referred to as holographic mixing.

The resulting wave evaluation operator Ψ̃ involves both the operators Aa and the
potentials Ba. Similar as explained in (22.1.4) in the context of fragmentation, the oper-
ators Aa enter the kernel of the fermionic projector,

P (x, y) = −
N∑

a,b=1

|ψei(x)≻ (AaA
∗
b)
i
j ≺ψej (y)| .

In this way, one can build phase factors into this kernel, possibly giving rise to destructive
interference. In other words, the wave evaluation operator Ψ̃ is a sum of many, partly
decoherent components. The name “holographic mixing” is inspired by the similarity to
a hologram in which several pictures are stored, each of which becomes visible only when
looking at the hologram in the corresponding coherent light.
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The above ideas and constructions are implemented in the recent paper [23] in an
enhanced way. The main improvement compared to the above description is to build
in current conservation. Indeed, forming the wave evaluation as sum of terms (22.2.1),
each being a solution of a different Dirac equation (22.2.3) has the disadvantage that the
conservation of the Dirac current (which holds for each wave function ψa) no longer holds
for the sum. This is not satisfying, also because we know from our general setup that,
even in the setting of general quantum spacetimes, there should be a conserved inner
product (namely the commutator inner product introduced in Section 9.4). In order to
resolve this shortcoming, it is preferable to work with a single Dirac equation of the form(

D +B−m
)
Ψ̃ = 0 .

This is indeed possible if the operator B is chosen as an integral operator with integral
kernel of the form

B(x, y) =

N∑
a=1

Ba

(x+ y

2

)
La(y − x) , (22.2.5)

where Ba are again classical potentials and La are certain symmetric kernels. In this
description, there is a conserved current and a corresponding conserved inner product on
the Dirac solutions which has a similar structure as the commutator inner product (9.4.8).
We refer the interested reader for detailed explanations to [23]. We finally remark that
the nonlocal operator B of the form (22.2.5) composed of many potentials Ba was also
derived in [52] by a thorough analysis of the linearized field equations for causal fermion
systems describing Minkowski space.

22.3. A Distinguished Quantum State

The constructions outlined in the previous sections make it possible to construct gen-
eral measures ρ̃ which go beyond measures describing a classical spacetime with classical
bosonic fields. The EL equations for these measures can be understood as equations de-
scribing the dynamics in these generalized spacetimes. With this in mind, the remaining
question is how to interpret the resulting measure ρ̃. Can it be understood in terms of an
interaction via quantum fields? Or, in more physical terms, what does the measure ρ̃ tell
us about measurements performed in the corresponding spacetime? In order to address
these questions in a systematic way, in [62] a distinguished quantum state is constructed.
It describes how the interacting measure ρ̃ looks like if measurements are performed at
a given time using the objects of a causal fermion describing the vacuum. This “mea-
surement” can also be understood more generally as a “comparison” of the measures ρ̃
and ρ at time t. In technical terms, the quantum state, denoted by ωt, is a positive linear
functional on the algebra of fields A of the non-interacting spacetime,

ω : A → C with ω(A∗A) ≥ 0 for all A ∈ A . (22.3.1)

Here we use the language of algebraic quantum field theory (as introduced for example
in the textbooks [4, 19, 132]) which seems most suitable for describing quantum fields
in the needed generality. This notion of quantum state is illustrated in Exercise 22.1.

We now outline the construction of the quantum state as given in [62]. We are given

two causal fermion systems (H̃, F̃, ρ̃) and (H,F, ρ) describing the interacting system and
the vacuum, respectively. Our goal is to “compare” these causal fermion systems at a
given time. In order to specify the time, we choose sets Ω̃ ⊂ M̃ := supp ρ̃ and Ω ⊂M :=
supp ρ which can be thought of as the past of this time in the respective spacetime. We
want to relate the two causal fermions systems with the help of the nonlinear surface layer
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integral (9.6.1) introduced in Section 9.6. However, we need to take into account that the

causal fermion systems are defined on two different Hilbert spaces H̃ and H. Therefore,
in order to make sense of the nonlinear surface layer integral, we need to identify the
Hilbert spaces H and H̃ by a unitary transformation denoted by V ,

V : H → H̃ unitary .

Then the operators in F̃ can be identified with operators in F by the unitary transfor-
mation,

F = V −1 F̃ V .

An important point to keep in mind is that this identification is not canonical, but it
leaves the freedom to transform the operator V according to

V → V U with U ∈ L(H) unitary . (22.3.2)

The freedom in choosing U must be taken into account in the nonlinear surface layer
integral, which now takes the form

γΩ̃,Ω(ρ̃,Uρ)

=

ˆ
Ω̃
dρ̃(x)

ˆ
M\Ω

dρ(y) L(x,UyU−1)−
ˆ
Ω
dρ(x)

ˆ
M̃\Ω̃

dρ̃(y) L(UyU−1, y) .

The method for dealing with the freedom in choosing U is to integrate over the unitary
group. Moreover, it is preferable to consider the exponential of the nonlinear surface layer

integral. This leads us to introduce the partition function ZΩ̃,Ω by

ZΩ̃,Ω
(
β, ρ̃

)
=

 
G

exp
(
β γΩ̃,Ω

(
ρ̃,Uρ

))
dµG(U) , (22.3.3)

where µG is the normalized Haar measure on the unitary group (in order for this Haar
measure to be well-defined, one needs to assume that the Hilbert space H is finite-
dimensional, or else one must exhaust H by finite-dimensional subspaces).

In analogy to the path integral formulation of quantum field theory, the quantum
state is obtained by introducing insertions into the integrand of the partition function,
i.e. symbolically,

ω(· · · ) = 1

ZΩ̃,Ω
(
β, ρ̃

)  
G

(· · · ) exp
(
β γΩ̃,Ω

(
ρ̃,Uρ

))
dµG(U) . (22.3.4)

These insertions have the structure of surface layer integrals involving linearized solutions
in the vacuum spacetime. Likewise, the argument of the state on the left side is formed
of operators which are parametrized by the same linearized solutions which enter the
insertions on the right side. More precisely, they are operators of the field algebra A, being
defined as the ∗-algebra generated by the linearized solutions, subject to the canonical
commutation and anti-commutation relations. The commutation relations involve the
causal fundamental solution of the linearized solutions which can be constructed with
energy methods as outlined in Section 14 (for details see [22]). Likewise, for the anti-
commutation relations, we use the causal fundamental solutions of the dynamical wave
equation mentioned at the end of Section 9.4 in (9.4.7) (for more details see [64]). The
positivity property of the state is ensured by the specific form of the insertions. We refer
the interested reader to [62]. We remark that, as is worked out in [65], the above quantum
state allows for the description of general entanglement. Moreover, the dynamics of the
quantum state is studied in [23].
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We finally note that the definition of the partition function (22.3.3) and of the in-
sertions in the definition of the state (22.3.4) bears a similarity with the path integral
formulation of quantum theory (see for example [110, 93]). However, this similarity
does not seem to go beyond formal analogies. In particular, one should keep in mind
that, in contrast to the integral over field configurations in the path integral formulation,
in (22.3.3) one integrates over the unitary transformations arising from the freedom in

identifying the Hilbert spaces H and H̃ (see (22.3.2)). This is a major conceptual dif-
ference which, at least at present, prevents us from getting a tighter connection to path
integrals and the functional integral approach.

22.4. Exercises

Exercise 22.1. The purpose of this exercise is to get familiar with the notion of
a quantum state as defined by (22.3.1). In quantum mechanics, the system is usually
described by a unit vector ψ in a Hilbert space (H, ⟨.|.⟩). An observable corresponds to
a symmetric operator A ∈ L(H) on this Hilbert space (for simplicity, we here restrict
attention to bounded operators). The expectation value of a measurement is given by
the expectation ⟨ψ|A|ψ⟩.
(a) Show that the linear operator W ∈ L(H) defined by

Wϕ = ⟨ϕ|ψ⟩ ψ or, in bra/ket notation, W = |ψ⟩⟨ψ| (22.4.1)

is a projection operator (i.e. it is symmetric and idempotent). Show that the expec-
tation value of a measurement can be written as

⟨ψ|A|ψ⟩ = trH
(
WA

)
.

(b) Show that the mapping
ω : A 7→ trH

(
WA

)
(22.4.2)

is a quantum state in the sense (22.3.1) (here for the algebra A we take the algebra
of observables, i.e. the set of all operators obtained from all observables by taking
products and linear combinations).

(c) Let ψ1 and ψ2 be two distinct, non-zero vectors of H. Show that, choosing

W := |ψ1⟩⟨ψ1|+ |ψ2⟩⟨ψ2| , (22.4.3)

the mapping (22.4.2) again defines a quantum state in the sense (22.3.1). Show that
this quantum state cannot be written in the form (22.4.1). One refers to (22.4.1) as
a pure state, whereas (22.4.3) is a mixed state.

(d) Is the quantum state in (c) properly normalized in the sense that ω(1) = 1? If not,
how can this normalization be arranged?



APPENDIX A

The Spin Coefficients

In this appendix, we verify by explicit computation that the matrices Ej containing
the spin coefficients as given by (4.2.26),

Ej =
i

2
Γ ∂jΓ− i

16
Tr (Gm∇jG

n)GmGn +
i

8
Tr (ΓGj ∇mG

m) Γ , (A.0.1)

have the following behavior under gauge transformations:

Ej → UEjU
−1 for U(1) gauge transformations (A.0.2)

Ej → UEjU
−1 + iU(∂jU

−1) for SU(2, 2) gauge transformations (A.0.3)

Under U(1) gauge transformations, all the terms in (A.0.1) remain unchanged because U
and its partial derivatives commute with Γ as well as with the Gj . Therefore, the rela-
tion (A.0.2) is obvious. Thus it remains to consider SU(2, 2) gauge transformations. Our
goal is to verify (A.0.3) for a fixed spacetime point p.

We decompose the gauge transformation U as U = U2 U1 with

U1(x) = U(p)

U2(x) = U(x) U−1(p) .

Being constant, the first transformation clearly satisfies the transformation law (A.0.3).
Therefore, it suffices to consider a gauge transformation U with U(p) = 1. Then (A.0.3)
can be written as

Ẽj = Ej − i∂jU . (A.0.4)

We now compute the transformation law of each of the summands in (A.0.1) after
each other:

(1)
i

2
Γ ∂jΓ

(i) odd transformations:

i

2
Γ̃ ∂jΓ̃ =

i

2
Γ (∂jΓ + [∂jU,Γ])

=
i

2
Γ ∂jΓ +

i

2
Γ
(
(∂jU) Γ− Γ (∂jU)

)
=

i

2
Γ ∂jΓ− iΓΓ ∂jU

=
i

2
Γ ∂jΓ− i∂jU

(ii) even transformations:

i

2
Γ̃ ∂jΓ̃ =

i

2
Γ
(
∂jΓ +

[
∂jU,Γ

])
=

i

2
Γ ∂jΓ

Thus for odd transformations, we get the correct transformation law, whereas for
even transformations the desired term i∂jU is still missing.

355
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(2) − i

16
Tr(Gm∇jG

n)GmGn

(i) odd transformations:

− i

16
Tr

(
G̃m∇jG̃

n
)
G̃mG̃n

= − i

16
Tr (Gm∇jG

n)GmGn −
i

16
Tr

(
Gm

[
∂jU,G

n
])
GmGn (A.0.5)

= − i

16
Tr (Gm∇jG

n)GmGn , (A.0.6)

where we used that Gm, Gn and ∂jU are odd, implying that the trace in the
last summand in (A.0.5) vanishes.

(ii) ∂jU = iσkl for for arbitrary indices k,l:

− i

16
Tr

(
G̃m∇jG̃

n
)
G̃mG̃n

= − i

16
Tr (Gm∇jG

n)GmGn −
i

16
Tr

(
Gm

[
iσkl, G

n
])
GmGn

= − i

16
Tr (Gm∇jG

n)GmGn −
i

16
Tr ([Gn, Gm] iσkl)GmGn

= − i

16
Tr (Gm∇jG

n)GmGn −
i

8
Tr (σmn iσkl)σmn

= − i

16
Tr (Gm ∇jG

n)GmGn − i∂jU

(iii) ∂jU = Γ:

− i

16
Tr

(
G̃m ∇jG̃

n
)
G̃mG̃n

= − i

16
Tr (Gm ∇jG

n)GmGn −
i

16
Tr

(
Gm

[
Γ, Gn

])
GmGn

= − i

16
Tr (Gm ∇jG

n)GmGn −
i

16
Tr (Γ [Gn, Gm])GmGn

= − i

16
Tr (Gm∇jG

n)GmGn ,

because Tr (Γσmn) = 0 for all m,n.
Thus we get the correct transformation law for bilinear transformations ∂jU = iσkl.

(3)
i

8
Tr (ΓGj ∇mG

m) Γ

i

8
Tr

(
Γ̃ G̃j ∇mG̃

m
)
Γ̃ =

i

8
Tr (ΓGj ∇mG

m) Γ +
i

8
Tr (ΓGj [∂mU,G

m]) Γ

=
i

8
Tr (ΓGj ∇mG

m) Γ +
i

8
Tr (∂mU [Gm,ΓGj ]) Γ

=
i

8
Tr (ΓGj ∇mG

m) Γ− i

4
Tr

(
∂mU Γ δmj

)
Γ

=
i

8
Tr (ΓGj ∇mG

m) Γ− i

4
Tr

(
(∂jU) Γ

)
Γ ,

where we used the relations[
Gj ,ΓGk

]
= −Γ

{
Gj , Gk

}
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as well as the anti-commutation relations for Dirac matrices. We again distinguish
different cases:
(i) ∂jU is odd or ∂jU = iσkl:

i

8
Tr

(
Γ̃ G̃j ∇mG̃

m
)
Γ̃ =

i

8
Tr (ΓGj ∇mG

m) Γ

(ii) ∂jU = Γ:

i

8
Tr

(
Γ̃ G̃j ∇mG̃

m
)
Γ̃ =

i

8
Tr (ΓGj ∇mG

m) Γ− i∂jU

Hence we get the correct transformation law if ∂jU = Γ.

Adding all the terms gives the desired transformation law (A.0.4).





Bibliography

1. H. Amann and J. Escher, Analysis II, Birkhäuser Verlag, Basel, 2008.
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30. D.Z. Doković and N.Q. Thang, Conjugacy classes of maximal tori in simple real algebraic groups

and applications, Canad. J. Math. 46 (1994), no. 4, 699–717, correction: Canad. J. Math. 46 (1994),
no. 6, 1208–1210.

31. J. Elstrodt, Maß- und Integrationstheorie, fourth ed., Springer-Verlag, Berlin, 2005, Grundwissen
Mathematik.

32. L.C. Evans, Partial Differential Equations, second ed., Graduate Studies in Mathematics, vol. 19,
American Mathematical Society, Providence, RI, 2010.

33. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced
Mathematics, CRC Press, Boca Raton, FL, 1992.

34. C.L. Fefferman, A sharp form of Whitney’s extension theorem, Ann. of Math. (2) 161 (2005), no. 1,
509–577.

35. F. Finster, Derivation of field equations from the principle of the fermionic projector, arXiv:gr-
qc/9606040 (unpublished preprint in German) (1996).

36. , Light-cone expansion of the Dirac sea with light cone integrals, arXiv:funct-an/9707003,
unpublished preprint (1997).

37. , Definition of the Dirac sea in the presence of external fields, arXiv:hep-th/9705006, Adv.
Theor. Math. Phys. 2 (1998), no. 5, 963–985.

38. , Local U(2, 2) symmetry in relativistic quantum mechanics, arXiv:hep-th/9703083, J. Math.
Phys. 39 (1998), no. 12, 6276–6290.

39. , Light-cone expansion of the Dirac sea to first order in the external potential, arXiv:hep-
th/9707128, Michigan Math. J. 46 (1999), no. 2, 377–408.

40. , Light-cone expansion of the Dirac sea in the presence of chiral and scalar potentials,
arXiv:hep-th/9809019, J. Math. Phys. 41 (2000), no. 10, 6689–6746.

41. , The Principle of the Fermionic Projector, hep-th/0001048, hep-th/0202059, hep-
th/0210121, AMS/IP Studies in Advanced Mathematics, vol. 35, American Mathematical Society,
Providence, RI, 2006.

42. , A variational principle in discrete space-time: Existence of minimizers, arXiv:math-
ph/0503069, Calc. Var. Partial Differential Equations 29 (2007), no. 4, 431–453.

43. , Causal variational principles on measure spaces, arXiv:0811.2666 [math-ph], J. Reine
Angew. Math. 646 (2010), 141–194.

44. , Perturbative quantum field theory in the framework of the fermionic projector,
arXiv:1310.4121 [math-ph], J. Math. Phys. 55 (2014), no. 4, 042301.

45. , The Continuum Limit of Causal Fermion Systems, arXiv:1605.04742 [math-ph], Fundamen-
tal Theories of Physics, vol. 186, Springer, 2016.

46. , The chiral index of the fermionic signature operator, arXiv:1404.6625 [math-ph], Math. Res.
Lett. 24 (2017), no. 1, 37–66.

47. , Causal fermion systems: A primer for Lorentzian geometers, arXiv:1709.04781 [math-ph],
J. Phys.: Conf. Ser. 968 (2018), 012004.

48. , Causal fermion systems: Discrete space-times, causation and finite propagation speed,
arXiv:1812.00238 [math-ph], J. Phys.: Conf. Ser. 1275 (2019), 012009.

49. , Positive functionals induced by minimizers of causal variational principles, arXiv:1708.07817
[math-ph], Vietnam J. Math. 47 (2019), 23–37.

50. , The causal action in Minkowski space and surface layer integrals, arXiv:1711.07058 [math-
ph], SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), no. 091, 83pp.

51. , Perturbation theory for critical points of causal variational principles, arXiv:1703.05059
[math-ph], Adv. Theor. Math. Phys. 24 (2020), no. 3, 563–619.

https://arxiv.org/abs/2112.10656
https://arxiv.org/abs/1404.1401
https://arxiv.org/abs/gr-qc/9606040
https://arxiv.org/abs/gr-qc/9606040
https://arxiv.org/abs/funct-an/9707003
https://arxiv.org/abs/hep-th/9705006
https://arxiv.org/abs/hep-th/9703083
https://arxiv.org/abs/hep-th/9707128
https://arxiv.org/abs/hep-th/9707128
https://arxiv.org/abs/hep-th/9809019
https://arxiv.org/abs/hep-th/0001048
https://arxiv.org/abs/hep-th/0202059
https://arxiv.org/abs/hep-th/0210121
https://arxiv.org/abs/hep-th/0210121
https://arxiv.org/abs/math-ph/0503069
https://arxiv.org/abs/math-ph/0503069
https://arxiv.org/abs/0811.2666
https://arxiv.org/abs/1310.4121
https://arxiv.org/abs/1605.04742
https://arxiv.org/abs/1404.6625
https://arxiv.org/abs/1709.04781
https://arxiv.org/abs/1812.00238
https://arxiv.org/abs/1708.07817
https://arxiv.org/abs/1708.07817
https://arxiv.org/abs/1711.07058
https://arxiv.org/abs/1711.07058
https://arxiv.org/abs/1703.05059
https://arxiv.org/abs/1703.05059


BIBLIOGRAPHY 361

52. , Solving the linearized field equations of the causal action principle in Minkowski space,
arXiv:2304.00965 [math-ph], Adv. Theor. Math. Phys. 27 (2023), no. 7, 2087–2217.

53. F. Finster and P. Fischer, A canonical construction of the extended Hilbert space for causal fermion
systems, in preparation.

54. F. Finster, M. Frankl, and C. Langer, The homogeneous causal action principle on a compact domain
in momentum space, arXiv:2205.04085 [math-ph], Adv. Calc. Var. 17 (2024), no. 3, 559–585.

55. F. Finster and A. Grotz, The causal perturbation expansion revisited: Rescaling the interacting Dirac
sea, arXiv:0901.0334 [math-ph], J. Math. Phys. 51 (2010), no. 7, 072301.

56. , A Lorentzian quantum geometry, arXiv:1107.2026 [math-ph], Adv. Theor. Math. Phys. 16
(2012), no. 4, 1197–1290.

57. F. Finster, A. Grotz, and D. Schiefeneder, Causal fermion systems: A quantum space-time emerging
from an action principle, arXiv:1102.2585 [math-ph], Quantum Field Theory and Gravity (F. Finster,
O. Müller, M. Nardmann, J. Tolksdorf, and E. Zeidler, eds.), Birkhäuser Verlag, Basel, 2012, pp. 157–
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Notation Index – in order of appearance

(M, ⟨., .⟩) – Minkowski space, 4
⟨., .⟩ – Minkowski metric, 5
gjk – Minkowski metric in components, 5
L – light cone, 5
I – interior light cone, 5
J – closed light cone, 5
J∨, J∧ – closed future and past light cone, 5
I∨, I∧ – open future and past light cone, 5
□ – scalar wave operator, 7
γj – Dirac matrix, 7

/u, ∂/ – Feynman dagger, 8
≺.|.≻,≺.|.≻x – spin inner product, 8, 62, 98
(.|.), (.|.)m – scalar product on Dirac solutions

in Minkowski space, 9, 256
B – external potential, 9
H – Dirac Hamiltonian, 10, 77
<.|.> – spacetime inner product, 10, 70, 237
Γ – pseudo-scalar matrix, 12, 65
ϵjklm – totally anti-symmetric symbol, 12, 163
χL, χR – chiral projectors, 12
SM – spinor bundle in Minkowski space, 12
C∞

sc (M, SM) – spatially compact spinorial
wave functions, 13, 77, 272

C∞
0 (M, SM) – spinorial wave functions of

compact support, 13
d(x, y) – metric, 19
O – topology, 20
A – closure of A, 21
◦
A – interior of A, 21
∥.∥ – norm, 22
⟨.|.⟩ – complex scalar product, 23
δij – Kronecker delta, 23
(L(V,W ), ∥.∥) – Banach space of linear

bounded operators, 24
∥.∥, ∥.∥H – sup-norm, operator norm, 24, 95
A∗ – adjoint of operator, 26
I⊥ – orthogonal complement of I ⊂ H, 26
M – σ-algebra of measurable sets, 27
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C0(M,SM) – continuous wave functions in
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s – Lagrange parameter in Euler-Lagrange
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div – divergence in smooth spacetime, 147
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Φτ – variation of spacetime, 159

γΩ
ρ – conserved one-form, 161
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solution v, 163
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Qdyn(x, y) – kernel in dynamical wave equation,
166

σΩ
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sx – Euclidean sign operator, 185

Dx – spin connection of causal fermion system,
188
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186
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m(ℓ) – ℓth moment measure, 209
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k̃m – causal fundamental solution, 236
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m – causal Green’s operators, 236, 307
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S – fermionic signature operator, 256
C∞

sc,0(M × I, SM) – space of families of
spinorial wave functions, 258

(.|.)I – scalar product on families of Dirac
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parameter, 259
p – operator of integration over mass
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space, 271
s∨m, s

∧
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U t′,t – time evolution operator, 272
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296
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S(l) – mass expansion of Sa, 307
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Banach-Alaoglu theorem, 198
basis

of Hilbert space, 23
orthonormal, 23

Bessel’s inequality, 24
Borel algebra, 29, 46
Borel measure, 29

locally finite, 29
regular, 29, 95

Borel set, 29
bra/ket notation, 25

Cauchy problem, 76
for linear symmetric hyperbolic system, 223
for Dirac equation, 76
in globally hyperbolic spacetime, 240
strong solution, 250
weak solution, 252

Cauchy sequence, 22
Cauchy surface, 76
Cauchy-Schwarz inequality, 23
causal action, 94

two-point, 103
causal action principle, 94

finite-dimensional setting, 95, 197
infinite-dimensional setting, 95
reduced, 129

reduced for regular systems, 129
causal curve, 6, 76
causal fermion system

basic definition, 90
in presence of external potential, 335
regular, 129
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analysis in the, 339
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energy-momentum tensor, 62
equivalence principle, 61, 108
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Euler equations equations
as symmetric hyperbolic system, 243

Euler-Lagrange equations
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functional calculus, 56
for causal fundamental solution, 297
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gauge, 63
gauge field
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gauge phase, 102
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gauge symmetry

U(2, 2), 63
gauge transformation

perturbative description, 298
gauge-covariant derivative, 64
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Gauß divergence theorem
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Grönwall estimate, 231, 243, 249
Gram matrix, 182
Grassmann manifold, 53, 59
Green’s formula

for causal variational principle, 251
Green’s operator

advanced, 271, 307
causal, 236, 254, 271, 319
causal in globally hyperbolic spacetime, 241
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retarded, 271, 306, 307

Hadamard expansion
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in curved spacetime, 311
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Hessian of ℓ, 175
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hyperbolicity condition

counter example, 253
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in linearized field equations, 143, 250
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inner solution

conservation law for, 163
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integration, 27
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computational conventions, 143
for testing, 135
for varying, 143

jet derivative, 135, 143

Klein-Gordon equation
in the electromagnetic field, 7
in the vacuum, 7

Kronecker delta, 23
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of compact range, 142

Laplacian, 59
Lebesgue’s dominated convergence theorem, 30
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for causal variational principle, 248
for linear symmetric hyperbolic system, 226
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light-cone expansion, 304
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of the Green’s operator
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regularized, 337, 344
simple examples, 318
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linearization, 141

of nonlinear partial differential equation, 154
of the Euler-Lagrange equations, 142

linearized field equations, 143
Lippmann-Schwinger equation, 283, 292
local correlation map, 93, 106
local correlation operator, 87, 90, 93, 105
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for causal variational principle, 245
local gauge freedom

U(2, 2), 63
local gauge invariance, 107
local gauge transformation, 15, 108, 342

chiral, 343
local inertial frame, 62
local trace, 126
Lorentz group, 6

orthochronous proper, 6
Lorentz invariance, 6

of Dirac equation, 10
principle of, 7

Lorentz transformation, 10
Lorentzian manifold, 61
lower semi-continuity, 125
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differentiable, 39
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topological, 38

map
differentiable, 39

mass expansion, 307
mass oscillation property, 258, 267, 268
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strong, 259
strong in Minkowski space, 278
strong in presence of external potential, 284
weak, 259
weak in presence of external potential, 285

mass shell, upper and lower, 14
Maxwell equations

as symmetric hyperbolic system, 242
measure

absolutely continuous, 206
Borel, 29
concentrated on, 207
convex combination, 348
correlation, 169
critical, 135
equivariant, 136
Lebesgue decomposition, 207, 219

locally finite, 133
moment, 209
mutually singular, 207
push-forward, 31, 47, 93, 154
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of causal fermion system, 188
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microlocal analysis, 301
microlocality, 109
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equivariant, 136
of singular support, 124, 131
with respect to variations of finite volume,

126
Minkowski metric, 5
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monotone convergence theorem, 30
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negative-energy solutions of Dirac equation, 17
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Noether’s theorem, 158
Noether-like theorem, 158, 171
non-locality, 108
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mass, 265
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of Dirac type, 63
of finite rank, 26, 55
of multiplication, 46, 49, 60
selfadjoint, 9, 57
symmetric, 8, 26, 55, 57
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operator norm, 24
ordered exponential, 291
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orthogonal complement, 26
orthogonal projection, 55
orthogonal projection operator, 56
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pair creation, 15



SUBJECT INDEX 373

partition function, 170, 353
past

in causal fermion system, 96
in Minkowski space, 5

Pauli exclusion principle, 15, 108
perturbation expansion

of causal Green’s operators, 294
of fermionic projector, 295

perturbation theory, 293
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Picard iteration, 292
Plancherel’s theorem, 37
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polarization, 3
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principal value integral, 49, 279
principle of causality, 107
principle of locality, 108
principle of the fermionic projector, 101
probability density, 3

in curved spacetime, 70
pseudo-scalar matrix, 12, 65

quantum field theory, 347
quantum spacetime, 144
quantum state, 352, 354

mixed, 354
pure, 354

Radon measure, 29
Radon-Nikodym theorem, 206, 220
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regularization operator, 92, 335
regularization parameter, 338
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Riemannian fermion system, 183, 192, 193
Riesz representation theorem, 198, 219, 220
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on Dirac solutions in curved spacetime, 69
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scalar product space, 23
scalar wave equation

as symmetric hyperbolic system, 242
scattering theory, 283
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Schwartz norm, 33
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of causal action, 176, 182
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sign operator, 185
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for linear symmetric hyperbolic system, 226,
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of causal fermion system, 91
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singular, 129

spectral decomposition, 55
spectral mapping theorem, 56, 60
spectral theorem

for bounded normal operators, 57
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spin derivative, 67
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symmetric hyperbolic system
connection to causality, 17
linear, 223

symmetry
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