An Introductory Course on Causal Fermion Systems

Felix Finster, Sebastian Kindermann and Jan-Hendrik Treude

last modified on May 12, 2023
Comments are welcome!
Felix Finster
Fakultät für Mathematik
Universität Regensburg
Regensburg, Germany
finster@ur.de

Sebastian Kindermann
Sebastian.Kindermann@web.de

Jan-Hendrik Treude
Fachbereich Mathematik und Statistik
Universität Konstanz
Konstanz, Germany
jan-hendrik.treude@uni-konstanz.de
Preface

This book is intended as an easily accessible introduction to the theory of causal fermion systems. After giving the physical and mathematical background (Part 1), the theory of causal fermion systems is introduced (Part 2). We proceed by providing mathematical methods which can be regarded as a toolbox for analyzing causal fermion systems (Part 3). We conclude with an outlook on the applications (Part 4).

In order to address as large an audience as possible, the book contains extensive preliminaries which cover both physical and mathematical aspects. We have two typical audiences in mind when writing these preliminaries: physicists with only basic knowledge of mathematics and mathematicians without physical background.

The book is based on three main resources: First, the lecture notes of the spring school “Relativistic Fermion Systems” held in Regensburg in April 2013, adapted for the spring school “Causal Fermion Systems” held in Regensburg in March 2016. Second, the lecture “Causal Variational Principles” given at the University of Regensburg in the summer semester 2017. Finally, the online course “An Introduction to Causal Fermion Systems” held in the summer semester 2021.

We would like to thank the participants of the spring schools and the students in the above lecture for valuable feedback. In particular, we are grateful to David Cherney, Stefan Lippoldt, Marcin Napiórkowski, Simon Reinhardt and Julien Sabin for valuable feedback. Moreover, we are grateful to Sami Abdallah, Jonas Bierler, Magdalena Lottner, Andrea Schä tzl, Johannes Wurm, . . . , for helpful comments on the manuscript. A special thanks goes to Johannes Kleiner and Marco Oppio for helping with the lecture notes and providing many exercises. Finally, were are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support.

May 12, 2023
Felix Finster, Sebastian Kindermann and Jan-Hendrik Treude
How to use this book

This book is addressed to both mathematicians and physicists interested in the subject. We want to address young students and researchers on the master or graduate level. But the book should be helpful to the senior researchers as well.

The book is divided into four parts, each consisting of several chapters. Part 1 provides the necessary physical and mathematical preliminaries. Here the presentation is quite brief, and we refer for more details to the standard textbooks. We selected the material with the focus on what is most essential for causal fermion systems. We also introduce the conventions and notation which will be used later in the book. The content of Chapter 1 can be omitted by a reader who wants to concentrate on systems without gravity in Minkowski space.

Part 2 introduces the main concepts and structures. In Chapter 5 we motivate and define causal fermion systems and explain the fundamental structures. This chapter is essential for all the later parts of the book and should be read first. In the following Chapters of Part 2 the structures of a causal fermion system are explained in more detail, also setting the stage for the later analysis.

In Part 3 we introduce the mathematical methods for the analysis of causal fermion systems. The different methods can be understood as a toolbox, from which the reader may choose depending on her interests and needs. The chapters in this part are self-contained, except for obvious dependencies (for example, the energy methods for the linearized field equations in Chapter 14 build on similar methods for symmetric hyperbolic systems in Chapter 13). We note that the methods presented in this book are by no means exhaustive; we concentrate on the main methods which have been fruitful so far.

Part 4 provides additional examples and gives an outlook on the physical applications. Here the presentation is a bit more sketchy than in Parts 2 and 3. The reason is that, after being familiar with the present book, the reader should be well-prepared for delving into the research articles. Therefore, we felt that, instead of giving many details, it is more important to give the reader a guidance to the research articles. Moreover, the content of Chapter 21 is covered in detail in the textbook [42]. Therefore, the purpose of this chapter merely is to give a non-technical overview. The content of Chapter 22 on the other hand, is a field of active research. Therefore, it seems preferable to present this material systematically and in more detail at a later stage in a separate textbook.

Every chapter is supplemented by a section with exercises. Studying these exercises is important for getting familiar and deepening the understanding of the material. Hints on how to solve the problems should simplify the self-study.

We finally note that part of the material of this book is complemented by videos of an online course, which are available on the website

www.causal-fermion-system.com/learning

We hope that the reader will enjoy reading and learning from this book. Feedback is always welcome.
Contents

Preface v
How to use this book vii

Part 1. Physical and Mathematical Background 1

Chapter 1. Physical Preliminaries 3
1.1. The Schrödinger Equation 3
1.2. Special Relativity and Minkowski Space 4
1.3. The Dirac Equation 7
1.4. The Hilbert Space of Dirac Solutions 12
1.5. Dirac’s Hole Theory and the Dirac Sea 13
Exercises 15

Chapter 2. Mathematical Preliminaries 17
2.1. Basics on Topology 17
2.2. Banach Spaces, Hilbert Spaces and Linear Operators 19
2.3. Basics on Abstract Measure Theory 24
2.4. Distributions and Fourier Transform 28
2.5. Manifolds and Vector Bundles 34
Exercises 36

Chapter 3. Elements of Operator Theory 45
3.1. Manifolds of Operators 45
3.2. The Spectral Theorem for Selfadjoint Operators 47
Exercises 51

Chapter 4. Spinors in Curved Spacetime 53
4.1. Curved Spacetime and Lorentzian Manifolds 53
4.2. The Dirac Equation in Curved Spacetime 54
4.3. Computation of the Dirac Operator 61
4.4. Formulation with Vector Bundles, the Spinor Bundle 63
4.5. The Dirac Solution Space in Globally Hyperbolic Spacetimes 67
4.6. Hamiltonian Formulation in Stationary Spacetimes 68
Exercises 70


Chapter 5. A Brief Introduction to Causal Fermion Systems 73
5.1. Motivating Example: A Two-Dimensional Lattice System 75
5.2. Towards the General Definition 77
5.3. General Definition of a Causal Fermion System 78
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Example: Dirac Wave Functions in Minkowski Space</td>
<td>77</td>
</tr>
<tr>
<td>5.5</td>
<td>The Causal Action Principle</td>
<td>79</td>
</tr>
<tr>
<td>5.6</td>
<td>Basic Inherent Structures</td>
<td>81</td>
</tr>
<tr>
<td>5.7</td>
<td>How Did the Causal Action Principle Come About?</td>
<td>84</td>
</tr>
<tr>
<td>5.8</td>
<td>Underlying Physical Concepts</td>
<td>89</td>
</tr>
<tr>
<td>5.9</td>
<td>A Summary of the Basic Concepts and Objects</td>
<td>93</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>6.1</td>
<td>The Causal Variational Principle on the Sphere</td>
<td>101</td>
</tr>
<tr>
<td>6.2</td>
<td>Causal Variational Principles in the Compact Setting</td>
<td>102</td>
</tr>
<tr>
<td>6.3</td>
<td>Causal Variational Principles in the Non-Compact Setting</td>
<td>104</td>
</tr>
<tr>
<td>6.4</td>
<td>The Local Trace is Constant</td>
<td>104</td>
</tr>
<tr>
<td>6.5</td>
<td>How the Causal Action Principle Fits into the Non-Compact Setting</td>
<td>106</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>7.1</td>
<td>The Euler-Lagrange Equations</td>
<td>111</td>
</tr>
<tr>
<td>7.2</td>
<td>The Restricted Euler-Lagrange Equations in the Smooth Setting</td>
<td>112</td>
</tr>
<tr>
<td>7.3</td>
<td>Symmetries and Symmetric Criticality</td>
<td>113</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>8.1</td>
<td>Derivation of the Linearized Field Equations in the Smooth Setting</td>
<td>117</td>
</tr>
<tr>
<td>8.2</td>
<td>Commutator Jets in Causal Fermion Systems</td>
<td>120</td>
</tr>
<tr>
<td>8.3</td>
<td>Inner Solutions in Smooth Spacetimes</td>
<td>121</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>9.1</td>
<td>The Concept of a Surface Layer Integral</td>
<td>127</td>
</tr>
<tr>
<td>9.2</td>
<td>Noether-Like Theorems</td>
<td>128</td>
</tr>
<tr>
<td>9.3</td>
<td>A Class of Conservation Laws in the Smooth Setting</td>
<td>131</td>
</tr>
<tr>
<td>9.4</td>
<td>The Commutator Inner Product for Causal Fermion Systems</td>
<td>133</td>
</tr>
<tr>
<td>9.5</td>
<td>The Symplectic Form and the Surface Layer Inner Product</td>
<td>135</td>
</tr>
<tr>
<td>9.6</td>
<td>The Nonlinear Surface Layer Integral</td>
<td>137</td>
</tr>
<tr>
<td>9.7</td>
<td>Two-Dimensional Surface Layer Integrals</td>
<td>139</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>10.1</td>
<td>Motivation and Setup</td>
<td>143</td>
</tr>
<tr>
<td>10.2</td>
<td>Positivity of the Hessian of $\ell$</td>
<td>144</td>
</tr>
<tr>
<td>10.3</td>
<td>Positivity of Second Variations Generated by Jets</td>
<td>144</td>
</tr>
<tr>
<td>10.4</td>
<td>A Positive Nonlinear Surface Layer Integral</td>
<td>148</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>148</td>
</tr>
<tr>
<td>11.1</td>
<td>A Topological Vector Bundle</td>
<td>151</td>
</tr>
<tr>
<td>11.2</td>
<td>Geometric Structures of a Causal Fermion System</td>
<td>152</td>
</tr>
<tr>
<td>11.3</td>
<td>Correspondence to Lorentzian Spin Geometry</td>
<td>157</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>159</td>
</tr>
</tbody>
</table>
Part 3. Mathematical Methods and Analytic Constructions

Chapter 12. Measure-Theoretic Methods
  12.1. The Banach-Alaoglu Theorem
  12.2. The Riesz Representation Theorem
  12.3. Existence of Minimizers for Causal Variational Principles in the Compact Setting
  12.4. Examples Illustrating the Constraints
  12.5. The Radon-Nikodym Theorem
  12.6. Moment Measures
  12.7. Existence of Minimizers for the Causal Action Principle
  12.8. Existence of Minimizers for Causal Variational Principles in the Non-Compact Setting
  12.9. Tangent Cones and Tangent Cone Measures
Exercises

Chapter 13. Methods of Hyperbolic Partial Differential Equations
  13.1. The Cauchy Problem, Linear Symmetric Hyperbolic Systems
  13.2. Finite Propagation Speed and Uniqueness of Solutions
  13.3. Global Existence of Smooth Solutions
  13.4. The Causal Dirac Green’s Operators in Minkowski Space
  13.5. A Polynomial Estimate in Time
  13.6. The Cauchy Problem in Globally Hyperbolic Spacetimes
Exercises

Chapter 14. Energy Methods for the Linearized Field Equations
  14.1. Local Foliations by Surface Layers
  14.2. Energy Estimates and Hyperbolicity Conditions
  14.3. Uniqueness of Strong Solutions
  14.4. Existence of Weak Solutions
Exercises

Chapter 15. Functional Analytic Methods in Space-Time
  15.1. General Setting and Basic Ideas
  15.2. The Mass Oscillation Properties
  15.3. The Fermionic Signature Operator
  15.4. The Unregularized Kernel of the Fermionic Projector
Exercises

Chapter 16. Fourier Methods
  16.1. The Causal Green’s Operators
  16.2. The Causal Fundamental Solution and Time Evolution
  16.3. Proof of the Weak Mass Oscillation Property in the Minkowski Vacuum
  16.4. Proof of the Strong Mass Oscillation Property in the Minkowski Vacuum
Exercises

Chapter 17. Methods of Scattering Theory
  17.1. The Lippmann-Schwinger Equation
  17.2. The Mass Oscillation Property in the Presence of an External Potential
Exercises
Chapter 18. Methods of Perturbation Theory
  18.1. Perturbation Expansion of the Causal Green’s Operators
  18.2. The Causal Perturbation Expansion of the Fermionic Projector
  Exercises

Chapter 19. Methods of Microlocal Analysis
  19.1. The Hadamard Expansion in Minkowski Space
  19.2. The Light-Cone Expansion
  19.3. The Hadamard Form in Curved Spacetime and the Wave Front Set
  19.4. Proof of the Hadamard Property in an External Potential
  Exercises

Part 4. Applications and Outlook

Chapter 20. A Few Explicit Examples of Causal Variational Principles
  20.1. A One-Dimensional Gaussian
  20.2. A Minimizing Measure Supported on a Hyperplane
  20.3. A Non-Homogeneous Minimizing Measure
  20.4. A Minimizing Measure in Two-Dimensional Minkowski Space
  20.5. A Nonlinear Wave Equation in Two-Dimensional Minkowski Space
  Exercises

Chapter 21. Basics on the Continuum Limit
  21.1. The Regularized Light-Cone Expansion
  21.2. The Formalism of the Continuum Limit
  21.3. Overview of Results of the Continuum Limit Analysis
  Exercises

Chapter 22. Connection to Quantum Field Theory
  22.1. General Concepts
  22.2. The Mechanism of Holographic Mixing
  22.3. A Distinguished Quantum State
  Exercises

Appendix A. The Spin Coefficients

Bibliography
Part 1

Physical and Mathematical Background
CHAPTER 1

Physical Preliminaries

In this chapter we summarize some basics on quantum mechanics and relativity theory as needed in order to understand the physical content and context of the theory of causal fermion systems. We also fix our conventions and introduce the notation which will be used consistently throughout this book. Clearly, reading this summary cannot replace studying quantum mechanics and relativity theory in detail. To this end, we will cite various standard physics textbooks along the way.

1.1. The Schrödinger Equation

We begin by recalling a few basics of non-relativistic quantum mechanics. For more details, we refer to standard textbooks like [124, 126, 100].

The state of a quantum mechanical particle without spin is described by its wave function \( \psi \) :
\[
\mathbb{R} \times \mathbb{R}^3 \rightarrow \mathbb{C}, \quad (t, \vec{x}) \mapsto \psi(t, \vec{x}),
\]
where \( t \in \mathbb{R} \) describes time and \( \vec{x} \in \mathbb{R}^3 \) position. Its absolute square \( |\psi(t, \vec{x})|^2 \) has the interpretation as the probability density of the particle to be located at the position \( \vec{x} \) at time \( t \). For this interpretation to be sensible, the integral over the probability density must be equal to one,
\[
\int_{\mathbb{R}^3} |\psi(t, \vec{x})|^2 \, d^3x = 1.
\] (1.1.1)

This equation must hold at any time \( t \in \mathbb{R} \). This entails that the dynamical equations must preserve the integral (1.1.1), as we will come back to in a moment.

A basic tenet of quantum mechanics is the superposition principle. It states that for any wave functions \( \psi \) and \( \phi \), also their complex linear combination
\[
\tilde{\psi} = \alpha \psi + \beta \phi \quad \text{with } \alpha, \beta \in \mathbb{C}
\] (1.1.2)
(defined pointwise by \( \tilde{\psi}(t, \vec{x}) = \alpha \psi(t, \vec{x}) + \beta \phi(t, \vec{x}) \)) is a physically admissible wave function. In more mathematical terms, the physical wave functions form a complex vector space. Evaluating (1.1.1) for the wave function \( \tilde{\psi} \) and using that the probability integral must be preserved in time for all \( \alpha \) and \( \beta \), one concludes that the integral
\[
\int_{\mathbb{R}^3} \phi(t, \vec{x}) \psi(t, \vec{x}) \, d^3x \quad (1.1.3)
\]
must be time independent for any wave functions \( \psi \) and \( \phi \). The procedure to deduce (1.1.3) from (1.1.1) is sometimes referred to as polarization. The integral (1.1.3) defines a scalar product on the wave functions, which we denote by
\[
\langle \phi | \psi \rangle_\mathcal{H} := \int_{\mathbb{R}^3} \phi(t, \vec{x}) \psi(t, \vec{x}) \, d^3x.
\] (1.1.4)

From the mathematical point of view, the most natural complex vector space for this scalar product is the Hilbert space \( L^2(\mathbb{R}^3, \mathbb{C}) \) of square-integrable functions, which we also denote by \( (\mathcal{H}, \langle . | . \rangle_\mathcal{H}) \) and which for instance contains all smooth functions with compact support (for basics on Hilbert spaces see Section 2.2 below).
The dynamics of the wave function is described by a linear evolution equation on \( \mathcal{H} \), the Schrödinger equation, which is first-order in time and whose general form is
\[
i \partial_t \psi = H \psi.
\]
(1.1.5)
Here \( H \), the so-called Hamiltonian, is a linear operator acting on the Hilbert space \( \mathcal{H} \). The linearity of the Schrödinger equation essential in order to ensure that the time evolution is compatible with the superposition principle. The requirement that the scalar (1.1.4) must be time independent implies that
\[
0 = \partial_t \langle \phi | \psi \rangle_{\mathcal{H}} = -i \left( \langle H \phi | \psi \rangle_{\mathcal{H}} - \langle \phi | H \psi \rangle_{\mathcal{H}} \right)
\]
(1.1.6)
for all wave functions \( \psi, \phi \). In other words, the Hamiltonian must be a symmetric operator on the Hilbert space \( \mathcal{H} \) (for mathematical basics see Definition 2.2.5 below; all mathematical issues like domains and the distinction between symmetric and selfadjoint operators are postponed to Section 3.2).

In the setting considered here (i.e., for a particle without spin), the Hamiltonian usually has the form
\[
H = -\frac{1}{2m} \Delta + V,
\]
where we have set \( \hbar = c = 1 \) (we will do so throughout this book). Here, \( \Delta = \partial_1^2 + \partial_2^2 + \partial_3^2 \) is the Laplacian on \( \mathbb{R}^3 \), and \( V(t, \bar{x}) \) is a real-valued potential which acts on a wave function by multiplication. The parameter \( m > 0 \) is the rest mass of the particle.

The Schrödinger equation can be analyzed using various methods. If the potential is time independent, the Schrödinger equation can be solved by exponentiating,
\[
\psi(t) = e^{-iHt} \psi(0),
\]
where the exponential may be defined using the spectral theorem (for details see Section 3.2 below). In this case the dynamics of \( \psi \) can be related to spectral properties of the Hamiltonian. Another method, which has the advantage that it also applies if the potential depends on time, is to make use of the fact that the time evolution forms a strongly continuous semigroup of operators (see for example [105], Section 34). Alternatively, one can analyze the Schrödinger equation as a parabolic partial differential equation. Since our focus are the relativistic equations, we do not cover these methods in this course, but refer the interested reader to the textbooks [128, Chapter 6] or [29, Section II.7.1].

### 1.2. Special Relativity and Minkowski Space
We now give a brief introduction to special relativity. For more details, in particular on the physical background, we recommend the textbooks [119, 107, 101].

In special relativity, space and time are combined into a four-dimensional spacetime. Mathematically, this four-dimensional spacetime is described by Minkowski space \( (\mathcal{M}, \langle .. \rangle) \), a real four-dimensional vector space endowed with an inner product \( \langle .. \rangle \) of signature \( (+-+-) \). For \( \mathcal{M} \) one may always choose a basis \( \{ e_i \}_{i=0,...,3} \) satisfying \( \langle e_0, e_0 \rangle = 1 \) and \( \langle e_i, e_i \rangle = -1 \) for \( i = 1, 2, 3 \). Such a basis is called pseudo-orthonormal basis or reference frame, since the corresponding coordinate system \( (x^i) \) describes time and space as observed by an observer in in a system of inertia. We also refer to \( t := x^0 \) as time and denote spatial coordinates by \( \bar{x} = (x^1, x^2, x^3) \). Representing two vectors \( \xi, \eta \in \mathcal{M} \) in such
1.2. SPECIAL RELATIVITY AND MINKOWSKI SPACE

Figure 1.1. The causal structure of Minkowski space.

a basis as \( \xi = \sum_{i=0}^{3} \xi_i e_i \) and \( \eta = \sum_{i=0}^{3} \eta_i e_i \), the inner product takes the form

\[
\langle \xi, \eta \rangle = \sum_{j,k=0}^{3} g_{jk} \xi^j \eta^k ,
\]

where \( g_{ij} \), the Minkowski metric, is the diagonal matrix \( g = \text{diag}(1, -1, -1, -1) \).

In what follows we usually use Einstein's summation convention, according to which one omits the sign for sums and always sums over any pair of indices appearing twice, one being an upper and one a lower index. For instance, with this convention, the relation (1.2.1) is written simply as \( \langle \xi, \eta \rangle = g_{jk} \xi^j \eta^k \). By \( g^{ij} \) we denote the inverse of the Minkowski metric, which in a pseudo-orthonormal basis is again the diagonal matrix \( \text{diag}(1, -1, -1, -1) \). We raise and lower indices using the Minkowski metric and its inverse, meaning that for a vector \( \xi = \xi_i e_i \) we set \( \xi^i := g^{ij} \xi_j \) for any \( i = 0, \ldots, 3 \), and we also write \( \partial^i = g^{jk} \partial_k \). Finally, we sometimes abbreviate the Minkowski inner product by writing \( \xi \eta := \langle \xi, \eta \rangle \) and \( \xi^2 := \langle \xi, \xi \rangle \).

The sign of the Minkowski metric encodes the causal structure of spacetime. Namely, a vector \( \xi \in \mathcal{M} \) is said to be

\[
\begin{align*}
\text{timelike} & \quad \text{if} \quad \langle \xi, \xi \rangle > 0 \\
\text{spacelike} & \quad \text{if} \quad \langle \xi, \xi \rangle < 0 \\
\text{lightlike} & \quad \text{if} \quad \langle \xi, \xi \rangle = 0 .
\end{align*}
\]

(1.2.2)

Lightlike vectors are also referred to as null vectors. Moreover, the term non-spacelike refers to timelike or lightlike vectors. The timelike and null vectors form a double cone. Its boundary

\[
L := \{ \xi \in \mathcal{M} \mid \langle \xi, \xi \rangle = 0 \}
\]

is referred to as the light cone. Physically speaking, the light cone is formed of all light rays through the origin of \( \mathcal{M} \). Similarly, the timelike vectors correspond to velocities slower than the speed of light; they form the

interior light cone \( I := \{ \xi \in \mathcal{M} \mid \langle \xi, \xi \rangle > 0 \} \).

Likewise, the non-spacelike vectors form the

closed light cone \( J := \{ \xi \in \mathcal{M} \mid \langle \xi, \xi \rangle \geq 0 \} = I \cup L \).

We denote the future and past light cones by superscripts \( \lor \) and \( \land \), i.e.

\[
J^\lor := \{ \xi \in \mathcal{M} \mid \langle \xi, \xi \rangle \geq 0, \ \xi^0 \geq 0 \}
\]

\[
J^\land := \{ \xi \in \mathcal{M} \mid \langle \xi, \xi \rangle \geq 0, \ \xi^0 \leq 0 \},
\]

and similarly for \( I \). These notions are illustrated in Figure 1.1.
The spacetime trajectory of a moving object is described by a curve \( q(\tau) \) in Minkowski space (with \( \tau \) an arbitrary parameter). We say that the spacetime curve \( q(\tau) \) is timelike if its tangent vector \( dq/d\tau \) is everywhere timelike. Spacelike, null, and non-spacelike curves are defined analogously. The usual statement of causality that no information can travel faster than with the speed of light can then be expressed as follows:

**Causality:** Information can be transmitted only along non-spacelike curves.

The set of all points which can be joined to a given spacetime point \( x \) by a non-spacelike curve is precisely the closed light cone centered at \( x \), denoted by \( J_x := J_x^{-} \). It is the union of the two single cones

\[
J_x^{\vee} = \{ y \in \mathcal{M} \mid (y - x)^2 \geq 0, (y^0 - x^0) \geq 0 \}
\]

\[
J_x^{\wedge} = \{ y \in \mathcal{M} \mid (y - x)^2 \geq 0, (y^0 - x^0) \leq 0 \},
\]

interpreted as the points in the causal future and past of \( x \), respectively. Therefore, we refer to \( J_x^{\vee} \) and \( J_x^{\wedge} \) as the closed future and past light cones centered at \( x \), respectively. The sets \( I_x^{\vee}, I_x^{\wedge} \) and \( L_x^{\vee}, L_x^{\wedge} \) are introduced similarly. We remark that the resulting relations like “lies in the timelike future of” or “lies in the causal future of” are transitive (see Exercise 1.1).

Special relativity demands that physical equations be Lorentz invariant. Qualitatively speaking, this means that they must be formulated in a manner independent of the choice of reference frame. More concretely, this independence can be formulated in terms of transformation laws: Recall that a reference frame is an orthonormal basis of Minkowski space. Any two reference frames \((e_i)_{i=0,\ldots,3}\) and \((\tilde{e}_i)_{i=0,\ldots,3}\) are related to each other by a linear transformation \( \Lambda \in \text{L}(\mathcal{M}) \) (here \( \text{L}(\mathcal{M}) \) are the linear transformations on \( \mathcal{M} \); clearly, \( \Lambda \) can be written as a \( 4 \times 4 \)-matrix with real-valued entries) which preserves the Minkowski metric, i.e. one has (again using the Einstein summation convention)

\[
\tilde{e}_i = \Lambda^j_i e_j \quad \text{and} \quad \Lambda^\ell_j \Lambda^m_k g_{\ell m} = g_{jk}.
\]  

(1.2.3)

The coordinates in the old and new reference frames and the corresponding partial derivatives are related to each other by

\[
\tilde{x}^i = \Lambda^i_j x^j \quad \text{and} \quad \frac{\partial}{\partial \tilde{x}^i} = \Lambda^i_j \frac{\partial}{\partial x^j}.
\]  

(1.2.4)

The Lorentz transformations form a group (with the group operation being the composition of the linear transformations or, equivalently, matrix multiplication of the corresponding matrices), the so-called Lorentz group. The Lorentz transformations which preserve both the time direction and the spatial orientation form a subgroup of the Lorentz group, the orthochronous proper Lorentz group.

If one wants to formulate a physical equation, the principle of Lorentz invariance demands that its explicit form must be invariant under the transformations (1.2.3) and (1.2.4). The simplest example is the **Klein-Gordon equation**

\[
(-\Box - m^2) \psi = 0,
\]  

(1.2.5)

where \( \Box := \partial_j \partial^j = g^{ij} \partial_i \partial_j \) is the wave operator and \( \psi : \mathcal{M} \to \mathbb{C} \). Using (1.2.4), one verifies by a short computation that this equation takes the same form in any reference frame. The Klein-Gordon equation describes a scalar particle (i.e. a particle without spin) of mass \( m \). If the particle has an electric charge \( e \), one also has to take into account the
interaction with the electromagnet field. One finds empirically that the correct equation to describe the influence of the field on the particle is
\[- (\partial_k - ieA_k)(\partial^k - ieA^k) \psi = m^2 \psi, \quad (1.2.6)\]
where \(A\) is the electromagnetic potential.

1.3. The Dirac Equation

The Schrödinger equation (1.1.5) is not Lorentz invariant. Therefore, it is not suitable to describe a relativistic quantum particle. Although being Lorentz-invariant, the Klein-Gordon equation is also not suitable for this purpose because the interpretation of the absolute value of its solutions as probability density is not sensible. The correct relativistic generalization of the Schrödinger equation is the so-called Dirac equation, which will now be introduced. More on its physical background can be found for example in the classic textbooks [13, 101, 113].

In order to describe a relativistic particle with spin, Dirac had the idea to work with a first order differential operator \(\gamma^j \partial_j\) whose square is the wave operator. The coefficients of this operator are the Dirac matrices \(\gamma^j\), which are \(4 \times 4\)-matrices characterized by the anti-commutation relations
\[2 g^{jk} 1 = \{\gamma^j, \gamma^k\} := \gamma^j \gamma^k + \gamma^k \gamma^j. \quad (1.3.1)\]
Using these relations, one finds that the square of the operator \(\gamma^j \partial_j\) indeed gives the wave operator,
\[(\gamma^j \partial_j)^2 = \gamma^j \gamma^k \partial_j \partial_k = \frac{1}{2} \{\gamma^j, \gamma^k\} \partial_{jk} = \Box \quad (1.3.2)\]
(of course, here the operator \(\gamma^j \partial_j\) acts on wave functions with four components, and the wave operator has to be understood as acting on each component separately). There are different possible choices for \(4 \times 4\)-matrices \(\gamma^j\) satisfying (1.3.1) which are all related by a change of spinor basis. For convenience, we shall always work in the Dirac representation, i.e. we choose (see Exercise 1.4)
\[\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}, \quad (1.3.3)\]
where \(\sigma^i\) are the three Pauli matrices
\[\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \quad (1.3.4)\]
Including the mass \(m \geq 0\), the Dirac equation in the vacuum (i.e. without any interaction) reads
\[\left(i \gamma^k \frac{\partial}{\partial x^k} - m\right) \psi(x) = 0, \quad (1.3.5)\]
where the Dirac spinor \(\psi : \mathcal{M} \to \mathbb{C}^4\) has four complex components. If we multiply (1.3.5) by the operator \((i \gamma^j \partial_j + m)\) and use (1.3.2), we find that each component of \(\psi\) satisfies the Klein-Gordon equation (1.2.5).

Following the standard conventions in physics, we denote contractions with Dirac matrices by a slash, i.e. \(\psi = \gamma^j u_j\) for \(u\) a vector of Minkowski space and \(\partial = \gamma^j \partial_j\). The action of the matrix \(\gamma^j\) on a spinor \(\psi\), i.e. \(\gamma^j \psi\), is often referred to as Clifford multiplication by the vector \(u\).
A quantum particle described by a solution of the Dirac equation is called Dirac particle. The leptons and quarks in the standard model are Dirac particles. Thus, on the fundamental level, all matter is described by the Dirac equation.

In the presence of an electromagnetic field, the Dirac equation is modified to
\[ i \gamma^k (\partial_k - i A_k) \psi = m \psi. \] (1.3.6)

Similar as mentioned for the Klein-Gordon equation after (1.2.6), the coupling to the electromagnetic field can again be understood from the compatibility with local gauge transformations of electrodynamics (see Exercise 1.3). Multiplying by the operator
\[ (i \gamma^j (\partial_j - i A_j) + m) \]
and using again the anti-commutation relations, we obtain the equation
\[ \left(- (\partial_k - i A_k)(\partial^k - i A^k) + \frac{1}{2} F_{jk} \gamma^j \gamma^k - m^2 \right) \psi = 0, \]
where \( F_{jk} = \partial_j A_k - \partial_k A_j \) (see Exercise 1.6). This differs from the Klein-Gordon equation (1.2.6) by the extra term \( \frac{1}{2} F_{jk} \gamma^j \gamma^k \), which describes the coupling of the spin to the electromagnetic field.

A Dirac spinor takes value in \( \mathbb{C}^4 \). This four-dimensional complex vector space is also referred to as spin space and its elements are referred to as spinors. An important structure on spin space is an indefinite inner product of signature (2,2), which we call spin inner product and denote by
\[ \langle \psi | \phi \rangle := \sum_{\alpha=1}^{4} s_\alpha (\psi^\alpha)^\dagger \phi^\alpha, \quad s_1 = s_2 = 1, \ s_3 = s_4 = -1, \] (1.3.7)
where for a spinor \( \psi \in \mathbb{C}^4 \) we denote by \( \psi^\dagger \) the componentwise complex conjugate. In physics textbooks, the spin inner product is often written as \( \psi^\dagger \phi \) with the so-called adjoint spinor \( \bar{\psi} := \psi^\dagger \gamma^0 \). By the adjoint \( A^* \) of an operator \( A \) acting on spinors we always mean the adjoint with respect to the spin inner product. Thus it is defined by the relation
\[ \langle \psi | A^* \phi \rangle = \langle A \psi | \phi \rangle \quad \text{for all } \psi, \phi \in \mathbb{C}^4. \]

In an obvious way, this definition of the adjoint gives rise to the notions symmetric, anti-symmetric and unitary. With these notions, the Dirac matrices are symmetric, meaning that
\[ \langle \gamma^l \psi | \phi \rangle = \langle \psi | \gamma^l \phi \rangle \quad \text{for all } \psi, \phi \in \mathbb{C}^4. \] (1.3.8)
From this it follows that also Clifford multiplication \( \bar{\psi} u \) by a vector \( u \in \mathcal{M} \) is symmetric. We note for clarity that, in the setting of finite-dimensional matrices considered here, symmetric operators can be referred to equivalently as selfadjoint operators. We usually prefer the notion of a symmetric operator, leaving the notion of a selfadjoint operator to the setting of densely defined operators on infinite-dimensional Hilbert spaces.

To every solution \( \psi \) of the Dirac equation we can associate a vector field \( J^k \) by
\[ J^k = \langle \psi | \gamma^k \psi \rangle, \] (1.3.9)
referred to as the Dirac current. It is either timelike or lightlike (see Exercise 1.7). Moreover, it is divergence-free, as the following computation shows,
\[ \partial_k J^k = \partial_k \langle \psi | \gamma^k \psi \rangle = \langle \partial_k \psi | \gamma^k \psi \rangle + \langle \psi | \gamma^k \partial_k \psi \rangle \\
= i \left( \langle i \partial \psi | \psi \rangle - \langle \psi | i \partial \psi \rangle \right) \\
= i \left( \langle (i \bar{\psi} + A - m) \psi | \psi \rangle - \langle \psi | (i \bar{\psi} + A - m) \psi \rangle \right) = 0. \] (1.3.10)
This property is referred to as current conservation.
Current conservation is closely related to the probabilistic interpretation of the Dirac wave function, as we now explain. Suppose that $\psi$ is a smooth solution of the Dirac equation with suitable decay at spatial infinity (for example of spatially compact support; see Section 1.4). Then current conservation allows us to apply the Gauss divergence theorem in a spacetime-region $[t_1, t_2] \times \mathbb{R}^3$ to obtain

$$
0 = \int_{t_1}^{t_2} dt \int_{\mathbb{R}^3} d^3x \, \partial_k <\psi | \gamma^k \psi>(t, \vec{x})
$$

or

$$
= \int_{\mathbb{R}^3} <\psi | \gamma^0 \psi>(t_2, \vec{x}) \, d^3x - \int_{\mathbb{R}^3} <\psi | \gamma^0 \psi>(t_1, \vec{x}) \, d^3x
\quad (1.3.11)
$$

We remark that this argument works similarly on a region $\Omega \subset M$ whose boundary consists of two space-like hypersurfaces. Polarizing, similarly as explained after (1.1.2), we conclude that for any two solutions $\phi, \psi$ of the Dirac equation, the spatial integral

$$
(\phi | \psi) := \int_{\mathbb{R}^3} <\phi | \gamma^0 \psi>(t, \vec{x}) \, d^3x
\quad (1.3.12)
$$

is time independent. Since the inner product $<.|\gamma^0.>$ is positive definite, the integral (1.3.12) defines a scalar product. We denote the Hilbert space corresponding to this scalar product by $\mathcal{H} = L^2(\mathbb{R}^3)^4$. In analogy to the integrand in (1.1.4) in non-relativistic quantum mechanics, the quantity $<\psi | \gamma^0 \psi>(t, \vec{x})$ can be interpreted as the probability density of the particle being located at the space-time point $(t, \vec{x})$. Current conservation (1.3.11) ensures that the probability integral is time independent.

The previous considerations generalize immediately to the situation in the presence of an external potential. To this end, we replace the operator $\hat{A}$ in the Dirac equation (1.3.6) by a multiplication operator $B : \mathcal{M} \to \mathbb{C}^{4 \times 4}$, which may even depend (smoothly) on the spacetime coordinates and which we assume to be symmetric with respect to the spin inner product, i.e.

$$
<B(x)\psi|\phi> = <\psi|B(x)\phi> \quad \text{for all } \psi, \phi \in \mathbb{C}^4, x \in \mathcal{M}.
\quad (1.3.13)
$$

We then write the Dirac equation with a Dirac operator $D$ as

$$
(D - m) \psi = 0 \quad \text{where} \quad D := i \gamma^0 + \gamma \sigma \nabla + B - m
\quad (1.3.14)
$$

The symmetry assumption (1.3.13) is needed for current conservation to hold (as one sees immediately if in (1.3.10) one replaces $\hat{A}$ by $B$).

Similar as the Schrödinger equation (1.1.5), also the Dirac equation can be rewritten with a symmetric operator $H$ acting on the Hilbert space $\mathcal{H}$. To this end, we multiply equation (1.3.14) by $\gamma^0$ and isolate the $t$-derivative on one side of the equation,

$$
i \partial_t \psi = H \psi \quad \text{where} \quad H := -\gamma^0 (i \gamma \nabla + B - m)
\quad (1.3.15)
$$

Note here that $\gamma^j \partial_j = \gamma^0 \partial_0 + \gamma \nabla$. We refer to (1.3.15) as the Dirac equation in the Hamiltonian form. Now we can again apply (1.1.6) to conclude that the Hamiltonian is a symmetric operator on $\mathcal{H}$.

We remark that in the Hamiltonian formulation, one often absorbs the prefactor $\gamma^0$ in (1.3.15) into the other Dirac matrices and instead works with the new matrices

$$
\beta := \gamma^0 \quad \text{and} \quad \vec{\alpha} := \gamma^0 \vec{\gamma}.
$$

This is convenient because these new matrices are Hermitian with respect to the standard scalar product on $\mathbb{C}^4$. In this book however, we shall not work with $\alpha$ and $\vec{\beta}$. We prefer the notation (1.3.15), because it is more visible which parts of the operators are Lorentz
invariant. For calculations using $\beta$ and $\vec{\alpha}$ we refer for example to the monograph [130].

In addition to integrating over space (1.3.12), one can also introduce an inner product on spinorial wave functions by integrating the spin inner product over all of spacetime,

$$<\psi|\phi> = \int_{\mathcal{M}} <\psi|\phi>_x \, d\mu_x . \quad (1.3.16)$$

This inner product will in general not be well-defined on solutions of the Dirac equation, because the time integral may diverge. But it can be considered for example on spinorial wave functions which are compactly supported in spacetime (but are no solutions of the Dirac equation). This spacetime inner product will be important for the constructions in Chapter 15. In this context, it is very useful that the Dirac operator is symmetric with respect to the spacetime inner product, meaning that

$$<D\psi|\phi> = <\psi|D\phi> \quad (1.3.17)$$

for all spinorial wave functions which decay sufficiently fast at spatial infinity and for large times. Indeed, the symmetry property (1.3.17) holds in curved spacetime as well (see the explanation after (4.2.31) below).

So far, Dirac spinors were introduced in a given reference frame. Let us verify that our definitions are in fact independent of the choice of reference frame. To this end we consider two reference frames $(x^j)$ and $(\tilde{x}^l)$ with the same orientation of time and space. Then the reference frames are related to each other by an orthochronous proper Lorentz transformation $\Lambda$, i.e. in components

$$\tilde{x}^l = \Lambda^l_j x^j , \quad \frac{\partial}{\partial x^j} = \frac{\partial \tilde{x}^l}{\partial x^j} \frac{\partial}{\partial \tilde{x}^l} = \Lambda^l_j \frac{\partial}{\partial \tilde{x}^l} ,$$

and $\Lambda$ leaves the Minkowski metric invariant,

$$\Lambda^l_j \Lambda^m_k \, g_{lm} = g_{jk} . \quad (1.3.18)$$

Under this change of spacetime coordinates, the Dirac operator $i\gamma^j\left(\frac{\partial}{\partial x^j} - iA_j\right)$ transforms to

$$i\tilde{\gamma}^l \left(\frac{\partial}{\partial \tilde{x}^l} - i\tilde{A}_l\right) \quad \text{with} \quad \tilde{\gamma}^l = \Lambda^l_j \gamma^j \quad \text{and} \quad \tilde{A}_l = \Lambda^l_k A_k . \quad (1.3.19)$$

This transformed Dirac operator does not coincide with the Dirac operator $i\gamma^l\left(\frac{\partial}{\partial x^l} - iA_l\right)$ as defined in the reference frame $(x^j)$ because the new Dirac matrices have a different form. However, the next lemma shows that the two Dirac operators do coincide after a suitable unitary transformation of the spinors.

**Lemma 1.3.1.** For any orthochronous proper Lorentz transformation $\Lambda$ there is a unitary matrix $U(\Lambda)$ (unitary with respect to the spin inner product (1.3.7)) such that

$$U(\Lambda) \Lambda^l_j \gamma^j U(\Lambda)^{-1} = \gamma^l .$$

**Proof.** Since $\Lambda$ is orthochronous and proper, we can write it in the form $\Lambda = \exp(\lambda)$, where $\lambda$ is a suitable generator of a rotation and/or a Lorentz boost. Then $\Lambda(t) := \exp(t\lambda)$, $t \in \mathbb{R}$, is a family of Lorentz transformations, and differentiating (1.3.18) with respect to $t$ at $t = 0$, we find that

$$\lambda^l_j g_{lk} = -g_{jm} \lambda^m_k .$$
1.3. THE DIRAC EQUATION

(note that $\Lambda(t)_j^l = \delta_j^l + t \lambda_j^l + \cdots$). Using this identity together with the fact that the Dirac matrices are symmetric, it is straightforward to verify that the matrix

$$u := \frac{1}{4} \lambda_k^l \gamma_l \gamma^k$$

is anti-symmetric. As a consequence, the family of matrices

$$U(t) := \exp(\mathbf{tu})$$

is unitary. We now consider for a fixed index $l$ the family of matrices

$$A(t) := U(t) \Lambda(t)_j^l \gamma^j U(t)^{-1}.$$  

Clearly, $A(0) = \gamma^l$. Furthermore, differentiating with respect to $t$ gives

$$\frac{d}{dt} A(t) = U \Lambda_j^l \left\{ u \gamma^j - \gamma^j u + \lambda_k^l \gamma^k \right\} U^{-1},$$

and a short calculation using the commutation relations (see Exercise 1.8)

$$[\gamma_l \gamma^k, \gamma^j] = 2 (\gamma_l t^{kj} - \delta_l^j \gamma^k)$$  \hspace{1cm} (1.3.20)

shows that the curly brackets vanish. We conclude that $A(1) = A(0)$, proving the lemma.

Applying this lemma to the Dirac operator in (1.3.19), one sees that the Dirac operator is invariant under the joint transformation of the spacetime coordinates and the spinors $x^j \rightarrow \Lambda_j^k x^k$, $\psi \rightarrow U(\Lambda) \psi$.

Moreover, since the matrix $U(\Lambda)$ is unitary, the representation of the spin inner product (1.3.7) is valid in any reference frame. We conclude that our definition of spinors is indeed Lorentz invariant.

For what follows, it is important to keep in mind that, in contrast to the spin inner product, the combination

$$\psi^\dagger \phi = \langle \psi | \gamma^0 \phi \rangle$$

is not Lorentz invariant. Instead, it is the zero component of a Minkowski vector. Consequently, the integrand in (1.3.12) is not a scalar. Its spatial integral, on the other hand, is again Lorentz invariant due to current conservation.

As a combination of all the Dirac matrices one can form the so-called pseudo-scalar matrix $\Gamma$ by

$$\Gamma = \frac{i}{4!} \epsilon_{jklm} \gamma^j \gamma^k \gamma^l \gamma^m = i \gamma^0 \gamma^1 \gamma^2 \gamma^3.$$  \hspace{1cm} (1.3.21)

(In the physics literature, this matrix is usually denoted by $\gamma^5$). Here $\epsilon_{jklm}$ is the totally antisymmetric symbol (i.e. $\epsilon_{jklm}$ is equal to $\pm 1$ if $(j, k, l, m)$ is an even and odd permutation of $(0, 1, 2, 3)$, respectively, and vanishes otherwise). A short calculation shows that the pseudo-scalar matrix is anti-symmetric and that $\Gamma^2 = 1$ (see Exercise 1.8). As a consequence, the matrices

$$\chi_L = \frac{1}{2}(1 - \Gamma), \quad \chi_R = \frac{1}{2}(1 + \Gamma)$$  \hspace{1cm} (1.3.22)

satisfy the relations (see again Exercise 1.8)

$$\chi_L^2 = \chi_L, \quad \Gamma \chi_L = -\chi_L, \quad \Gamma \chi_R = \chi_R, \quad \chi_L^* = \chi_R, \quad \chi_L + \chi_R = 1.$$  \hspace{1cm} (1.3.23)
They can be regarded as the spectral projectors of the matrix $\Gamma$ and are called the chiral projectors. The projections $\chi_L \psi$ and $\chi_R \psi$ are referred to as the left- and right-handed components of the spinor, respectively. A matrix is said to be even and odd if it commutes or anti-commutes with $\Gamma$, respectively. It is straightforward to verify that the Dirac matrices are odd, and therefore

$$\gamma^j \chi_L \psi = \chi_R \psi \gamma^j . \quad (1.3.24)$$

By multiplying the Dirac equation (1.3.6) from the left by $\chi_L/R$, one can rewrite it as a system of equations for the left- and right-handed components of $\psi$,

$$i \gamma^k (\partial_k - i A_k) \chi_L \psi = m \chi_R \psi , \quad i \gamma^k (\partial_k - i A_k) \chi_R \psi = m \chi_L \psi .$$

If $m = 0$, these two equations decouple, and we get separate equations for the left- and right-handed components of $\psi$. This observation is the starting point of the 2-component Weyl spinor formalism. Here we shall not use this formalism. Instead, we will describe chiral massless particles (like massless neutrinos) by the left- or right-handed component of a Dirac spinor.

1.4. The Hilbert Space of Dirac Solutions

We now express the structures of Dirac theory in a convenient notation, which harmonizes with the structures of causal fermion systems to be introduced later on (in Chapter 5) and also generalizes to curved spacetime (in Chapter 4). In Minkowski space, the Dirac wave functions are four-component complex wave functions. More generally, one can consider them as sections of a vector bundle. In view of these general concepts (which will be introduced in Section 2.5 below), we denote the Cartesian product

$$S.M := M \times \mathbb{C}^4 ,$$

as the spinor bundle of $M$. For every $x \in M$, the subset $S_x.M := \{x\} \times \mathbb{C}^4$ is referred to as the spinor space at the spacetime point $x$. Clearly, the spinor bundle is the disjoint union of all the spinor spaces,

$$S.M = \bigcup_{x \in M} S_x.M ,$$

and in the more general language of vector bundles the spinor spaces at the individual spacetime points are referred to as fibers of the spinor bundles. The spin inner product (1.3.7) can now be regarded as an inner product on each fiber $S_x.M$, as we often clarify by an additional subscript $x$ (although here the inner product does not actually depend on $x$),

$$\langle ., . \rangle_x : S_x.M \times S_x.M \rightarrow \mathbb{C} .$$

A Dirac wave function can be considered as a mapping $\psi : M \rightarrow S.M$ with the property that for every $x \in M$ one has

$$\psi(x) \in S_x.M \simeq \mathbb{C}^4 .$$

Such a mapping is referred to as a section of the spinor bundle.

We next highlight the obtained analytic structures, again anticipating concepts and results to be introduced later in this book. The scalar product (1.3.12) on the Dirac solutions gives rise to a Hilbert space structure on an appropriate class of solutions (for a mathematical introduction to Hilbert spaces see Section 2.2 below). In order to construct this appropriate class of solutions, one can begin by solving the Cauchy problem for smooth initial data $\psi_0$ of compact support given for example on the hypersurface $\{t = 0\}$. Rewriting the Dirac equation as a linear symmetric hyperbolic system (see Chapter 13...
Figure 1.2. A spatially compact Dirac solution.

below), one sees that this Cauchy problem has a unique global solution in Minkowski space. Moreover, this solution is smooth and, due to finite propagation speed, has compact support on any other hypersurface \( \{ t = \text{const} \} \) (see Figure 1.2). One says that the solution has spatially compact support. More generally, the set of all smooth and spatially compact sections of the spinor bundle (not necessarily being solutions of the Dirac equation) is denoted by \( C^\infty_{\text{sc}}(\mathcal{M}, S\mathcal{M}) \). Clearly, for spatially compact solutions, the scalar product (1.3.12) is well-defined and finite. Taking the completion of the set of all spatially compact solutions with respect to the scalar product (1.3.12), one obtains a Hilbert space denoted by \( (\mathcal{H}_m, (\cdot, \cdot)) \), where \( m \) denotes the mass parameter of the Dirac equation (for details on the completion and Hilbert spaces see Section 2.2 and Exercise 2.6). By construction, we know that

\[
C^\infty_{\text{sc}}(\mathcal{M}, S\mathcal{M}) \cap \mathcal{H}_m \quad \text{is dense in } \mathcal{H}_m.
\]

We note for clarity that the wave functions in the completion \( \mathcal{H}_m \) are not necessarily differentiable. Therefore, they do not satisfy the Dirac equations. But they are weak solutions in the sense that the Dirac equation holds after taking the spacetime inner product (1.3.16) with a test wave function \( \phi \) and formally integrating by parts, i.e.

\[
\int_{\mathcal{M}} \langle (D - m)\phi | \psi \rangle \, d\mu_{\mathcal{M}} = 0 \quad \text{for all } \phi \in C^\infty_0(\mathcal{M}, S\mathcal{M}).
\]

For the reader familiar with the theory of partial differential equations, we finally remark that the solutions in \( \mathcal{H}_m \) can also be characterized in terms of Sobolev spaces (see for example [29, Section II.5]). More precisely, the vectors in \( \mathcal{H}_m \) are weak solutions in \( H^1_{\text{loc}}(\mathcal{M}, S\mathcal{M}) \). By the trace theorem (see for example [29, Section II.5.2]), their restriction to a hypersurface \( \{ t = \text{const} \} \) is in \( L^2_{\text{loc}}(\mathbb{R}^3, \mathbb{C}^4) \). As a consequence, the integrand of the spatial integral in (1.3.12) is locally integrable. The solutions in \( \mathcal{H}_m \) have the additional property that their restriction to the hypersurfaces are even in \( L^2(\mathbb{R}^3, \mathbb{C}^4) \), so that the integral in (1.3.12) exists and is finite.

1.5. Dirac’s Hole Theory and the Dirac Sea

The Dirac theory gives rise to anti-matter and pair creation, as we now briefly explain. For the present purposes, it suffices to consider the Dirac equation in the vacuum (1.3.5). It can be solved by the plane-wave ansatz (for more details see for example [13, Section 3.1], [113, Section 3.3] or [130, Section 1.4.1])

\[
\psi(x) = \chi(k) e^{-ikx},
\]
Figure 1.3. The Dirac sea with particles and anti-particles.

where \( k \in \mathcal{M} \) is the four-momentum, and \( kx = \langle k, x \rangle \) is the Minkowski inner product (for a mathematically precise treatment in terms of the Fourier transform see Section ?? below). Using this ansatz in (1.3.3) yields the (zeroth order) linear system

\[
(k - m) \chi(k) = 0
\]

(1.5.1)

for the vector \( \chi(k) \in \mathbb{C}^4 \). Multiplying by the matrix \( k + m \) and using the anti-commutation relations (1.3.1) gives the necessary condition

\[
k^2 = m^2.
\]

(1.5.2)

If this condition is satisfied, the matrix \( k - m \) has a two-dimensional kernel, which coincides with the image of the matrix \( k + m \). Thus the general solution of (1.5.1) can be written as

\[
\chi(k) = (k + m) \phi \quad \text{with} \quad \phi \in \mathbb{C}^4.
\]

The zero component \( \omega := k^0 \) of the four-momentum is physically interpreted as \( 2\pi \) times the frequency of the wave. Equation (1.5.2), also referred to as the dispersion relation, can then be written as

\[
\omega^2 = |\vec{k}|^2 + m^2 \quad \text{or} \quad \omega = \pm \sqrt{\vec{k}^2 + m^2}.
\]

Here the plus and the minus sign correspond to positive and negative frequency, respectively. The corresponding solutions are said to be on the upper and lower mass shell (see Figure 1.3). Using Planck’s relation \( E = \hbar \omega \), the frequency can be related to the energy of the solution. Thus the solutions on the upper and lower mass shell have positive respectively negative energy.

At first sight, the occurrence of solutions of negative energy seems problematic, because particles of negative energy have never been observed. Moreover, at least in a naive consideration, solutions of arbitrarily large negative energy should make the physical system unstable, because by bringing a particle into a state of larger and larger negative energy, one could extract more and more positive energy from the system by the principle of conservation of energy. This problem was resolved by Dirac in 1930 \[26\] and led to the prediction of particle creation and anti-matter, as we now outline (an excellent and more detailed explanation can be found in \[13\] Section 5.1). We work in the setting of non-interacting many-particle quantum mechanics, where the many-particle wave function is described by a product of one-particle wave functions. In other words, the quantum state is described by occupying many one-particle states. Dirac’s concept is that in the vacuum, all the states of negative energy should be occupied, forming the so-called Dirac sea. According to the Pauli exclusion principle, each state may be occupied by at most
one electron. Therefore, adding particles to the system, the additional particles must oc-
cupy states of positive energy, giving rise to electrons. By convention, the electrons have
negative electric charge. Moreover, one can create “holes” in the Dirac sea. The resulting
“hole in a sea of negative energy” appears as a particle of again positive energy, but with
the opposite and thus positive electric charge. These “holes” can be observed as positrons.
Furthermore, starting from the completely filled Dirac sea, one can “excite” a particle of
the sea by a transition from a state of negative energy to a state of positive energy. As
a result, one obtains a particle (=electron) plus a hole (=positron). This explains why
matter and anti-matter can be created in pairs in a process called pair creation.

The above intuitive picture of the Dirac sea has important observable consequences,
because it explains fundamental physical phenomena like anti-matter and pair creation.
Nevertheless, the naive picture suffers from the problems that the Dirac sea has an in-
finitel negative charge density and an infinite energy density. In modern quantum field
theory, these problems are bypassed by introducing a suitable vacuum state and working
“relative” to this vacuum state. Here we shall not enter these constructions. Instead, we
shall take Dirac’s concept of a “sea of interacting particles” seriously, as will be explained
in more detail in Section 5.8.

Exercises

EXERCISE 1.1. Show that the relations “lies in the timelike future of” and “lies in
the causal future of” are transitive in the following sense,

\[ y \in I^\vee_x \text{ and } z \in I^\vee_y \implies z \in I^\vee_x \]
\[ y \in J^\vee_x \text{ and } z \in J^\vee_y \implies z \in J^\vee_x . \]

EXERCISE 1.2. (Local gauge transformations I) Show that the Klein-Gordon equa-
tion (1.2.6) is invariant under joint transformations of the electromagnetic potential and
the wave function according to

\[ A_j(x) \rightarrow A_j(x) + \partial_j \Lambda(x) , \quad \psi(x) \rightarrow e^{-i\Lambda(x)} \psi(x) . \] (1.5.3)

Moreover, show that the electromagnetic field tensor \( F_{jk} := \partial_j A_k - \partial_k A_j \)
remains unchanged under these transformations.

We remark that the transformations (1.5.3) are the classical gauge transformations of
electrodynamics. They give rise to local phase transformations of the quantum mechanical
wave functions, which have no physical significance because all measurable quantities
involve the product of the wave function with its complex conjugate.

EXERCISE 1.3. (Local gauge transformations II) Show that the Dirac equation 1.3.6
is invariant under joint transformations (1.5.3) of the electromagnetic potential and the
Dirac wave function.

EXERCISE 1.4. (Anti-commutation relations)
(a) Verify by direct computation that the Dirac matrices (1.3.3) satisfy the anti-commu-
tation relations (1.3.1).
(b) Why is it not possible to satisfy these anti-commutation relations with \( 2 \times 2 \) or \( 3 \times 3 \)-matrices? Hints: The case of odd-dimensional matrices can be ruled out by com-
puting the square and the trace of the matrix \( \gamma^0 \gamma^1 \). For \( 2 \times 2 \)-matrices, a similar
argument shows that the matrix \( \gamma^0 \gamma^1 \) is diagonalizable, making it possible to proceed
in an eigenvector basis.
Exercise 1.5. Show that the Dirac matrices in the Dirac representation (1.3.3) are symmetric with respect to the spin inner product (1.3.7). Show that this symmetry property is equivalent to the statement that the matrices $\gamma^0\gamma^j$ are Hermitian.

Exercise 1.6. Show that, multiplying the Dirac equation (1.3.6) by the operator $i\gamma^j(\partial_j - iA_j) + m$ and using the anti-commutation relations, we obtain the equation

$$- (\partial_k - iA_k)(\partial^k - iA^k) + \frac{i}{2} F_{jk} \gamma^j \gamma^k - m^2 \psi = 0.$$  
This differs from the Klein-Gordon equation (1.2.6) by the extra term $\frac{i}{2} F_{jk} \gamma^j \gamma^k$, which describes the coupling of the spin to the electromagnetic field.

Exercise 1.7. In this exercise, we shall verify that for any non-zero spinor $\psi$, the corresponding Dirac current vector $J^k = \langle \psi | \gamma^k \psi \rangle$ is non-spacelike.

(a) Show that the matrix $\gamma^0 \gamma^1$ is Hermitian and has eigenvalues $\pm 1$. Deduce that

$$\langle \psi, \gamma^0 \gamma^1 \psi \rangle \leq \langle \psi \psi \rangle.$$  
(b) Show that the last inequality implies that $|J^1| \leq J^0$.

(c) Use the rotational symmetry of the Dirac equation to conclude that $J^0 \geq |\vec{J}|$ (where $\vec{J} = (J^1, J^2, J^3) \in \mathbb{R}^3$).

Exercise 1.8. This exercise has the purpose of getting more familiar with the computation rules for Dirac matrices.

(a) Derive (1.3.20) from the anti-commutation relations.

(b) Derive from the anti-commutation relations and the symmetry of the Dirac matrices that the pseudo-scalar matrix $\Gamma$ in (1.3.21) is anti-symmetric and that $\Gamma^2 = 1$.

(c) Show that the chiral projectors $\chi_L$ and $\chi_R$ defined by (1.3.22) satisfy the relations (1.3.23) and (1.3.24). Show that the Dirac equation in the presence of an external field (1.3.6) can be rewritten as a system of equations for the left- and right-handed components of $\psi$,

$$i\gamma^k (\partial_k - iA_k) \chi_L \psi = m \chi_R \psi, \quad i\gamma^k (\partial_k - iA_k) \chi_R \psi = m \chi_L \psi.$$  
What happens in the limiting case $m = 0$?
CHAPTER 2

Mathematical Preliminaries

2.1. Basics on Topology

We here recall a few basic concepts from topology. A more systematic treatment can be found in many good elementary textbooks like for example [125] or [96]. In a topological space the fundamental concept is that of an open set. Since topological spaces are rather abstract concepts, we prefer to begin with metric spaces.

**Definition 2.1.1.** Let $E$ be a set. A mapping $d : E \times E \to \mathbb{R}_0^+$ is called a metric on $E$ if it has the following properties:

(i) **Positivity:** For all $x, y \in E$, $d(x, y) \geq 0$ and $d(x, y) = 0 \iff x = y$.

(ii) **Symmetry:** For all $x, y \in E$, $d(x, y) = d(y, x)$.

(iii) **Triangle inequality:** For all $x, y, z \in E$, $d(x, y) \leq d(x, z) + d(y, y)$.

If $d$ is a metric on $E$, then the pair $(E, d)$ is called a metric space.

A simple example of a metric space is $E = \mathbb{R}_3$ with the Euclidean distance function $d(x, y) = \|x - y\| := \left( \sum_{\alpha=1}^{3} |x^{\alpha} - y^{\alpha}|^2 \right)^{\frac{1}{2}}$, or also $\mathbb{R}^n$ with the analogously defined distance function. In view of this example, $d(x, y)$ is sometimes also referred to as the distance between $x$ and $y$. More examples of metric spaces will be given in the following section.

A metric gives rise to a corresponding topology:

**Definition 2.1.2.** Let $(E, d)$ be a metric space. For any $x \in E$ and $r > 0$, the set $B_r(x) := \{ y \in E \mid d(x, y) < r \}$ is referred to as the open ball of radius $r$ centered at $x$. A subset $\Omega \subset E$ is open if for every $x \in \Omega$ there is some radius $r > 0$ such that $B_r(x) \subset \Omega$ (see Figure 2.1). The metric topology $\mathcal{O}$ of $(E, d)$ is defined as the family of all open subsets, $\mathcal{O} := \{ \Omega \subset E \mid \Omega \text{ is open} \} \subset \mathcal{P}(E)$ (here $\mathcal{P}(E)$ denotes the power set of $E$, i.e. the set of all subsets of $E$).

The open sets in a metric space satisfy certain properties (we omit the proof, which is an easy exercise and can also be found in many textbooks):
Lemma 2.1.3. Given a metric space \((E,d)\), the corresponding topology \(\mathcal{O}\) has the following properties:

(i) \(\emptyset,E \in \mathcal{O}\)

(ii) Closedness under finite intersections: For any \(n \in \mathbb{N}\) and \(\Omega_1,\ldots,\Omega_n \subset E\),

\[
\Omega_1,\ldots,\Omega_n \in \emptyset \implies \Omega_1 \cap \cdots \cap \Omega_n \in \emptyset.
\]

(iii) Closedness under arbitrary unions: For any (possibly infinite) family \((\Omega_\lambda)_{\lambda \in \Lambda}\) of subsets of \(E\),

\[
\Omega_\lambda \in \emptyset \ \forall \lambda \in \Lambda \implies \bigcup_{\lambda \in \Lambda} \Omega_\lambda \in \emptyset.
\]

A topological space is now defined by turning exactly these properties into a definition.

Definition 2.1.4. A set \(E\) together with a distinguished family of subsets \(\mathcal{O} \subset \mathcal{P}(E)\) satisfying the properties (i)–(iii) in Lemma 2.1.3 is referred to as a topological space. The family of subsets \(\mathcal{O}\) is the topology of \(E\). The sets in \(\mathcal{O}\) are called open subsets of \(E\) (with respect to \(\mathcal{O}\)). A topology \(\mathcal{O}\) on \(E\) with the additional property that for any distinct point \(x,y \in E\), there are disjoint open sets \(U,V \in \mathcal{O}\) with \(x \in U\) and \(y \in V\) is called Hausdorff (see Figure 2.2).

Clearly, topological spaces are a general and abstract concept. In particular, the topology of a topological space does not necessarily need to come from an underlying metric. Note that the topology coming from a metric is always Hausdorff, as one sees immediately by choosing \(U = B_r(x)\) and \(V = B_r(y)\) with \(r = d(x,y)/3\).

The significance of the definition of a topological space lies in the fact that many notions from analysis can be formulated purely in topological terms and thus be generalized to arbitrary topological space. We conclude by recalling a few of such topological definitions:

A set \(A \subset E\) is called closed if its complement \(E \setminus A\) is open. The properties in Lemma 2.1.3 can be restated for closed sets by saying that the empty set and \(E\) are closed, and that finite unions as well as arbitrary intersections of closed sets are again closed (see Exercise 2.1). The closure \(\overline{A}\) of a subset \(A \subset E\) is defined by

\[
\overline{A} := \bigcap \{B \subset E \mid A \subset B \text{ and } B \text{ is closed}\}.
\]

It is by definition the smallest closed set containing \(A\). Similarly, the interior \(\overset{\circ}{A}\) of a set \(A \subset E\) is defined as the largest open set contained in \(A\), i.e.

\[
\overset{\circ}{A} := \bigcup \{B \subset E \mid B \subset A \text{ and } B \text{ is open}\}.
\]
A subset $K \subset E$ is called \textit{compact} if for every collection $\{U_i\}_{i \in I}$ of open sets of $E$ with $K \subset \bigcup_{i \in I} U_i$ there exist finitely many $i_1, \ldots, i_n \in I$ such that still $K \subset \bigcup_{k=1}^n U_{i_k}$ (every open cover of $K$ has a finite subcover).

A sequence $(x_n)_{n \in \mathbb{N}}$ in $E$ \textit{converges to a point} $x \in E$ if for any open set $U \subset E$ with $x \in E$ there is some $N \in \mathbb{N}$ with $x_n \in U$ for all $n \geq N$. Here the Hausdorff property becomes important since it guarantees that a sequence may only converge to one point at most.

Finally, a mapping $f : E \to F$ between two topological spaces $(E, \mathcal{O}_E)$ and $(F, \mathcal{O}_F)$ is \textit{continuous} if the pre-image of any open set is open, i.e. if for any $\Omega \subset F$

$$\Omega \in \mathcal{O}_F \implies f^{-1}(\Omega) \in \mathcal{O}_E .$$

In metric spaces, this definition is equivalent to the usual $\varepsilon$-$\delta$-criterion (see Exercise 2.2.2). The topological definition has the advantage that in proofs it fits together with other topological notions. Many important theorems from real analysis have topological generalizations. For example, every real-valued continuous function on a compact topological space attains its maximum (see Exercise 2.3).

\section*{2.2. Banach Spaces, Hilbert Spaces and Linear Operators}

In this section, we consider complex vector spaces with additional structures like a norm and a scalar product. We also recall the notion of completeness and introduce linear operators. For more details and further reading we recommend the textbooks \cite{121,116,105}.

\textbf{Definition 2.2.1.} \textit{Let $V$ be a complex vector space. A norm on $V$ is a mapping}

$$\| \cdot \| : V \to \mathbb{R}_0^+$$

\textit{with the following properties:}

\begin{enumerate}[(i)]
    \item \textit{Homogeneity: For all $x \in V$ and $\lambda \in \mathbb{C}$,}
    $$\| \lambda x \| = |\lambda| \| x \| .$$
    \item \textit{Definiteness: For all $x \in V$,}
    $$\| x \| = 0 \iff x = 0 .$$
    \item \textit{Triangle inequality: For all $x, y \in V$,}
    $$\| x + y \| \leq \| x \| + \| y \| .$$
\end{enumerate}

\textit{If $\| \cdot \|$ is a norm on $V$, then the pair $(V, \| \cdot \|)$ is called a normed space.}

Every normed space is a metric space (see Definition 2.1.1) with the metric defined by $d(x, y) := \| x - y \|$ for all $x, y \in V$. 

To give a concrete example, on $\mathbb{R}^n$ (or similarly $\mathbb{C}^n$) for any $p \in [1, \infty) \cup \{\infty\}$ one obtains a norm $\| \cdot \|_p$ as

$$\|x\|_p := \left( \sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}}$$

for $p < \infty$ and $\|x\|_\infty := \max\{|x_1|, \ldots, |x_p|\}.$ \hfill (2.2.1)

In the case $p = 2$, this gives the Euclidean length of a vector $x \in \mathbb{R}^n$. As an infinite-dimensional example, on the compactly supported continuous functions $f \in C^0(\mathbb{R}^n)$ one defines the integral norms

$$\|f\|_p := \left( \int_{\mathbb{R}^n} |f(x)|^p \, dx \right)^{\frac{1}{p}}$$

for $p < \infty$ and $\|f\|_\infty := \sup_{x \in \mathbb{R}^n} |f(x)|.$ \hfill (2.2.2)

For more details on these examples see Exercise 2.4. The norm $\|\cdot\|_p$ will be introduced on an abstract measure space in Section 2.3.

We next recall the notion of completeness, which is a property about convergence of sequences. First recall that a sequence $(x_n)_{n \in \mathbb{N}}$ in a metric space $E$ converges to a point $x \in E$ if for any $\varepsilon > 0$ there is some $N \in \mathbb{N}$ such that $d(x_n, x) < \varepsilon$ for all $n \geq N$. Similarly, a sequence $(x_n)_{n \in \mathbb{N}}$ in $E$ is a Cauchy sequence if for any $\varepsilon > 0$ there is some $N \in \mathbb{N}$ such that $d(x_n, x_m) < \varepsilon$ for all $m, n \geq N$. Any sequence converging to a point of $E$ is a Cauchy sequence. If conversely also any Cauchy sequence converges to a point of $E$, one calls $E$ a complete metric space. A normed space which as metric space is complete is referred to as a Banach space. A few examples of Banach spaces are given in Exercise 2.5. Completeness is an important and very useful property. Therefore, we would like to restrict attention to complete metric spaces. This is no major restriction because any non-complete metric space can be regarded as subset of a corresponding complete metric space, its so-called completion (for details see Exercise 2.6).

We next specialize the setting by turning from a norm to a scalar product.

**Definition 2.2.2.** Let $V$ be a complex vector space. A **scalar product** on $V$ is a mapping

$$\langle \cdot | \cdot \rangle : V \times V \rightarrow \mathbb{C}$$

with the following properties:

(i) **Linearity in the second argument:** For all $u, v, w \in V$ and $\alpha, \beta \in \mathbb{C}$,

$$\langle u | \alpha v + \beta w \rangle = \alpha \langle u | v \rangle + \beta \langle u | w \rangle.$$

(ii) **Hermitian symmetry:** For all $u, v \in V$,

$$\overline{\langle u | v \rangle} = \langle v | u \rangle.$$

(iii) **Positive definiteness:** For all $u \in V$,

$$\langle u | u \rangle \geq 0 \quad \text{and} \quad \langle u | u \rangle = 0 \iff u = 0.$$

If $\langle \cdot | \cdot \rangle$ is a scalar product on $V$, the pair $(V, \langle \cdot | \cdot \rangle)$ is a **scalar product space**.

Every scalar product space $(V, \langle \cdot | \cdot \rangle)$ is also a normed space with the norm being defined by $\|u\| := \sqrt{\langle u | u \rangle}$ for all $u \in V$ (see Exercise 2.7). A scalar product space which is a Banach space, i.e. which is complete, is called a Hilbert space. We usually denote a Hilbert space by $H$ or $(H, \langle \cdot | \cdot \rangle)$.
Simple example of a scalar product space is $\mathbb{C}^n$ with the scalar product defined by

$$\langle u | v \rangle := \sum_{i=1}^{n} u_i \overline{v_i}.$$ 

An infinite-dimensional example is the $C_0(\mathbb{R}^n, \mathbb{C})$ of complex-valued test functions with the scalar product

$$\langle f | g \rangle_{L^2} := \int_{\mathbb{R}^n} \overline{f(x)} g(x) dx.$$ 

The corresponding norms give us back (2.2.1) or (2.2.2), respectively, in the case $p = 2$.

Throughout this book, all Hilbert spaces will be separable, meaning that there is a countable subset $D \subset H$ which is dense in the sense that its closure is the whole Hilbert space, $\overline{D} = H$. In a separable Hilbert space, one can choose an orthonormal Hilbert space basis $(e_i)_{i \in I}$ characterized by the following properties:

(i) The index set $I$ is at most countable.
(ii) The system $(e_i)_{i \in I}$ is orthonormal, i.e.

$$\langle e_i | e_j \rangle = \delta_{ij}$$

(where $\delta_{ij}$ is the Kronecker delta).
(iii) The system $(e_i)_{i \in I}$ is complete, meaning that every vector $u \in H$ has the representation as a (possibly infinite) linear combination

$$u = \sum_{i \in I} c_i e_i \quad \text{with} \quad c_i \in \mathbb{C},$$

where the series converges in $H$.

Combining the properties (i) and (ii), every vector can be written as

$$u = \sum_{i \in I} \langle e_i | u \rangle e_i.$$ 

Moreover, the cardinality of the index set $I$ does not depend on the choice of the basis, making it possible to define the dimension of the Hilbert space

$$\dim H := \#I \in \mathbb{N}_0 \cup \{\infty\}.$$ 

Now we turn our attention to linear operators.

**Definition 2.2.3.** Let $(V, \| \cdot \|_V)$ and $(W, \| \cdot \|_W)$ be normed spaces. A mapping

$$A : V \to W$$

is a bounded linear operator from $V$ to $W$ if it has the following properties:

(i) Linearity: For all $u, v \in V$ and $\alpha, \beta \in \mathbb{C},$

$$A(\alpha u + \beta v) = \alpha A(u) + \beta A(v).$$

(ii) Boundedness: There is a constant $c > 0$ such that for all $u \in V,$

$$\|A(u)\|_W \leq c \|u\|_V.$$ 

Usually, one also writes $A(u)$ simply as $Au.$

The set of all bounded linear operators is a complex vector space with the vector operations defined pointwise. Thus for any bounded linear operators $A, B : V \to W$ and $\alpha, \beta \in C,$ the operator $\alpha A + \beta B : V \to W$ is defined by

$$(\alpha A + \beta B)(u) := \alpha Au + \beta Bu \quad \text{for any} \ u \in V.$$
The resulting vector space of bounded linear operators from $V$ to $W$ is denoted by $L(V, W)$. One obtains a norm on this vector space by setting
\[ \|A\| := \sup_{u \in V, \|u\|_V = 1} \|Au\|_W, \]
referred to as the sup-norm or the operator norm. With this norm, the space $L(V, W)$ is complete if and only if $W$ is. For details we refer to Exercise 2.8.

We will be concerned mainly with bounded linear operators on a Hilbert space $(H, \langle \cdot | \cdot \rangle)$. Two cases are of specific interest: mappings from $H$ to the complex numbers, and mappings from $H$ back to itself. In the first case, the resulting operator is also referred to as a bounded linear form. These operators form the so-called dual space $H^*$,
\[ H^* := L(H, \mathbb{C}). \]
An example of a bounded linear form is the mapping $H \ni u \mapsto \langle v | u \rangle \in \mathbb{C}$ obtained by taking the scalar product with a fixed vector $v \in H$. In fact, every bounded linear form can be written in this way, making it possible to canonically identify the dual space of a Hilbert space with the Hilbert space itself:

**Theorem 2.2.4. (Fréchet-Riesz)** Let $H$ be a Hilbert space. Then for any bounded linear functional $\phi \in H^*$ there is a unique vector $v \in H$ such that
\[ \phi(u) = \langle v | u \rangle \quad \text{for all } u \in H. \tag{2.2.3} \]
In the case of a separable Hilbert space of interest here, this theorem can be understood in simple terms by expanding vectors in an orthonormal Hilbert space basis $(e_i)_{i \in I}$. Writing a vector $u \in H$ as $u = \sum_{i \in I} \langle e_i | u \rangle e_i$ we have
\[ \phi(u) = \sum_{i \in I} \langle e_i | u \rangle \phi(e_i), \]
where in the infinite-dimensional case we have to use continuity (boundedness) of $\phi$ to see that we can pull out the (infinite) sum. Now the idea is to rewrite the last term as
\[ \sum_{i \in I} \langle e_i | u \rangle \phi(e_i) = \left\langle \sum_{i \in I} \overline{\phi(e_i)} e_i \bigg| u \right\rangle \]
using linearity (and continuity) of the inner product, and then simply define the vector $v \in H$ we are looking for by
\[ v = \sum_{i \in I} \overline{\phi(e_i)} e_i. \]
In finite dimensions this computation is fine, but in infinite dimensions one has to show that the series defining $v$ actually converges in $H$ before one can compute as above. Fortunately, with a little trick this convergence is not hard to see: Let $I = \mathbb{N}$ and note first that for $v_n := \sum_{i=1}^n \phi(e_i) e_i$ we get
\[ \sum_{i=1}^n |\phi(e_i)|^2 = |\phi(v_n)| \leq \|\phi\| \cdot \|v_n\| = \|\phi\| \cdot \left( \sum_{i=1}^n |\phi(e_i)|^2 \right)^{1/2}, \]
and therefore $\sum_{i=1}^n |\phi(e_i)|^2 < \|\phi\|^2$. Using completeness of $H$ it is now easy to show that $\sum_{i=1}^n \overline{\phi(e_i)} e_i$ converges as well. One also easily obtains $\|v\| = \|\phi\|$.

The Fréchet-Riesz theorem is the mathematical justification for the *Bra-Ket notation* commonly used in quantum mechanics. In this notation elements of $\mathcal{H}$ are denoted by $|v\rangle$ and referred to as *kets*, and elements of the dual $\mathcal{H}^*$ are denoted by $\langle v |$ and referred
to as *bras*. As a consequence of the Fréchet-Riesz theorem, for any ket \( |v\rangle \) one may form the corresponding bra \( \langle v| \) and vice-versa. The notation resembles the role of the inner product \( \langle \cdot | \cdot \rangle \), as for any bra \( \langle v| \) and any ket \( |w\rangle \) one may form the bra-(c)ket \( \langle v|w \rangle \).

We finally consider the space \( L(\mathcal{H}, \mathcal{H}) \) of bounded linear endomorphisms. For brevity, this space is also denoted by \( L(\mathcal{H}) \). In the context of such linear endomorphisms, the following additional notions are important.

**Definition 2.2.5.** A bounded linear operator \( A \in L(\mathcal{H}) \) is **symmetric** if

\[
\langle Au | v \rangle = \langle u | Av \rangle \quad \text{for all } u, v \in \mathcal{H}.
\]

An operator \( U \in L(\mathcal{H}) \) is **unitary** if it has a bounded inverse and if

\[
\langle Uu | Uv \rangle = \langle u | v \rangle \quad \text{for all } u, v \in \mathcal{H}.
\]

It has **finite rank** if its image \( A(\mathcal{H}) \) is a finite-dimensional subspace of \( \mathcal{H} \).

For clarity, we also mention the notion of an operator being **selfadjoint**. For bounded linear operators, this is equivalent to being symmetric. For unbounded operators, however, being self-adjoint is a stronger property than being symmetric. It is required for instance in the proof of the spectral decomposition (see Section 3.2). With this in mind, when talking about bounded operators, in this book we usually prefer the notion of a **symmetric** operator.

If the Hilbert space \( \mathcal{H} \) is finite-dimensional, symmetric and unitary operators can be diagonalized by choosing an orthonormal basis of eigenvectors (for details see standard textbooks on linear algebra like [91, 127]). The eigenvalues of a symmetric operator are all real, whereas the eigenvalues of a unitary operator have modulus one. The generalization of this result to the infinite-dimensional setting is provided by the **spectral theorem**. The general spectral theorem for bounded symmetric operators, which will be needed mainly in Section 15, will be treated in Section 3.2 below. In large parts of this book, however, we only deal with symmetric operators having finite rank (on possibly infinite-dimensional Hilbert spaces). For such operators the results of linear algebra carry in a straigt-forward manner, as we now explain.

Thus let \( A \in L(\mathcal{H}) \) be a symmetric bounded operator of finite rank. Then by definition its image \( I := A(\mathcal{H}) \) is finite-dimensional. Its orthogonal complement

\[
I^\perp := \{ v \in \mathcal{H} \mid \langle v, u \rangle = 0 \text{ for all } u \in I \}
\]

(2.2.4)
is a closed subspace of \( \mathcal{H} \), and every vector \( u \in \mathcal{H} \) can be decomposed uniquely as

\[
u = u^\parallel + u^\perp \quad \text{with} \quad u^\parallel \in I, u^\perp \in I^\perp
\]

(2.2.5)
(see Exercise 2.11). Moreover, for any \( u \in I^\perp \) the computation

\[
0 = \langle A^2 u | u \rangle = \langle Au | Au \rangle
\]

shows that \( Au = 0 \). Therefore, \( A \) vanishes identically on \( I^\perp \) and so it suffices to consider the restriction \( A|_I : I \to I \). Being an operator on a finite-dimensional vector space, it can be diagonalized as in linear algebra.

When taking products of symmetric operators \( A_1, \ldots, A_n \) of finite rank, one chooses \( I \) as the finite-dimensional vector space spanned by the images of all the operators. Then the restrictions \( A_k|_I \) with \( k = 1, \ldots, n \) all map \( I \) to itself, making it possible to work again in a finite-dimensional subspace of \( \mathcal{H} \).
2.3. Basics on Abstract Measure Theory

The basic object of a causal fermion system is a measure. For this reason, we now provide the necessary basics on abstract measure theory. For more details we refer to good standard textbooks like [121, 92, 14, 78].

Let $\mathcal{F}$ be a set. A measure is a mapping which to a subset of $\mathcal{F}$ associates a non-negative number, which can be thought of as the “volume” of the set. In order to get into a mathematically sensible setting, the measure must not be defined on any subset, but only on a distinguished family of subsets of $\mathcal{F}$. This subset must form a $\sigma$-algebra, which we now define.

**Definition 2.3.1.** A system $\mathcal{M}$ of subsets of $\mathcal{F}$ is a $\sigma$-algebra if it has the following properties:

(i) $\emptyset \in \mathcal{M}$

(ii) $\mathcal{M}$ is closed under taking complements: For any subset $A \subset \mathcal{F}$,
$$A \in \mathcal{M} \implies \mathcal{F} \setminus A \in \mathcal{M}.$$ 

(iii) $\mathcal{M}$ is closed under at most countable unions: For any sequence $(A_n)_{n \in \mathbb{N}}$ of subsets of $\mathcal{F}$,
$$A_n \in \mathcal{M} \text{ for all } n \in \mathbb{N} \implies \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{M}.$$ 

The sets in $\mathcal{M}$ are also referred to as the measurable sets.

Using De Morgan’s laws, it follows that a $\sigma$-algebra is closed even under at most countable intersections and, more generally, under at most countable set operations.

We next introduce a measure as a mapping which to every measurable set associates its “volume.” This mapping is compatible with at most countable set operations, as is made precise by the notion of $\sigma$-additivity.

**Definition 2.3.2.** A measure $\rho$ is a mapping from a $\sigma$-algebra to the non-negative numbers or infinity,
$$\rho : \mathcal{M} \to \mathbb{R}^+_0 \cup \{\infty\},$$
which has the following properties:

(i) $\rho(\emptyset) = 0$

(ii) $\rho$ is $\sigma$-additive: For any sequence $(A_n)_{n \in \mathbb{N}}$ of pairwise disjoint measurable sets,
$$\rho\left( \bigcup_{n \in \mathbb{N}} A_n \right) = \sum_{n=1}^{\infty} \rho(A_n).$$

The structure $(\mathcal{F}, \mathcal{M}, \rho)$ is a measure space.

By choosing almost all of the sets $A_n$ in (ii) as empty sets, one sees that $\sigma$-additivity implies finite additivity. In particular $\rho(A \cup B) = \rho(A) + \rho(B)$ for any disjoint measurable sets $A$ and $B$. As a consequence, a measure is monotone in the sense that $\rho(A) \leq \rho(B)$ for any measurable sets $A \subset B$.

A set of measure zero is also referred to as a null set. By monotonicity, every measurable subset of a null set is again a null set. If every subset of a null set is measurable, then the measure is called complete.

On a measure space $(\mathcal{F}, \mathcal{M}, \rho)$ a notion of integration is introduced as follows. We begin with complex-valued functions which take only a finite number of values, also
Banach spaces if endowed with the corresponding norms are essentially bounded in the sense that there is a number $\|f\|_\rho$ measurable functions $f$ on the space $L^\rho$ (here $\chi_A$ is the characteristic function defined by $\chi_A(x) = 1$ if $x \in A$ and $\chi_A(x) = 0$ otherwise). Its integral is defined in the natural way by

$$\int_{\mathcal{F}} f \, d\rho := \sum_{n=1}^{N} c_n \rho(A_n).$$

This integral can be extended to more general functions as follows. A function $f : \mathcal{F} \to \mathbb{C}$ is measurable if the pre-image of any open set is measurable. For a measurable function $f : \mathcal{F} \to [0, \infty)$ taking real, nonnegative values one defines

$$\int_{\mathcal{F}} f \, d\rho := \sup \left\{ \int_{\mathcal{F}} s \, d\rho \, \middle| \, s : \mathcal{F} \to [0, \infty) \text{ is a step function with } s \leq f \right\} \in \mathbb{R}_0^+ \cup \{\infty\}.$$  

This expression is allowed to be infinite. If it is finite, one calls $f$ integrable. From here on the further generalization is straightforward: For a measurable function $f : \mathcal{F} \to \mathbb{R}$ one defines its positive and negative $f^+, f^- : \mathcal{F} \to [0, \infty)$ by $f^+(x) := \max\{f(x), 0\}$ and $f^-(x) := \max\{-f(x), 0\}$. Then clearly $f = f^+ - f^-$ and one can show that $f^+, f^-$ are again measurable. If at least one of them is integrable, one defines

$$\int_{\mathcal{F}} f \, d\rho := \int_{\mathcal{F}} f^+ \, d\rho - \int_{\mathcal{F}} f^- \, d\rho \in \mathbb{R} \cup \{-\infty, \infty\}.$$  

Again, $f$ is defined to be integrable if this integral is finite (note that no cancellation between positive and negative terms can happen, as positive and negative part of $f$ are considered separately). Finally, for a complex-valued measurable function $f : \mathcal{F} \to \mathbb{C}$ whose real and imaginary part are both integrable (they are always measurable), one defines

$$\int_{\mathcal{F}} f \, d\rho := \int_{\mathcal{F}} \text{Re}(f) \, d\rho + i \int_{\mathcal{F}} \text{Im}(f) \, d\rho \in \mathbb{C}.$$  

A complex-valued measurable function on $\mathcal{F}$ whose real and imaginary part are both integrable is again called integrable. One can combine all these notions of integrability by demanding that the absolute value is integrable,

$$\int_{\mathcal{F}} |f(x)| \, d\rho(x) \in \mathbb{R}_0^+ \cup \{\infty\}. \quad (2.3.1)$$

This condition can be understood immediately from the requirement that in integrals one must always avoid expressions of the form "$\infty - \infty"."

The integrable functions form a vector space denoted by $L^1(\mathcal{F}, d\rho)$. Similarly, the measurable functions $f$ whose power $|f|^p$ with $p \in (1, \infty)$ is integrable, form the vector space $L^p(\mathcal{F}, d\rho)$. Finally, the space $L^\infty(\mathcal{F}, d\rho)$ is defined as the functions which are essentially bounded in the sense that there is a number $c > 0$ such that the pre-image $|f|^{-1}((c, \infty])$ has $\rho$-measure zero. The spaces $L^p(\mathcal{F}, d\rho)$ with $p \in [1, \infty]$ are all Banach spaces if endowed with the corresponding norms

$$\|f\|_p := \left( \int_{\mathcal{F}} |f|^p \, d\rho \right)^{\frac{1}{p}} \quad \text{if } p \in [0, \infty)$$

$$\|f\|_\infty := \inf \left\{ c \geq 0 \left| |f|^{-1}((c, \infty]) = 0 \right. \right\}.$$
Here one must be careful because functions which vanish almost everywhere (i.e. which are non-zero only on a set of measure zero) have norm zero. Therefore, in the $L^p$-spaces one divides out these functions, which means that vectors in $L^p$ are equivalence classes of functions which differ on sets of measure zero. The space $L^2(\mathcal{F}, d\rho)$ is even a Hilbert space, endowed with the scalar product

$$\langle f | g \rangle_{L^2(\mathcal{F}, d\rho)} := \int_\mathcal{F} f(x) g(x) \, d\rho(x).$$

We remark that these constructions generalize immediately to functions taking values in a Banach or Hilbert spaces, if one simply replaces the absolute value in (2.3.1) by the norm on the Banach space and the inner product $\langle f | g \rangle$ in (2.3.2) by the Hilbert space scalar product. Finally, we remark that integration over a subset $A \subset \mathcal{F}$ is defined as

$$\int_A f \, d\rho := \int_\mathcal{F} f \chi_A \, d\rho,$$

where $\chi_A$ is the characteristic function of $A$.

We now specialize the setting by considering a class of measures which will be of major importance in this book, namely Borel measures. To this end, we assume that $(\mathcal{F}, \mathcal{O})$ is a topological space. Then the Borel algebra is defined as the smallest $\sigma$-algebra which contains all the open sets (see Exercise 2.13). An element of the Borel algebra is a Borel set. A measure on the Borel algebra is referred to as a Borel measure. The Borel measures of relevance to us will typically harmonize with the topology in the following sense.

**Definition 2.3.3.** A Borel measure $\rho$ on $\mathcal{F}$ is called **regular** if for any measurable set $A$,

$$\rho(A) = \sup_{K \subset A \text{ compact}} \rho(K) = \inf_{\Omega \supset A \text{ open}} \rho(\Omega).$$

It is **locally finite** if every point of $\mathcal{F}$ has an open neighborhood $\Omega$ with $\rho(\Omega) < \infty$. Regular, locally finite Borel measures are also referred to as **Radon measures**.

The Lebesgue measure on $\mathbb{R}^n$ is a Radon measure. We remark that a Borel measure in general is not complete, because a Borel null set may have subsets which are not Borel sets. One could improve the situation by forming the completion of the measure (see Exercise 2.14). However, completeness of the measure is not important for most applications, and is will often be more convenient to work with Borel measures.

One of the advantages of this notion of integration (compared to for example the Riemann integral) is that various (easy to use and prove) results regarding convergence of integrals hold. For instance, for a sequence $(f_n)_{n \in \mathbb{N}}$ of integrable functions $f_n : \mathcal{F} \to \mathbb{C}$ which converge pointwise to a function $f : \mathcal{F} \to \mathbb{C}$, the function $f$ is again measurable and one has

$$\int_\mathcal{F} f_n \, d\rho \to \int_\mathcal{F} f \, d\rho$$

if all functions only take nonnegative values and $f_n \leq f_{n+1}$ for all $n \in \mathbb{N}$ (Lebesgue’s monotone convergence theorem), or if there exists an integrable function $g : \mathcal{F} \to [0, \infty)$ with $|f_n| \leq g$ for all $n \in \mathbb{N}$ (Lebesgue’s dominated convergence theorem). Another important result in integration theory is Fubini’s theorem, which is about iterated integrals. If $(\mathcal{F}, \mathcal{M}, \rho)$ and $(\mathcal{G}, \mathcal{N}, \nu)$ are two measure spaces, then on the product space $\mathcal{F} \times \mathcal{G}$ there is a natural $\sigma$-algebra containing all product sets $M \times N$ with $M \in \mathcal{M}$, $N \in \mathcal{N}$, and a measure $\rho \times \nu$ on this $\sigma$-algebra such that $(\rho \times \nu)(M \times N) = \rho(M)\nu(N)$ for all $M \in \mathcal{M}$,
Now Fubini’s theorem now states that if $f : \mathcal{F} \times \mathcal{G} \to \mathbb{C}$ is integrable with respect to this measure, then
\[
\int_{\mathcal{F} \times \mathcal{G}} f \, d(\rho \times \nu) = \int_{\mathcal{F}} \left( \int_{\mathcal{G}} f(x,y) \, d\rho(x) \right) \, d\nu(y) = \int_{\mathcal{G}} \left( \int_{\mathcal{F}} f(x,y) \, d\nu(y) \right) \, d\rho(x). \tag{2.3.3}
\]

We conclude this section by introducing a few other notions which will be needed later on. The first notion is the support of a measure.

**Definition 2.3.4.** Let $(\rho, \mathcal{M})$ be a measure on the topological space $(\mathcal{F}, \mathcal{O})$. The **support** of $\rho$ is defined as the complement of the largest open set of measure zero, i.e.
\[
\text{supp} \rho := \mathcal{F} \setminus \bigcup \{ \Omega \subset \mathcal{F} \mid \Omega \text{ is open and } \rho(\Omega) = 0 \}. \tag{2.3.4}
\]

Note that the support is by definition a closed subset of $\mathcal{F}$. In integrals, one can always restrict to the support of a measure in the sense that
\[
\int_{\mathcal{F}} f \, d\rho = \int_{\text{supp} \rho} f \, d\rho
\]
holds for any integrable function $f : \mathcal{F} \to \mathbb{C}$.

Suppose we want to compare two Radon measures $\rho$ and $\tilde{\rho}$ on $\mathcal{F}$. A natural idea is to consider the difference of the measures $\rho - \tilde{\rho}$. The difficulty is that for a measurable set $A \subset \mathcal{F}$, its measures $\rho(A)$ and $\tilde{\rho}(A)$ could both take the value $+\infty$, in which case their difference would be ill-defined. In order to avoid this problem, we use the regularity of a Radon measure and exhaust by compact sets. Assuming that $\mathcal{F}$ is locally compact, the fact that Radon measures are locally finite implies that Radon measures of compact sets are always finite. This leads us to the following definition:

**Definition 2.3.5.** Given two Radon measures $\rho$ and $\tilde{\rho}$ on a locally compact topological space $\mathcal{F}$, we define the measures $\mu^\pm$ by
\[
\mu^+(A) = \sup_{K \subset A \text{ compact}} (\rho(K) - \tilde{\rho}(K)) \quad \mu^-(A) = \sup_{K \subset A \text{ compact}} (\tilde{\rho}(K) - \rho(K)).
\]
The difference of measures $\rho - \tilde{\rho}$ is said to have bounded total variation if the measures $\mu^\pm$ are bounded, i.e. if
\[
\mu^+(\mathcal{F}), \mu^-(\mathcal{F}) < \infty.
\]
If this is the case, the total variation measure $|\rho - \tilde{\rho}|$ is defined by
\[
|\rho - \tilde{\rho}| = \mu^+ + \mu^-.
\]

We remark that $\rho - \tilde{\rho}$ can also be defined in the context of signed measures; we refer the interested reader to [92, §28] or [121, Section 6.1].

Another notion of measure theory which we will use frequently is the push-forward measure, which we now define (for more details see for example [14, Section 3.6] or Exercise 2.15). To this end, let $(\mathcal{F}, \mathcal{M}, \rho)$ be a measure space, and suppose we are given a mapping $f : \mathcal{F} \to X$, where $X$ is any set. Then $f$ induces a measure on $X$ as follows: Let $\mathcal{M}_X$ be the set of all subsets $\Omega \subset X$ whose pre-image $f^{-1}(\Omega)$ is $\rho$-measurable. Using the elementary identities for inverse images of unions and complements, one verifies that $\mathcal{M}_X$ is indeed a $\sigma$-algebra on $X$. On this $\sigma$-algebra, the push-forward measure $f_* \rho$ is defined by
\[
(f_* \rho)(\Omega) := \rho(f^{-1}(\Omega)).
\]
Using again the above identities for inverse images, one verifies that \( f_\ast \rho \) is indeed a measure.

### 2.4. Distributions and Fourier Transform

We now recall a few basics on distribution theory and the Fourier transform. For more details, we recommend the textbook \[80, 116\] Sections V.3 and IX or \[115\] §2.1, §2.2 and Appendix A.\]

The theory of distributions describes a generalization of the concept of a function on \( \mathbb{R}^n \) (or, similarly, on a bounded domain or smooth manifold). Moreover, the differential calculus for smooth functions is extended to objects which are more singular than functions. The desire for such objects can be motivated for instance by the classical problem in electrostatics to determine the electric field generated by a distribution of charges. In the continuum formulation, a distribution of charges is described by a charge density \( \rho : \mathbb{R}^3 \to \mathbb{R} \) (typically compactly supported) having the interpretation that for any domain \( \Omega \subset \mathbb{R}^3 \) the integral \( \int_\Omega \rho(x)d^3x \) describes the total charge contained inside of \( \Omega \). The electromagnetic field \( E : \mathbb{R}^3 \to \mathbb{R}^3 \) generated by \( \rho \) can then be computed as \( E = -\nabla \phi \) where \( \phi \) is a (suitable) solution of Poisson’s equation \( \Delta \phi = -\rho \). Now suppose that in this formulation one wants to deal with a point particle whose complete charge \( Q \) is concentrated at a single point, say the origin. Then the corresponding density \( \rho \) would need to satisfy

\[
\int_{\Omega} \rho(x) \, d^3x = \begin{cases} Q & \text{if } 0 \in \Omega, \\ 0 & \text{if } 0 \not\in \Omega \end{cases} \quad \text{for any } \Omega \subset \mathbb{R}^3. \tag{2.4.1}
\]

It is not difficult to see that such a function \( \rho \) cannot exist (see Exercise 2.16). Intuitively speaking, this function would need to vanish away of the origin. At the origin, however, its value would have to be “so (infinitely) large” that an integral over a region containing the origin still gives a nonzero contribution. The most common way to rigorously deal with such singular objects is to understand them as linear functionals on certain spaces of smooth functions on \( \mathbb{R}^3 \), referred to as test functions. In order to motivate this functional, we write (2.4.1) more generally as

\[
\int_{\mathbb{R}^3} \rho(x) \, d^3x = \int_{\mathbb{R}^3} f(x) \, d^3x = Q \, f(0) .
\]

Indeed, choosing \( f \) as the characteristic function \( f = \chi_\Omega \) (defined by \( \chi_\Omega(x) = 1 \) if \( x \in \Omega \) and \( \chi_\Omega(x) = 0 \) otherwise), we recover (2.4.1). But now \( f \) can be a more general function. Restricting to smooth function gives rise to Dirac’s \( \delta \)-distribution, as is explained in more detail in the next example (for simplicity in one dimension).

**Example 2.4.1. (The \( \delta \)-distribution)** The prime example of a distribution is Dirac’s \( \delta \)-distribution which in physics textbook is introduced as a “function” \( \delta(x) \) which is zero except at the origin, where it takes the value \( \infty \). The infinite contribution at the origin is “normalized” by demanding that its integral is equal to one. These properties can be summarized by saying that

\[
\int_{-\infty}^{\infty} f(x) \, \delta(x) \, dx = f(0) . \tag{2.4.2}
\]

There are various ways to make mathematical sense of this equation. One method is to regard the combination \( \delta(x) \, dx \) as a measure \( \delta_0 \) supported at the origin of total volume one, i.e. \( \delta_0(\mathbb{R}) = 1 \). In this way, the equation (2.4.2) makes sense if \( f \) is any continuous
function. An alternative method is to take (2.4.2) as the definition of a linear functional on a space of suitable test functions \( f \). The latter method has the advantage that it makes it possible to even define the derivative of the \( \delta \)-distribution by

\[
\int_{-\infty}^{\infty} f(x) \delta'(x) \, dx = -f(0) .
\]  

(2.4.3)

In order to allow for distributions to include an arbitrary number of derivatives, we choose a space of smooth test functions. Distributions will be defined as linear functionals on this space of test functions. Derivatives of distributions can be defined similar as in (2.4.3) by “formally integrating by parts.” Since a function \( g \) defines a linear functional \( T_g \) by integrating,

\[
T_g(f) := \int_{-\infty}^{\infty} g(x) f(x) \, dx ,
\]

(2.4.4)

every function gives rise to a corresponding distribution. In this sense, distributions are generalized functions. In order to make sure that the integral in (2.4.4) exists and is finite, it is a good idea to assume that the test function \( f \) has suitable decay properties at infinity.

In order to make these ideas mathematically precise, we need to specify the space of test functions. Moreover, we need to endow this space of test functions with a topology. Then we can introduce distributions as the space of linear functionals on the test functions. As we shall see, working with the right space of test functions, one can make mathematical sense of the Fourier transform for distributions.

After this motivation, we now turn to the mathematical definition of distributions. In preparation of our constructions, we recall the multi-index notation in \( \mathbb{R}^n \). A multi-index is an \( n \)-tuple \( \alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n \) of non-negative integers. For such a multi-index \( \alpha \) we define the corresponding monomial \( x^\alpha \) and combination of partial derivatives \( \partial^\alpha \) by

\[
x^\alpha := (x_1)^{\alpha_1} \cdots (x_n)^{\alpha_n} \quad \text{and} \quad \partial^\alpha := \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n} .
\]

The order \( |\alpha| \) of the multi-index \( \alpha \) is defined by

\[
|\alpha| := \alpha_1 + \cdots + \alpha_n .
\]

For a smooth function \( f : \mathbb{R}^n \to \mathbb{C} \) we define its Schwartz norms \( \|f\|_{p,q} \) with \( p, q \in \mathbb{N}_0 \) by

\[
\|f\|_{p,q} := \max_{\alpha \in \mathbb{N}_0^n} \max_{\beta \in \mathbb{N}_0^n} \sup_{x \in \mathbb{R}^n} |x^\alpha \partial^{\beta} f(x)| .
\]

The Schwartz space \( \mathcal{S}(\mathbb{R}^n) \) is formed of all smooth functions for which all the Schwartz norms are finite, i.e.

\[
\mathcal{S}(\mathbb{R}^n) := \left\{ f \in C^\infty(\mathbb{R}^n, \mathbb{C}) \mid \|f\|_{p,q} < \infty \text{ for all } p, q \in \mathbb{N}_0 \right\} .
\]

We always consider complex-valued functions, but the constructions work similarly for real-valued functions. Defining the vector operators pointwise, \( \mathcal{S}(\mathbb{R}^n) \) is a complex vector space. The functions in \( \mathcal{S}(\mathbb{R}^n) \) are referred to as Schwartz functions. These functions have the property that they as well as all their partial derivatives have rapid decay in the sense that multiplying them by a polynomial of arbitrary order still gives a bounded function. In particular, one has \( C_0^\infty(\mathbb{R}^n) \subset \mathcal{S}(\mathbb{R}^n) \subset C^\infty(\mathbb{R}^n) \), where both inclusions are strict. An example of a Schwartz function without compact support is a Gaussian \( f : \mathbb{R}^n \to \mathbb{R} , x \mapsto e^{-x^2} \).
The Schwartz norms induce a topology on $S(\mathbb{R}^n)$ as follows. We say a set $\Omega \subset S(\mathbb{R}^n)$ is open if for every $f \in \Omega$ there exists $p, q \in \mathbb{N}_0$ and $r > 0$ such that the open $r$-ball corresponding to the norm $\| \cdot \|_{p,q}$ is contained in $\Omega$, i.e.
\[
\{ g \in S(\mathbb{R}^n) : \| f - g \|_{p,q} < r \} \subset \Omega.
\tag{2.4.5}
\]
For many purposes, it is sufficient to have in mind how convergence is expressed concretely by the Schwartz norms. For a sequence $(f_n)_{n \in \mathbb{N}}$ in $S(\mathbb{R}^n)$ and $f \in S(\mathbb{R}^n)$ one has (see Exercise 2.17)
\[
f_n \to f \text{ in } S(\mathbb{R}^n) \iff \| f_n - f \|_{p,q} \to 0 \text{ for all } p, q \in \mathbb{N}_0.
\tag{2.4.6}
\]
Here we point out that for a set $\Omega \subset S(\mathbb{R}^n)$ to be an open neighborhood of $f \in S(\mathbb{R}^n)$, it suffices that condition (2.4.5) is satisfied for some $p, q \in \mathbb{N}_0$. If instead one uses the stronger condition (2.4.5) must hold for all $p, q \in \mathbb{N}_0$, one obtains a coarser topology on $S(\mathbb{R}^n)$, meaning that there would be fewer open sets. In contrast, demanding (2.4.5) merely for some $p, q \in \mathbb{N}_0$ gives a finer topology. Working with a finer topology has the following purpose: For a finer topology, fewer sequences converge (as is obvious in (2.4.6), where the sequence must converge for all Schwartz norms). As a consequence, there are more continuous linear functionals, simply because sequential continuity must be verified for fewer sequences. In other words, choosing a finer topology on a vector space has the effect that its dual space becomes larger (where the dual space is defined as the space of all continuous linear functionals). Since distributions will now be defined as such a dual space, this is desirable because it will ensure a sufficiently rich and general class of objects.

Definition 2.4.2. The space of tempered distributions is denoted by $S'(\mathbb{R}^n)$ and defined as the (continuous) dual space of the Schwartz space,
\[
S'(\mathbb{R}^n) := S^*(\mathbb{R}^n) = L(S(\mathbb{R}^n), \mathbb{C}) .
\]
For a linear functional $T : S(\mathbb{R}^n) \to \mathbb{R}$ continuity means that there are $p, q \in \mathbb{N}_0$ and a constant $c > 0$ such that (see again Exercise 2.17)
\[
|T(f)| \leq c \| f \|_{p,q} \quad \text{for all } f \in S(\mathbb{R}^n) .
\tag{2.4.7}
\]
As first example we consider the famous Dirac delta distribution $\delta \in S'(\mathbb{R}^n)$, which is given by $\delta(f) := f(0)$. Linearity of $\delta$ is obvious and the estimate
\[
|\delta(f)| = |f(0)| \leq \| f \|_{0,0}
\]
shows that $\delta$ is continuous.

Next we explain how any (bounded, measurable) function can be naturally viewed as a distribution, thus explaining why tempered distributions can be regarded as generalized functions. To this end, let $g \in L^\infty(\mathbb{R}^n)$ be a bounded, measurable function. We define a linear functional $T_g$ on $S(\mathbb{R}^n)$ by
\[
T_g(f) := \int_{\mathbb{R}^n} g(x) f(x) d^n x .
\]
This functional is continuous because
\[ |T_g(f)| \leq \int_{\mathbb{R}^n} g(x) f(x)|d^n x = \int_{\mathbb{R}^n} \frac{|g(x)|}{(1 + |x|^2)^{n+2}} |f(x)| (1 + |x|^2)^{n+2} \ d^n x \]
\[ \leq C(n) \|g\|_{L^\infty(\mathbb{R}^n)} \|f\|_{n+1,0} \int_{\mathbb{R}^n} \frac{d^n x}{(1 + |x|^2)^{n+2}} \]
\[ \leq C'(n) \|g\|_{L^\infty(\mathbb{R}^n)} \|f\|_{n+1,0}. \tag{2.4.8} \]

Since the remaining integral is finite, it follows that the inequality (2.4.7) holds for a suitable constant \( c > 0 \), \( p = n + 1 \) and \( q = 0 \). Therefore, \( T_g \in S'(\mathbb{R}^n) \) is a tempered distribution.

In this way, every function \( g \in L^\infty(\mathbb{R}^n) \) gives rise to a corresponding tempered distribution \( T_g \). Let us verify that the corresponding linear mapping
\[ T : L^\infty(\mathbb{R}^n) \to S'(\mathbb{R}^n), \quad g \mapsto T_g \quad \text{is injective}. \tag{2.4.9} \]
(Note that strictly speaking we are dealing with equivalence classes, identifying two functions which differ only on a set of measure zero.) To this end, let \( g \in L^\infty(\mathbb{R}^n) \) be non-zero. Then \( A := \{ x \in \mathbb{R}^n \mid |g(x)| \geq \|g\|_\infty / 2 \} \) has nonzero measure. By inner regularity of the Lebesgue measure, the same is true for \( A \cap B_R(0) \) for \( R > 0 \) sufficiently large. Choose \( \eta \in C_0^\infty(\mathbb{R}^n) \) with \( \eta|_{B_R(0)} \equiv 1 \). Then \( \eta f \) is bounded and compactly supported, hence square integrable, and one easily checks that \( \|\eta g\|_{L^2} \neq 0 \). Using that \( C_0^\infty(\mathbb{R}^n) \) is dense in \( L^2(\mathbb{R}^n) \), we conclude that there is a function \( f \in C_0^\infty(\mathbb{R}^n) \) with
\[ 0 \neq \langle f, \eta g \rangle_{L^2(\mathbb{R}^n)} = \int_{\mathbb{R}^n} f(x) (\eta g)(x)d^n x = T_g(\eta f). \]

Hence \( T_g \neq 0 \), and we conclude that the mapping \( T \) in (2.4.9) is indeed injective.

The the fact that the mapping (2.4.9) is an embedding means that distributions can be regarded as “generalized functions.” Distributions which can be represented in the form \( T_g \) with \( g \in L^\infty(\mathbb{R}^n) \) are referred to as regular distributions.

We finally remark that \( T_g \) can be defined more generally for functions \( g \) which increase at most polynomially at infinity. But we do not need this generalization here.

In order to speak about convergence of distributions and related things, one also needs to equip the space \( S'(\mathbb{R}^n) \) with a topology. Being defined as a dual space of functionals on \( \mathcal{S}(\mathbb{R}^n) \), the usual choice is the so-called weak-* topology, which is the coarsest topology such that for every \( f \in \mathcal{S}(\mathbb{R}^n) \) the evaluation map \( S'(\mathbb{R}^n) \ni T \to T(f) \in \mathbb{C} \) is continuous. As a consequence, for a sequence \( (T_n)_n \) in \( S'(\mathbb{R}^n) \) and \( T \in S'(\mathbb{R}^n) \) one has
\[ T_n \to T \text{ in } S'(\mathbb{R}^n) \iff T_n(f) \to T \text{ for all } f \in \mathcal{S}(\mathbb{R}^n). \]

With respect to this topology, the map (2.4.9) is continuous.

An important property of distributions is that they are always differentiable in the way we will now explain. The idea behind the definition of the derivative of a distribution is to generalize the integration by parts formula, which for two Schwartz functions \( f, g \in \mathcal{S}(\mathbb{R}^n) \) says that
\[ T_{\partial^\alpha f}(g) = \int_{\mathbb{R}^n} (\partial^\alpha f)(x) g(x)d^n x = (-1)^{|\alpha|} \int_{\mathbb{R}^n} f(x)(\partial^\alpha g)(x)d^n x = (-1)^{|\alpha|} T_f(\partial^\alpha g). \]
(There are no boundary terms due to the decay of \( f \) and \( g \) at infinity).
Definition 2.4.3. For a tempered distribution $T \in \mathcal{S}'(\mathbb{R}^n)$ and multi-index $\alpha \in \mathbb{N}_0^n$, we define the **distributional derivative** $\partial^\alpha T \in \mathcal{S}'(\mathbb{R}^n)$ by

$$(\partial^\alpha T)(f) := (-1)^{|\alpha|} T(\partial^\alpha f) \quad \text{for all } f \in \mathcal{S}(\mathbb{R}^n).$$

Using the continuity estimate (2.4.7) for $T$ we have

$$|(\partial^\alpha T)(f)| = |T(\partial^\alpha f)| \leq c \|\partial^\alpha f\|_{p,q} \leq c \|f\|_{p,q+|\alpha|},$$

which shows that $\partial^\alpha T$ is indeed a **continuous linear functional** again.

Being able to differentiate distributions, one can consider differential equations whose solutions are distributions. This allows for instance to consider Poisson’s equation with a delta distribution as inhomogeneity, whose (distributional) solutions are known as Green’s functions.

We now come to the **Fourier transformations**. We first introduce it for Schwartz functions.

**Definition 2.4.4.** For $f \in \mathcal{S}(\mathbb{R}^n)$, we define the **Fourier transform** $(\mathcal{F} f): \mathbb{R}^n \to \mathbb{C}$ and the adjoint Fourier transform $(\mathcal{F}^* f): \mathbb{R}^n \to \mathbb{C}$ by

$$(\mathcal{F} f)(p) = \int_{\mathbb{R}^n} f(x) e^{i p x} \, d^n x \tag{2.4.10}$$

$$(\mathcal{F}^* f)(x) = \int_{\mathbb{R}^n} f(p) e^{-i p x} \frac{d^n p}{(2\pi)^n}, \tag{2.4.11}$$

where $x, p \in \mathcal{M}$, and $px = \langle p, x \rangle$ denotes the Minkowski inner product.

**Lemma 2.4.5.** The Fourier transform and its adjoint map Schwartz functions to Schwartz functions and yield continuous linear maps

$$\mathcal{F}, \mathcal{F}^* : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n). \tag{2.4.12}$$

**Proof.** In order to prove (2.4.12), we differentiate (2.4.10) to obtain

$$p^\alpha \partial^\beta_p (\mathcal{F} f)(p) = \int_{\mathbb{R}^n} f(x) x^\beta e^{i p x} \, d^n x = (-1)^{|\alpha|} \int_{\mathbb{R}^n} f(x) x^\beta (\partial^\alpha e^{i p x}) \, d^n x$$

$$= i^{|\alpha|} \int_{\mathbb{R}^n} (\partial^\alpha f(x)) x^\beta e^{i p x} \, d^n x,$$

where in the last step we integrated by parts (to justify differentiation under the integral one can use the dominated convergence theorem). Taking the absolute value, we obtain the estimate

$$|p^\alpha \partial^\beta_p (\mathcal{F} f)(p)| \leq \int_{\mathbb{R}^n} |\partial^\alpha f(x)| |x^\beta| \, d^n x \overset{(*)}{\leq} C(n) \cdot \|\partial^\alpha f\|_{|\beta|+n+1,0} \leq \|f\|_{|\beta|+n+1,|\alpha|},$$

where in $(\ast)$ the integral can be estimated similar as in (2.4.8). This estimate shows that the Fourier transform of a Schwartz function is again a Schwartz function. It also follows directly from this estimate that $\mathcal{F} : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous (as linearity clearly holds). The estimate for the inverse Fourier transform is similar. \qed

**Theorem 2.4.6.** (**Fourier inversion formula**) The Fourier transform and its adjoint on Schwartz functions are inverses of each other,

$$\mathcal{F} \circ \mathcal{F}^* = \mathcal{F}^* \circ \mathcal{F} = 1_{\mathcal{S}(\mathbb{R}^n)}. \tag{2.4.13}$$
A detailed proof of this lemma can be found in [115, Theorem 2.2.4] or [80, Theorem 8.2.2]. With this in mind, we only give a sketch of the proof in one dimension. Writing everything out explicitly, for \( f \in S(\mathbb{R}^n) \) we get
\[
\mathcal{F}^*(\mathcal{F}f)(x) = \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty} f(y) e^{ipy} dy \right) e^{-ipx} \frac{dp}{2\pi}.
\]

In principal, the idea is to exchange the order of integration. However, the problem is that the resulting function is not integrable in the \( p \)-variable. One way to make this mathematically sound is by inserting a convergence-generating factor \( e^{-\epsilon p^2} \). More precisely, using dominated convergence and Fubini one computes
\[
\mathcal{F}^*(\mathcal{F}f)(x) = \lim_{\epsilon \searrow 0} \int_{-\infty}^{\infty} (\mathcal{F}f)(y) e^{-\epsilon p^2} e^{-ipx} \frac{dp}{2\pi}
= \lim_{\epsilon \searrow 0} \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty} f(y) e^{ipy} dy \right) e^{-\epsilon p^2} e^{-ipx} \frac{dp}{2\pi}
= \lim_{\epsilon \searrow 0} \int_{-\infty}^{\infty} f(y) \left( \int_{-\infty}^{\infty} e^{ipy} \frac{dp}{2\pi} \right) dy.
\] (2.4.14)

The integral inside the curly brackets is Gaussian and can be computed explicitly. The resulting family of Gaussians tends to the \( \delta \) distribution \( \delta(x-y) \) (see Exercise 2.19 and thus altogether one obtains \( f(x) \) in the limit \( \epsilon \searrow 0 \) as desired.

Having dealt with the proof of the Fourier inversion formula, we return once more to the formal computation from the beginning,
\[
\mathcal{F}^*(\mathcal{F}f)(x) = \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty} f(y) e^{ipy} dy \right) e^{-ipx} \frac{dp}{2\pi} = \int_{-\infty}^{\infty} f(y) \left( \int_{-\infty}^{\infty} e^{ipy} \frac{dp}{2\pi} \right) dx.
\]

Although the right-hand side is illdefined as an integral, knowing that \( \mathcal{F}^*(\mathcal{F}f)(x) = f(x) \) holds, one may interpret it as distributional identity
\[
\int_{-\infty}^{\infty} e^{ipy} \frac{dp}{2\pi} = 2\pi \delta(x-y).
\] (2.4.15)

Having the Fourier transform for Schwartz functions at our disposal, we can now introduce the Fourier transform of tempered distributions. Similar as in the definition of the distributional derivative, the idea is to let the Fourier transform act on the test function. To see how to do this concretely, we again first consider a regular distribution \( T_g \) corresponding to the Fourier transform of a Schwartz function \( g \). Then for any \( f \in S(\mathbb{R}^n) \), using Fubini we have
\[
T_{\mathcal{F}g}(f) = \int_{\mathbb{R}^n} (\mathcal{F}g)(p) f(p) \, dp = \int_{\mathbb{R}^n} g(x) \left( \int_{\mathbb{R}^n} e^{ipx} \, dp \right) f(p) \, dp
= \int_{\mathbb{R}^n} g(x) \left( \int_{\mathbb{R}^n} e^{ipx} f(p) \, dp \right) \, dx = T_g(\mathcal{F}f).
\]
The right side can now be used to define the Fourier transform of a tempered distribution.

**Definition 2.4.7.** The Fourier transform and the adjoint Fourier transform of a tempered distribution \( T \in S'(\mathbb{R}^n) \) are defined by
\[
\mathcal{F}, \mathcal{F}^* : S'(\mathbb{R}^n) \rightarrow S'(\mathbb{R}^n), \quad (\mathcal{F}T)(f) = T(\mathcal{F}f), \quad (\mathcal{F}^*T)(f) = T(\mathcal{F}^*f).
\]
Note that for a tempered distribution $T$, the maps $\mathcal{F}T = T \circ \mathcal{F}$ and $\mathcal{F}^*T = T \circ \mathcal{F}^*$ are again linear and continuous as composition of two linear and continuous maps. Hence they are tempered distributions again. A direct computation shows that $\mathcal{F}^*$ is the inverse of $\mathcal{F}$ (see Exercise 2.18). Examples for how to compute Fourier transforms of distributions can be found in the exercises (see Exercise 2.21).

We close with two remarks. First, it is often very useful to consider the Fourier transform on $L^2$-functions, where the Fourier transform is unitary:

**Theorem 2.4.8. (Plancherel)** For any $f \in \mathcal{S}(\mathbb{R}^n)$,

$$\|\mathcal{F}f\|_{L^2(\mathbb{R}^n)} = (2\pi)^{n/2} \|f\|_{L^2(\mathbb{R}^n)}.$$  

Furthermore, the Fourier transform and the adjoint Fourier transform extend to isomorphisms $\mathcal{F}, \mathcal{F}^* : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ which are inverse to each other.

We again omit the proof, which can be found in [115, Theorem 2.3.4] or [80, Theorem 9.2.2]. On a formal level, Plancherel’s formula is obtained by a direct computation using again (2.4.15). Similar to (2.4.14), this computation can be made mathematically sound by introducing a convergence-generating factor. The extension to $L^2(\mathbb{R}^n)$ then simply follows using that $\mathcal{S}(\mathbb{R}^n) \subset L^2(\mathbb{R}^n)$ is dense.

Finally, we remark that in some applications (for example when working in local charts on a manifold or in a bounded domain), it is not feasible to work with functions defined in all of $\mathbb{R}^n$ having suitable decay properties. In this case, instead of the Schwartz functions, one considers the space of test functions denoted by

$$\mathcal{D}(\mathbb{R}^n) = C^\infty_0(\mathbb{R}^n),$$

endowed with the topology induced by the family of norms $\|f\|_q$ with $q \in \mathbb{N}_0$ given by

$$\|f\|_q := \max_{\beta \in \mathbb{N}_0^n, |eta| \leq q} \sup_{x \in \mathbb{R}^n} |\partial^\beta f(x)|.$$  

Its dual space $\mathcal{D}'(\mathbb{R}^n)$ is referred to as the space of distributions. Here the dual space is again defined as the space of all continuous linear functionals, where continuity means in analogy to (2.4.7) that there is $q \in \mathbb{N}_0$ and a constant $c > 0$ such that

$$|T(f)| \leq c \|f\|_q \quad \text{for all } f \in \mathcal{D}(\mathbb{R}^n).$$  

Differentiation of distributions can be defined similarly as for tempered distributions. However, the Fourier transform cannot be be defined on all of $\mathcal{D}'(\mathbb{R}^n)$ since the Fourier transform of a test function need not be compactly supported again. Test functions and distributions can also be defined on any open subset $U \subset \mathbb{R}^n$ instead of all of $\mathbb{R}^n$.

### 2.5. Manifolds and Vector Bundles

We now recall the basic definitions of a manifold and vector bundle. For more details we refer to good textbooks like [102] or to the basic definitions in [106, §1 and §2].

**Definition 2.5.1.** A topological manifold of dimension $n \in \mathbb{N}$ is a Hausdorff topological space $M$ which is $\sigma$-compact (i.e. which can be written as an at most countable union of compact subsets) and has the property that every point in $M$ has an open neighborhood which is homeomorphic to an open subset of $\mathbb{R}^n$. 


2.5. MANIFOLDS AND VECTOR BUNDLES

More specifically, for every $x \in \mathcal{M}$ there is an open neighborhood $U \subset \mathcal{M}$ and a mapping

$$\phi : U \rightarrow \mathbb{R}^n$$

such that the image $\phi(U)$ is open in $\mathbb{R}^n$ and that the mapping $\phi : U \rightarrow \phi(U)$ is a homeomorphism (i.e. it is continuous, invertible, and its inverse is also continuous). We refer to $(\phi, U)$ as a chart (see Figure 2.3). A collection of charts is an atlas $\mathcal{A}$. We always assume that the atlas is complete in the sense that every point of $\mathcal{M}$ lies in the domain of a chart of the atlas.

Clearly, the topological space $\mathcal{M}$ does not have enough structure to introduce a notion of differentiability. Therefore, the differentiable structure of a manifold is defined via the transition maps: Given two charts $(\phi, U)$ and $(\phi', U')$ with $U \cap U' \neq \emptyset$, the two mappings

$$\phi|_{U \cap U'}, \phi'|_{U \cap U'} : U \cap U' \rightarrow \mathbb{R}^n$$

are both homeomorphism onto an open subset of $\mathbb{R}^n$. We define the transition map by (see Figure 2.4)

$$\phi|_{U \cap U'} \circ (\phi'|_{U \cap U'})^{-1} : \phi'(U \cap U') \rightarrow \phi(U \cap U').$$

Being a mapping between two open subsets of $\mathbb{R}^n$, it is clear what “differentiability” of this mapping means. A differentiable manifold is a topological manifold together with a complete atlas with the property that all transition maps are differentiable. Likewise, a smooth manifold is defined by the requirement that all transition maps are smooth. A differentiable manifold is equipped with a differentiable structure. In particular, we can define a differentiable mapping $f : \mathcal{M} \rightarrow \mathcal{M}'$ between two differentiable manifolds $\mathcal{M}$ and $\mathcal{M}'$ by the requirement that it be differentiable in all charts.

We next introduce the notion of a vector bundle. This notion is helpful for the understanding of causal fermion systems because, under suitable regularity assumptions, a causal fermion system will give rise to a vector bundle over spacetime with the spin spaces as fibers (see Section 11.1). We begin with the notion of a topological vector bundle and explain the differentiable structure afterward.

**Definition 2.5.2.** Let $\mathcal{B}$ and $\mathcal{M}$ be topological spaces and $\pi : \mathcal{B} \rightarrow \mathcal{M}$ a continuous surjective map. Moreover, let $Y$ be a (real or complex) vector space and $G \subset \text{GL}(Y)$ a group acting on $Y$. Then $\mathcal{B}$ is a topological vector bundle with fiber $Y$ and structure group $G$ if every point $x \in \mathcal{M}$ has an open neighborhood $U$ equipped with a homeomorphism $\phi_U : \pi^{-1}(U) \rightarrow U \times Y$, called a local trivialization or bundle chart, such that the diagram

$$
\begin{array}{ccc}
\pi^{-1}(U) & \xrightarrow{\phi_U} & U \times Y \\
\downarrow & & \downarrow \\
U & \rightarrow & U
\end{array}
$$

(2.5.1)
commutes, where the projection maps are \( \pi \) and the projection onto the first factor, respectively. Furthermore, on overlaps \( U \cap V \), we have
\[
\phi_U \circ \phi_V^{-1}|_{\{x\} \times Y} = g_{UV}(x) \quad \text{for all } x \in U \cap V, \tag{2.5.2}
\]
where \( g_{UV} : U \cap V \to G \) is a continuous transition function.

A simple example of a vector bundle is the Cartesian product
\[
\mathcal{B} = \mathcal{M} \times Y.
\]
According to (2.5.1), a vector bundle has this product structure “locally” in \( \pi^{-1}(U) \), but in general not globally.

A differentiable (or smooth) vector bundle is a topological vector bundle where the basis \( \mathcal{M} \) is a differentiable (or smooth) manifold together with an atlas of bundle charts such that all transition maps are differentiable (or smooth, respectively).

**Exercises**

**Exercise 2.1.** (Closed sets) Show that the closed sets (defined as the complements of the open sets) have the following properties:

(i) The sets \( \emptyset \) and \( E \) are closed.

(ii) Closedness under finite unions:
\[
A_1, \ldots, A_n \text{ closed } \implies A_1 \cup \cdots \cup A_n \text{ closed}.
\]

(iii) Closedness under arbitrary intersections:
\[
A_\lambda \text{ closed } \forall \lambda \in \Lambda \implies \bigcap_{\lambda \in \Lambda} A_\lambda \text{ closed}.
\]

**Exercise 2.2.** (Notions of continuity) Let \( E = F = \mathbb{R} \) with the standard topology inherited from the metric \( d(x, y) = |x - y| \). Show that a real-valued function \( f : E \to F \) is continuous in the topological sense (2.1.1) if and only if for every \( x \in \mathbb{R} \) and for every \( \varepsilon > 0 \) there is \( \delta > 0 \) such that
\[
|f(x) - f(y)| < \varepsilon \quad \text{for all } y \in \mathbb{R} \text{ with } |y - x| < \delta.
\]

**Exercise 2.3.** Let \((E, \emptyset)\) be a compact topological space and \( f : E \to \mathbb{R} \) a continuous, real-valued function on \( E \). Show that \( f \) attains its maximum, i.e. there is a point \( x \in E \) with
\[
f(x) \geq \inf_E f.
\]
**Hint:** One method is to make use of the fact that a continuous function maps compact sets to compact sets. Alternatively, one can use that a compact space is **sequentially compact** in the sense that every sequence has a convergent subsequence. If you are not familiar with these connections, try to prove them starting from the basic definitions.

**Exercise 2.4. (Examples of norms)**

(a) Show that (2.2.1) and similarly (2.2.2) have all the properties of the norm. **Hint:**
The triangle inequality in case \( p < \infty \) is also referred to as the **Minkowski inequality**.
Its proof can be found for example in [121], Theorem 3.5.

(b) We let \( X \) be the vector space of all complex-valued finite sequences \((x_n)_{n \in \mathbb{N}}\) (by a finite sequence we mean a sequences for which only a finite number of members are non-zero). Show that
\[
\| (x_n)_{n \in \mathbb{N}} \|_p := \left( \sum_{i=1}^{\infty} |x_i|^p \right)^{\frac{1}{p}} \quad \text{for} \quad p < \infty \quad \text{and} \quad \| x \|_{\infty} := \sup_{n \in \mathbb{N}} |x_n|
\]
defines a norm \( X \). Show that the resulting normed space is infinite-dimensional.

**Exercise 2.5. (Examples of Banach spaces)**

(a) Show that \( \mathbb{R}^n \) with the norm (2.2.1) is complete.

(b) Show that the space \((X, \| \cdot \|_p)\) considered in Exercise 2.4 (b) is not complete. Let \( l_p \) be the space of all complex sequences (not necessarily finite) for which the norm \( \| \cdot \|_p \) is finite. Show that \( l_p \) is a Banach space.

(c) Show that \( C^0_0(\mathbb{R}^n) \) with the norm (2.2.2) is not complete. **Hint:** construct a Cauchy sequences which has not limit in \( C^0_0(\mathbb{R}^n) \). We remark that the completion of these spaces gives the Banach spaces \( L^p(\mathbb{R}^n) \); details can be found for example in [121], Chapter 3.

**Exercise 2.6. (Completion of a metric space)** Let \((E, d)\) be a metric space.

(a) Show that for two Cauchy sequences \((x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}\) in \( E \), the limit
\[
d' \left( (x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} \right) := \lim_{n \to \infty} d(x_n, y_n) . \tag{2.5.3}
\]
excists. Show further that the function \( d' \) defined on the set of all Cauchy sequences of \( E \) in this way has the properties (ii) and (iii) in Definition 2.1.1 but will never satisfy property (i) unless \( E \) has only one element.

(b) Verify that
\[
(x_n)_{n \in \mathbb{N}} \simeq (y_n)_{n \in \mathbb{N}} \quad \text{if} \quad d' \left( (x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} \right) = 0 . \tag{2.5.4}
\]
defines an equivalence relation. Show further that the function \( d' \) induces a well-defined function \( d'' \) on the set \( \bar{E} \) of all equivalence classes. Verify that \( d'' \) has property (i) in Definition 2.1.1 and still satisfies (ii) and (iii).

(c) Show that \((\bar{E}, d'')\) is a complete metric space. Show furthermore that the map \( E \to \bar{E} \), sending each \( x \in E \) to the constant sequence \((x)_{n \in \mathbb{N}}\), is distance-preserving (and therefore injective).

(d) Modify the construction in order to form the completion of a scalar product space.

**Exercise 2.7. (Norm of a scalar product space)** Given a scalar product space \((V, \langle \cdot, \cdot \rangle)\), show that \( \| u \| := \sqrt{\langle u, u \rangle} \) defines a norm (see Definitions 2.2.2 and 2.2.1).

**Exercise 2.8. (Completeness of \( L(V,W) \))**
(a) Show that the operator norm on $L(V, W)$ is indeed a norm, i.e. verify that it has all the properties in Definition 2.2.1.

(b) Show that $L(V, W)$ is complete if and only if $W$ is complete.

**Exercise 2.9. (Orthogonal projection to closed subspaces of a Hilbert space)**

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space and $V \subset \mathcal{H}$ a closed subspace.

(a) Show that parallelogram identity: For all $u, v \in \mathcal{H}$,
$$\|u + v\|^2 + \|u - v\|^2 = 2\|u\|^2 + 2\|v\|^2.$$  

(b) Given $u \in \mathcal{H}$, let $(v_n)_{n \in \mathbb{N}}$ be a sequence in $V$ which is a minimizing sequence of the distance to $u$, i.e.
$$\|u - v_n\| \to \inf_{v \in V} \|u - v\|.$$  

Prove that the sequence $(v_n)_{n \in \mathbb{N}}$ converges. **Hint:** Apply the parallelogram identity to show that the sequence is Cauchy. Then make use of the completeness of the Hilbert space.

(c) Show that the limit vector $v := \lim_{n \to \infty} v_n$ has the property
$$\langle u - v, w \rangle = 0 \quad \text{for all } w \in V.$$  

In view of this equation, the vector $v$ is also referred to as the orthogonal projection of $u$ to $V$.

In the finite-dimensional setting, the orthogonal projection can be given more explicitly as explained in Exercise 2.11.

**Exercise 2.10. (Proof of the Fréchet-Riesz theorem)** Let $\phi \in \mathcal{H}^*$ be non-zero.

(a) Show that the kernel of $\phi$ is a closed subspace of $\mathcal{H}$.

(b) Apply the result of Exercise 2.9 to construct a nonzero vector $v$ which is orthogonal to ker $\phi$. Show that this vector is unique up to scaling.

(c) Show that, after a suitable scaling, the vector $v$ satisfies (2.2.3).

(d) Show that the vector $v$ satisfying (2.2.3) is unique.

**Exercise 2.11. (Orthogonal complement of a finite-dimensional subspace)**

(a) Let $I$ be a finite-dimensional subspace of the Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$. Show that its orthogonal complement $I^\perp$ defined by (2.2.4) is again a complex vector space.

(b) Show that restricting the scalar product to $I$, one gets again a Hilbert space. In particular, why is it again complete?

(c) Show that every vector $u \in \mathcal{H}$ has a unique decomposition of the form (2.2.5).  

**Hint:** Choosing an orthonormal basis $e_1, \ldots, e_n$ of $I$, a good ansatz for $u$ is
$$u = \sum_{k=1}^{n} \langle e_k | u \rangle \ e_k.$$  

**Exercise 2.12. (Multiplication operators)** Let $f \in C^0(\mathbb{R}, \mathbb{C})$ be a continuous, complex-valued function. Assume that it is bounded, i.e. that $\sup_{\mathbb{R}} |f| < \infty$. We consider the multiplication operator $T_f$ on the Hilbert space $\mathcal{H} = L^2(\mathbb{R})$, i.e.
$$T_f : \mathcal{H} \to \mathcal{H}, \quad (T_f \phi)(x) = f(x) \phi(x).$$  

(a) Show that $T_f$ is a bounded operator, and that its operator norm is given by
$$\|T_f\| = \sup_{\mathbb{R}} |f|.$$
(b) Show that $T_f$ is symmetric if and only if $f$ is real-valued. Under which assumptions on $f$ is $T_f$ unitary?

**Exercise 2.13.** *(Borel algebra)*

(a) Show that the power set of $\mathcal{F}$ (i.e. the set of all subsets) forms a $\sigma$-algebra.
(b) Show that the intersection of $\sigma$-algebras is again a $\sigma$-algebra.
(c) Combine (a) and (b) to conclude that there is a smallest $\sigma$-algebra which contains all open subsets of $\mathcal{F}$.

**Exercise 2.14.** *(completion of a measure)* Let $(\mathcal{F}, \mathcal{M}, \rho)$ be a measure space. We introduce the family of sets

$$\tilde{\mathcal{M}} := \{ A \subset \mathcal{F} \mid \text{there are } B, N \in \mathcal{M} \text{ with } A \setminus B \cup B \setminus A \subset N \text{ and } \rho(N) = 0 \}.$$ 

(a) Show that $\tilde{\mathcal{M}}$ is again a $\sigma$-algebra
(b) Show that the prescription $\tilde{\rho}(A) := \rho(B)$ defines a measure on $\tilde{\mathcal{M}}$.
(c) Show that the measure $\tilde{\rho}$ is complete.

**Exercise 2.15.** *(Understanding the push-forward measure)* The purpose of this exercise is to introduce the so-called push-forward measure, which will be used later for the construction of causal fermion systems. Let $\mathcal{M} \subset \mathbb{R}^3$ be a smooth surface described by a parametrization $\Phi$. More precisely, given an open subset $\Omega \subset \mathbb{R}^2$, we consider a smooth injective map

$$\Phi : \Omega \to \mathbb{R}^3$$

with the property that $D\Phi|_p : \mathbb{R}^2 \to \mathbb{R}^3$ has rank two for all $p \in \Omega$. Then the surface $\mathcal{M}$ is defined as the image $\Phi(\Omega) \subset \mathbb{R}^3$. We now introduce a measure $\rho$ on $\mathbb{R}^3$ as the push-forward measure of the Lebesgue measure on $\mathbb{R}^2$ through $\Phi$: Let $\mu$ be the Lebesgue measure on $\mathbb{R}^2$. We define a set $U \subset \mathbb{R}^3$ to be $\rho$-measurable if and only if its pre-image $\Phi^{-1}(U) \subset \mathbb{R}^2$ is $\mu$-measurable. On the $\rho$-measurable sets we define the measure $\rho$ by

$$\rho(U) = \mu(\Phi^{-1}(U)).$$

Verify that the $\rho$-measurable sets form a $\sigma$-algebra, and that $\rho$ is a measure. What are the sets of $\rho$-measure zero? What is the support of the measure $\rho$?

Suppose that $\Phi$ is no longer assumed to be injective. Is $\rho$ still a well-defined measure? Is $\rho$ well-defined if $\Phi$ is only assumed to be continuous? What are the minimal regularity assumptions on $\Phi$ needed for the push-forward measure to be well-defined? What is the support of $\rho$ in this general setting?

**Exercise 2.16.** (a) Let $f \in C^0(\mathbb{R}^n, \mathbb{R})$ be continuous. Show that

$$\lim_{r \searrow 0} \int_{B_r(0)} f(x) \, d^n x = 0.$$  

*(2.5.5)*

**Hint:** Use that a continuous function is locally bounded.
(b) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a Lebesgue-integrable function. Show that *(2.5.5)* again holds.

**Hint:** Use Lebesgue’s monotone convergence theorem.

**Exercise 2.17.** *(Topology on the Schwartz space)*

(a) Show that the topology on $\mathcal{S}(\mathbb{R}^n)$ defined by *(2.4.5)* gives rise to the notion of convergence *(2.4.6)*.
(b) Show that a linear functional $T : \mathcal{S}(\mathbb{R}^n) \to \mathbb{R}$ is continuous if and only if there are $p, q \in \mathbb{N}_0$ and $c > 0$ such that the inequality *(2.4.7)* holds.
(c) Show that for any \(i \in \{1, \ldots, n\}\), the partial derivative \(T : f \mapsto \partial_i f\) is a continuous linear mapping from \(S(\mathbb{R}^n)\) to itself.

**Exercise 2.18.** Prove the Fourier inversion formula for tempered distributions

\[ \mathcal{F} \circ \mathcal{F}^* = \mathcal{F}^* \circ \mathcal{F} = 1_{S'(\mathbb{R}^n)} : S'(\mathbb{R}^n) \to S'(\mathbb{R}^n). \]

*Hint:* Use Lemma 2.4.6 together with the definition of the Fourier transform of a tempered distribution.

**Exercise 2.19.** (Dirac sequence) Given \(\varepsilon > 0\), consider the Gaussian

\[ \eta_\varepsilon(x) := \frac{1}{\sqrt{4\pi \varepsilon}} e^{-\frac{x^2}{4\varepsilon}}. \]

(a) Show that \(\varepsilon\) is a Schwartz function.
(b) Show that the corresponding regular distribution converges to the \(\delta\) distribution in the sense that for all \(f \in S(\mathbb{R})\),

\[ \lim_{\varepsilon \to 0} T_{\eta_\varepsilon}(f) = \delta(f) \]

(the \(\delta\)-distribution as introduced informally in Example 2.4.1 is defined by \(\delta(f) = f(0)\) for all \(f \in S(\mathbb{R})\)).

**Exercise 2.20.** This exercise is devoted to a clean proof of the distributional relation (16.4.4) in one dimension. More precisely, we want to prove the slightly more general statement that for any function \(\eta \in C^1(\mathbb{R}) \cap L^1(\mathbb{R})\),

\[ \lim_{\varepsilon \to 0} \int_{\mathbb{R}} \eta(x) \left( \frac{1}{x - i\varepsilon} - \frac{1}{x + i\varepsilon} \right) \, dx = 2\pi i \eta(0). \]  

(2.5.6)

(a) Let \(\eta \in C^1(\mathbb{R}) \cap L^1(\mathbb{R})\) with \(\eta(0) = 0\). Show with the help of Lebesgue’s dominated convergence theorem that (2.5.6) holds.
(b) Show with residues that (2.5.6) holds for the function \(\eta(x) = 1/(x^2 + 1)\).
(c) Combine the results of (a) and (b) to prove (2.5.6) for general \(\eta \in C^1(\mathbb{R}) \cap L^1(\mathbb{R})\).

**Exercise 2.21.** (Fourier transform of \(\delta\)-distribution) Let \(T \in S'(\mathbb{R})\) be the regular distribution corresponding to the constant function, i.e.

\[ T(f) := \int_{-\infty}^{\infty} f(x) \, dx. \]

(a) Show that \(T(f) = 2\pi (F^* f)(0)\).
(b) Use the Fourier inversion theorem for tempered distributions to conclude that \(\mathcal{F} T = 2\pi \delta\) (where \(\delta\) is again the \(\delta\)-distribution).
(c) Apply the Fourier inversion theorem again to compute the Fourier transform of the \(\delta\)-distribution.
(d) Alternatively, one can compute these Fourier transforms directly working with convergence-generating factors in the style of (2.4.14). Do this carefully step by step, making sure that every computation step is mathematically well-defined.

**Exercise 2.22.** (Schwartz space)

(a) Schwartz functions decay faster than polynomially at infinity together with all their partial derivatives. More precisely, show that for every multi-index \(\alpha\) and for every \(N \in \mathbb{N}\) there exists \(C_{\alpha,N} \geq 0\) such that

\[ |D^\alpha f(x)| \leq \frac{C_{\alpha,N}}{1 + |x|^N} \text{ for all } x \in \mathbb{R}^n. \]
(b) Which of the following functions belongs to \( S(\mathbb{R}) \)? Motivate your answers!

\[
\begin{align*}
 f_1(x) &= e^{-x^2}, \\
 f_2(x) &= \frac{1}{1 + x^4}, \\
 f_3(x) &= \frac{e^{-x^2}}{2 + \sin(e^{x^2})}.
\end{align*}
\]

**EXERCISE 2.23. (The principal value integral)** For every \( f \in S(\mathbb{R}) \) we define

\[
 A(f) := \lim_{\varepsilon \to 0} \int_{\mathbb{R} \setminus (-\varepsilon, \varepsilon)} \frac{f(x)}{x} \, dx.
\]

Does the limit exist? In fact, \( A \) is a tempered distribution. Show it.

**EXERCISE 2.24. (Multiplication operators)** Let \( n \in \mathbb{N} \).

(a) Let \( g \) be a (not necessarily continuous) function \( g : \mathbb{R}^n \to \mathbb{R} \) with the property that the mapping \( x \mapsto g(x)/(1 + |x|^r) \) in in \( L^1(\mathbb{R}^n) \) for suitable \( r > 0 \). Show that the map \( f \mapsto T_g(f) := \int_{\mathbb{R}^n} f(x) g(x) \, dx \) defines a tempered distribution, \( T_g \in S(\mathbb{R}^n)' \).

(b) Find a smooth function \( g \in L^1(\mathbb{R}^n) \) which is not pointwise bounded by any polynomial, i.e. there is no polynomial \( p \) such that

\[
|g(x)| \leq p(|x|) \quad \text{for all } x \in \mathbb{R}^n.
\]

But the corresponding functional

\[
 T_g : S(\mathbb{R}^n) \ni f \mapsto \int_{\mathbb{R}^n} g(x) f(x) \, dx \quad (2.5.7)
\]

should be a well-defined tempered distribution.

**EXERCISE 2.25. (Approximating the \( \delta \)-distribution)** Not all distributions can be written as in (2.5.7). Nevertheless, it can be shown that every tempered distribution can be approximated by such functionals. Let us verify this statement in the concrete example of the Dirac \( \delta \)-distribution. Let \( \varphi \in C_0^\infty(\mathbb{R}^n) \) fulfill \( \varphi \geq 0 \), \( \text{supp} \varphi \subset B_1(0) \) and \( \|\varphi\|_{L^1} = 1 \). Define, for every \( \varepsilon > 0 \),

\[
 \varphi_\varepsilon(x) := \frac{1}{\varepsilon^n} \varphi \left( \frac{x}{\varepsilon} \right) \in C_0^\infty(\mathbb{R}^n) \quad \text{and} \quad \delta_\varepsilon := T_{\varphi_\varepsilon} \quad \text{(defined as in (2.5.7))}
\]

Each functional \( \delta_\varepsilon \) is a tempered distribution (why?). Show that, for every \( f \in S(\mathbb{R}^n) \),

\[
 \delta_\varepsilon(f) \to \delta(f) = f(0) \quad \text{as } \varepsilon \searrow 0.
\]

**EXERCISE 2.26. (Another regular tempered distribution)** Let \( n, k \in \mathbb{N} \) with \( n > k \). Show that the mapping

\[
 S(\mathbb{R}^n) \ni f \mapsto \int_{\mathbb{R}^n} \frac{f(x)}{|x|^k} \, dx \in \mathbb{C}
\]

is a well-defined tempered distribution.

**EXERCISE 2.27. (Convolution)** Let \( n \geq 1 \), \( \alpha \in \mathbb{N}^n \), \( f \in S(\mathbb{R}^n) \) and \( T \in S'(\mathbb{R}^n) \). Prove the following statements.

(a) \( D^\alpha(f * T) = f * (D^\alpha T) \),

(b) \( f * \delta = T_f \) where \( \delta \) is the Dirac delta distribution.

**EXERCISE 2.28. (Fourier transform on \( S(\mathbb{R}^n) \) and \( S'(\mathbb{R}^n) \))** Compute the Fourier transform of the following functions and tempered distributions.

(a) \( f \in S(\mathbb{R}^n) \) defined by \( f(x) := e^{-\lambda x^2} \) for \( \lambda \geq 0 \);
(b) \( T_g \in \mathcal{S}'(\mathbb{R}^n) \) for the functions \( g \in L^1(\mathbb{R}) \) defined by
\[
g(x) = e^{-|x|} \quad \text{and} \quad g(x) = \frac{1}{1+x^2}.
\]

**Exercise 2.29. (Fourier transform on \( L^1(\mathbb{R}^n) \))** The functions in \( L^1(\mathbb{R}^n) \) define tempered distributions by means of the identification \( g \mapsto T_g \). As distributions they admit Fourier transform. However, for these functions the Fourier transform can also be defined directly via the usual integral form. The goal of this exercise is to show that this is indeed true and that the two definitions coincide.

(a) Show that the Fourier transform
\[
(Fg)(p) := \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-ipx} g(x) \, dx
\]
defines a map
\[
F : L^1(\mathbb{R}^n) \to C^0(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n).
\]
Moreover, show that there exists a constant \( C_n \) such that
\[
\|Fg\|_{\infty} \leq C_n \|g\|_{L^1} \quad \text{for all} \quad g \in L^1(\mathbb{R}^n).
\]
(b) Let \( g \in L^1(\mathbb{R}^n) \). Show that the Fourier transform of the distribution \( T_g \in \mathcal{S}'(\mathbb{R}^n) \) satisfies the relation
\[
F(T_g) = T_{Fg}.
\]
*Hint:* You may use that \( \mathcal{S}(\mathbb{R}^n) \) is dense in \( L^1(\mathbb{R}^n) \).

**Exercise 2.30. (On the topology of \( \mathcal{S}(\mathbb{R}^n) \))** Consider the Schwartz space \( \mathcal{S}(\mathbb{R}^n) \) equipped with the family of norms \( \|\cdot\|_{p,q} \), where \( p, q \in \mathbb{N}_0 \). Show the following statements.

(a) For any \( f, g \in \mathcal{S}(\mathbb{R}^n) \) the following series converges:
\[
d(f, g) := \sum_{p,q \in \mathbb{N}_0} \frac{1}{2^{p+q}} \frac{\|f - g\|_{p,q}}{1 + \|f - g\|_{p,q}}.
\]
Moreover it defines a metric on \( \mathcal{S}(\mathbb{R}^n) \).

(b) The metric space \( (\mathcal{S}(\mathbb{R}^n), d) \) is complete.

(c) Show that if a topology on a vector space is induced by a norm, then there is a neighborhood \( U \) of 0 such that for every other neighborhood \( V \) of 0, there is a positive number \( r \) such that \( U \subset r \cdot V \). Can the topology of \( \mathcal{S}(\mathbb{R}^n) \) be induced by a norm?

**Exercise 2.31. (A simple manifold)** Let \( \mathcal{M} = S^1 \subset \mathbb{C} \) be the unit circle (considered as a subset of the complex plane). We choose the charts \( (\phi_1, U_1) \) and \( (\phi_2, U_2) \) with
\[
U_1 = \left\{ e^{i\alpha} \mid \alpha \in \left( -\frac{3\pi}{2}, \frac{3\pi}{2} \right) \right\}, \quad \phi_1(e^{i\alpha}) = \alpha,
\]
\[
U_2 = \left\{ -e^{i\alpha} \mid \alpha \in \left( \frac{3\pi}{2}, \frac{3\pi}{2} \right) \right\}, \quad \phi_1(-e^{i\alpha}) = \alpha.
\]
Show that these two charts define a smooth atlas of \( \mathcal{M} \).

**Exercise 2.32. (A simple vector bundle)** Let \( \mathcal{B} = \mathbb{R} \times S^1 \) be the two-dimensional cylinder, \( \mathcal{M} = S^1 \) and
\[
\pi : \mathcal{B} \to \mathcal{M}, \quad (t, e^{i\alpha}) \mapsto e^{i\alpha}.
\]
Show that \( \mathcal{B} \) is a smooth vector bundle with fiber \( Y = \mathbb{R} \).
Exercise 2.33. (Another vector bundle) Use the mapping

\[ F : \mathbb{R} \times S^2 \to \mathbb{R}^3 \setminus \{0\}, \quad (t, x) \mapsto e^t \mathbf{x} \]

(\text{where we consider } S^2 \text{ as the unit sphere embedded in } \mathbb{R}^3) \text{ in order to give } \mathbb{B} = \mathbb{R}^3 \setminus \{0\} \text{ the structure of a vector bundle on } S^2 \text{ with fiber } Y = \mathbb{R}.}
CHAPTER 3

Elements of Operator Theory

In this chapter we introduce some material from functional analysis which will be needed later in this book. More precisely, in Section 3.1 we explain the concept that linear operators with certain properties form a submanifold of the space of all linear operators. This concept will be useful when generalizing the causal action principle to causal variational principles in Chapter 6. In Section 3.2 we recall the spectral calculus for selfadjoint operators. Although this material is covered in most functional analysis lectures, in this book we do not expect that the reader is already familiar with this topic. The spectral theorem will be used only when developing functional analytic methods in spacetime in Chapter 15.

3.1. Manifolds of Operators

In this book, it is sometimes useful to observe that certain sets of operators on a Hilbert space form a smooth manifold. For the purposes in this book, it suffices to work out this concept in the case of a finite-dimensional Hilbert space (the generalization to the infinite-dimensional case is a bit more technical; for details see [69]).

We begin with a simple example which illustrates the basic concept.

**Example 3.1.1. (Grassmann manifold)** Given \( f \in \mathbb{N} \), we consider \( \mathbb{C}^f \) with the canonical scalar product \( \langle \cdot , \cdot \rangle_{\mathbb{C}^f} \). Let \( \mathcal{G} \) be the set of all orthogonal projection operators to one-dimensional subspaces of \( \mathbb{C}^f \),

\[
\mathcal{G} := \{ \pi_V \text{ orthogonal projection to a one-dimensional subspace } V \subset \mathbb{C}^f \}.
\]

Let us verify that \( \mathcal{G} \) is a smooth manifold of dimension

\[
\dim \mathcal{G} = 2f - 2.
\]

To this end, let \( \pi_V \) be such a projection operator. We choose a unit vector \( v \) which spans \( V \). Next we let \( V^\perp \) be the orthogonal complement of \( V \) and \( W = B_1(0) \cap V^\perp \) its unit ball. We consider the mapping

\[
F : W \rightarrow \mathcal{G}, \quad u \mapsto \pi_{\text{span}(v+u)}.
\]

It is verified by direct computation that \( F \) is injective and that its image is an open neighborhood of \( \pi_V \) in \( \mathcal{G} \). Also, one easily verifies that it is a local homeomorphism and thus defines a chart

\[
\phi = F|_{F(W)}^{-1} : F(W) \rightarrow W \subset V^\perp \simeq \mathbb{C}^{f-1} \simeq \mathbb{R}^{2f-2}.
\]

Moreover, one verifies directly that all the charts obtained in this way form a smooth atlas (a more explicit method for constructing charts is explained in Exercise 3.1). This manifold is called Grassmann manifold.

This concept can be generalized to so-called flag manifolds (see for example [94, page 142]):
**Definition 3.1.2. (flag manifold)** Given \( r \in \mathbb{N} \), we choose \( r \) integers
\[
0 < d_1 < \cdots < d_r < f .
\]
Consider a sequence \((L_1, \ldots, L_r)\) of nested subspaces
\[
L_1 \subset \cdots \subset L_r \subset \mathbb{C}^f
\]
with \( \dim L_i = d_i \) for \( i = 1, \ldots, r \). Then the set of such sequences \((L_1, \ldots, L_r)\) is referred to as the flag manifold \( F_{d_1, \ldots, d_r} \).

Here we do not need to verify that a flag manifold is indeed a manifold. Instead, it suffices to consider a specific set of operators which is related to a flag manifold. Namely, choosing again \( \mathcal{H} = \mathbb{C}^f \) as well as integers \( p, q \) with \( p + q \leq f \), we let \( F_{p,q} \) be the set
\[
F_{p,q} = \{ A \in L(\mathcal{H}) \mid A \text{ is symmetric and has } p \text{ positive and } q \text{ negative eigenvalues} \},
\]
where we count the eigenvalues with multiplicities. Taking \( L_1 \) as the subspace spanned by the positive eigenvalues and \( L_2 \) as the image of \( A \), one gets a corresponding flag manifold with \( r = 2 \) and \( d_1 = p, d_2 = p + q \). But the operators in \( F_{p,q} \) contain more information, namely the eigenvalues and the corresponding eigenspaces. Therefore the set \( F_{p,q} \) can be regarded as a flag manifold with additional structures. We now prove that this set is again a smooth manifold, following the method in [62, Section 3].

**Proposition 3.1.3.** The set \( F_{p,q} \) is a smooth manifold of dimension
\[
\dim F_{p,q} = 2f (p + q) - (p + q)^2 .
\]

**Proof.** Let \( x \in F_{p,q} \). We denote its image by \( I \) and set \( J = I^\perp \). Thus, using a block matrix representation in \( \mathbb{C}^f = I \oplus J \), the matrix \( x \) has the representation
\[
x = \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} .
\]
(3.1.1)
The goal is to find a parametrization of operators of \( F_{p,q} \) in a small neighborhood of \( x \). We first note that varying \( X \) by a sufficiently small symmetric matrix \( A \), the resulting matrix \( X + A \) has again \( p \) positive and \( q \) negative eigenvalues. In order to also vary the off-diagonal entries in (3.1.1), we make the ansatz
\[
M = (1 + C) \begin{pmatrix} X + A & 0 \\ 0 & 0 \end{pmatrix} (1 + C)^* ,
\]
with an \( f \times f \)-matrix \( C \). This ansatz has the advantage that \( M \) is obviously symmetric and, for \( C \) sufficiently small, has again \( p \) positive and \( q \) negative eigenvalues (for details see Exercise 3.2). We want to choose \( C \) such that the upper right block matrix entry of \( M \) has a particularly simple form. This leads us to the parametrization matrix
\[
M := \begin{pmatrix} 1 & 0 \\ B^* (X + A)^{-1} & 1 \end{pmatrix} \begin{pmatrix} X + A & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & (X + A)^{-1} B \\ 0 & 1 \end{pmatrix}
\]
(3.1.2)
with a linear operator \( B : J \rightarrow I \). We also see that for \((A, B) = (0, 0)\) the parametrization matrix equals \( x \), which is necessary for building a chart around \( x \).

Thus, for sufficiently small \( \varepsilon \), we obtain the mapping
\[
\Lambda : \left( \text{Symm}(I) \oplus L(I, J) \right) \cap B_\varepsilon(0) \rightarrow F_{p,q} , \quad (A, B) \mapsto M
\]
(3.1.4)
(where Symm($I$) denotes the symmetric linear operators). Let us verify that (again for sufficiently small $\varepsilon$) this mapping is a homeomorphism to an open neighborhood of $x \in \mathcal{F}^{p,q}$. It is obvious from (3.1.3) that $\Lambda$ is injective. In order to verify that it maps to an open neighborhood of $x$, we let $y \in \mathcal{F}^{p,q}$ with $\|x - y\| < \delta$ (with $\delta > 0$ to be specified below). Diagonalizing $y$ with a unitary matrix $U$, we obtain the block matrix representation

$$ y = \begin{pmatrix} 1 & 0 \\ U_{21} U_{11}^{-1} & 1 \end{pmatrix} \begin{pmatrix} U_{11} (X + C) U_{11}^* & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} U_{11}^* & U_{21}^* \\ 0 & 0 \end{pmatrix}, $$

where $C$ is a symmetric linear operator on $I$. In the limit $y \rightarrow x$, the image of $y$ converges to the image of $x$, implying that the matrix $U_{11}$ becomes unitary. Therefore, for sufficiently small $\delta > 0$, the matrix $U_{11}$ is invertible, giving rise to the representation

$$ y = \begin{pmatrix} 1 & 0 \\ U_{21} U_{11}^{-1} & 1 \end{pmatrix} \begin{pmatrix} (U_{11})^{-1} U_{21}^* \end{pmatrix}. $$

This is of the form (3.1.2), and one can even read off $A$ and $B$,

$$ A = U_{11} (X + C) U_{11}^* - X $$

$$ B = (U_{11} (X + C) U_{11}^*) (U_{11}^{-1}) U_{21}^*. $$

We conclude that $\Lambda$ is a bijection to an open neighborhood of $x \in \mathcal{F}^{p,q}$. The continuity of $\Lambda$ and of its inverse are obvious. We have thus constructed a chart around $x$. Performing the above construction around every point $x \in \mathcal{F}^{p,q}$ gives an atlas. By direct computation one verifies that the transition maps are smooth. We conclude that, with the above atlas, $\mathcal{F}^{p,q}$ is indeed a smooth manifold.

We finally note that the mapping $\Lambda$ in (3.1.4) has the nice property that the corresponding chart are Gaussian normal coordinates with respect to the Riemannian metric induced by the Hilbert-Schmidt norm (for details see [62]).

### 3.2. The Spectral Theorem for Selfadjoint Operators

In this book, we will mainly encounter operators of finite rank (see Definition 2.2.5). In this case, a symmetric operator $A$ on a Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ (see again Definition 2.2.5) has real eigenvalues, and there is an orthonormal basis of eigenvectors. Given an eigenvalue $\lambda$, we refer to the dimension of the eigenspace as its multiplicity. Choosing an orthogonal basis $e_1, \ldots, e_k$ of this eigenspace, we can form the orthogonal projection operator $E_\lambda$ to this eigenspace as

$$ E_\lambda : \mathcal{H} \rightarrow \mathcal{H}, \quad E_\lambda u := \sum_{i=1}^{k} e_i \langle e_i | u \rangle. $$

Denoting the set of eigenvalues by $\sigma(A) \subset \mathbb{R}$, the operator $A$ has the spectral decomposition

$$ A = \sum_{\lambda \in \sigma(A)} \lambda E_\lambda. $$

We now briefly outline how the spectral decomposition can be generalized to operators of infinite rank and unbounded operators. In this book, these results will be needed only
in Chapters 15, 18 and a few times implicitly in order to justify that for example the unitary time evolution in (4.6.3) is well-defined. With this in mind, the reader may skip the remainder of this section in a first reading. More details on the spectral theorem can be found in textbooks on functional analysis like for example [116, 122, 105]. We begin with the case that \( A \) is a bounded and symmetric linear operator (see Definitions 2.2.3 and 2.2.5). The resolvent set \( \rho(A) \subset \mathbb{C} \) is defined as the set of all \( \lambda \) for which the operator \( A - \lambda \) has a bounded inverse, the so-called resolvent \( R_\lambda := (A - \lambda)^{-1} \in \mathbb{L}(\mathcal{H}) \). The spectrum \( \sigma(A) := \mathbb{C} \setminus \rho(A) \) is defined as the complement of the resolvent set. The spectrum of a symmetric operator is always real, \( \sigma(A) \subset \mathbb{R} \) (see Exercise 3.4). Given a complex polynomial \( p(\lambda) \), we can form the operator \( p(A) \) by replacing \( \lambda \) by the operator \( A \) (and monomials by powers of the operator). Clearly, this operation is compatible with taking adjoints and multiplications, i.e.

\[
p(A)^* = p(A) \quad \text{and} \quad p(A) \, q(A) = (pq)(A)
\]  

(3.2.2)

for any polynomials \( p \) and \( q \). Moreover, the spectrum and norm of the operator \( p(A) \) can be expressed easily in terms of the polynomial. Namely, the spectral mapping theorem states that (for details see Exercise 3.5)

\[
\sigma(p(A)) = p(\sigma(A)).
\]  

(3.2.3)

Moreover, the norm of \( p(A) \) is given by the \( C^0 \)-norm of the polynomial on the spectrum of \( A \),

\[
\|p(A)\| = \sup_{\lambda \in \sigma(A)} |p(\lambda)|.
\]  

(3.2.4)

These two properties make it possible to make sense of \( p(A) \) for more general functions \( p \). Namely, using the Stone-Weierstraß approximation theorem, the continuous functional calculus makes it possible to define \( p(A) \) for continuous functions \( p \in C^0(\mathbb{R}) \). Next, measure-theoretic methods (more precisely, the Riesz representation theorem to be introduced in Section 12.2) make it possible to define \( p(A) \) for any bounded Borel function (a function is called Borel if the pre-image of every open set is a Borel set). The relations (3.2.2), (3.2.3) remain valid, whereas (3.2.4) becomes an inequality, \( \|p(A)\| \leq \sup_{\lambda \in \sigma(A)} |p(\lambda)| \).

The functional calculus for bounded Borel functions makes it possible to choose \( f \) in particular as the characteristic function of a Borel set \( \Omega \subset \mathbb{R} \). We use the notation

\[
E_{\Omega} := \chi_{\Omega}(A).
\]

The mapping which to a Borel set \( \Omega \) associates the operator \( E_{\Omega} \) is a projection-valued measure. This means that for every Borel set \( \Omega \), the operator \( E_{\Omega} \) is an orthogonal projection operator in the sense that \( E_{\Omega}^* = E_{\Omega} = E_{\Omega}^2 \). Moreover, for any Borel sets \( U \) and \( V \), these operators have the properties that \( E_U E_V = E_{U \cap V} \). Finally, similar to Definition 2.3.2 a spectral measure has the property that \( E_{\emptyset} = 0 \) and \( E_{\mathbb{R}} = 1 \), whereas \( \sigma \)-additivity means that for any sequence of pairwise disjoint Borel sets \( (\Omega_n)_{n \in \mathbb{N}} \) and every vector \( u \in \mathcal{H} \),

\[
E_{\bigcup_n \Omega_n} u = \sum_{n=1}^{\infty} (E_{\Omega_n} u)
\]

(where the series converges in the Hilbert space \( \mathcal{H} \); in other words, the series of operators converges strongly in \( \mathbb{L}(\mathcal{H}) \)). Being in the measure-theoretic setting has the major
advantage that one can express the functional calculus as an integral, i.e.

\[ f(A) = \int_{\mathbb{R}} f(\lambda) \, dE_\lambda \]  

(3.2.5)

for any bounded Borel function \( f \). In particular, the operator \( A \) has the spectral decomposition

\[ A = \int_{\mathbb{R}} \lambda \, dE_\lambda . \]  

(3.2.6)

In the case that the spectral measure is supported at a finite number of points, the integral in (3.2.6) reduces to a sum, giving us back the spectral decomposition (3.2.1). However, in general the integral (3.2.6) does not reduce to a sum or series. Instead, the support of the spectral measure coincides with the spectrum,

\[ \sigma(A) = \text{supp} \, E , \]  

(3.2.7)

but the spectrum may contain open sets, giving rise to the so-called continuous spectrum. We remark that the equality in (3.2.4) again holds for bounded Borel functions if the supremum is replaced by the essential supremum (with respect to the spectral measure). In Exercise 3.7, the spectral theorem is illustrated in the example of a multiplication operator.

The above spectral theorem for bounded symmetric operators can be generalized to bounded normal operators. An operator \( A \in L(\mathcal{H}) \) is called normal if it commutes with its adjoint,

\[ [A, A^*] = 0 . \]

The spectrum of a normal operator is in general complex. The spectral calculus reads

\[ f(A) = \int_{\mathbb{C}} f(\lambda) \, dE_\lambda , \]  

(3.2.8)

where \( f \) is a bounded Borel function on \( \mathbb{C} \) and \( E \) a spectral measure supported in the complex plane. The formulas (3.2.3), (3.2.4) and (3.2.7) continue to hold. A typical example of a normal operator is a unitary operator (see Definition 2.2.5), in which case the spectrum lies on the unit circle (see Exercise 3.6).

Finally, the spectral theorem also applies to unbounded selfadjoint operators, as we now recall. An unbounded operator \( A \) is not defined on the whole Hilbert space, but only on a dense subspace \( \mathcal{D}(A) \subset \mathcal{H} \). Thus it is a linear mapping

\[ A : \mathcal{D}(A) \subset \mathcal{H} \to \mathcal{H} . \]

The notion of a symmetric operator from Definition 2.2.5 extends to unbounded operators by imposing it only for vectors \( u \) and \( v \) in the domain, i.e.

\[ \langle Au | v \rangle = \langle u | Av \rangle \quad \text{for all } u, v \in \mathcal{D}(A) . \]

The operator \( A \) is selfadjoint if the following implication holds,

\[ \langle Au | v \rangle = \langle u | w \rangle \quad \text{for all } u \in \mathcal{D}(A) \quad \implies \quad v \in \mathcal{D}(A) \quad \text{and} \quad Av = w . \]  

(3.2.9)

Clearly, a selfadjoint operator is symmetric. However, the converse is in general not true. Indeed, in order to obtain a selfadjoint operator one must construct a dense domain which must be balanced (i.e. not too large and not too small) such that the condition on the left of (3.2.9) implies that \( v \) lies in this domain. In this book, we shall not enter the methods for the construction of selfadjoint domains. Instead, we assume that a selfadjoint
operator \( A \) is given. Then the spectral theorem yields a spectral measure \( E \) on \( \mathbb{R} \) such that (3.2.6) again holds, but with pointwise convergence on the domain, i.e.

\[
Au = \int_{\mathbb{R}} \lambda d(E_{\lambda}u) \quad \text{for all } u \in \mathcal{D}(A) .
\]

(3.2.10)

Given a bounded Borel function \( f \) on \( \mathbb{R} \), the spectral calculus is again defined by (3.2.5), giving a bounded operator. If \( f \) is an unbounded Borel function, the spectral calculus (3.2.5) gives an in general unbounded function with dense domain

\[
\mathcal{D}(f(A)) = \left\{ u \in \mathcal{H} \left| \int_{\mathbb{R}} |f(\lambda)|^2 d(u|E_{\lambda}u) < \infty \right\} .
\]

If \( f \) is real-valued, then the operator \( f(A) \) is again selfadjoint.

**Example 3.2.1. (An unbounded multiplication operator)** Generalizing the setting of Exercises 2.12 and 3.7, we let \( g \in C^0_0(\mathbb{R}, \mathbb{R}) \) be a possibly unbounded, real-valued function. We consider the corresponding multiplication operator \( A \) on the Hilbert space \( \mathcal{H} = L^2(\mathbb{R}) \), i.e.

\[
A := T_g : \mathcal{H} \to \mathcal{H} , \quad (A \phi)(x) := g(x) \phi(x) .
\]

In order to make mathematical sense of this operator, we need to specify a domain. In the first step, we choose \( \mathcal{D}(A) = C^\infty_0(\mathbb{R}) \) as all smooth test functions. With this domain, the operator is clearly symmetric, but it is not selfadjoint. In order to make \( A \) into a selfadjoint operator, we need to choose the domain as

\[
\mathcal{D}(A) := \{ \phi \in L^2(\mathbb{R}) \mid g\phi \in L^2(\mathbb{R}) \} .
\]

(3.2.11)

Namely, with this choice, the condition on the left of (3.2.9) implies that \( \langle u|gv = \langle u|w \rangle \) for all \( u \in \mathcal{D}(A) \). Using that the domain is dense, it follows that \( w = gv \), so that the implication in (3.2.9) holds.

Using the relation \( A^2 = T_{g^2} \) inductively, one sees that \( p(A) = T_{po^g} \). Consequently, the functional calculus for the operator \( A \) can be written as \( f(A) = T_{fog} \). Choosing characteristic functions, one sees that the spectral measure is given by

\[
E_\Omega = T_h \quad \text{with} \quad h(x) := \begin{cases} 1 & \text{if } f(x) \in \Omega \\ 0 & \text{otherwise} \end{cases} .
\]

The support of this spectral measure coincides with the spectrum,

\[
\sigma(A) = \text{supp } E = g(\mathbb{R}) .
\]

If \( g \) is equal to \( \lambda \) on a set of positive Lebesgue-measure, i.e. if

\[
\mu(\lambda^{-1}(\lambda)) > 0 ,
\]

then \( \lambda \) is an eigenvalue, and the corresponding eigenspace is given by

\[
\ker(A - \lambda) = \{ \phi \in L^2(\mathbb{R}) \mid \phi|_{\mathbb{R}\setminus\lambda^{-1}(\lambda)} = 0 \} .
\]

If \( \lambda \) is in the image of \( g \), but the value \( \lambda \) is attained only on a set of measure zero, then \( \lambda \) lies in the continuous spectrum of \( A \). More precisely, in this case the operator \( A - \lambda \) has no kernel (i.e. \( \lambda \) is not an eigenvalue, because there are no corresponding eigenvectors in \( \mathcal{H} \)), but nevertheless the operator \( A - \lambda \) has no bounded inverse. ✷
Example 3.2.2. (The Laplacian in $\mathbb{R}^3$) We conclude with an example of a differential operator, namely the Laplacian $\Delta$ on the Hilbert space $L^2(\mathbb{R}^3)$. We begin with the simplest domain $\mathcal{D}(\Delta) = C_0^\infty(\mathbb{R}^3)$ of smooth test functions. With this domain, the Laplacian is symmetric, but it is not self-adjoint. One method for obtaining a domain for which $\Delta$ is self-adjoint is to take the Fourier transform and use the results for multiplication operators of the previous Example 3.2.1. To this end, it is preferable to choose the domain as the Schwartz functions, $\mathcal{D}(\Delta) = \mathcal{S}(\mathbb{R}^3)$. Taking the Fourier transform, the Laplacian becomes a multiplication operator, i.e., using the notation in Definition 2.4.4,

$$\hat{\mathcal{F}} \Delta \hat{\mathcal{F}}^* = T_g \quad \text{with} \quad g(p) = -|p|^2.$$ 

Similar to (3.2.11), the multiplication operator $T_g$ is self-adjoint with domain

$$\mathcal{D}(T_g) = \{ \phi \in L^2(\mathbb{R}^3) \mid g\phi \in L^2(\mathbb{R}^3) \}.$$ 

Since the Fourier transform is a unitary transformation by Plancherel’s theorem (see Theorem 2.4.8), we obtain a self-adjoint domain of the Laplacian simply by transforming the domain of $T_g$ back to position space,

$$\mathcal{D}(\Delta) = \mathcal{F}^* \mathcal{D}(T_g). \quad (3.2.12)$$

For the reader familiar with weak derivatives and Sobolev spaces we remark that this domain can be expressed more directly as $\mathcal{D}(\Delta) = L^2(\mathbb{R}^3) \cap W^{2,2}(\mathbb{R}^3)$. But for the purposes of this book, it suffices to write the domain according to (3.2.12).

Exercises

Exercise 3.1. (Charts of Grassmann manifold) In this exercise we want to construct a chart of the Grassmann manifold of Example 3.1.1. To this end, we consider unit vectors $u \in \mathbb{C}^f$ with components

$$u(v) = \left( \sqrt{1 - \|v\|^2}, v \right) \quad \text{with} \quad v \in \mathbb{C}^{f-1} \text{ with } \|v\| < 1.$$ 

We consider the mapping

$$F : B_1 \subset \mathbb{C}^{f-1} \rightarrow \mathcal{S}, \quad F(v) := |u(v))\langle u(v)| \quad (3.2.13)$$

(where we used bra/ket-notation; in other words, $F(v)$ is the orthogonal projection to the span of $u(v)$). Show that $F$ is differentiable at the origin and that $DF|_0$ has maximal rank. Use this method to construct a differentiable atlas of $\mathcal{S}$. Compare the mapping $\mathcal{F}$ in (3.2.13) with the mapping $\Lambda$ in (3.1.4) in the case $p = 1$ and $q = 0$. What are the similarities and differences?

Exercise 3.2. Let $x$ be a Hermitian $f \times f$-matrix of rank $p + q$ which (counting multiplicities) has $p$ positive and $q$ negative eigenvalues. Let $A$ be another $f \times f$-matrix (not necessarily Hermitian). Prove the following statements:

(a) The matrix $A^* x A$ has at most $p$ positive and at most $q$ negative eigenvalues. 

\textit{Hint:} Consider the maximal positive and negative definite subspaces of the bilinear forms $\langle , x \rangle_{\mathbb{C}^f}$ and $\langle , A^* x A \cdot , \rangle_{\mathbb{C}^f}$. Use that

$$\langle u, A^* x A u \rangle_{\mathbb{C}^f} = \langle (Au), x (Au) \rangle_{\mathbb{C}^f}.$$ 

(b) If $A$ is invertible, then the matrix $A^* x A$ has again $p$ positive and $q$ negative eigenvalues.
**Exercise 3.3.** Let $A \in L(H)$. For $\lambda \in \rho(A)$ in the resolvent set, we define the resolvent $R_\lambda$ by $R_\lambda = (A - \lambda)^{-1}$. Prove the so-called *resolvent identity*

$$R_\lambda R_{\lambda'} = \frac{1}{\lambda - \lambda'} (R_\lambda - R_{\lambda'}) ,$$

valid for any $\lambda, \lambda' \in \rho(A)$. *Hint:* Multiply by $A - \lambda$ from the left and by $A - \lambda'$ from the right.

**Exercise 3.4.** Let $A \in L(H)$ be a bounded symmetric operator. Show that its spectrum is real, $\rho(A) \subset \mathbb{R}$. *Hint:* It might be helpful to prove and make use of the inequality $\|(A - \lambda) u\| \geq \text{Im} \lambda \|u\|.$

**Exercise 3.5.** Prove the spectral mapping theorem 3.2.3 for a polynomial $p$. *Hint:* Use that a complex polynomial can be factorized into a product of linear functions.

**Exercise 3.6.** Let $A \in L(H)$ be unitary.

(a) Show that $A$ is normal.

(b) Use the spectral calculus 3.2.8 to show that

$$\int_{\mathbb{C}} |\lambda|^2 \, dE_{\lambda} = A^* A = 1 .$$

(c) Conclude that the spectrum of $A$ is contained in the unit circle.

**Exercise 3.7.** (Spectrum and functional calculus for multiplication operators) We return to the multiplication operators from Exercise 2.12. Let $f \in C^0(\mathbb{R}, \mathbb{C})$ be a continuous, complex-valued function. Assume that it is bounded, i.e. that $\sup_{\mathbb{R}} |f| < \infty$. We consider the multiplication operator $T_f$ on the Hilbert space $\mathcal{H} = L^2(\mathbb{R})$, i.e.

$$T_f : \mathcal{H} \to \mathcal{H} , \quad (T_f \phi)(x) = f(x) \phi(x) .$$

(a) Show that, if the resolvent exists, it has the form

$$R_\lambda = (T_f - \lambda)^{-1} = T_g \quad \text{with} \quad g(x) = \frac{1}{f(x) - \lambda} .$$

For which values of $\lambda$ has the operator $T_f - \lambda$ a bounded inverse? What is the spectrum of $T_f$?

(b) Are powers of $T_f$ again multiplication operators? Use your findings to guess a formula for the continuous spectral calculus $f(T_{\alpha})$. What is the projection-valued spectral measure $E$?

(c) Work out the projection-valued spectral measure explicitly in the example

$$f(x) = \begin{cases} 
  x & \text{if } x \in [0, \frac{1}{2}] \\
  -x & \text{if } x \in (\frac{1}{2}, 1] \\
  0 & \text{otherwise} .
\end{cases}$$
Spinors in Curved Spacetime

This chapter provides a brief introduction to spinors in curved spacetime. In order to make this book accessible to a broader readership, we mainly restrict attention to systems in Minkowski space. Nevertheless, many constructions and results carry over to curved spacetime in a straightforward way. The present section is intended for providing the necessary background for these generalizations. The reader not interested in gravity and Lorentzian geometry may skip this section. More specifically, the results of this chapter will be used only in Sections 11.3, 13.6 and 19.3. We follow the approach in [35].

4.1. Curved Spacetime and Lorentzian Manifolds

The starting point for general relativity is the observation that a physical process involving gravity can be understood in different ways. Consider for example an observer at rest on earth looking at a freely falling person (e.g. a diver who just jumped from a diving board). The observer at rest argues that the earth’s gravitational force, which he can feel himself, also acts on the freely falling person and accelerates him. The person in free fall, on the other hand, does not feel gravity. He can take the point of view that he himself is at rest, whereas the earth is accelerated towards him. He concludes that there are no gravitational fields, and that the observer on earth merely feels the force of inertia corresponding to his acceleration. Einstein postulated that these two points of view should be equivalent descriptions of the physical process. More generally, it depends on the observer whether one has a gravitational force or an inertial force. In other words, equivalence principle: no physical experiment can distinguish between gravitational and inertial forces.

In mathematical language, observers correspond to coordinate systems, and so the equivalence principle states that the physical equations should be formulated in general (i.e. “curvilinear”) coordinate systems, and should in all these coordinate systems have the same mathematical structure. This means that the physical equations should be invariant under diffeomorphisms, and thus spacetime is to be modeled by a Lorentzian manifold \((\mathcal{M}, g)\).

A Lorentzian manifold is “locally Minkowski space” in the sense that at every spacetime point \(p \in \mathcal{M}\), the corresponding tangent space \(T_p \mathcal{M}\) is a vector space endowed with a scalar product \(\langle \cdot, \cdot \rangle_p\) of signature \((+---)\). Therefore, we can distinguish between spacelike, timelike and null tangent vectors. Defining a non-spacelike curve \(q(\tau)\) by the condition that its tangent vector \(u(\tau) \in T_{q(\tau)} \mathcal{M}\) be everywhere non-spacelike, our above definition of light cones and the notion of causality immediately carry over to a Lorentzian manifold. In a coordinate chart, the scalar product \(\langle \cdot, \cdot \rangle_p\) can be represented in the form (1.2.1) where \(g_{jk}\) is the so-called metric tensor. In contrast to Minkowski space, the metric tensor is not a constant matrix but depends on the spacetime point, \(g_{jk} = g_{jk}(p)\). Its ten components can be regarded as the relativistic analogue of Newton’s...
gravitational potential. For every \( p \in \mathcal{M} \) there are coordinate systems in which the metric tensor coincides with the Minkowski metric up to second order,

\[
g_{jk}(p) = \text{diag}(1,-1,-1,-1), \quad \partial_j g_{kl}(p) = 0.
\]

(4.1.1)

Such Gaussian normal coordinates correspond to the reference frame of a “freely falling observer” who feels no gravitational forces. However, it is in general impossible to arrange that also \( \partial_j g_{mn}(p) = 0 \). This means that by going into a suitable reference frame, the gravitational field can be transformed away locally (=in one point), but not globally. With this in mind, a reference frame corresponding to Gaussian normal coordinates is also called a local inertial frame.

The physical equations can be carried over to a Lorentzian manifold by the prescription that they should in a local inertial frame have the same form as in Minkowski space; this is referred to as the strong equivalence principle. It amounts to replacing all partial derivatives by the corresponding covariant derivatives \( \nabla \) of the Levi-Civita connection; we write symbolically \( \partial \rightarrow \nabla \).

The gravitational field is described via the curvature of spacetime. More precisely, the Riemannian curvature tensor is defined by the relations

\[
R^i_{jkl} u^l = \nabla_j \nabla_k u^l - \nabla_k \nabla_j u^l.
\]

(4.1.2)

Contracting indices, one obtains the Ricci tensor \( R_{jk} = R^i_{jik} \) and scalar curvature \( R = R_j^j \). The relativistic generalization of Newton’s gravitational law are the Einstein equations

\[
R_{jk} - \frac{1}{2} R g_{jk} = 8 \pi \kappa T_{jk},
\]

where \( \kappa \) is the gravitational constant. Here the energy-momentum tensor \( T_{jk} \) gives the distribution of matter and energy in spacetime.

4.2. The Dirac Equation in Curved Spacetime

Dirac spinors are often formulated on a manifold using frame bundles, either an orthonormal frame \([8, 81]\) or a Newman-Penrose null frame \([112, 19]\). We here outline an equivalent formulation of spinors in curved spacetime in the framework of a U(2,2) gauge theory (for details see \([35]\)). We begin with constructions in local coordinates, whereas global issues like topological obstructions to the existence of spin structures will be discussed in Section 4.4 below. We let \( \mathcal{M} \) be a 4-dimensional manifold (without Lorentz metric) and define the spinor bundle \( S\mathcal{M} \) as a vector bundle over \( \mathcal{M} \) with fiber \( \mathbb{C}^4 \). The fibers are endowed with a scalar product \( \langle \cdot, \cdot \rangle \) of signature \((2,2)\), referred to as the spin scalar product. Sections in the spinor bundle are called spinors or wave functions. In local coordinates, a spinor is represented by a 4-component complex function on spacetime, usually denoted by \( \psi(x) \). Choosing at every spacetime point a pseudo-orthonormal basis \( (e_\alpha)_{\alpha=1,...,4} \) in the fibers,

\[
\langle e_\alpha | e_\beta \rangle = s_\alpha \delta_{\alpha\beta}, \quad s_1 = s_2 = 1, \ s_3 = s_4 = -1
\]

(4.2.1)

and representing the spinors in this basis, \( \psi = \psi^\alpha e_\alpha \), the spin scalar product takes again the form \([13.7]\). Clearly, the basis \( (e_\alpha) \) is not unique, but at every space-point can be transformed according to

\[
e_\alpha \rightarrow (U^{-1})^\beta_\alpha e_\beta,
\]
where $U$ is an isometry of the spin scalar product, $U \in U(2, 2)$. Under this basis transformation the spinors behave as follows,

$$\psi^\alpha(x) \rightarrow U^\beta_\gamma(x) \psi^\beta(x). \quad (4.2.2)$$

In view of the analogy to gauge theories, we interpret this transformation of the wave functions as a local gauge transformation with gauge group $G = U(2, 2)$. We refer to a choice of the spinor basis $(e_\alpha)$ as a gauge.

Our goal is to formulate classical Dirac theory in such a way that the above $U(2, 2)$ gauge transformations correspond to a physical symmetry, the $U(2, 2)$ gauge symmetry. To this end, we shall introduce a Dirac-type operator as the basic object on $M$, from which we will then deduce the Lorentz metric and the gauge potentials. We define a differential operator $D$ of first order on the wave functions by the requirement that in a chart and gauge it should be of the form

$$D = iG^j(x) \frac{\partial}{\partial x^j} + B(x) \quad (4.2.3)$$

with suitable $(4 \times 4)$-matrices $G^j$ and $B$. This definition does not depend on coordinates and gauge, although the form of the matrices $G^j$ and $B$ clearly does. More precisely, under a change of coordinates $x^i \rightarrow \tilde{x}^i$ the operator (4.2.3) transforms into

$$i \left( G^k(x) \frac{\partial \tilde{x}^j}{\partial x^k} \right) \frac{\partial}{\partial \tilde{x}^j} + B(\tilde{x}), \quad (4.2.4)$$

whereas a gauge transformation $\psi \rightarrow U\psi$ yields the operator

$$UDU^{-1} = i \left( UG^jU^{-1} \right) \frac{\partial}{\partial x^j} + (UBU^{-1} + iUG^j(\partial_j U^{-1})). \quad (4.2.5)$$

We define an operator of Dirac type by the requirement that by choosing suitable coordinates and gauge, one can arrange that the coefficient matrices $G^j$ of the partial derivatives “coincide locally” with the Dirac matrices of Minkowski space.

**Definition 4.2.1.** A differential operator $D$ of first order is called operator of Dirac type (or Dirac-type operator) if for every $p \in M$ there is a chart $(x^i, U)$ around $p$ and a gauge $(e_\alpha)_{\alpha=1,\ldots,4}$ such that $D$ is of the form (4.2.3) with

$$G^j(p) = \gamma^j, \quad (4.2.6)$$

where the $\gamma^j$ are the Dirac matrices of Minkowski space in the Dirac representation (1.3.3).

It may seem unconventional that we defined Dirac-type operators without having a spinor bundle nor a connection. We shall now construct from the Dirac-type operator a gauge-covariant derivative $D$, also referred to as the spin derivative. To this end, we first write the transformation law (4.2.2) in the shorter form

$$\psi(x) \rightarrow U(x) \psi(x) \quad (4.2.7)$$

with $U \in U(2, 2)$. Clearly, partial derivatives of $\psi$ do not have a nice behavior under gauge transformations because we pick up derivatives of $U$. This problem disappears if instead of partial derivatives we consider gauge-covariant derivatives

$$D_j = \partial_j - iA_j, \quad (4.2.8)$$

provided that the gauge potentials transform according to

$$A_j \rightarrow U A_j U^{-1} + iU (\partial_j U^{-1}) \quad (4.2.9)$$
Namely, a short calculation shows that the gauge-covariant derivative behaves under gauge transformations according to
\[ D_j \rightarrow U D_j U^{-1}, \tag{4.2.10} \]
and thus the gauge-covariant derivatives of \( \psi \) obey the simple transformation rule
\[ D_j \psi \rightarrow U D_j \psi. \]

Our task is to find matrices \( A_j \) which transform under local gauge transformations according to (4.2.9). This construction will also reveal the structure of the matrix \( B \), and this will finally lead us to the definition of the Dirac operator, which involves precisely the gravitational and electromagnetic fields.

In the chart and gauge where (4.2.6) holds, it is obvious from (1.3.1) that the anti-commutator of the matrices \( G^j(p) \) gives the Minkowski metric. Using the transformation rules (4.2.4) and (4.2.5), one sees that in a general coordinate system and gauge, their anti-commutator defines a Lorentz metric,
\[ g^{jk}(x) = \frac{1}{2} \{ G^j(x), G^k(x) \}. \tag{4.2.11} \]

Moreover, using that the Dirac matrices in Minkowski space are symmetric w.r.t. the spin scalar product (see (1.3.8)), one sees that the same is true for the matrices \( G^j \), i.e.
\[ \langle G^i \psi | \phi \rangle = \langle \psi | G^i \phi \rangle \quad \text{for all } \psi, \phi. \tag{4.2.12} \]
Via (4.2.11), the Dirac-type operator induces on the manifold a Lorentzian structure. We refer to the matrices \( G^j \) as the Dirac matrices in curved spacetime. Since we can arrange that these matrices coincide locally with the Dirac matrices of Minkowski space, all manipulations of Dirac matrices can be performed at any given spacetime point in an obvious way. In particular, the pseudo-scalar operator (1.3.21) now takes the more general form
\[ \Gamma(x) = \frac{1}{4!} \varepsilon_{jklm} G^j G^k G^l G^m \tag{4.2.13} \]
where the anti-symmetric tensor \( \varepsilon_{jklm} = \sqrt{\text{det} g} \varepsilon_{jklm} \) differs from the anti-symmetric symbol \( \varepsilon_{jklm} \) by the volume density. The pseudo-scalar operator gives us again the notion of even and odd matrices and of chirality (1.3.22). Furthermore, we introduce the bilinear matrices \( \sigma^{jk} \) by
\[ \sigma^{jk}(x) = \frac{i}{2} [G^j, G^k]. \tag{4.2.14} \]

As in Minkowski space, the matrices
\[ G^j, \quad \Gamma G^j, \quad \mathds{1}, \quad i\Gamma, \quad \sigma^{jk} \tag{4.2.14} \]
form a basis of the 16-dimensional (real) vector space of symmetric matrices (symmetric with respect to the spin scalar product \( \langle .|.| \rangle \)). The matrices \( G^j \) and \( \Gamma G^j \) are odd, whereas \( \mathds{1}, i\Gamma \) and \( \sigma^{jk} \) are even.

For the construction of the spin connection we must clearly consider derivatives. The Lorentzian metric (4.2.11) induces the Levi-Civita connection \( \nabla \), which defines the covariant derivative of tensor fields. Taking covariant derivatives of the Dirac matrices, \( \nabla_k G^j = \partial_k G^j + \Gamma^j_{kl} G^l \), we obtain an expression which behaves under coordinate transformations like a tensor. However, it is not gauge covariant, because a gauge transformation (4.2.7) yields contributions involving first derivatives of \( U \). More precisely,
4.2. THE DIRAC EQUATION IN CURVED SPACETIME

according to (4.2.5),

\[
\nabla_k G^j \rightarrow \nabla_k (UG^j U^{-1}) = U(\nabla_k G^j)U^{-1} + (\partial_k U)G^j U^{-1} + U G^j (\partial_k U^{-1})
\]

\[
= U(\nabla_k G^j)U^{-1} - \left[ U(\partial_k U^{-1}), U G^j U^{-1} \right].
\]

(4.2.15)

We can use the second summand in (4.2.15) to partially fix the gauge.

**Lemma 4.2.2.** For every spacetime point \( p \in \mathcal{M} \) there is a gauge such that

\[
\nabla_k G^j(p) = 0
\]

for all indices \( j,k \).

(4.2.16)

**Proof.** We start with an arbitrary gauge and construct the desired gauge with two subsequent gauge transformations:

1. The matrix \( \partial_j \Gamma \) is odd, because

\[
0 = \partial_j 1 = \partial_j (\Gamma \Gamma) = (\partial_j \Gamma) \Gamma + \Gamma (\partial_j \Gamma).
\]

As a consequence, the matrix \( i \Gamma (\partial_j \Gamma) \) is selfadjoint. We can thus perform a gauge transformation \( U \) with \( U(p) = 1 \), \( \partial_j U(p) = \frac{1}{2} \Gamma (\partial_j \Gamma) \). In the new gauge the matrix \( \partial_j \Gamma(p) \) vanishes,

\[
\partial_j \Gamma|_p \rightarrow \partial_j (U \Gamma U^{-1})|_p = \partial_j \Gamma|_p + \frac{1}{2} [\Gamma (\partial_j \Gamma), \Gamma]|_p = \partial_j \Gamma|_p - \partial^2 (\partial_j \Gamma)|_p = 0.
\]

Differentiating the relation \( \{ \Gamma, G^j \} = 0 \), one sees that the matrix \( \nabla_k G^j|_p \) is odd. We can thus represent it in the form

\[
\nabla_k G^j|_p = \Lambda^j_{km} G^m|_p + \Theta^j_{km} \Gamma G^m
\]

(4.2.17)

with suitable coefficients \( \Lambda^j_{km} \) and \( \Theta^j_{km} \).

This representation can be further simplified: According to Ricci’s Lemma, \( \nabla_n g^{jk} = 0 \). Expressing the metric via the anti-commutation relations and differentiating through with the Leibniz rule, we obtain

\[
0 = \{ \nabla_n G^j, G^k \} + \{ G^j, \nabla_n G^k \}
\]

\[
= 2 \Lambda^j_{nm} g^{mk} - \Theta^j_{nm} 2 i \Gamma \sigma^{mk} + 2 \Lambda^k_{nm} g^{mj} - \Theta^k_{nm} 2 i \Gamma \sigma^{mj}
\]

(4.2.18)

and thus

\[
\Lambda^j_{nm} g^{mk} = - \Lambda^k_{nm} g^{mj}.
\]

(4.2.19)

In the case \( j = k \neq m \), (4.2.18) yields that \( \Theta^j_{nm} = 0 \). For \( j \neq k \), we obtain \( \Theta^j_{nj} \sigma^{ik} + \Theta^k_{nk} \sigma^{kj} = 0 \) and thus \( \Theta^j_{nj} = \Theta^k_{nk} \) (\( j \) and \( k \) denote fixed indices, no summation is performed). We conclude that there are coefficients \( \Theta_k \) with

\[
\Theta^j_{km} = \Theta_k \delta^j_m.
\]

(4.2.20)

2. We perform a gauge transformation \( U \) with \( U(p) = 1 \) and

\[
\partial_k U = - \frac{1}{2} \Theta_k \Gamma - \frac{i}{4} \Lambda^m_{kn} g^{nl} \sigma_{ml}.
\]
Using the representation (4.2.17) together with (4.2.19) and (4.2.20), the matrix $\nabla_k G^j$ transforms into

\[
\nabla_k G^j \rightarrow \nabla_k G^j + [\partial_k U, G^j] = \Lambda^j G^m + \Theta^j \Gamma G^j - \frac{i}{4} \Lambda^m_{kn} g^{nl} [\sigma_{ml}, G^j] = \Omega^j_{km} G^m + \Theta^j \Gamma G^j - \frac{i}{4} \Lambda^j_{km} G^m + \frac{1}{2} \Lambda^m_{kn} g^{nl} G_m - \frac{1}{2} \Lambda^j_{km} G^m = 0 .
\]

We call a gauge satisfying condition (4.2.16) a \textit{normal gauge} around $p$. In order to analyze the remaining gauge freedom, we let $U$ be a transformation between two normal gauges. Then according to (4.2.15) and (4.2.16), the commutator $[U(\partial_k U^{-1}), UG^j U^{-1}]$ vanishes at $p$ or, equivalently,

\[
[i(\partial_k U^{-1}) U, G^j]|_p = 0 .
\]

As is easily verified in the basis (4.2.14) using the anti-commutation relations, a matrix which commutes with all Dirac matrices is a multiple of the identity matrix. Moreover, the matrix $i(\partial_j U^{-1}) U$ is selfadjoint because

\[
(i(\partial_j U^{-1}) U)^* = -iU^{-1} (\partial_j U) = -i\partial_j (U^{-1} U) + i(\partial_j U^{-1}) U = i(\partial_j U^{-1}) U .
\]

We conclude that the matrix $i(\partial_j U^{-1}) U$ is a real multiple of the identity matrix. Transforming it unitarily with $U$, we see that it also coincides with the matrix $iU (\partial_j U^{-1})$. Restricting attention to normal gauges, it is easy to find expressions with the required behavior (4.2.9) under gauge transformations. Namely, setting

\[
a_j = \frac{1}{4} \text{Re Tr} (G_j B) ,
\]

where “Tr” denotes the trace of a $4 \times 4$-matrix, one sees from (4.2.5) that

\[
a_j \rightarrow a_j + \frac{1}{4} \text{Re Tr} \left( G_j G^k i(\partial_k U^{-1}) U \right) = a_j + iU(\partial_j U^{-1}) .
\]

We can identify the $a_j$ with the gauge potentials $A_j$ and use (4.2.8) as the definition of the spin connection.

\textbf{Definition 4.2.3.} The \textbf{spin derivative} $D$ is defined by the condition that it behaves under gauge transformations (4.2.7) according to (4.2.10), and that in normal gauges around $p$ it has the form

\[
D_j(p) = \frac{\partial}{\partial x^j} - ia_j
\]

with the potentials $a_j$ according to (4.2.21).

In general gauges, the spin derivative can be written as

\[
D_j = \frac{\partial}{\partial x^j} - iE_j - ia_j
\]

with additional matrices $E_j(x)$, which involve the Dirac matrices and their first derivatives. The components of $E_j$ are sometimes referred to as \textit{spin coefficients}. A short calculation shows that the trace of the matrix $E_j$ does not change under gauge transformations, and since it vanishes in normal gauges, we conclude that the matrices $E_j$ are
trace-free. It is straightforward to verify that they are given explicitly by (for details see Appendix A)

\[ E_j = \frac{i}{2} \Gamma (\partial_j \Gamma) - \frac{i}{16} \text{Tr}(G^m \nabla_j G^m) G_m G_n + \frac{i}{8} \text{Tr}(\Gamma G_j \nabla_m G^m) \Gamma . \] (4.2.24)

In the next two theorems we collect the basic properties of the spin connection.

**Theorem 4.2.4.** The spin derivative satisfies for all wave functions \( \psi, \phi \) the equations

\[ [D_k, G^j] + \Gamma^j_{kl} G^l = 0 \] (4.2.25)
\[ \partial_j \langle \psi | \phi \rangle = \langle D_j \psi | \phi \rangle + \langle \psi | D_j \phi \rangle . \] (4.2.26)

**Proof.** The left side of (4.2.25) behaves under gauge transformations according to the adjoint representation \( \rightarrow U . U^{-1} \) of the gauge group. Therefore, it suffices to check (4.2.25) in a normal gauge, where

\[ [D_k, G^j] + \Gamma^j_{kl} G^l = \nabla_k G^j - \frac{i}{4} \text{Re} \text{Tr} (G_j B) [1, G^j] = 0 . \]

Since both sides of (4.2.26) are gauge invariant, it again suffices to consider a normal gauge. The statement is then an immediate consequence of the Leibniz rule for partial derivatives and the fact that the spin derivative differs from the partial derivative by an imaginary multiple of the identity matrix (4.2.22). \( \square \)

The identity (4.2.25) means that the coordinate and gauge invariant derivative of the Dirac matrices vanishes. The relation (4.2.26) shows that the spin connection is compatible with the spin scalar product.

We define **torsion** \( T \) and **curvature** \( R \) of the spin connection as the following 2-forms,

\[ T_{jk} = \frac{i}{2} ([D_j, G_k] - [D_k, G_j]) , \quad R_{jk} = \frac{i}{2} [D_j, D_k] . \]

**Theorem 4.2.5.** The spin connection is torsion-free. Curvature has the form

\[ R_{jk} = \frac{1}{8} R_{mnjk} \sigma^{mn} + \frac{1}{2} (\partial_j a_k - \partial_k a_j) , \]

where \( R_{mnjk} \) is the the Riemannian curvature tensor and the \( a_j \) are given by (4.2.21).

**Proof.** The identity (4.2.25) yields that

\[ [D_j, G_k] = [D_j, g_{kl} G^l] = (\partial_j g_{kl}) G^l - g_{kl} \Gamma^l_{jm} G^m = \Gamma^m_{jk} G_m . \]

Thus, using that the Levi-Civita connection is torsion-free, we obtain

\[ T_{jk} = \frac{i}{2} (\Gamma^m_{jk} - \Gamma^m_{kj}) G_m = 0 . \]

Next, again using (4.2.26), we can rewrite the covariant derivative as a spin derivative,

\[ G_l \nabla_k u^l = [D_k, G_l u^l] . \]

Iterating this relation, we can express the Riemann tensor (4.1.2) by

\[ G_i \nabla^j_{kl} u^l = [D_j, [D_k, G_l u^l]] - [D_k, [D_j, G_l u^l]] = [[D_j, D_k], G_l u^l] = -2i [R_{jk}, G_l u^l] . \]

This equation determines curvature up to a multiple of the identity matrix,

\[ R_{jk}(x) = \frac{1}{8} R_{mnjk} \sigma^{mn} + \lambda_{jk} 1 . \]
Thus it remains to compute the trace of curvature,

$$\frac{1}{4} \text{Tr}(\mathcal{R}_{jk}) \mathbb{1} = \frac{1}{8} \text{Tr} \left( \partial_j A_k - \partial_k A_j \right) \mathbb{1} = \frac{1}{2} \left( \partial_j a_k - \partial_k a_j \right),$$

where we used (4.2.23) and the fact that the matrices $E_j$ are trace-free. \hfill \Box

We come to the physical interpretation of the above construction. According to Lemma 4.2.2 we can choose a gauge around $p$ such that the covariant derivatives of the Dirac matrices vanish at $p$. Moreover, choosing normal coordinates and making a global (=constant) gauge transformation, we can arrange that $G(p) = \gamma^j$ and $\partial_j g_{kl}(p) = 0$. Then the covariant derivatives at $p$ reduce to partial derivatives, and we conclude that

$$G^j(p) = \gamma^j, \quad \partial_k G^j(p) = 0.$$ (4.2.27)

These equations resemble the conditions for normal coordinates (4.1.1), except that the role of the metric is now played by the Dirac matrices. Indeed, by differentiating (4.2.11) one sees that (4.2.27) implies (4.1.1). Therefore, (4.2.27) is a stronger condition which not only poses a condition for the coordinates, but also for the gauge. We call a coordinate system and gauge where (4.2.27) is satisfied a normal reference frame around $p$.

In a normal reference frame around $p$, the Dirac matrices, and via (4.2.11) also the metric, are the same as in Minkowski space up to the order $\sim (x - p)^2$. Combining the equivalence principle with the usual minimal coupling procedure in physics, it seems a sensible physical assumption that the Dirac equation at $p$ should coincide with that in Minkowski space. This implies that there should be a normal gauge such that all gauge potentials vanish at $p$, and thus the Dirac operator at $p$ should coincide with the vacuum Dirac operator $i\partial\not{\!}$. This physical argument makes it possible to specify the zero order term in (4.2.3).

**Definition 4.2.6.** A Dirac-type operator $\mathcal{D}$ is called **Dirac operator** if for any $p \in \mathcal{M}$ there is a normal reference frame around $p$ such that $B(p) = 0$.

Equivalently, the Dirac operator could be defined as a differential operator of first order (4.2.3) with the additional structure that for any $p \in \mathcal{M}$ there is a coordinate chart and gauge such that the following three conditions are satisfied,

$$G^j(p) = \gamma^j, \quad \partial_k G^j(p) = 0, \quad B(p) = 0.$$ (4.2.27)

This alternative definition has the disadvantage that it is a-priori not clear whether the second condition $\partial_k G^j(p) = 0$ can be satisfied for a general metric. This is the reason why we preferred to begin with only the first condition (Definition 4.2.1), then showed that the second condition can be arranged by choosing suitable coordinates and gauge, and satisfied the third condition at the end (Definition 4.2.6).

In general coordinates and gauge, the Dirac operator can be written as

$$\mathcal{D} = iG^j D_j = iG^j \left( \partial_j - iE_j - ia_j \right),$$ (4.2.28)

where $D$ is the spin connection of Definition 4.2.3. The matrices $E_j$ take into account the gravitational field and are called spin coefficients, whereas the $a_j$ can be identified with the electromagnetic potential (compare (1.3.6)). We point out that the gravitational field cannot be introduced into the Dirac equation by the simple replacement rule $\partial \to D$, because gravity has an effect on both the Dirac matrices and the spin coefficients. But factorizing the gauge group as $U(2, 2) = U(1) \times SU(2, 2)$, the SU(2, 2)-gauge transformations are linked to the gravitational field because they influence $G^j$ and $E_j$, whereas the U(1) can be identified with the gauge group of electrodynamics. In this sense, we
obtain a unified description of electrodynamics and general relativity as a U(2, 2) gauge theory. The Dirac equation

\[(D - m) \psi = 0\] (4.2.29)
describes a Dirac particle in the presence of a gravitational and electromagnetic field. According to Theorem 4.2.5 the curvature of the spin connection involves both the Riemann tensor and the electromagnetic field tensor. One can express the classical action in terms of these tensor fields, so that the corresponding Euler-Lagrange equations give rise to the classical Einstein-Dirac-Maxwell equations.

For the probabilistic interpretation of the Dirac equation in curved spacetime, we choose a spacelike hypersurface \(N\) (corresponding to “space” for an observer) and consider in generalization of (1.3.12) on solutions of the Dirac equation the scalar product

\[\langle \psi | \phi \rangle = \langle \hat{N} | \psi \rangle \langle \psi | \hat{G} \rangle_{\nu} \langle \phi | \hat{G} \rangle_{\nu} d\mu_N,\] (4.2.30)

where \(\nu\) is the future-directed normal on \(N\) and \(d\mu_N\) is the invariant measure on the Riemannian manifold \(N\). Then \(\langle \psi | \psi \rangle\) is the normalization integral, which we again normalize to one. Its integrand has the interpretation as the probability density. In analogy to (1.3.9) the Dirac current is introduced by \(J^k = \langle \psi | \hat{G} \rangle_{\nu} \langle \psi \rangle_{\nu}\). Using Theorem 4.2.4 one sees similar as in Minkowski space that the Dirac current is divergence-free, \(\nabla_k J^k = 0\). From the Gauß divergence theorem one obtains that the scalar product (4.2.30) does not depend on the choice of the hypersurface \(N\).

In analogy to (1.3.16), we can introduce the inner product

\[\langle \psi | \phi \rangle := \int_{\mathcal{M}} \langle \psi | \phi \rangle_x d\mu_{\mathcal{M}}.\] (4.2.31)
in which the wave functions (which need not satisfy the Dirac equation but must have a suitable decay at infinity) are integrated over all of spacetime. We finally remark that, using Theorem 4.2.4 together with Gauß’ divergence theorem, one easily verifies that the Dirac operator is symmetric with respect to this inner product.

### 4.3. Computation of the Dirac Operator

We now explain how the Dirac operator can be computed in an efficient way in a given spacetime. Thus suppose that the Lorentzian metric \(g_{ij}\) is given in a chosen chart. The general procedure is to first choose matrices \(G^j(x)\) which are symmetric w.r.to the spin scalar product \(\langle \psi | \phi \rangle\) (where in our formulation, the spin scalar product is always given by (4.2.1)) and which satisfy the anti-commutation relations (4.2.11). Then the spin coefficients as given by (4.2.24) are obtained by a straightforward computation. Then the spin derivative is given by (4.2.23) (where \(a_j\) are the components of the electromagnetic potential; they are set to zero if no electromagnetic field is present). The Dirac operator is given by (4.2.28), i.e.

\[D = iG^j D_j = iG^j \partial_j + G^j E_j + G^j a_j.\] (4.3.1)

In this construction, one has a lot of freedom to choose the Dirac matrices \(G^j(x)\) (as described systematically by the U(2, 2)-gauge transformations (4.2.7) and (4.2.10)). It is a promising strategy to use this gauge freedom such as to choose Dirac matrices for which the formulas for the spin coefficients (4.2.24) become as simple as possible. Moreover, one should keep in mind that for the computation of the Dirac operator, one does not need to know all the matrices \(E_j\), but it suffices to compute the combination \(G^j E_j\) in (4.3.1).
Indeed, in many spacetimes of physical interest, making use of the gauge freedom, the combination $G^j E_j$ can be computed easily (for details see the computations in black hole geometries in [76, 59] or various examples in [53, Section 9]). We here illustrate this method by the example of a diagonal metric, in which case it is even unnecessary to compute the Christoffel symbols:

**Proposition 4.3.1.** Assume that there is a local chart $(x^i)$ in which the metric is diagonal, i.e.

$$ds^2 = \sum_{i=0}^{3} g_{ii}(x) \, dx_i^2 . \quad (4.3.2)$$

Then there is a gauge in which the Dirac operator (without electromagnetic field) takes the form

$$D = iG^j \frac{\partial}{\partial x^j} + B , \quad (4.3.3)$$

where

$$G^j(x) = g_{jj}(x)^{-\frac{1}{2}} \gamma^j \quad (4.3.4)$$

$$B(x) = \frac{i}{2\sqrt{|\det g|}} \partial_j \left( \sqrt{|\det g|} G^j \right) . \quad (4.3.5)$$

(here $\gamma^j$ are again the Dirac matrices in Minkowski space).

**Proof.** With (4.3.4) we have satisfied the anti-commutation relations

$$\{G^j, G^k\} = 2 g^{jk} \mathbf{1} .$$

Moreover, the choice (4.3.4) ensures that the pseudo-scalar operator is constant, and that all derivatives of the $G^j$ are in the span of $\gamma^0, \ldots, \sigma^k$. Therefore, the formula for the zero order term in the Dirac operator (4.3.1) simplifies to

$$B = - \frac{i}{16} \text{Tr} (G_m (\nabla_j G_n)) \, G^j G^m G^n , \quad (4.3.6)$$

where $\nabla_j G_n \equiv \partial_j G_n - \Gamma^k_{jn} G_k$ is the covariant derivative acting on the components of the spinorial matrix. Using the algebra of the Dirac matrices, one finds that (4.3.6) has a vectorial component (obtained by using the anti-commutation relations), and an axial component which is totally antisymmetric in the indices $j, m, n$. This totally antisymmetric term vanishes for the following reasons: First, since the Levi-Civita connection is torsion-free, we may replace the covariant derivative by a partial derivative. Second, it follows from (4.3.4) that the matrix $\partial_j G_n$ is a multiple of $G_n$, implying that the trace $\text{Tr}(G_m (\partial_j G_n))$ is symmetric in the indices $m$ and $n$.

It remains to compute the vectorial component of (4.3.6). A short computation yields

$$B = \frac{i}{2} \nabla_j G^j ,$$

and the usual formula for the covariant divergence of a vector field gives the result. □
4.4. Formulation with Vector Bundles, the Spinor Bundle

So far, the Dirac operator was introduced in a local chart. We intentionally left a large local gauge freedom, having the advantage that this freedom can be used to simplify the form of the Dirac operator. The remaining question is whether our constructions in local charts can be made global to obtain a Dirac operator $D$ acting on the sections of the so-called spinor bundle $S_M$. To this end, we shall consider the Dirac operator in different charts and path the Dirac operators in the overlapping regions.

In preparation, we recall the structures introduced so far, using a more abstract notation which clarifies the dependence on gauge and coordinates. In our local construction at the beginning of Section 4.2, the spinor space at a point $x \in M$ is simply $\mathbb{C}^4$ with the inner product (4.2.1). Using the same notation as in Section 1.4 in Minkowski space, we now denote the spinor space by $(S_x M, \langle ., . \rangle_x)$. Moreover, we denote the linear operators on $S_x M$ which are symmetric with respect to the spin scalar product by $\text{Symm}(S_x M)$. It is a 16-dimensional real vector space spanned by the operators in (4.2.14). Given a Dirac-type operator $D$, the Dirac matrices $G_j(x)$ span a four-dimensional subspace $K_x$ of $\text{Symm}(S_x M)$,

$$K_x := \text{span}\{G^0(x), \ldots, G^3(x)\} \subset \text{Symm}(S_x M),$$

referred to as a Clifford subspace at $x$. Contracting a tangent vector $u$ with the Dirac matrices gives rise to a mapping

$$\gamma : T_x M \to K_x, \quad u \mapsto u^j G_j.$$

Multiplying a spinor by $\gamma(u)$ is referred to as Clifford multiplication. The anti-commutation relations (4.2.11) can be written as

$$\frac{1}{2} \{\gamma(u), \gamma(v)\} = g_x(u, v) 1_{S_x M},$$

showing that Clifford multiplication encodes the Lorentzian metric.

In view of the transformation law (4.2.4), the Clifford subspace does not depend on the choice of coordinates. But it clearly depends on the gauge. Indeed, in view of (4.2.5), it transforms according to

$$K_x \to U K_x U^{-1} \quad \text{with } U \in U(S_x).$$

In order to simplify our problem, it is a good idea to arrange by a gauge transformation that the Clifford subspace agrees at every spacetime point with the standard Clifford subspace:

**Lemma 4.4.1.** By a gauge transformation (4.4.2) we can arrange that

$$K_x = \text{span}\{\gamma^0, \ldots, \gamma^3\}$$

(where $\gamma^j$ are again the Dirac matrices in the Dirac representation).

**Proof.** We consider the pseudo-scalar operator $\Gamma(x)$ as defined by (4.2.13). By direct computation, one verifies that it satisfies the same relations as in Minkowski space

$$\Gamma(x)^* = -\Gamma(x) \quad \text{and} \quad \Gamma(x)^2 = 1.$$

The first relation implies that $\Gamma(x)$ maps positive definite spinors to negative definite spinors and vice versa. Therefore, there is a pseudo-orthonormal basis of the spinor
space in which $\Gamma(x)$ takes the same form as in Minkowski space,

$$\Gamma(x) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$  (4.4.3)

Rewriting the change of basis as a gauge transformation, we have arranged by a transformation of the form (4.4.2) that the pseudo-scalar operator has the same form as in Minkowski space.

It follows from (4.2.13) and the anti-commutation relations that every vector in $K$ anti-commutes with $\Gamma$. Therefore, $K \subset \text{span}\{\gamma^0, \ldots, \gamma^3, \gamma^0, \ldots, \gamma^3\}$.

We next show that the vector space $K \cap \text{span}\{\gamma^0, \Gamma \gamma^0\}$ is one-dimensional. To this end, let $u, v \in T_xM$ with $\gamma(u) = (a + b \Gamma) \gamma^0$ and $\gamma(v) = (c + d \Gamma) \gamma^0$ with real coefficients $a, b, c, d$. Then their anti-commutator is computed by

$$\{\gamma(u), \gamma(v)\} = 2(ac - bd) \mathbb{1} + 2(bc - ad) \Gamma,$$

implying that $bc - ad = 0$. This implies that $\gamma(u)$ and $\gamma(v)$ are linearly dependent, giving the claim.

Repeating the last argument for $\gamma^1, \ldots, \gamma^3$, we conclude that there is a (not necessarily pseudo-orthonormal) basis $u_0, \ldots, u_3$ of $T_xM$ such that

$$\gamma(u_j) = (a_j + b_j \Gamma) \gamma_j.$$

Then for any $j \neq k$,

$$\{\gamma(u_j), \gamma(u_k)\} = (b_j a_k - a_j b_k) \Gamma [\gamma_j, \gamma_k],$$

implying that the four vectors $(a_j, b_j) \in \mathbb{R}^2$ with $j = 0, \ldots, 3$ are all linearly independent. Therefore, by rescaling the basis vectors $u_j$ we can arrange that

$$\gamma(u_j) = (a + b \Gamma) \gamma_j$$

for real parameters $a$ and $b$.

The signature $(1, 3)$ of the Lorentzian metric implies that $|a| > |b|$. Moreover, by flipping the sign of the vectors $u_j$ if necessary we can arrange that $a > 0$. Therefore, we may represent $K$ as

$$K = \text{span}\{e^{\alpha \Gamma} \gamma^0, \ldots, e^{\alpha \Gamma} \gamma^3\}$$

for some $\alpha \in \mathbb{R}$ (note that $e^{\alpha \Gamma} = \cosh \alpha + \Gamma \sinh \alpha$). Performing the gauge transformation (4.4.2) with $U$ according to

$$U = \exp \left(-\frac{\alpha}{2} \Gamma\right)$$

gives the result. \qed

After these preparations, we are ready to enter the patching construction. Thus let $(x, U)$ and $(\tilde{x}, \tilde{U})$ be two local charts on $(\mathcal{M}, g)$ with non-empty overlap $U \cap \tilde{U}$. For technical simplicity, we only consider the case that the spacetime is time-oriented. We choose the charts such that $x^0$ and $\tilde{x}^0$ are time functions which increase to the future. Then we can write the Dirac operator in each chart according to (4.2.28), where for clarity we denote the objects in the chart $\tilde{x}$ with an additional tilde. We first consider the case without electromagnetic field where the potentials $a_j$ vanish. According to Lemma (4.4.1)
there is no loss of generality to restrict attention to gauges where the Dirac matrices are linear combinations of the Dirac matrices in Minkowski space, i.e.

\[ G^j(x) = h^j_k(x) \gamma^k \quad \text{and} \quad \tilde{G}^j(\tilde{x}) = \tilde{h}^j_k(\tilde{x}) \gamma^k. \]

Since \( x^0 \) is a time coordinate, the bilinear form \( \langle . | G^0(x) | . \rangle_x \) is definite at very spacetime point \( x \), and similar for the tilde coordinates. We choose the signs of the Dirac matrices such that the bilinear forms \( \langle . | G^0(x) | . \rangle_x \) and \( \langle . | \tilde{G}^0(\tilde{x}) | . \rangle_y \) are all positive definite. Moreover, as explained in Lemma 4.4.1, we choose the gauge such that the pseudo-scalar operator (4.2.13) has the same form as in Minkowski space (4.4.3). This implies that the spatial orientations of the two charts are compatible.

The transformation from the chart \( (x, U) \) to \( (\tilde{x}, \tilde{U}) \) involves the coordinate transformation as described by (4.2.4). After this transformation, the Dirac matrices

\[ \tilde{G}^j(\tilde{x}) \quad \text{and} \quad G^k(x) \frac{\partial \tilde{x}^j}{\partial x^k} \]

will in general not coincide. But since the matrices are all formed as linear combinations of the Dirac matrices in Minkowski space, satisfy the same anti-commutation relations, and have the same time and spatial orientations, they can be obtained from each other by an orthochronous and proper Lorentz transformation, i.e.

\[ \tilde{G}^j(\tilde{x}) = \Lambda^j_l G^k(x) \frac{\partial \tilde{x}^l}{\partial x^k}. \]

Now we can proceed just as in the proof of Lorentz invariance of the Dirac equation in Minkowski space (see Lemma 1.3.1) to conclude that there is a unitary transformation \( U(x) \in U(S_x) \) of the form

\[ U := \exp \left( \frac{1}{4} \lambda_{lk} \gamma^l \gamma^k \right) \quad (4.4.4) \]

(with an anti-symmetric tensor \( \lambda_{lk} \)) such that the Dirac matrices agree after the gauge transformation, i.e.

\[ U(\tilde{x}) \tilde{G}^j(\tilde{x}) U(\tilde{x})^{-1} = G^j(x) \frac{\partial \tilde{x}^l}{\partial x^k}. \]

Since the spin coefficients \( E_j \) in (4.2.23) are given explicitly in terms of the Dirac matrices and their derivatives (see (4.2.24)), the lower order terms in the resulting Dirac operators (4.2.28) also agree. Moreover, using that the only matrices which commute with all Dirac matrices are multiples of the identity, one sees that the gauge transformation \( U(\tilde{x}) \) of the form (4.4.4) is uniquely determined up to a sign. In this way, to every coordinate transformation, we have found a gauge transformation, unique up to a sign, such that the Dirac operators agree.

With the above construction, we have found a procedure for matching the Dirac operators in two overlapping charts. The involved gauge transformations of the form (4.4.4) are unique up to signs. Therefore, once we have decided on the signs, there is a unique way of identifying the Dirac wave functions in the overlapping region of two charts, such as to obtain Dirac wave functions in a larger patch of the manifold \( M \). Proceeding inductively, one can hope to obtain Dirac wave functions on all of \( M \). The subtle point is whether the signs of the transformations can be chosen in a compatible way for all charts. In more mathematical terms, one must satisfy the so-called cocycle conditions, and it turns out that these conditions can be fulfilled if and only if \( M \) satisfies a topological condition, the so-called \textit{spin condition} (for details see for example [104 § II.1 and § II.2]). If the spin
condition is satisfied, one can identify the spinor spaces via the mappings which patch the charts together. In this way, one obtains a vector bundle over \( \mathcal{M} \), referred to as the spinor bundle \( S\mathcal{M} \). The fibers of the spinor bundle are the spinor spaces \( S_x \mathcal{M} \), which are four-dimensional complex vector spaces endowed with an inner product \( \langle \cdot, \cdot \rangle_x \) of signature \((2,2)\). The transformations of the form (4.4.4) generate a group, the so-called spin group denoted by \( \text{Spin}^\uparrow_x \subset \text{U}(S_x) \) (4.4.5)

\[
\gamma(v) \rightarrow U \gamma(v) U^{-1},
\]

we obtain another vector of the Clifford subspace, i.e.

\[
U \gamma(v) U^{-1} = \gamma(O_U(u)).
\]

Since the anti-commutation relations remain unchanged, the resulting transformation of the tangent space is an isometry. Indeed, by Lemma 1.3.1 it is a proper orthochronal Lorentz transformation,

\[
O_U \in S\text{O}^\uparrow(\mathcal{T}_x \mathcal{M}) .
\]

The indices \( \uparrow \) in (4.4.5) and (4.4.7) indicate that we restrict attention to orthochronous transformations. We thus obtain the usual commutative diagram

\[
\mathbb{Z}_2 \longrightarrow \text{Spin}^\uparrow_x \stackrel{\Theta}{\longrightarrow} \text{SO}^\uparrow(\mathcal{T}_x \mathcal{M}) \longrightarrow 0 .
\]

The connection to the usual spin group is obtained as follows. We say that a tangent vector \( u \in \mathcal{T}_x \mathcal{M} \) is a unit vector if \( \langle u, u \rangle = \pm 1 \). The spin group is defined by (see for example [8, 104], the concise summary in [4, Section 2] or similarly [81] in the Riemannian setting)

\[
\text{Spin}_x := \{ \text{group generated by } \gamma(u) \gamma(v) \text{ with unit vectors } u, v \in \mathcal{T}_x \mathcal{M} \} .
\]

By expanding the exponential in (4.4.4), one sees that this matrix is generated by even products of Dirac matrices, showing that the group \( \text{Spin}^\uparrow_x \) in (4.4.5) is a subgroup of \( \text{Spin}_x \). The group \( \text{Spin}_x \) also includes operators which are not unitary but satisfy instead the relation \( U^* U = -1 \). These transformations describe reversals of the time orientation.

Working with the general spin group (4.4.8) is of advantage in general dimension or signature. In four-dimensional time-oriented and orientable spacetimes, however, we can just as well restrict attention to orthochronous proper Lorentz transformations and the gauge transformations in (4.4.5).

We finally mention how to treat an electromagnetic field. Then the starting point is a time-oriented Lorentzian spin manifold \((\mathcal{M},g)\) together with an anti-symmetric two-tensor \( F \) (the field tensor). In this situation, after the above coordinate and gauge transformations, the electromagnetic potentials \( a_j \) and \( \tilde{a}_j \) in the two charts will in general not coincide. But, since the field tensor is prescribed, they coincide after a local \( U(1) \)-gauge transformation. Identifying the spinor spaces after this gauge transformation defines the Dirac operator as acting on the spinor bundle \( S\mathcal{M} \). The resulting effective gauge group is \( U(1) \times \text{Spin}^\uparrow_x \). We point out that this effective gauge group is obtained under the condition that the Clifford subspace is fixed at each spacetime point according to Lemma 4.4.1. Dropping this condition gives rise to the larger local gauge group \( U(2,2) \).
4.5. The Dirac Solution Space in Globally Hyperbolic Spacetimes

We now turn attention to solutions of the Dirac equation. In Minkowski space, a convenient method for constructing solutions is the Fourier transformation (see Section ??). However, this method can be used only for PDEs with constant coefficients, and therefore it does not apply to the Dirac equation in curved spacetime. Instead, a general method is to solve the Cauchy problem for given initial data, making it possible to identify the solution space of the Dirac equation with the space of suitable initial data. Clearly, for this method to be applicable, one needs to decompose spacetime into “space” and “time,” because otherwise it would not be clear how to prescribe initial data at some initial time. In order to describe the Dirac solutions in all of spacetime by initial data, this splitting of spacetime into space and time must be performed globally. This splitting will not be unique, as is already clear in Minkowski space because different reference frames gives rise to different splittings. In curved spacetime, such a splitting does not even need not exist. For example, in spacetimes containing closed timelike curves, we cannot expect that the Cauchy problem is well-posed.

The necessary assumptions on spacetime needed for a sensible formulation of the Cauchy problem are subsumed in the mathematical notion of **global hyperbolicity**. We first give the formal definition and then explain its consequences. Let \((\mathcal{M}, g)\) be a Lorentzian manifold. We assume that \(\mathcal{M}\) is time-oriented. Then a parametrized piecewise \(C^1\)-curve \(\gamma(\tau)\) in \(\mathcal{M}\) is said to be **causal** if its tangent vector \(\dot{\gamma}(\tau)\) is causal (i.e. timelike or lightlike) for all \(\tau\) where \(\gamma\) is differentiable. Moreover, it is **future-directed** and **past-directed** its tangent vectors are future- and past-directed, respectively. The curve \(\gamma(\tau)\) is said to be **inextendible** if it cannot be extended as a piecewise \(C^1\)-curve. The manifold \(\mathcal{M}\) is said to satisfy the **strong causality condition** if there are no almost closed causal curves in the sense that for all \(x \in \mathcal{M}\) and for each open neighborhood \(U\) of \(x\) there is an open neighborhood \(V \subset U\) of \(x\) such that every causal curve in \(\mathcal{M}\) which is starting and ending in \(V\) is entirely contained in \(U\). Moreover, in straightforward generalization of the corresponding notions in Minkowski space as introduced after (1.2.2), we let \(J_\lor^\gamma(x)\) (and \(J_\land^\gamma(x)\)) be the set of all points \(y \in \mathcal{M}\) which can be joined from \(x\) by a future-directed (respectively past-directed) causal curve. The manifold \(\mathcal{M}\) is said to be **globally hyperbolic** if the strong causality condition holds and if the set \(J_\lor^\gamma(x) \cap J_\land^\gamma(y)\) is compact for all \(x, y \in \mathcal{M}\). For more details on the abstract definitions we refer to [93], Section 6.6], [5], Section 1.3], [10], Section 3.2] or [110], Chapter 14).

A globally hyperbolic Lorentzian manifold \((\mathcal{M}, g)\) has remarkable properties, as we now explain. First, global hyperbolicity implies that \((\mathcal{M}, g)\) is diffeomorphic to a product,

\[
\mathcal{M} \simeq \mathbb{R} \times \mathcal{N},
\]

where \(\simeq\) means that there is a smooth diffeomorphism from \(\mathcal{M}\) to \(\mathbb{R} \times \mathcal{N}\). Thus every point \(p \in \mathcal{M}\) can be written as \(p = (t, x)\) with \(t \in \mathbb{R}\) and \(x \in \mathcal{N}\). One also refers to the above property that \(\mathcal{M}\) admits a smooth foliation \(\mathcal{M} = (\mathcal{N}_t)_{t \in \mathbb{R}}\), where \(\mathcal{N}_t := \{t\} \times \mathcal{N}\). Moreover, the foliation can be chosen such as to have the following properties:

(i) Every surface \(\mathcal{N}_t\) is **spacelike** (meaning that the metric induced by \(g\) on \(\mathcal{N}_t\) is negative definite).

(ii) Every surface \(\mathcal{N}_t\) is a **Cauchy surface**, meaning that every inextendible timelike curve in \(\mathcal{M}\) intersects \(\mathcal{N}_t\) exactly once.
The function $t$ is also referred to as a *global time function*. These above properties of globally hyperbolic manifolds were proven in [11] (for more details and more references see again [5, Section 1.3]).

The property of $\mathcal{N}_t$ of being a Cauchy surface implies that the Cauchy problem for the Dirac equation is well-posed, as we now explain. To this end, let $(\mathcal{M}, g)$ be a four-dimensional globally hyperbolic spacetime. Then the topological splitting (4.5.1) implies that the spin condition mentioned before (4.4.5) is satisfied. Therefore, there is a spinor bundle $(S\mathcal{M}, \prec, \succ)$, being a vector bundle with fibers $S_x\mathcal{M} \simeq \mathbb{C}^4$ (there may be different spin structures, but we shall not go into this here). Moreover, the Dirac operator $D$ is well-defined; in local coordinates and local spinor bases it takes the form (4.2.28). In the Cauchy problem, one seeks for solutions of the Dirac equation of mass $m$ for prescribed initial data at time $t_0$, i.e.

\[(D - m)\psi = \phi \quad \text{with} \quad \psi|_{\mathcal{N}_t_0} = \psi_0. \tag{4.5.2}\]

The following result holds:

**Theorem 4.5.1.** *For smooth initial data $\psi_0 \in \mathcal{C}^\infty(\mathcal{N}_t_0, S\mathcal{M})$ and a smooth inhomogeneity $\phi \in \mathcal{C}^\infty(\mathcal{M}, S\mathcal{M})$ the Cauchy problem (4.5.2) has a unique global solution $\psi \in \mathcal{C}^\infty(\mathcal{M}, S\mathcal{M})$.***

The proof of this theorem uses methods of hyperbolic partial differential equations and will be given in Section 13.5 later in this book.

Having a Cauchy surface is also very useful because we can then define a scalar product on the solution space as the spatial integral (4.2.30), where $\mathcal{N}$ is chosen as a Cauchy surface. However, for the integral in (4.2.30) to be well-defined, working with smooth solutions is not suitable. Instead, similar as explained in Minkowski space in Section 1.4, we better assume that the solution has compact support on the Cauchy surface. Due to finite propagation speed for solutions of hyperbolic partial differential equations (as will be made precise in Section 13.2), the following result holds:

**Theorem 4.5.2.** *If the initial data and the inhomogeneity have compact support, $\psi_0 \in \mathcal{C}^\infty_0(\mathcal{N}_t_0, S\mathcal{M})$ and $\phi \in \mathcal{C}^\infty_0(\mathcal{M}, S\mathcal{M})$, then the solution $\psi$ of the Cauchy problem (4.5.2) also has compact support on any other Cauchy surface $\mathcal{N}_t$.***

The proof of this theorem will again be given in Section 13.6 below.

Using the same notion as in Section 1.4 we refer to smooth solutions as in the above theorem as having *spatially compact support*. Smooth and spatially compact sections of the spinor bundle are again denoted by $\mathcal{C}^\infty_0(\mathcal{M}, S\mathcal{M})$. For Dirac solutions in this class, the scalar product (4.2.30) is well-defined. Moreover, due to current conservation, this scalar product does not depend on the choice of the Cauchy surface (as explained after (4.2.30)). Exactly as explained in Section 1.4, taking the completion gives the Hilbert space $(\mathcal{H}_m, \langle ., . \rangle)$ of weak solutions of the Dirac equation with the property that their restriction to any Cauchy surface is square integrable (where “square integrable” is defined via (4.2.30)).

### 4.6. Hamiltonian Formulation in Stationary Spacetimes

Given a foliation $(\mathcal{N}_t)_{t \in \mathbb{R}}$ by Cauchy surfaces of the globally hyperbolic spacetime $(\mathcal{M}, g)$, one can rewrite the Dirac equation in the Hamiltonian form,

\[i\hbar \psi = H \psi \tag{4.6.1}\]
4.6. HAMILTONIAN FORMULATION IN STATIONARY SPACETIMES

with a Hamiltonian $H$. In order to compute $H$ in a local chart, one chooses a coordinate system $(x^i)$ such that $x^0 = t$ coincides with the time function. Then, writing the Dirac operator in (4.2.29) in the form (4.2.28) and solving for the time derivatives, one obtains in generalization of (1.3.15)

$$H = -(G^0)^{-1}\left( \sum_{\alpha=1}^3 iG^\alpha \left( \partial_\alpha - iE_\alpha - ia_\alpha \right) - m \right) - E_0 - a_0.$$ 

When analyzing the Dirac equation in the Hamiltonian form, one must be be careful because the Hamiltonian in general is not symmetric with respect to the Hilbert space scalar product (4.2.30). This can be seen as follows. For the Dirac equation in Minkowski space, the symmetry of the Hamiltonian is obtained just as for the Schrödinger equation by using that the scalar product is conserved in time (1.1.6). In curved spacetime, the scalar product is still conserved (due to current conservation). But when taking the time derivative, one must take into account that the scalar product itself is time-dependent. More precisely, assuming for notational simplicity that the Cauchy surfaces admit global charts,

$$0 = \partial_t (\phi|\psi) = \frac{\partial}{\partial t} \int_{\mathcal{N}_t} \langle \phi | G^j \nu_j \psi \rangle \, d\mu_{\mathcal{N}_t},$$

$$= (\partial_t \phi | \psi) + (\phi | \partial_t \psi) + \int_{\mathbb{R}^3} \langle \psi | \left( \partial_t (G^j \nu_j \sqrt{\det g_{\mathcal{N}_t}}) \right) \phi \rangle \, d^3 x$$

$$= -i \left( (H\phi|\psi) - (\phi|H\psi) \right) + \int_{\mathbb{R}^3} \langle \psi | \left( \partial_t (G^j \nu_j \sqrt{\det g_{\mathcal{N}_t}}) \right) \phi \rangle \, d^3 x$$

(4.6.2)

(where $g_{\mathcal{N}_t}$ denotes the induced Riemannian metric on the Cauchy surface $\mathcal{N}_t$). The integral in the last line is in general non-zero. In this case, the Hamiltonian is obviously not symmetric. At first sight, this might seem surprising because it seems to contradict the axioms of quantum mechanics (for a detailed account on this issue see [1, 2]). However, one should keep in mind that the non-symmetric contributions to the Hamiltonian are needed in order to compensate for the fact that the scalar product itself is time-dependent.

Our interpretation of the above problem is that the Hamiltonian formulation of the Dirac equation is useful only in situations when the integral in (4.6.2) vanishes. This can be arranged if the all the coefficients of the metric are time-independent. In other words, spacetime should be stationary with corresponding Killing field given by $\partial_t$. Under these assumptions, the Hamiltonian $H$ is also time-independent. Moreover, the computation (4.6.2) shows that the operator is symmetric. Using that the time evolution maps smooth and compactly supported initial data on the Cauchy surface at time $t_0$ to a smooth and compactly supported solution at an arbitrary time $t$, one can use abstract methods to construct a selfadjoint extension of $H$ (see for example [74] for a general situation involving additional boundary conditions). Then the Cauchy problem can be solved immediately using the spectral theorem for selfadjoint operators,

$$\psi(t, x) = \left( e^{-itH} \psi_0 \right)(x).$$

(4.6.3)

This formulation is particularly useful for analyzing the long-time behavior of the solutions (see for example the analysis in the Kerr geometry in [61, 60]).
Exercises

Exercise 4.1. Verify by elementary integration by parts in a chart that for a diagonal metric (4.3.2), the Dirac operator (4.3.3) is symmetric with respect to the inner product (4.2.31).

Exercise 4.2. The goal of this exercise is to show that the unitary operators of the form (4.4.4) do not form a group (in more mathematical language, the spin group is not exponential; for details see [27] and the references therein). We proceed in several steps:

(a) Let \( \lambda_{jk} \) be an anti-symmetric tensor. Show using the anti-commutation relations that

\[
\left( \frac{1}{4} \lambda_{lk} \gamma^l \gamma^k \right)^2 = -\frac{1}{16} \lambda_{lk} \lambda_{lk} - \frac{i}{16 \cdot 4!} \Gamma \varepsilon^{ijkl} \lambda_{ij} \lambda_{kl} .
\]

(b) Deduce from (a) that the corresponding unitary transformation (4.4.4) is a linear combination of the matrices

\[
\mathbf{1}, \quad \Gamma, \quad \lambda_{lk} \gamma^l \gamma^k \quad \text{and} \quad \lambda_{lk} \Gamma \gamma^l \gamma^k .
\]

(c) Show under the additional assumption \( \varepsilon^{ijkl} \lambda_{ij} \lambda_{kl} = 0 \) that

\[
\exp \left( \frac{1}{4} \lambda_{lk} \gamma^l \gamma^k \right) = \begin{cases} 
\mathbf{1} \cos \alpha + \frac{1}{4} \lambda_{lk} \gamma^l \gamma^k \frac{\sin \alpha}{\alpha} & \text{if } \lambda_{lk} \lambda_{lk} > 0 \\
\mathbf{1} \cosh \alpha + \frac{1}{4} \lambda_{lk} \gamma^l \gamma^k \frac{\sinh \alpha}{\alpha} & \text{if } \lambda_{lk} \lambda_{lk} < 0 ,
\end{cases}
\]

where \( \alpha := \sqrt{\lambda_{lk} \lambda^{lk}} / 4 \). Hint: Use (4.6.4) in the power series of the exponential.

(d) Choose a specific tensor \( \lambda_{lk} \) for which the matrix in (4.6.5) is equal to minus the identity.

(e) Show that the last expression involves no contribution \( \sim \Gamma \) only if either \( \alpha = 0 \) or \( \beta = 0 \). (Hint: It might be convenient to work in an eigenvector basis of \( i \Gamma \)). Infer in the case \( \alpha = 0 \) or \( \beta = 0 \), this expression is a linear combination of the matrices \( \mathbf{1} \) and \( \gamma^0 \gamma^1 \). Conclude that

\[
\exp \left( \frac{1}{4} \lambda_{lk} \gamma^l \gamma^k \right) = \cosh (\alpha + i \Gamma \beta) + \gamma^0 \gamma^1 \sinh (\alpha + i \Gamma \beta) .
\]

(f) Deduce from (c) and (e) that the matrices of the form (4.4.4) do not form a group.
Part 2

Causal Fermion Systems: Fundamental Structures
A Brief Introduction to Causal Fermion Systems

In this chapter we introduce and explain the basic objects and structures of a causal fermion system. Starting from a simple example (Section 5.1), we explain how to get to the basic objects of a causal fermion system (Section 5.2). After these preparations, the general definition of a causal fermion system will be given (Section 5.3). Next, as a further example, we explain how the Minkowski vacuum can be described by a causal fermion system (Section 5.4). In order to formulate equations describing the dynamics of a causal fermion system, we introduce a variational principle, the so-called causal action principle (Section 5.5). We conclude by discussing the form of the causal action principle (Section 5.7) and by explaining the underlying physical concepts (Section 5.8).

5.1. Motivating Example: A Two-Dimensional Lattice System

In order to motivate causal fermion systems, we begin with the familiar example of a cubic spacetime lattice. For simplicity, we consider a two-dimensional lattice (one space and one time dimension), but higher-dimensional lattices could be described similarly. Thus let $M \subset \mathbb{R}^{1,1}$ be a cubic lattice in two-dimensional Minkowski space. We denote the spacing in time direction by $\Delta t$ and in spatial direction by $\Delta x$ (see Figure 5.1). The usual procedure for setting up equations on a lattice is to replace derivatives by difference quotients, giving rise to an evolution equation which can be solved time step by time step according to deterministic rules.

As a concrete example, let us consider a discretization of the two-dimensional wave equation for a function $\phi : M \to \mathbb{C}$ on the lattice,

$$0 = \Box \phi(t, x) := \frac{1}{(\Delta t)^2} \left( \phi(t + \Delta t, x) - 2\phi(t, x) + \phi(t - \Delta t, x) \right) - \frac{1}{(\Delta x)^2} \left( \phi(t, x + \Delta x) - 2\phi(t, x) + \phi(t, x - \Delta x) \right). \tag{5.1.1}$$

Solving this equation for $\phi(t + \Delta t, x)$ gives a rule for computing $\phi(t + \Delta t, x)$ from the values of $\phi$ at earlier times $t$ and $t - \Delta t$ (see again Figure 5.1).

![Figure 5.1. Time evolution of a lattice system $M \subset \mathbb{R}^{1,1}$.](image)

73
While this method is very simple and gives well-defined evolution equations, it also has several drawbacks:

- The above method of discretizing the continuum equations is very \textit{ad hoc}. Why do we choose a regular lattice, why do we work with difference quotients? There are many other ways of discretizing the wave equation.
- The method is \textit{not background-free}. In order to speak of the "lattice spacing," the lattice must be thought of as being embedded in a two-dimensional ambient spacetime.
- The concept of a spacetime lattice is not invariant under general coordinate transformations. In other words, the assumption of a spacetime lattice is \textit{not compatible with the equivalence principle}.

In view of these shortcomings, the following basic question arises:

Can one formulate equations without referring to the nearest neighbor relation and the lattice spacing?

The answer to this question is yes, and we will now see how this can be done in the example of our two-dimensional lattice system. Although our example is somewhat oversimplified, this consideration will lead us quite naturally to the setting of causal fermion systems.

We next consider $f$ linearly independent complex-valued wave functions $\psi_1, \ldots, \psi_f$ on the lattice $\mathcal{M}$ (for simplicity a finite number of them, i.e. $f < \infty$). A-priori, these wave functions are not assumed to satisfy any wave equation. On the complex vector space $\mathcal{H}$ spanned by these wave functions we introduce a scalar product $\langle \cdot | \cdot \rangle_{\mathcal{H}}$ by demanding that the wave functions $\psi_1, \ldots, \psi_f$ are orthonormal, i.e.

$$\langle \psi_k | \psi_l \rangle_{\mathcal{H}} = \delta_{kl}.$$  \hfill (5.1.2)

We thus obtain an $f$-dimensional Hilbert space $(\mathcal{H}, \langle \cdot | \cdot \rangle_{\mathcal{H}})$. Note that the scalar product is given abstractly (meaning that it has no representation in terms of the wave functions as a sum over lattice points). Next, for any lattice point $(t, x) \in \mathcal{M}$ we introduce the so-called \textit{local correlation operator} $F(t, x) : \mathcal{H} \to \mathcal{H}$ as the linear operator whose matrix representation in the basis $\psi_1, \ldots, \psi_f$ is given by

$$(F(t, x))_{jk}^l = \overline{\psi_j(t, x)} \psi_k(t, x).$$  \hfill (5.1.3)

The diagonal elements of this matrix are the absolute squares $|\psi_k(t, x)|^2$ of the corresponding wave functions. The off-diagonal elements, on the other hand, tell us about the correlation of the $j^{th}$ and $k^{th}$ wave function at the lattice point $(t, x)$. This is the reason for the name "local correlation operator." This operator can also be characterized in a basis-invariant way by the relations

$$\langle \psi, F(t, x) \phi \rangle_{\mathcal{H}} = \overline{\psi(t, x)} \phi(t, x),$$

to be satisfied for all $\psi, \phi \in \mathcal{H}$. Taking the complex conjugate, one sees immediately that the matrix defined by (5.1.3) is Hermitian. Stated equivalently independent of bases, the local correlation operator is a \textit{symmetric} linear operator on $\mathcal{H}$. Moreover, a local correlation operator has \textit{rank at most one} and is \textit{positive semi-definite}. This can be seen by writing it as

$$F(t, x) = e(t, x)^* e(t, x) \quad \text{with} \quad e(t, x) : \mathcal{H} \to \mathbb{C}, \quad \psi \mapsto \psi(t, x)$$  \hfill (5.1.4)

(and $e(t, x)^*$ is the adjoint of $e(t, x)$).

It is useful to denote the set of all operators with the above properties by $\mathcal{F}$:

$$\mathcal{F} := \{ F \in \text{L}(\mathcal{H}) \mid F \text{ is symmetric, positive semi-definite and has rank at most one} \}.$$
5.1. Motivating Example: A Two-Dimensional Lattice System

Varying the lattice point, we obtain a mapping (see Figure 5.2)

\[ F : \mathcal{M} \rightarrow \mathcal{F}, \quad (t, x) \mapsto F(t, x). \]

For clarity, we note that the set \( \mathcal{F} \) is not a vector space, because a linear combination of operators in \( \mathcal{F} \) will in general have rank bigger than one. But it is a conical set in the sense that a positive multiple of any operator in \( \mathcal{F} \) is again in \( \mathcal{F} \) (this is why in Figure 5.2 the set \( \mathcal{F} \) is depicted as a cone).

We point out that the local correlation operators do not involve the lattice spacing or the nearest neighbor relation; instead they contain information only on the local correlations of the wave functions at each lattice point. With this in mind, our strategy for formulating equations which do not involve the structures of the lattice is to work exclusively with the local correlation operators, i.e. with the subset \( F(\mathcal{M}) \subset \mathcal{F} \). In other words, in Figure 5.2 we want to disregard the lattice on the left and work only with the objects on the right.

How can one set up equations purely in terms of the local correlation operators? In order to explain the general procedure, we consider a finite number of operators \( F_1, \ldots, F_L \in \mathcal{F} \). Each of these operators can be thought of as giving information on the local correlations of the wave functions at a corresponding spacetime point. However, this “spacetime point” is no longer a lattice point, but at the moment it is merely a point without additional structure. In order to obtain a “spacetime” in the usual sense, one needs additional structures and relations between the spacetime points. Such relations can be obtained by multiplying the operators. Indeed, the operator product \( F_i F_j \) tells us about correlations of the wave functions at different spacetime points. Taking the trace of this operator product gives a real number. Our method for formulating physical equations is to set up a variational principle. This variational formulation has the advantage that symmetries give rise to conservation laws by Noether’s theorem (as will be explained in Chapter 9). Therefore, we want to minimize an action \( S \). A simple example is to

\[
\text{minimize} \quad S(F_1, \ldots, F_L) := \sum_{i,j=1}^L \text{Tr}(F_i F_j)^2 \quad (5.1.5)
\]

under variations of the points \( F_1, \ldots, F_L \in \mathcal{F} \). In order to obtain a mathematically sensible variational principle, one needs to impose certain constraints. Here we do not enter the details, because the present example is a bit too simple. Instead, we merely use it as a motivation for the general setting of causal fermion systems, which we now introduce.
5.2. Towards the General Definition

In order to get from our example to the general setting of causal fermion systems, we extend the above constructions in several steps:

(a) The previous example works similarly in higher dimensions, in particular for a lattice \( \mathcal{M} \subset \mathbb{R}^{1,3} \) in four-dimensional Minkowski space. This has no effect on the resulting structure of a finite number of distinguished operators \( F_1, \ldots, F_L \in \mathcal{F} \).

(b) Suppose that on the lattice we consider multi-component wave functions \( \psi : \mathcal{M} \rightarrow \mathbb{C}^N \). Then the pointwise product on the right side of (5.1.3) must be replaced, e.g. by a complex inner product, which we denote by \( \langle \cdot | \cdot \rangle \) (in mathematical terms, this inner product is a non-degenerate sesquilinear form; we always use the convention that the wave function in the first argument is complex conjugated). Accordingly, the definition of the local correlation operator (5.1.3) is to be replaced by

\[
(F(t,x))^j_k = -\langle \psi_j(t,x) | \psi_k(t,x) \rangle
\]

(the minus sign compared to (5.1.3) merely is a useful convention). The resulting local correlation operator is no longer an operator of rank at most one, but it has rank at most \( N \) (as can be seen for example by writing it similar to (5.1.4) in the form \( F(t,x) = -e^* e \) with \( e : \mathfrak{H} \rightarrow \mathbb{C}^N \)). If the inner product \( \langle \cdot | \cdot \rangle \) on \( \mathbb{C}^N \) is positive definite, then the operator \( F(t,x) \) is negative semi-definite. However, in the physical applications in mind, this inner product will not be positive definite. Indeed, a typical example in mind is that of four-component Dirac spinors. The Lorentz invariant inner product \( \psi \phi \) on Dirac spinors in Minkowski space (with the usual adjoint spinor \( \bar{\psi} := \psi^\dagger \gamma^0 \)) is indefinite of signature \((2,2)\). In order to describe systems involving leptons and quarks, one must take direct sums of Dirac spinors, giving the signature \((n,n)\) with \( n \in 2\mathbb{N} \). With this in mind, we assume more generally that

\[\langle \cdot | \cdot \rangle \text{ has signature } (n,n) \text{ with } n \in \mathbb{N}.\]

Then the resulting local correlation operators are symmetric operators of rank at most \( 2n \), which (counting multiplicities) have at most \( n \) positive and at most \( n \) negative eigenvalues.

(c) Finally, it is useful to generalize the setting such as to allow for continuous spacetimes and for spacetimes which may have both continuous and discrete components. In preparation, we note that the sums over the operators \( F_1, \ldots, F_L \) in (5.1.3) can be written as integrals,

\[
S(\rho) = \int_\mathcal{F} d\rho(x) \int_\mathcal{F} d\rho(y) \text{ Tr}(xy)^2,
\]

if the measure \( \rho \) on \( \mathcal{F} \) is chosen as the sum of Dirac measures supported at these operators,

\[
\rho = \sum_{i=1}^L \delta_{F_i}.
\]

In this formulation, the measure plays a double role: First, it distinguishes the points \( F_1, \ldots, F_L \) as those points where the measure is non-zero, as is made mathematically precise by the notion of the support of the measure, i.e.

\[
\text{supp } \rho = \{ F_1, \ldots, F_L \}.
\]
Second, a measure makes it possible to integrate over its support, an operation which for the measure (5.2.2) reduces to the sum over $F_1, \ldots, F_L$.

Now one can extend the setting simply by considering (5.2.1) for more general measures on $\mathcal{F}$ (like for example regular Borel measures). The main advantage of working with measures is that we get into a mathematical framework in which variational principles like (5.1.5) can be studied with powerful analytic methods.

5.3. General Definition of a Causal Fermion System

Motivated by the previous considerations we now give the basic definition of a causal fermion system.

**Definition 5.3.1. (causal fermion system)** Given a separable complex Hilbert space $\mathcal{H}$ with scalar product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and a parameter $n \in \mathbb{N}$ (the “spin dimension”), we let $\mathcal{F} \subset L(\mathcal{H})$ be the set of all symmetric operators on $\mathcal{H}$ of finite rank, which (counting multiplicities) have at most $n$ positive and at most $n$ negative eigenvalues. On $\mathcal{F}$ we are given a positive measure $\rho$ (defined on a $\sigma$-algebra of subsets of $\mathcal{F}$). We refer to $(\mathcal{H}, \mathcal{F}, \rho)$ as a causal fermion system.

This definition evolved over several years. Based on preparations in [38], the present formulation was first given in [51].

This definition is illustrated in Figure 5.3. The set $\mathcal{F}$ is invariant under the transformation where an operator is multiplied by a negative number, as is indicated in the figure by the double cones. The support of the measure, denoted by

$$ M := \text{supp } \rho, \quad (5.3.1) $$

is referred to as spacetime. In contrast to the example of the lattice system, where spacetime consisted of discrete points (5.2.3), in general the measure $\rho$ can also have continuous components. The measure $\rho(\Omega)$ of a measurable subset $\Omega \subset M$ can be regarded as the four-dimensional volume of the spacetime region $\Omega$. It is a specific feature of a causal fermion system that a spacetime point $x \in M$ is a linear operator on the Hilbert space $\mathcal{H}$. This endows spacetime with a lot of additional structure. In particular, as will be explained in Section 5.6, the spacetime point operators give rise to an ensemble of spinorial wave functions and to causal and geometric structures. The general idea is that a causal fermion system describes a spacetime together with all structures therein. Before entering these structures in more detail, we illustrate the general definition by the simple and concrete example of Dirac wave functions in Minkowski space.

5.4. Example: Dirac Wave Functions in Minkowski Space

As a further example, we now explain how to construct a causal fermion system in Minkowski space. Recall that in Section 1.4 (and similarly in curved spacetime in
Section 4.5, for a given parameter $m \in \mathbb{R}$ we introduced the Hilbert space $(\mathcal{H}_m, \langle . | . \rangle)$ of all solutions of the Dirac equation with mass $m$. We now choose a closed subspace $\mathcal{H}$ of this Hilbert space and denote the scalar product $(. | .)$ restricted to this subspace by $\langle . | . \rangle_{\mathcal{H}}$. We thus obtain the Hilbert space $(\mathcal{H}, \langle . | . \rangle_{\mathcal{H}})$.

By construction, the vectors in this Hilbert space are solutions of the Dirac equation. They can be thought of as the “occupied states” of the system. We prefer the notion of physical wave functions, where “physical” means intuitively that these wave functions are realized in our physical system (whatever this means; we shall not enter philosophical issues here). At this stage, we do not need to specify $\mathcal{H}$. More explicit formulas and computations can be found in [42, Section 1.2] or in the later chapters of this book (Chapters 15-19).

We point out that the functions in $\mathcal{H}$ do not need to be continuous (instead, as mentioned at the end of Section 1.4, their restriction to any Cauchy surface merely is an $L^2$-function). Therefore, we cannot evaluate the wave functions pointwise at a spacetime point $x \in \mathcal{M}$. However, for the following constructions it is crucial to do so. The way out is to introduce so-called regularization operators $(R_\varepsilon)$ with $0 < \varepsilon < \varepsilon_{\text{max}}$ which map $\mathcal{H}$ to the continuous wave functions,

\[ R_\varepsilon : \mathcal{H} \rightarrow C^0(\mathcal{M}, S\mathcal{M}) . \]  

In the limit $\varepsilon \downarrow 0$, these operators should go over to the identity (in a suitable sense which we do not need to specify here). The physical picture is that on a small length scale, which can be thought of as the Planck length scale $\varepsilon \approx 10^{-35}$ meters, the structure of spacetime must be modified. The regularization operators specify this microscopic structure of spacetime. Different choices of regularization operators are possible. A simple example of a regularization operator is obtained by mollifying with a test function. Thus we let $h \in C^\infty_0(\mathcal{M}, \mathbb{R})$ be a non-negative test function with

\[ \int_{\mathcal{M}} h(x) \, d^4 x = 1 . \]

We define the operators $R_\varepsilon$ for $\varepsilon > 0$ as the convolution operators

\[ (R_\varepsilon u)(x) := \frac{1}{\varepsilon} \int_{\mathcal{M}} h\left(\frac{x - y}{\varepsilon}\right) u(y) \, d^4 y . \]

Another method is to work in Fourier space (for preliminaries see Sections 1.5 and 2.4), i.e.

\[ \psi(x) = \int \frac{d^4 k}{(2\pi)^4} \hat{\psi}(k) \, e^{-ikx} , \]

and to regularize by multiplication with an exponentially decaying cutoff function, i.e.

\[ (R_\varepsilon \psi)(x) = \int \frac{d^4 k}{(2\pi)^4} \hat{\psi}(k) \, e^{-\varepsilon|\omega|} \, e^{-ikx} \quad \text{with} \quad \omega = k^0 . \]

This so-called $i\varepsilon$-regularization is most convenient for explicit computations (for more details see [42 §2.4.1]). Clearly, these methods of regularizing Dirac solutions are very special and should be thought of merely as a mathematical tool for constructing simple and explicit examples of causal fermion systems.

Next, for any $x \in \mathcal{M}$ we consider the bilinear form

\[ b_\varepsilon^x : \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C} , \quad b_\varepsilon^x(u, v) = -\langle (R_\varepsilon u)(x) | (R_\varepsilon v)(x) \rangle . \]
This bilinear form is well-defined and bounded because $\mathcal{H}_{\varepsilon}$ is defined pointwise and because evaluation at $x$ gives a linear operator of finite rank. Thus for any $v \in \mathcal{H}$, the anti-linear form $b_{\varepsilon}^x(.,v) : \mathcal{H} \to \mathbb{C}$ is continuous. By the Fréchet-Riesz theorem (Theorem 2.2.4), there is a unique vector $w^\varepsilon \in \mathcal{H}$ such that $b_{\varepsilon}^x(u,v) = \langle u | w^\varepsilon \rangle_{\mathcal{H}}$ for all $u \in \mathcal{H}$. The mapping $v \mapsto w^\varepsilon$ is linear and bounded. We thus obtain a bounded linear operator $F^\varepsilon(x)$ on $\mathcal{H}$ such that
\[
b_{\varepsilon}^x(u,v) = \langle u | F^\varepsilon(x) v \rangle_{\mathcal{H}} \quad \text{for all } u, v \in \mathcal{H}, \tag{5.4.4}\]\nreferred to as the local correlation operator. Taking into account that the inner product on the Dirac spinors at $x$ has signature $(2, 2)$, the local correlation operator $F^\varepsilon(x)$ is a symmetric operator on $\mathcal{H}$ of rank at most four, which has at most two positive and at most two negative eigenvalues.

Thus for any $\varepsilon$ we obtain a mapping
\[
F^\varepsilon : \mathcal{M} \to \mathcal{F}, \tag{5.4.5}\n\]
where $\mathcal{F} \subset L(\mathcal{H})$ is the set of all symmetric operators on $\mathcal{H}$ of finite rank, which (counting multiplicities) have at most two positive and at most two negative eigenvalues. The last step is to drop all structures which we do not consider to be fundamental. Our concept is to work exclusively with the local correlation operators corresponding to the physical wave functions. Thus the basic concept is that all spacetime structures (particles, fields, causal structure, geometry, . . . ) are encoded in the local correlation operators. In order to drop all the other structures, we introduce the measure $\rho^\varepsilon$ on $\mathcal{F}$ as the push-forward of the volume measure on $\mathcal{M}$ (for details see Section 2.3 or Exercise 6.1 (b)),
\[
\rho^\varepsilon := F^\varepsilon_* \mu. \tag{5.4.6}\n\]
We thus obtain a causal fermion system (see Def. 5.3.1).

5.5. The Causal Action Principle

Having given the general definition of a causal fermion system (see Definition 5.3.1), the question arises how physical equations can be formulated in this setting. To this end, we now formulate a variational principle, the so-called causal action principle. In this variational principle, we minimize a functional, the so-called causal action, under variations of the measure $\rho$. The minimality property will then impose strong conditions on the possible form of this measure. The mathematical structure of the causal action is similar to the action (5.1.5) given in our example of the lattice system. Its detailed form, however, is the result of many computations and longer considerations, as will be outlined in Section 5.7 below.

For any $x, y \in \mathcal{F}$, the product $xy$ is an operator of rank at most $2n$. However, in general it is no longer a symmetric operator because $(xy)^* = yx$, and this is different from $xy$ unless $x$ and $y$ commute. As a consequence, the eigenvalues of the operator $xy$ are in general complex. We denote these eigenvalues counting algebraic multiplicities by $\lambda_1^{xy}, \ldots, \lambda_{2n}^{xy} \in \mathbb{C}$ (more specifically, denoting the rank of $xy$ by $k \leq 2n$, we choose $\lambda_1^{xy}, \ldots, \lambda_k^{xy}$ as all the non-zero eigenvalues and set $\lambda_{k+1}^{xy}, \ldots, \lambda_{2n}^{xy} = 0$). We
introduce the Lagrangian and the causal action by

\[
\mathcal{L}(x, y) = \frac{1}{4n} \sum_{i,j=1}^{2n} \left( |\lambda_i^{xy}| - |\lambda_j^{xy}| \right)^2
\]  

(5.5.1)

causal action:

\[
S(\rho) = \int_{\mathcal{F} \times \mathcal{F}} \mathcal{L}(x, y) \, d\rho(x) \, d\rho(y).
\]  

(5.5.2)

The causal action principle is to minimize \(S\) by varying the measure \(\rho\) under the following constraints:

\[
\text{volume constraint: } \rho(\mathcal{F}) = \text{const}
\]  

(5.5.3)

\[
\text{trace constraint: } \int_{\mathcal{F}} \text{tr}(x) \, d\rho(x) = \text{const}
\]  

(5.5.4)

\[
\text{boundedness constraint: } T(\rho) := \int_{\mathcal{F} \times \mathcal{F}} \left( \sum_{i=1}^{2n} |\lambda_i^{xy}| \right)^2 \, d\rho(x) \, d\rho(y) \leq C,
\]  

(5.5.5)

where \(C\) is a given parameter (and \(\text{tr}\) denotes the trace of a linear operator on \(\mathcal{H}\)).

In order to make the causal action principle mathematically well-defined, one needs to specify the class of measures in which to vary \(\rho\). To this end, on \(\mathcal{F}\) we consider the topology induced by the operator norm

\[
\|A\| := \sup \{ \|Au\|_{\mathcal{H}} \text{ with } \|u\|_{\mathcal{H}} = 1 \}
\]  

(5.5.6)

(for basics see the preliminaries in Sections 2.1 and 2.2). In this topology, the Lagrangian as well as the integrands in (5.5.4) and (5.5.5) are continuous. The \(\sigma\)-algebra generated by the open sets of \(\mathcal{F}\) consists of the so-called Borel sets. A regular Borel measure is a measure on the Borel sets with the property that it is continuous under approximations by compact sets from inside and by open sets from outside (for basics see the preliminaries in Section 2.3). The right prescription is to vary \(\rho\) within the class of regular Borel measures on \(\mathcal{F}\). There are two settings one can consider:

(a) The finite-dimensional setting: \(\dim \mathcal{H} < \infty\) and \(\rho(\mathcal{F}) < \infty\).

In this case, we will prove the existence of minimizers in Chapter 12. This will also clarify the significance of the constraints.

(b) The infinite-dimensional setting: \(\dim \mathcal{H} = \infty\) and \(\rho(\mathcal{F}) = \infty\).

An obvious complication in this setting is that the volume constraint is infinite. Likewise, the other constraints as well as the causal action may diverge. These divergences can be avoided by restricting attention to variations which change the measure only on a set of finite volume. By doing so, the differences of the action and the constraints are well-defined and finite (this method will be explained in Section 12.8).

With this in mind, the main difficulty is to deal with infinite-dimensional Hilbert spaces. This case also seems to make mathematical and physical sense. However, the existence theory has not yet been developed. At least, it is known that the Euler-Lagrange equations corresponding to the causal action principle still have a mathematical meaning (for details see [42]). One way of getting along without an existence theory in the infinite-dimensional setting is to take the point of view that on a fundamental physical level, the total volume is finite and the Hilbert space \(\mathcal{H}\) is finite-dimensional, whereas the infinite-dimensional setting merely is a
5.6. Basic Inherent Structures

It is the general concept that a causal fermion system describes spacetime as well as all structures therein (like the causal and metric structures, particles, fields, etc.). In order to recover all these structures, we merely give structures of the causal fermion system suitable names. We point out that we do not introduce additional structures, but we merely work with structures which are already encoded in the causal fermion system. We call these structures as being inherent in the causal fermion system. We now introduce and explain the most important of these structures: the spin spaces, the physical wave functions and the kernel of the fermionic projector. Other inherent structures will be

mathematical idealization needed in order to describe systems in infinite volume involving an infinite number of quantum particles.

We now explain what spacetime and the underlying causal structure is. Given a minimizing measure $\rho$, we again define spacetime $M$ as the support of the measure $\rho$ (see (5.3.1); this is illustrated in Exercise 6.1). Thus the spacetime points are symmetric linear operators on $H$. On $M$ we consider the topology induced by $F$ (generated by the sup-norm (5.5.6) on $L(H)$). Moreover, the measure $\rho|_M$ restricted to $M$ can be regarded as a volume measure on spacetime. This turns spacetime into a topological measure space. Furthermore, one has the following notion of causality:

**Definition 5.5.1. (causal structure)** For any $x, y \in F$, the product $xy$ is an operator of rank at most $2n$. We denote its non-trivial eigenvalues (counting algebraic multiplicities) by $\lambda^{xy}_1, \ldots, \lambda^{xy}_{2n}$. The points $x$ and $y$ are called spacelike separated if all the $\lambda^{xy}_j$ have the same absolute value. They are said to be timelike separated if the $\lambda^{xy}_j$ are all real and do not all have the same absolute value. In all other cases (i.e. if the $\lambda^{xy}_j$ are not all real and do not all have the same absolute value), the points $x$ and $y$ are said to be lightlike separated.

Restricting the causal structure of $F$ to $M$, we get causal relations in spacetime.

The Lagrangian (5.5.1) is compatible with the above notion of causality in the following sense. Suppose that two points $x, y \in F$ are spacelike separated. Then the eigenvalues $\lambda^{xy}_j$ all have the same absolute value. As a consequence, the Lagrangian (5.5.1) vanishes. Thus pairs of points with spacelike separation do not enter the action. This can be seen in analogy to the usual notion of causality where points with spacelike separation cannot influence each other. This analogy is the reason for the notion “causal” in “causal fermion system” and “causal action principle.”

Moreover, a causal fermion system distinguishes a direction of time. To this end, for $x \in F$ we let $\pi_x$ be the orthogonal projection in $H$ on the subspace $x(H) \subset H$ and introduce the functional

$$C : M \times M \to \mathbb{R}, \quad C(x, y) := i \text{tr} \left( y x \pi_y \pi_x - x y \pi_x \pi_y \right).$$

Obviously, this functional is anti-symmetric in its two arguments, making it possible to introduce the notions

$$\begin{cases} 
y \text{ lies in the future of } x & \text{if } C(x, y) > 0 \\
y \text{ lies in the past of } x & \text{if } C(x, y) < 0.
\end{cases}$$

By distinguishing a direction of time, we get a structure similar to a causal set (see for example [16]). However, in contrast to a causal set, our notion of “lies in the future of” is not necessarily transitive.
introduced later in this book (see Chapters 9–11; for a more complete account we also refer to [42] Chapter 1).

The causal action principle depends crucially on the eigenvalues of the operator product $xy$ with $x, y \in \mathcal{F}$. For computing these eigenvalues, it is convenient not to consider this operator product on the (possibly infinite-dimensional) Hilbert space $\mathcal{H}$, but instead to restrict attention to a finite-dimensional subspace of $\mathcal{H}$, chosen such that the operator product vanishes on the orthogonal complement of this subspace. This construction leads us to the spin spaces and to the kernel of the fermionic projector, which we now introduce. For every $x \in \mathcal{F}$ we define the spin space $S_x$ by

$$S_x = x(\mathcal{H});$$

it is a subspace of $\mathcal{H}$ of dimension at most $2n$ (see Figure 5.4). Moreover, we let

$$\pi_x : \mathcal{H} \to S_x$$

be the orthogonal projection in $\mathcal{H}$ on the subspace $S_x \subset \mathcal{H}$. For any $x, y \in M$ we define the kernel of the fermionic projector $P(x,y)$ by (see Figure 5.5).

$$P(x,y) = \pi_x y|_{S_y} : S_y \to S_x$$

(5.6.2)

(where $\pi_x$ is again the orthogonal projection on the subspace $x(\mathcal{H}) \subset \mathcal{H}$). Taking the trace of (5.6.2) in the case $x = y$, one finds that $\text{tr}(x) = \text{Tr}_{S_x}(P(x,x))$, making it possible to express the integrand of the trace constraint (5.5.4) in terms of the kernel of the fermionic projector. In order to also express the eigenvalues of the operator $xy$ in terms of the kernel of the fermionic projector, we introduce the closed chain $A_{xy}$ as the product

$$A_{xy} = P(x,y)P(y,x) : S_x \to S_x.$$  

(5.6.3)

Computing powers of the closed chain, one obtains

$$A_{xy} = (\pi_x y)(\pi_y x)|_{S_x} = \pi_x yx|_{S_x},$$

$$A_{xy}^p = \pi_x (yx)^p|_{S_x}.$$  

Taking the trace, one sees in particular that

$$\text{Tr}_{S_x}(A_{xy}^p) = \text{tr}((yx)^p) = \text{tr}((xy)^p)$$

(5.6.4)

(where the last identity simply is the invariance of the trace under cyclic permutations). Since all our operators have finite rank, for any $x, y \in \mathcal{F}$ there is a finite-dimensional subspace $I$ of $\mathcal{H}$ such that $xy$ maps $I$ to itself and vanishes on the orthogonal complement of $I$. Then the non-trivial eigenvalues of the operator product $xy$ are given as the zeros of the characteristic polynomial of the restriction $xy|_I : I \to I$. The coefficients of this characteristic polynomial (like the trace, the determinant, etc.) are symmetric polynomials in the eigenvalues and can therefore be expressed in terms of traces of powers of $A_{xy}$. We conclude that the eigenvalues of the closed chain coincide with the non-trivial eigenvalues $\lambda_1^{xy}, \ldots, \lambda_{2n}^{xy}$ of the operator $xy$ in Definition [5.5.1]. This argument also shows that the operator products $xy$ and $yx$ are isospectral. In particular, one sees that kernel of the fermionic projector encodes the causal structure of $M$. Moreover, we see that the
causal structure is symmetric in $x$ and $y$. The main advantage of working with the kernel of the fermionic projector is that the closed chain $[5.6.3]$ is a linear operator on a vector space of dimension at most $2n$, making it possible to compute the $λ_{1}^{xy}, \ldots, λ_{2n}^{xy}$ as the eigenvalues of a finite matrix.

Next, it is very convenient to choose inner products on the spin spaces in such a way that the kernel of the fermionic projector is symmetric in the sense that

$$P(x,y)^{\ast} = P(y,x).$$

To this end, one chooses on the spin space $S_x$ the spin inner product $\langle . | . \rangle_x$ by

$$\langle u | v \rangle_x = -\langle u | xv \rangle_H \quad \text{(for all } u, v \in S_x).$$

Due to the factor $x$ on the right, this definition really makes the kernel of the fermionic projector symmetric, as is verified by the computation

$$\langle u | P(x,y) v \rangle_x = -\langle u | x P(x,y) v \rangle_H = -\langle u | xy v \rangle_H$$

$$= -\langle \pi_y x u | y v \rangle_H = \langle P(y,x) u | v \rangle_y$$

(where $u \in S_x$ and $v \in S_y$). The spin space $(S_x, \langle . | . \rangle_x)$ is an indefinite inner product of signature $(p,q)$ with $p,q \leq n$ (for textbooks on indefinite inner product spaces see $[15, 85]$). In this way, indefinite inner product spaces arise naturally when analyzing the mathematical structure of the causal action principle.

The kernel of the fermionic projector plays a central role in the analysis for several reasons:

- The Lagrangian can be expressed in terms of $P(x,y)$ (via the closed chain $[5.6.3]$ and its eigenvalues).
- Being a mapping from one spin space to another, $P(x,y)$ gives relations between different spacetime points. In this way, it carries geometric information. This will be explained in Chapter 11 (see also $[50]$ or the introductory survey paper $[44]$).
- The kernel of the fermionic projector also encodes all the wave functions of the system. In order to see the connection, for a vector $u \in \mathcal{H}$ one introduces the corresponding physical wave function $ψ^u$ as (see Figure 5.6)

$$ψ^u : M \to \mathcal{H}, \quad ψ^u(x) = π_x u \in S_x.$$  \hfill (5.6.7)

Then, choosing an orthonormal basis $(e_i)$ of $\mathcal{H}$ and using the completeness relation as well as $[5.6.6]$, one obtains for any $φ \in S_y$

$$P(x,y) φ = π_y | S_y φ = \sum_i π_x e_i \langle e_i | y φ \rangle_H = -\sum_i ψ^{e_i}(x) \langle ψ^{e_i}(y) | φ \rangle_y,$$
5. A BRIEF INTRODUCTION TO CAUSAL FERMION SYSTEMS

Figure 5.6. The physical wave function

showing that $P(x, y)$ is indeed composed of all the physical wave functions, i.e. in a bra/ket notation

$$P(x, y) = - \sum_i |\psi_i(x)\rangle \langle \psi_i(y)|.$$  (5.6.8)

5.7. How Did the Causal Action Principle Come About?

Causal fermion systems and the causal action principle came to light as a result of many considerations and computations carried out over several years. We now give an outline of these developments, also explaining the specific form of the causal action principle.

The starting point for the considerations leading to causal fermion systems was the belief that in order to overcome the conceptual problems of quantum field theory, the structure of spacetime should be modified. Moreover, instead of starting from differential equations in a spacetime continuum, one should formulate the physical equations using the new structures of spacetime, which might be non-smooth or discrete. A more concrete idea in this direction was that the spacetime structures should be encoded in the ensemble of wave functions which is usually associated to the Dirac sea (for basics see Section 1.5). Thus, instead of disregarding the sea states, one should take all these wave functions into account. The mutual interaction of all these wave functions should give rise to the structures of spacetime as we experience them.

The first attempts towards making this idea more precise go back to the early 1990s. The method was to consider families of Dirac solutions (the formalism of quantum fields was avoided in order to keep the setting as simple and non-technical as possible). In order to describe such a family mathematically, the corresponding two-point kernel $P(x, y)$ was formed

$$P(x, y) := - \sum_{l=1}^f |\psi_l(x)\rangle \langle \psi_l(y)|$$

(where $\psi_1, \ldots, \psi_f$ are suitably normalized solutions of the Dirac equation; for preliminaries see Section 1.3). The kernel $P(x, y)$ is also referred to as the kernel of the fermionic projector. In the Minkowski vacuum, this kernel is formed of all the states of the Dirac sea. Then the sum goes over to an integral over the lower mass shell

$$P^{\text{vac}}(x, y) = \int \frac{d^4k}{(2\pi)^4} (\slashed{k} + m) \delta(k^2 - m^2) \Theta(-k_0) e^{-ik(x-y)}$$  (5.7.1)

(this integral is well-defined as the Fourier transform of a tempered distribution; see the preliminaries in Section 2.4). Likewise, a system involving particles and anti-particles is described by “occupying additional states of positive energy” and by “creating holes in
5.7. HOW DID THE CAUSAL ACTION PRINCIPLE COME ABOUT?

The Dirac sea,” respectively. Thus, more technically, one sets

\[ P(x, y) = P^{\text{vac}}(x, y) - \sum_a |\psi_a(x)\rangle\langle \psi_a(y)\rangle + \sum_b |\phi_b(x)\rangle\langle \phi_b(y)\rangle, \quad (5.7.2) \]

where \( \psi_a \) and \( \phi_b \) are suitably normalized Dirac solutions of positive and negative energy, respectively. In case a bosonic interaction is present, the kernel of the fermionic projector should no longer satisfy the vacuum Dirac equation, but the Dirac equation in the presence of a, say, external potential \( B \). Clarifying the dependence on the bosonic potential with an additional tilde, we write the resulting Dirac equation as

\[ (i\partial + B - m) \tilde{P}(x, y) = 0. \quad (5.7.3) \]

Analyzing the distribution \( \tilde{P}(x, y) \) in Minkowski space reveals the following facts:

(a) The kernel \( \tilde{P}(x, y) \) contains all the information on the wave functions of the particles and anti-particles of the system. This can be understood from the representation (5.7.2) in which all these wave functions appear.

(b) The kernel \( \tilde{P}(x, y) \) has singularities on the light cone. The detailed form of the singularities involves integrals of the potential \( B \) and its derivatives along the light cone. In particular, knowing the kernel \( \tilde{P}(x, y) \) makes it possible to reconstruct the potential \( B \) at every spacetime point.

(c) The singularity structure of \( \tilde{P}(x, y) \) encodes the causal structure of Minkowski space.

These findings show that, at least for Dirac systems in the presence of classical bosonic potentials, the kernel \( \tilde{P}(x, y) \) contains all the information on the physical system. This led to the concept to regard \( \tilde{P}(x, y) \) as the basic physical object in spacetime. The more familiar structures and objects like Minkowski space with its causal structure, the Dirac equation, the classical field equations for the bosonic fields (like the Maxwell or Einstein equations), however, should no longer be considered as being fundamental. Consequently, the physical equations should be formulated directly in terms of the kernel of the fermionic projector.

Formalizing this idea in a clean way also makes it necessary to disregard or to prescind from the usual spacetime structures. This led to the principle of the fermionic projector as formulated around 1990 (see the unpublished preprint [32] and the monograph [38]). We here present a slightly different but equivalent formulation which is somewhat closer to the setting of causal fermion systems. Let \( M \) be a discrete set (i.e. a point set without additional structures), the discrete spacetime. Moreover, to every \( x \in M \) we associate an indefinite inner product space \( (S_x, \langle.,\rangle_x) \), referred to as the spin space at \( x \). Next, we consider wave functions \( \psi_a \), being mappings which to every discrete spacetime point \( x \in M \) associates a vector \( \psi_a(x) \in S_x \) of the corresponding spin space. Out of these wave functions, one can form the kernel of the fermionic projector

\[ P(x, y) := -\sum_a |\psi(x)\rangle\langle \psi(y)\rangle : S_y \rightarrow S_x. \]

The principle of the fermionic projector asserts that the physical equations should be formulated purely in terms of the kernel of the fermionic projector in discrete spacetime.
The next question was how precisely these physical equations should look like. This was a difficult question which took many years to be answered. Apart from the structural requirements coming from the principle of the fermionic projector, the following considerations served as guiding principles:

(i) In analogy to classical field theory, a *variational approach* should be used. One main advantage is the resulting connection between symmetries and conservation laws (corresponding to the classical Noether theorem), which seems of central importance in physical applications.

(ii) Classical field theory should be obtained in a certain limiting case. More specifically, the Euler-Lagrange equations coming from our variational principle should reproduce the *Maxwell* and *Einstein equations*.

(iii) Also the *Dirac equation* should be recovered in a certain limiting case.

More mathematically, the strategy was to form composite expressions of the kernel of the fermionic projector. More precisely, choosing \( n \) points \( x_1, \ldots, x_n \in M \), one can form the closed chain

\[
A_{x_1, \ldots, x_n} := P(x_1, x_2) P(x_2, x_3) \cdots P(x_{n-1}, x_n) P(x_n, x_1) : S_{x_1} \to S_{x_1} .
\]  

(5.7.4)

Being an endomorphism of the spin space, one can compute the eigenvalues of the closed chain and form a Lagrangian \( \mathcal{L}[A_{x_1, \ldots, x_n}] \) as a symmetric function of these eigenvalues. Summing over the spacetime points gives an ansatz for the

\[
\text{n-point action} \quad S = \sum_{x_1, \ldots, x_n \in M} \mathcal{L}[A_{x_1, \ldots, x_n}] .
\]

This ansatz can be made more specific by considering *gauge phases*. This consideration was motivated by the fact that the kernel of the fermionic projector \( \tilde{P}(x, y) \) formed of Dirac solutions involves gauge phases. More specifically, choosing the potential in the Dirac equation (5.7.3) as an electromagnetic potential, i.e. \( B = \mathcal{A} \), then the leading contribution to kernel are gauge phases described by line integrals over the electromagnetic potential,

\[
\tilde{P}(x, y) = e^{-i \int_y^x A_j \xi^j \mathcal{P} \text{vac}(x, y)} + \cdots ,
\]  

(5.7.5)

where

\[
\int_x^y A_j \xi^j = \int_0^1 A_j (\alpha y + (1-\alpha)x) (y-x)^j d\alpha .
\]

Here \( \cdots \) stands for many other contributions to \( \tilde{P}(x, y) \) which involve derivatives of the potential (like the field tensor, the Maxwell current, etc.). All these additional contributions are small in the sense that they are less singular on the light cone. These findings will be made precise by the Hadamard and light-cone expansions of the kernel of the fermionic projector in Chapter 21 of this book. At this stage, we do not need to be specific. All we need is that gauge phases come into play, which involves integrals of the potential along the line segment joining the points \( x \) and \( y \).

Let us analyze the effect of the gauge phases on the closed chain (5.7.4). First of all, the closed chain is *gauge invariant*. Indeed, if one considers a pure gauge potential \( A_j = \partial_j \Lambda \), then the gauge phases in (5.7.3) simplify to

\[
\tilde{P}(x, y) = e^{-i \Lambda(y) + i \Lambda(x)} \mathcal{P} \text{vac}(x, y) ,
\]  

(5.7.6)

\[\text{Of course, it is also an important requirement that our variational principle should give agreement with quantum field theory. But this connection was not used for finding the causal action principle. It was worked out more recently; for more details see Chapter 22.}\]
and the phase factors of neighboring factors cancel in (5.7.4). This consideration also explains why the arguments of the adjacent factors in (5.7.4) coincide. In the case \( n = 1 \), the kernel of the fermionic projector is evaluated only on the diagonal \( P(x, x) \). This turns out to be too simple, as can be understood from the fact that relations between spacetime points are not taken into account. If \( n \geq 3 \), the gauge phases in (5.7.4) can be rewritten using Stokes' theorem as flux integrals of the electromagnetic field through the two-dimensional polygon with vertices \( x_1, \ldots, x_n \). Analyzing the situation in some more detail, one finds that the resulting Euler-Lagrange equations will be satisfied only if all fluxes vanish. This implies that the electromagnetic potential must be a pure gauge potential. In other words, the case \( n \geq 3 \) does not allow for an interaction via gauge potentials. This is the reason why this case was disregarded (for some more details on this argument see [38, Remark 6.2.5]).

After these considerations, we are left with the two-point action

\[
S = \sum_{x,y \in M} \mathcal{L}[A_{xy}],
\]

where \( A_{xy} \) is the closed chain formed of two points,

\[
A_{xy} := P(x, y) P(y, x).
\]

In this case, the polygon with vertices \( x \) and \( y \) degenerates to a straight line, implying that the flux through this polygon vanishes as desired. The starting point for a more quantitative analysis was to choose the Lagrangian formed by taking products and sums of traces or powers the closed chain. A typical example is the Lagrangian

\[
\mathcal{L}[A_{xy}] := \operatorname{Tr} S_x \left( A_{xy}^2 \right) - c \left( \operatorname{Tr} S_x (A_{xy}) \right)^2
\]

with a real parameter \( c \). In such examples, the Lagrangian is a symmetric polynomial in the eigenvalues of the closed chain. The methods and results of this early analysis can be found in the unpublished preprints [32, 33].

Generally speaking, working with such polynomial Lagrangians seemed a promising approach. However, the more detailed analysis revealed the basic problem that chiral gauge phases come into play: As just explained after (5.7.6), the closed chain and therefore also the Lagrangian are gauge invariant for the electromagnetic potential. However, the situation changes if chiral gauge potentials (in particular the left-handed gauge potentials of electroweak theory) are considered. In this case, the left- and right-handed components of \( P(x, y) \) involve phase transformations by the left- and right-handed gauge potentials, respectively. When forming the closed chain (5.7.8), the left- and right-handed components of \( P(x, y) \) are multiplied together. As a consequence, the closed chain involves relative phases of the left- and right-handed gauge potentials, i.e. phase factors of the form

\[
e^{\pm i \int_{x}^{y} (A_L - A_R) ; \xi^j},
\]

where \( A_L \) and \( A_R \) are the left- and right-handed gauge potentials (here for simplicity again Abelian). As a consequence, also the eigenvalues of the closed chain are multiplied by these relative phases. The traces of powers of the closed chain as in (5.7.9) are still real-valued (this is because the phase factors always come as complex conjugate pairs), but they do not have fixed signs. Working out the Euler-Lagrange equations, one sees that they also involve the relative gauge phases, making it difficult to allow for chiral gauge fields. In order to bypass these difficulties, from around 1999 on Lagrangians were
considered which involved absolute values of the eigenvalues of the closed chain. This had two major advantages:

(a) The chiral gauge phases drop out of the Lagrangian.

(b) It became natural to formulate non-negative Lagrangians. As a consequence, in the variational principle one minimize the action instead of merely looking for critical points.

(c) A connection to causality was obtained. In order to see how this comes about, we give a simple computation in the Minkowski vacuum. Suppose that the points $x$ and $y$ are either timelike or spacelike separated. Then $P(x, y)$ is well-defined and finite even without regularization and, due to Lorentz symmetry, it has the form

$$P(x, y) = \alpha \xi_j \gamma^j + \beta \mathbf{1}$$

with two complex-valued functions $\alpha$ and $\beta$ (where again $\xi = y - x$). Taking the adjoint with respect to the spin scalar product, we see that

$$P(y, x) = \overline{\alpha} \xi_j \gamma^j + \overline{\beta} \mathbf{1}.$$  

As a consequence,

$$A_{xy} = P(x, y) P(y, x) = a \xi_j \gamma^j + b \mathbf{1}$$

with two real parameters $a$ and $b$ given by

$$a = \alpha \overline{\beta} + \beta \overline{\alpha}, \quad b = |\alpha|^2 \xi^2 + |\beta|^2.$$  

Applying the formula $(A_{xy} - b \mathbf{1})^2 = a^2 \xi^2 \mathbf{1}$, the roots of the characteristic polynomial of $A_{xy}$ are computed by

$$b \pm \sqrt{a^2 \xi^2}.$$  

Therefore, the eigenvalues of the closed chain are either real, or else they form a complex conjugate pair. Spacelike separation is characterized by the fact that all eigenvalues of $A_{xy}$ have the same absolute value. A Lagrangian which only depends on differences of absolute values of the eigenvalues vanishes for spacelike separation. The further analysis led to the class of Lagrangians

$$\mathcal{L} = \sum_{i,j} \left( |\lambda_i^{xy}|^p - |\lambda_j^{xy}|^p \right)^2.$$  

with a parameter $p \in \mathbb{N}$, where the $\lambda_i^{xy}$ are the eigenvalues of $A_{xy}$ (again counted with algebraic multiplicities). The case $p = 1$ gives the causal Lagrangian (5.5.1) (albeit with the difference of working instead of the local correlation operators with the kernel of the fermionic projector; the connection will be explained below). The decision for $p = 1$ was taken based on the so-called state stability analysis, which revealed that the vacuum Dirac sea configuration (5.7.1) is a local minimizer of the causal action only if $p = 1$ (for details see [38, Section 5.5]). Now that the form of the causal action was fixed, the monograph [38] was completed and published. The causal action principle is given in this book as an example of a variational principle in discrete spacetime (see [38, Section 3.5]). The boundedness constraint (5.5.5) already appears, and the causal Lagrangian (5.5.1) arises when combining the Lagrangian with the Lagrange multiplier term corresponding to the boundedness constraint. The volume constraint (5.5.3) is also implemented, however in discrete spacetime simply as the condition that the number of spacetime points be fixed (and $\rho$-integrals are replaced by sums over the spacetime points). The trace constraint, however, was not yet recognized as being necessary and important.
After the publication of the monograph [38], the causal action principle was analyzed in more detail and more systematically, starting from simple systems and proceeding to more realistic physical models, concluding with systems showing all the interactions of the standard model and gravity (see [42] Chapters 3-5). This detailed study also led to the causal action principle in the form given in Section 5.5 above. The path from the monograph [38] to the present formulation in [42] is outlined in [38] Preface to second online edition. We now mention a few points needed for the basic understanding.

One major conceptual change compared to the setting in indefinite inner product spaces was to recognize that an underlying Hilbert space structure is needed in order for the causal variational principle to be mathematically well-defined. This became clear when working on the existence theory in discrete spacetime [39]. This Hilbert space structure is built in most conveniently by working instead of the kernel of the fermionic projector with the local correlation operators which relate the Hilbert space scalar product to the spin inner product by

$$\langle \psi | F(x) | \phi \rangle_H = -\langle \psi(x) | F(x) | \phi(x) \rangle_x.$$

(5.7.10)

Using that the operator product $F(x)F(y)$ has the same non-trivial eigenvalues as the closed chain $A_{xy}$ given by (5.7.8) (as we already observed in Section 5.6 after (5.6.3)), the causal action principle can also be formulated in terms of the local correlation operators $F(x)$ with $x \in M$. Moreover, it turned out that measure-theoretic methods can be used to generalize the setting such as to allow for the description of not only discrete, but also continuous spacetimes. In this formulation, the sums over the discrete spacetime points are replaced by integrals with respect to a measure $\mu$ on $M$. This setting was first introduced in [40] when working out the existence theory. In this formulation, the only a-priori structure of spacetime is that of a measure space $(M, \mu)$. The local correlation operators give rise to a mapping

$$F : M \to \mathcal{F}, \quad x \mapsto F(x),$$

where $\mathcal{F}$ is the subset of finite rank operators on $\mathcal{H}$ which are symmetric and (counting multiplicities) have at most $n$ positive and at most $n$ negative eigenvalues (where $n$ is introduced via the signature $(n,n)$ of the indefinite inner product in (5.7.10)). This analysis also revealed the significance of the trace constraint. As the final step, instead of working with the measure $\mu$, the causal action can be expressed in terms of the push-forward measure $\rho = F_*\mu$, being a measure on $\mathcal{F}$ (defined by $\rho(\Omega) = \mu(F^{-1}(\Omega))$). Therefore, it seems natural to leave out the measure space $(M, \mu)$ and to work instead directly with the measure $\rho$ on $\mathcal{F}$.

These considerations led to the general definition of causal fermion systems in Section 5.3 where the physical system is described by a Hilbert space $(\mathcal{H}, \langle .|.| \rangle_{\mathcal{H}})$ and the measure $\rho$ on $\mathcal{F}$. The causal action principle takes the form as stated in Section 5.5.

5.8. Underlying Physical Concepts

We now briefly explain a few physical concepts behind causal fermion systems and the causal action principle. The aim is to convey the reader the correct physical picture in a non-technical way. Doing so already here makes it necessary to anticipate some ideas on a qualitative level which will be introduced more systematically and thoroughly later in this book.

It is a general feature of causal fermion systems that the usual distinction between the structure of spacetime itself (being modelled by Minkowski space or a Lorentzian
A BRIEF INTRODUCTION TO CAUSAL FERMION SYSTEMS

manifold) and structures in spacetime (like wave functions and matter fields) ceases to exist. Instead, all these structures are described as a whole by a single object: the measure \( \rho \) on \( \mathcal{F} \). Spacetime and all structures therein are different manifestations of this one object. The dynamics of spacetime and of all objects in spacetime are described in a unified and holistic manner by the causal action principle. Clearly, in order to get a connection to the conventional description of physics, one still needs to construct the familiar physical objects from a causal fermion system. Also, one needs to rewrite the dynamics as described by the causal action principle in terms of these familiar physical objects. This study is a main objective of this book. As already exemplified in Section 5.6 by the spin spaces and physical wave functions, the strategy is to give structures present in a causal fermion system suitable names. This must be done carefully in such a way that these conveys the correct physical picture. Ultimately, the inherent structures serve the purpose of getting a better understanding of the causal action principle. As we shall see, this will be achieved by reformulating the Euler-Lagrange equations of the causal action principle in terms of the inherent structures. When this is done, also the physical names of the inherent structures will be justified by showing that they agree with the familiar physical objects in specific limiting cases and generalize these objects in a sensible way.

In view of this unified description of all physical structures by a single mathematical object, it is difficult to describe the essence of causal fermion systems using the familiar notions from physics. One simple way of understanding the causal action principle is to focus on the structure of the physical wave functions and the kernel of the fermionic projector. Clearly, the resulting picture is a bit oversimplified, because it only captures part of the structures encoded in a causal fermion system. Nevertheless, it conveys a good and the correct intuition of what the causal action principle is about. We saw in Section 5.6 that a causal fermion system gives rise to the ensemble of physical wave functions \( (\hat{\psi}_u)_{u \in \mathcal{U}} \) (see 5.6.7). The kernel of the fermionic projector (5.6.8) is built up of all the physical wave functions and thus describes the whole ensemble. It gives rise to the closed chain (5.6.3), which in turn determines the causal action and the constraints. In this way, the causal action principle becomes a variational principle for the ensemble of physical wave functions. Thus the interaction described by the causal action principle can be understood as a direct mutual interaction of all the physical wave functions. In simple terms, the causal action principle aims at bringing the ensemble of wave functions into an “optimal” configuration. For such optimal configurations, the ensemble of wave functions gives rise to the spacetime structures as we know them: the causal and metric structure, the bosonic fields, and all that.

The last step can be understood more concretely starting from Dirac’s hole theory and the picture of the Dirac sea (for basics see again Section 1.5). In our approach, the Dirac sea is taken literally. Thus all the states of the Dirac sea correspond to physical wave functions. All the information contained in these wave functions induces spacetime with the familiar structures. As a simple example, the bosonic potentials \( \mathcal{B} \) are determined via the Dirac equation (5.7.3) from the ensemble of wave functions as described by \( \hat{P}(x,y) \). Clearly, on order to make this picture precise, one needs to verify that, in a certain limiting case, the kernel of the fermionic projector corresponding to a minimizer of the causal action principle indeed satisfies a Dirac equation of the form (5.7.3) and thus gives rise to a potential \( \mathcal{B} \). This will be one of the objectives of the later chapters in this book.

We now discuss which physical principles enter the approach, and how they were incorporated. Causal fermion systems evolved from an attempt to combine several physical
principles in a coherent mathematical framework. As a result, these principles appear in the framework in a specific way:

- **The principle of causality**: A causal fermion system gives rise to a causal structure (see Definition 5.5.1). The causal action principle is compatible with this notion of causality in the sense that the pairs of points with spacelike separation do not enter the Euler-Lagrange equations. In simple terms, points with spacelike separation do not interact.

- **The local gauge principle**: Already in the above discussion of how the causal action principle came about, we mentioned that the Lagrangian is gauge invariant in the sense that gauge phases drop out of the Lagrangian (see the explanation after (5.7.6) in Section 5.7). When starting from a general causal fermion system, **local gauge principle** becomes apparent when representing the physical wave functions in bases of the spin spaces. More precisely, choosing a pseudo-orthonormal basis \((e^\alpha(x))_{\alpha=1,\ldots,\dim S_x}\) of \(S_x\), a physical wave function can be represented as

\[
\psi(x) = \sum_{\alpha=1}^{\dim S_x} \psi^\alpha(x) e^\alpha(x) \tag{5.8.1}
\]

with component functions \(\psi^1, \ldots, \psi^{\dim S_x}\). The freedom in choosing the basis \((e^\alpha)\) is described by the group of unitary transformations with respect to the indefinite spin inner product. This gives rise to the transformations

\[
\begin{align*}
    e^\alpha(x) &\to \sum_{\beta} U^{-1}(x)^\beta_\alpha e^\beta(x) \\
    \psi^\alpha(x) &\to \sum_{\beta} U(x)^\alpha_\beta \psi^\beta(x) \tag{5.8.2}
\end{align*}
\]

with \(U \in \text{U}(p,q)\). As the basis \((e^\alpha)\) can be chosen independently at each spacetime point, one obtains **local gauge transformations** of the wave functions, where the gauge group is determined to be the isometry group of the spin inner product. The causal action is **gauge invariant** in the sense that it does not depend on the choice of spinor bases.

- **The Pauli exclusion principle** is incorporated in a causal fermion system, as can be seen in various ways. One formulation of the Pauli exclusion principle states that every fermionic one-particle state can be occupied by at most one particle. In this formulation, the Pauli exclusion principle is respected because every wave function can either be represented in the form \(\psi^u\) (the state is occupied) with \(u \in \mathcal{H}\) or it cannot be represented as a physical wave function (the state is not occupied). Via these two conditions, the fermionic projector encodes for every state the occupation numbers 1 and 0, respectively, but it is impossible to describe higher occupation numbers.

More technically, one may obtain the connection to the fermionic Fock space formalism by choosing an orthonormal basis \(u_1, \ldots, u_f\) of \(\mathcal{H}\) and forming the \(f\)-particle Hartree-Fock state

\[
\Psi := \psi^{u_1} \wedge \cdots \wedge \psi^{u_f}.
\]

Clearly, the choice of the orthonormal basis is unique only up to the unitary transformations

\[
u_i \to \tilde{u}_i = \sum_{j=1}^f U_{ij} u_j \quad \text{with} \quad U \in \text{U}(f).
\]
Due to the anti-symmetrization, this transformation changes the corresponding Hartree-Fock state only by an irrelevant phase factor,

$$\psi^\sim \psi^\sim \cdots = \det U \psi^\sim \psi^\sim \cdots .$$

Thus the configuration of the physical wave functions can be described by a fermionic multi-particle wave function. The Pauli exclusion principle becomes apparent in the total anti-symmetrization of this wave function.

Clearly, the above Hartree-Fock state does not account for quantum entanglement. Indeed, the description of entanglement requires more general Fock space constructions (this will be described in more detail in Chapter 22).

The equivalence principle: Starting from a causal fermion system \((\mathcal{H}, \mathcal{F}, \rho)\), space-time \(M\) is given as the support of the measure \(\rho\). Thus spacetime is a topological space (with the topology on \(M\) induced by the operator norm on \(L(\mathcal{H})\)). In situations when spacetime has a smooth manifold structure, one can describe spacetime by choosing coordinates. However, there is no distinguished coordinate systems, giving rise to the freedom of performing general coordinate transformations. The causal action as well as all the constraints are invariant under such transformations. In this sense, the equivalence principle is implemented in the setting of causal fermion systems.

However, other physical principles are missing. For example, the principle of locality is not included. Indeed, the causal action principle is non-local, and locality is recovered only in the continuum limit. Moreover, our concept of causality is quite different from causation (in the sense that the past determines the future) or microlocality (stating that the observables of spacelike separated regions must commute).
5.9. A Summary of the Basic Concepts and Objects

In this chapter we summarize all important concepts of the preceding chapters. You may use this as a reference list for frequently used concepts and objects.

<table>
<thead>
<tr>
<th>Basic concept</th>
<th>Summary and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Causal fermion system</strong></td>
<td>A separable Hilbert space $\mathcal{H}$, a natural number $n \in \mathbb{N}$, the set $\mathcal{F}$ of linear operators on $\mathcal{H}$ with at most $n$ positive and $n$ negative eigenvalues as well as a measure $\rho$ defined on a $\sigma$-algebra on $\mathcal{F}$ forms a causal fermion system.</td>
</tr>
<tr>
<td><strong>Spacetime</strong> $M$</td>
<td>By definition, we describe spacetime by the support of our universal measure $M := \text{supp}(\rho)$.</td>
</tr>
</tbody>
</table>

**Remarks:**

- The structure of a causal fermion system provides a general framework for describing generalized spacetimes. Concrete physical systems correspond to specific choices of $\mathcal{H}$, $n$ and the measure $\rho$.
- In all cases of physical interest, we consider $\mathcal{H}$ as the physical Hilbert space of wave functions.
- We are mainly interested in the case $n = 2$ (at most two positive and two negative eigenvalues). This case allows for the description of Dirac spinors in four-dimensional spacetimes.
- All points $x \in M$ are linear operators on $\mathcal{H}$. This fact implies that our spacetime is endowed with more structures and contains additional information.
- In order to describe systems in Minkowski space, we identify spacetime points $x \in M$ with corresponding points in Minkowski space $\mathcal{M}$ via a mapping $F^\varepsilon : \mathcal{M} \to M$ (for more details see (5.4.5)).
The universal measure \( \rho \) in Definition 5.3.1 is the most important object of the theory. It describes spacetime as well as all objects therein.

**Remarks:**
- A lot of structure is encoded in the measure \( \rho \). In particular, it describes the behavior of spacetime on microscopic scales (Planck scale).
- In Minkowski space we get the measure as the push-forward of the Minkowski volume measure \( d\mu = d^4x \), i.e. we set \( \rho = F^\varepsilon_\ast \mu \).

The causal action

We define a Lagrangian \( \mathcal{L}(x, y) \) for two spacetime points \( x \) and \( y \) using the eigenvalues \( (\lambda_{xy}^i)_{i=1,...,2n} \) of the product \( xy \), which is an operator of the rank at most \( 2n \). The Lagrangian is given by

\[
\mathcal{L}(x, y) := \frac{1}{4n} \sum_{i,j}^{2n} (|\lambda_{xy}^i| - |\lambda_{xy}^j|)^2.
\]

Finally, the causal action is defined by taking the double integral \( S(\rho) := \iint_{\mathcal{M} \times \mathcal{M}} \mathcal{L}(x, y) d\rho(x) d\rho(y) \).

**Remarks:**
- It may be that the rank of the operator \( xy \) is smaller than \( 2n \). In this case, some of the eigenvalues \( \lambda_{xy}^1, \ldots, \lambda_{xy}^{2n} \) are zero.
- The action depends nonlinearly on the universal measure \( \rho \). Since \( \rho \) describes spacetime and all objects therein, the action also depends on spacetime and on all these objects.
The causal action principle states that measures describing physical systems must be minimizers of the causal action under variations of \( \rho \), respecting the constraints (5.5.3), (5.5.4) and (5.5.5).

Remarks:
- The Euler-Lagrange equations corresponding to the causal action principle are the physical equations of the theory.
- By varying the measure \( \rho \), we also vary spacetime as well as all structures therein.

Every vector \( u \in \mathcal{H} \) can be represented in spacetime by the physical wave function \( \psi^u \) defined by \( \psi^u(x) = \pi_x u \in S_x \), where \( \pi_x \) denotes the orthogonal projection in \( \mathcal{H} \) on the subspace \( x(\mathcal{H}) \subset \mathcal{H} \).

The kernel of the fermionic projector gives relations between spacetime points. In particular, it encodes the causal structure and the geometry of spacetime.
- In order to compute the Lagrangian, it is useful to form the closed chain \( A(x,y) := P(x,y)P(y,x) \).
Exercises

Exercise 5.1. (*A causal fermion system on \( \ell_2 \)) Let \( \mathcal{H} = \ell_2 \) the Hilbert space of square-summable complex-valued sequences, equipped with the scalar product

\[
(u|v) = \sum_{i=1}^{\infty} \bar{u}_i v_i, \quad u = (u_i)_{i \in \mathbb{N}}, \quad v = (v_i)_{i \in \mathbb{N}}.
\]

For any \( k \in \mathbb{N} \), let \( x_k \in \mathcal{L}(\mathcal{H}) \) the operator defined by

\[
(x_k u)_k := u_{k+1}, \quad (x_k u)_{k+1} := u_k, \quad (x_k u)_i = 0 \text{ for } i \notin \{k, k+1\}.
\]

In other words,

\[
x_k u = \left( 0, \ldots, 0, u_{k+1}, u_k, 0, \ldots \right)
\]

Finally, let \( \mu \) the counting measure on \( \mathbb{N} \) (i.e. \( \mu(X) = |X| \) equals the cardinality of \( X \subset \mathbb{N} \).)

(a) Show that every operator \( x_k \) has rank two, is symmetric, and has one positive and one negative eigenvalue. Make yourself familiar with the concept that every operator is a point in \( F \) for spin dimension \( n = 1 \).

(b) Let \( F : \mathbb{N} \to \mathcal{F} \) be the mapping which to every \( k \) associates the corresponding operator \( x_k \). Show that the push-forward measure \( \rho = F_* \mu \) defined by \( \rho(\Omega) := \mu(F^{-1}(\Omega)) \) defines a measure on \( \mathcal{F} \). Show that this measure can also be characterized by

\[
\rho(\Omega) = |\{ k \in \mathbb{N} : x_k \in \Omega \}|.
\]

(c) Show that \( (\mathcal{H}, \mathcal{F}, \rho) \) is a causal fermion system of spin dimension one.

(d) Show that the support of \( \rho \) consists precisely of all the operators \( x_k \). What is spacetime \( M \)? What is the causal structure on \( M \)? What is the resulting causal action?

Exercise 5.2. (*On the trace constraint) This exercise shows that the trace constraint ensures that the action is non-zero. Let \( (\mathcal{H}, \mathcal{F}, \rho) \) be a causal fermion system of spin dimension \( n \).

(a) Assume that \( \text{tr}(x) \neq 0 \). Show that \( \mathcal{L}(x, x) > 0 \). (For a quantitative statement of this fact in the setting of discrete spacetimes see \[39\] Proposition 4.3.)

(b) Assume that \( \int_{\mathcal{F}} \text{tr}(x) \, d\rho \neq 0 \). Show that \( S(\rho) > 0 \).

Exercise 5.3. (*Well-posedness of the causal action principle) This exercise explains why the causal action principle is ill-posed if \( \dim \mathcal{K} = \infty \) and \( \rho(\mathcal{F}) < \infty \).

(a) Let \( \mathcal{H}_0 \) be a finite-dimensional Hilbert space of dimension \( n \) and \( (\mathcal{H}_0, \mathcal{F}_0, \rho_0) \) be a causal fermion system of finite total volume \( \rho_0(\mathcal{F}_0) < \infty \). Let \( \iota : \mathcal{H}_0 \to \mathcal{H} \) be an isometric embedding of Hilbert spaces. Construct a causal fermion system \( (\mathcal{H}, \mathcal{F}, \rho) \) which has the same action, the same total volume and the same values for the trace and boundedness constraints as the causal fermion system \( (\mathcal{H}_0, \mathcal{F}_0, \rho_0) \).

(b) Let \( \mathcal{H}_1 := \mathcal{H}_0 \oplus \mathcal{H}_0 \). Construct a causal fermion system \( (\mathcal{H}_1, \mathcal{F}_1, \rho_1) \) which has the same total volume and the same value of the trace constraint as \( (\mathcal{H}_0, \mathcal{F}_0, \rho_0) \) but a smaller action and a smaller value of the boundedness constraint.

**Hint:** Let \( F_{1/2} : L(\mathcal{H}_0) \to L(\mathcal{H}_1) \) be the linear mappings

\[
F_1(A)(u \oplus v) := (Au) \oplus 0, \quad F_2(A)(u \oplus v) := 0 \oplus (Au).
\]
Show that $F_{1/2}$ maps $\mathcal{F}_0$ to $\mathcal{F}_1$. Define the measure $\rho_1$ by

$$\rho_1 = \frac{1}{2}((F_1)_*\rho_0 + (F_2)_*\rho_0).$$

(c) Iterate the construction in (ii) and apply (i) to obtain a sequence of universal measures on $\mathcal{F}$ of fixed total volume and with fixed value of the trace constraint, for which the action and the values of the boundedness constraint tend to zero. Do these universal measures converge? If yes, what is the limit?

**EXERCISE 5.4. (On the spectrum of the closed chain)** This exercise is devoted to analyzing general properties of the spectrum of the closed chain.

(a) We let $x$ and $y$ be symmetric operators of finite rank on a Hilbert space $(\mathcal{H}, \langle \cdot \mid \cdot \rangle)$. Show that there is a finite-dimensional subspace $I \subset \mathcal{H}$ on which both $x$ and $y$ are invariant. By choosing an orthonormal basis of $I$ and restricting the operators to $I$, we may represent both $x$ and $y$ by Hermitian matrices. Therefore, the remainder of this exercise is formulated for simplicity in terms of Hermitian matrices.

(b) Show that for any matrix $Z$, the characteristic polynomials of $Z$ and of its adjoint $Z^*$ (being the transposed complex conjugate matrix) are related by complex conjugation, i.e.

$$\det(Z^* - \lambda \mathbb{1}) = \overline{\det(Z - \lambda \mathbb{1})}.$$

(c) Let $X$ and $Y$ be symmetric matrices. Show that the characteristic polynomials of the matrices $XY$ and $YX$ coincide.

(d) Combine (b) and (c) to conclude that the characteristic polynomial of $XY$ has real coefficients, i.e.

$$\det(XY - \lambda \mathbb{1}) = \overline{\det(XY - \lambda \mathbb{1})}.$$  \hspace{1cm} (5.9.1)

This result is well-known in the theory of indefinite inner product spaces (see for example the textbooks [15, 85] or [39, Section 3]). In order to derive it from (5.9.1), one can proceed as follows: First, represent the indefinite inner product in the form $\langle \cdot \mid \cdot \rangle = \langle \cdot \mid S \cdot \rangle$, where $\langle \cdot \mid \cdot \rangle$ is a scalar product and $S$ is an invertible operator which is symmetric (with respect to this scalar product). Next, show that the operator $B := A_{xy}S$ is symmetric (again with respect to this scalar product). Finally, write the closed chain as $A_{xy} = BS^{-1}$ and apply (5.9.1).

**EXERCISE 5.5. (Regular points)** Let $x \in \mathcal{F}$ have $p(x) \leq n$ negative and $q(x) \leq n$ positive eigenvalues. The pair $\text{sign}(x) := (p(x), q(x))$ is referred to as the signature of $x$. The operator $x$ is said to be regular if $\text{sign}(x) = (n, n)$. The goal of this exercise is to show that the set $\mathcal{F}_{\text{reg}}$ of regular points is open in $\mathcal{F}$. Let us define the positive and negative components of $x$ as the operators

$$x_+ := \frac{x + |x|}{2}, \quad x_- := \frac{x - |x|}{2}, \quad |x| := \sqrt{x^2}.$$

From the functional calculus it follows that $x \cdot |x| = |x| \cdot x$. Prove the following statements.
(a) Let \( \{e_i, \, i = 1, \ldots, m\} \) be an orthogonal set. Show that any vector set \( \{h_i, \, i = 1, \ldots, m\} \) which fulfills the following condition is linearly independent,

\[
\|e_i - h_i\| < \frac{\inf\{\|e_i\|, \, i = 1, \ldots, m\}}{m} \quad \text{for all } i = 1, \ldots, m.
\]

(b) For every \( x \in \mathcal{F} \),

\[
x(\text{im} \, x_\pm) \subset \text{im} \, x_\pm \quad \text{and} \quad x_+ x_- = 0.
\]

Moreover, \( x|_{\text{im} \, x_-} \) and \( x|_{\text{im} \, x_+} \) are negative and positive definite, respectively.

(c) Let \( x_0 \in \mathcal{F} \). Then there is an orthonormal set \( \{e_i \mid i = 1 \ldots \dim S_{x_0}\} \) of eigenvectors of \( x_0 \) such that

\[
\langle e_i \mid x_0 e_i \rangle < 0 \quad \text{for all } i \leq p(x_0), \quad \langle e_i \mid x_0 e_i \rangle > 0 \quad \text{for all } p(x_0) < i \leq q(x_0).
\]

(d) The following functions are continuous,

\[
f_i : B_r(x_0) \ni x \mapsto f_i(x) := \begin{cases} 
  x_+ e_i & i \leq p(x_0) \\
  x_+ e_i & p(x_0) < i \leq p(x_0) + q(x_0).
\end{cases}
\]

\textit{Hint: You can use the general inequality } \|A| - |B|\| \leq \|A^2 - B^2\|.

(e) There is a \( r > 0 \) such that \( p(x) \geq p(x_0) \) and \( q(x) \geq q(x_0) \) for every \( x \in B_r(x_0) \).

\textit{Hint: Use the statements above.}

(f) Conclude that \( \mathcal{F}^{\text{reg}} \) is an open subset of \( \mathcal{F} \).

\textbf{Exercise 5.6. (On the spectrum of the closed chain - part 2)} Let \( (\mathcal{H}, \mathcal{F}, \rho) \) be a causal fermion system and \( x, y \in \mathcal{F} \). For the closed chain

\[
A_{xy} := P(x, y)P(y, x) : (S_x, \langle \cdot, \cdot \rangle_x) \to (S_x, \langle \cdot, \cdot \rangle_x),
\]

the mathematical setting analyzed in Exercise 3.3 is somewhat different, because \( A_{xy} \) is a symmetric operator on an indefinite inner product space. On the other hand, we know that \( A_{xy} \) is isospectral to \( xy \). Indeed, the symmetry result in Exercise 3.3-(iv) can be used to prove a corresponding statement for the closed chain:

\[
\det(A_{xy} - \lambda I) = 0 \iff \det(A_{xy} - \overline{\lambda} I) = 0.
\]

This result is well-known in the theory of indefinite inner product spaces. In order to derive it from Exercise 3.3-(iv), one can proceed as follows: First, represent the indefinite inner product in the form \( \langle \cdot, \cdot \rangle = \langle \cdot, S \cdot \rangle \), where \( \langle \cdot, \cdot \rangle \) is a scalar product and \( S \) is an invertible operator which is symmetric (with respect to this scalar product). Next, show that the operator \( B := A_{xy}S \) is symmetric (again with respect to this scalar product). Finally, write the closed chain as \( A_{xy} = BS^{-1} \) and apply Exercise 3.3 (iv).

\textbf{Exercise 5.7. (A causal causal fermion system on } \ell_2 \text{ - part 2)} We return to the example of Exercise 5.1. This time we equip it with a \textit{Krein structure}.

(a) For any \( k \in \mathbb{N} \), construct the spin space \( S_{x_k} \) and its spin scalar product.

(b) Given a vector \( u \in \mathcal{H} \), what is the corresponding wave function \( \psi^u \)? What is the Krein inner product \( \langle \cdot, \cdot \rangle \)?

(c) What is the topology on the Krein space \( \mathcal{K} \)? Does the wave evaluation operator \( \Psi : u \mapsto \psi^u \) give rise to a well-defined and continuous mapping \( \Psi : \mathcal{H} \to \mathcal{K} \)? If yes, is it an embedding? Is it surjective?

(d) Repeat part (c) of this exercise for the causal fermion system obtained if the operators \( x_k \) are multiplied by \( k \), i.e.

\[ x_k u := (0, \ldots, 0, k u_{k+1}, k u_k 0, \ldots). \]
EXERCISE 5.8. (Time direction) The ability to distinguish between past and future can be described in mathematical terms by the existence of an antisymmetric functional $T : \mathcal{M} \times \mathcal{M} \to \mathbb{R}$. One then says that

\[
\begin{cases}
y \text{ lies in the future of } x & \text{if } T(x, y) > 0 \\
y \text{ lies in the past of } x & \text{if } T(x, y) < 0.
\end{cases}
\]

Can you think of a simple non-trivial example of such a functional which involves only products and linear combinations of the spacetime operators and the orthogonal projections on the corresponding spin spaces?

EXERCISE 5.9. (Embedding of $S_x \mathcal{M}$ into $S_{F(x)}$) The goal of this exercise is to explain how the fibers of the spinor bundle $S \mathcal{M}$ are related to the spin spaces $S_x$ of the corresponding causal fermion system. In order to keep the setting as simple as possible, we let $(\mathcal{M}, g)$ be Minkowski space and $H$ a finite-dimensional subspace of the Dirac solution space $\mathcal{H}_m$, consisting of smooth wave functions of spatially compact support, i.e.

$$\mathcal{H} \subset C^\infty(\mathcal{M}, S \mathcal{M}) \cap \mathcal{H}_m \text{ finite-dimensional}.$$

We again let $F(x)$ be the local correlation operators, i.e.

$$\langle \psi | F(x) \psi \rangle = -\langle \psi(x) | \phi(x) \rangle \quad \text{for all } \psi, \phi \in \mathcal{H}$$

(since $\mathcal{H}$ consists of smooth functions, we may leave out the regularization operators).

Defining the measure again by $d\rho = F^*(d^4x)$, we again obtain a causal fermion system of spin dimension $n = 2$. We next introduce the evaluation map $e_x$ by

$$e_x : \mathcal{H} \to S_x \mathcal{M}, \quad e_x(\psi) = \psi(x).$$

Restricting the evaluation mapping to the spin space $S_{F(x)}$ at the spacetime point $F(x)$ (defined as in the lecture as the image of the operator $F(x)$), we obtain a mapping

$$e_x|_{S_{F(x)}} : S_{F(x)} \to S_x \mathcal{M}.$$

(a) Show that $e_x|_{S_{F(x)}}$ is an isometric embedding.

(b) Show that for all $u \in \mathcal{H}$ and $x \in \mathcal{M}$,

$$e_x|_{S_{F(x)}}(\psi^u(F(x))) = u(x).$$

EXERCISE 5.10. (Identification of $S \mathcal{M}$ with $S \mathcal{M}$) In the setting of the previous exercise, we now make two additional assumptions:

(i) The mapping $F : \mathcal{M} \to \mathcal{F}$ is injective and its image is closed in $\mathcal{F}$.
(ii) The resulting causal fermion system is regular in the sense that for all $x \in \mathcal{M}$, the operator $F(x)$ has rank $2n$.

Using the results of the previous exercise, explain how the following objects can be identified:

(a) $x$ with $F(x)$
(b) $\mathcal{M}$ with $M$
(c) The spinor space $S_x \mathcal{M}$ with the corresponding spin space $S_{F(x)}$
(d) $u \in \mathcal{H}$ with its corresponding physical wave function $\psi^u$

EXERCISE 5.11. (The space $C^0(M, S \mathcal{M})$) A wave function $\psi$ is defined as a mapping from $M$ to $H$ such that $\psi(x) \in S_x$ for all $x \in M$. It is most convenient to define continuity
of a wave function by the requirement that for all \( x \in M \) and for every \( \varepsilon > 0 \) there is \( \delta > 0 \) such that
\[
\| \sqrt{|y|} \psi(y) - \sqrt{|x|} \psi(x) \|_{\mathcal{H}} < \varepsilon \quad \text{for all } y \in M \text{ with } \| y - x \| \leq \delta.
\]
Show that, using this definition, every physical wave function is continuous. Thus, denoting the space of continuous wave functions by \( C^0(M, SM) \), we obtain an embedding \( \mathcal{H} \hookrightarrow C^0(M, SM) \).

**Hint:** You may use the inequality
\[
\| \sqrt{|y|} - \sqrt{|x|} \| \leq \| y - x \|^{\frac{1}{2}} \| y + x \|^{\frac{1}{2}}.
\]

**Exercise 5.12.** *(A causal fermion system in \( \mathbb{R}^3 \)) We choose \( \mathcal{H} = \mathbb{C}^2 \) with the canonical scalar product. Moreover, we choose let \( \mathcal{M} = S^2 \subset \mathbb{R}^3 \) and \( d\mu \) the Lebesgue measure on \( \mathcal{M} \). Consider the mapping
\[
F : \mathcal{M} \rightarrow \mathcal{L}(\mathcal{H}), \quad F(p) = 2 \sum_{\alpha=1}^{3} p^\alpha \sigma^\alpha + 1,
\]
where \( \sigma^\alpha \) are the three Pauli matrices \((1.3.4)\).

(a) Show that for every \( p \in S^2 \),
\[
\text{tr} \left( F(p) \right) = 2, \quad \text{tr} \left( F(p)^2 \right) = 10.
\]

Conclude that the eigenvalues of \( F(p) \) are equal to \( 1 \pm 2 \).

(b) We introduce the measure \( \rho \) as the push-forward measure \( \rho = F_* \mu \) (i.e. \( \rho(\Omega) := \mu(F^{-1}(\Omega)) \)). Show that \( (\mathcal{H}, F, \rho) \) is a causal fermion system of spin dimension one.

(b) Show that the support of \( \rho \) coincides with the image of \( F \). Show that it is is homeomorphic to \( S^2 \).

We refer to this example as a *Dirac sphere*. This example is also referred to as the *Dirac sphere*; this and other similar examples can be found in [40, Examples 2.8 and 2.9] or [53, Example 2.2].
Causal Variational Principles

The causal action principle as introduced in Section 5.5 has quite a rich structure and is rather involved. Therefore, it is difficult to analyze it in full generality in one step. It is preferable to begin with special cases and simplified situations, and to proceed from there step by step. In fact, doing so leads to a whole class of variational principles, referred to as causal variational principles. These different variational principles capture different features and aspects of the causal action principle. Proceeding in this way also gives a better understanding of the physical meaning of the different structures of a causal fermion system and of the interaction as described by the causal action principle. We now give an overview of the different settings considered so far. This has the advantage that in the later chapters of this book, we can always work in the setting which is most suitable for the particular question in mind. Moreover, for pedagogical reasons, in this book we shall sometimes idealize the setting for example by assuming for technical simplicity that the Lagrangian is smooth.

6.1. The Causal Variational Principle on the Sphere

Clearly, the trace constraint (5.5.4) and the boundedness constraint (5.5.5) complicate the analysis. Therefore, it might be a good idea to consider a simplified setting where these constraints are not needed. This can be accomplished most easily by prescribing the eigenvalues of the operators in \( F \). This method was first proposed in [40], Section 2, in a slightly different formulation. We now explain the method in a way which fits best to our setting. Given \( n \in \mathbb{N} \), we choose real numbers \( \nu_1, \ldots, \nu_{2n} \) with

\[
\nu_1 \leq \cdots \leq \nu_n \leq 0 \leq \nu_{n+1} \leq \cdots \leq \nu_{2n}.
\]  

(6.1.1)

We let \( F \) be the set of all symmetric operators on \( \mathcal{H} \) of rank \( 2n \) whose eigenvalues (counted with multiplicities) coincide with \( \nu_1, \ldots, \nu_{2n} \). If \( \mathcal{H} \) is finite-dimensional, the set \( F \) is compact. This is the reason why it is sensible to minimize the causal action (5.5.2) keeping only the volume constraint (5.5.3), which for simplicity we implement by restricting attention to normalized measures,

\[
\rho(F) = 1.
\]  

(6.1.2)

The simplest interesting case is obtained by choosing the spin dimension \( n = 1 \) and the Hilbert space \( \mathcal{H} = \mathbb{C}^2 \). We denote the eigenvalues \( \nu_1 \) and \( \nu_2 \) in (6.1.1) by

\[
\nu_{1/2} = 1 \pm \tau \quad \text{with} \quad \tau > 1.
\]

Then \( F \) consists of all Hermitian \( 2 \times 2 \)-matrices \( F \) which have eigenvalues \( \nu_1 \) and \( \nu_2 \). These matrices can be represented using the Pauli matrices by

\[
F = \tau \vec{x} \vec{\sigma} + \mathbf{1} \quad \text{with} \quad \vec{x} \in S^2 \subset \mathbb{R}^3.
\]  

(6.1.3)

Thus the set \( F \) can be identified with the unit sphere \( S^2 \).

The volume constraint (5.5.3) can be implemented most easily by restricting attention to normalized regular Borel measures on \( F \) (i.e. measures with \( \rho(F) = 1 \)). Such a measure
can be both continuous, discrete or a mixture. Examples of continuous measures are obtained by multiplying the Lebesgue measure on the sphere by a non-negative smooth function. By a discrete measure, on the other hand, we here mean a weighted counting measure, i.e. a measure obtained by inserting weight factors into (5.2.2),

\[ \rho = \sum_{i=1}^{L} c_i \delta_{x_i} \quad \text{with} \quad x_i \in \mathcal{F}, \quad c_i \geq 0 \quad \text{and} \quad \sum_{i=1}^{L} c_i = 1. \] (6.1.4)

In this setting, a straightforward computation yields for the Lagrangian (5.5.1) (see Exercise 6.2)

\[ \mathcal{L}(x, y) = \max(0, \mathcal{D}(x, y)) \quad \text{with} \]

\[ \mathcal{D}(x, y) = 2\tau^2 \left(1 + \langle x, y \rangle \right) \left(2 - \tau^2 \left(1 - \langle x, y \rangle \right) \right), \] (6.1.5)

and \( \langle x, y \rangle \) denotes the Euclidean scalar product of two unit vectors \( x, y \in S^2 \subset \mathbb{R}^3 \) (thus \( \langle x, y \rangle = \cos \vartheta \), where \( \vartheta \) is the angle between \( x \) and \( y \)).

The resulting so-called causal variational principle on the sphere was introduced in [40, Chapter 1] and analyzed in [75, Sections 2 and 5] and more recently in [9]. We now explain a few results from these papers.

First of all, the causal variational principle on the sphere is well-posed, meaning that the minimum is attained in the class of all normalized regular Borel measures. The minimizing measure is not unique; indeed, there are typically many minimizers. The study in [75, Section 2] gives the following numerical result: If \( \tau > \sqrt{2} \), every minimizing measure is a weighted counting measure (6.1.4).

Thus, although we minimize over all regular Borel measures (i.e. measures which can have discrete and continuous components), a minimizing measure always describes a discrete spacetime consisting of a finite number of spacetime points. This result can be interpreted physically as an indication that the causal action principle should give rise to discrete spacetime structures. More details on the numerical findings and the physical interpretation can be found in the review [51, Section 4].

To some extent, the above numerical result could be underpinned by analytic results. First, it was proven in [75, Section 5.1] that the support has an empty interior:

**Theorem 6.1.1.** If \( \tau > \sqrt{2} \), the support of any minimizing measure does not contain an open subset of \( S^2 \).

Intuitively speaking, this result shows that the spacetime points are a subset of the sphere of dimension strictly smaller than two. More recently, it was shown in [9] that the dimension of the support is even strictly smaller than one:

**Theorem 6.1.2.** In the case \( \tau > \sqrt{6} \), the support of any minimizing measure is totally disconnected and has Hausdorff dimension at most \( 6/7 \).

### 6.2. Causal Variational Principles in the Compact Setting

Generalizing the causal variational principle on the sphere, one can replace \( \mathcal{F} \) by a smooth compact manifold of dimension \( m \geq 1 \). The Lagrangian \( \mathcal{L} \) can be defined in analogy to (6.1.5) as the positive part of a smooth function \( \mathcal{D} \), i.e.

\[ \mathcal{L}(x, y) = \max(0, \mathcal{D}(x, y)) \quad \text{with} \quad \mathcal{D} \in C^\infty(\mathcal{F} \times \mathcal{F}, \mathbb{R}). \] (6.2.1)
We usually assume that
(i) $\mathcal{L}$ is symmetric: $\mathcal{L}(x,y) = \mathcal{L}(y,x)$ for all $x, y \in \mathcal{F}$.
(ii) $\mathcal{L}$ is strictly positive on the diagonal: $\mathcal{L}(x,x) > 0$ for all $x \in \mathcal{F}$.
The causal variational principle is to minimize the causal action
\[ S = \int_{\mathcal{F}} d\rho(x) \int_{\mathcal{F}} d\rho(y) \mathcal{L}(x,y) \] (6.2.2)
under variations of the measure $\rho$ in the class of all regular Borel measures on $\mathcal{F}$ which are normalized, i.e.
\[ \rho(\mathcal{F}) = 1. \] (6.2.3)
This so-called compact setting was introduced in [75, Section 1.2]. It is the preferable choice for studying phenomena for which the detailed form of the Lagrangian as well as the constraints of the causal action principle are irrelevant.

Giving a minimizing measure $\rho$, the Lagrangian induces on spacetime $M := \text{supp}\, \rho$ a causal structure. Namely, two spacetime points $x, y \in M$ are said to be timelike and spacelike separated if $\mathcal{L}(x,y) > 0$ and $\mathcal{L}(x,y) = 0$, respectively. But of course, compared to the causal action principle, spin spaces and physical wave functions (as defined in Section 5.6) are missing in this setting.

We point out that in (6.2.1) we merely assumed that the function $D$ is smooth. The Lagrangian, however, is Lipschitz continuous. It is in general non-differentiable on the boundary of the light cone as defined by the level set $D(x,y) = 0$. In order to avoid differentiability issues, it is sometimes useful to simplify the setting even further by assuming that the Lagrangian itself is smooth,
\[ \mathcal{L} \in C^\infty(\mathcal{F} \times \mathcal{F}, \mathbb{R}^+) . \] (6.2.4)
This is the so-called smooth setting. Clearly, the Lagrangian of the causal action (5.5.1) is not smooth, and this fact is indeed responsible for interesting effects like the results on the singular support in [75, 9]. In view of these results, the smoothness assumption (6.2.4) is a mathematical idealization.

The assumptions that $\mathcal{F}$ is a smooth manifold and that the function $D$ in (6.2.1) is smooth are convenient and avoid certain technicalities. But these assumptions are much more than what is needed for the analysis. More generally, one can choose $\mathcal{L}$ as a non-negative continuous function,
\[ \mathcal{L}(x,y) \in C^0(\mathcal{F} \times \mathcal{F}, \mathbb{R}^+) . \] (6.2.5)
Going one step further, one may relax the continuity of the Lagrangian by the condition that $\mathcal{L}$ be lower semi-continuous, i.e. that for all sequences $x_n \to x$ and $y_{n'} \to y$,
\[ \mathcal{L}(x,y) \leq \liminf_{n,n' \to \infty} \mathcal{L}(x_n,y_{n'}) . \]
Since the Lagrangian of the causal action (5.5.1) is continuous, lower semi-continuity is an unphysical generalization. Nevertheless, this setting is useful for two reasons: First, from the point of view of calculus of variations, it is a natural generalization to which most methods still apply. And second, lower semi-continuous Lagrangians are convenient for formulating explicit examples (like the lattice model in [64, Section 5]).

We finally note that also the assumption of $\mathcal{F}$ being a smooth manifold can be relaxed. From the point of view of calculus of variations, the right setting is to assume that $\mathcal{F}$ is a compact topological Hausdorff space.
In this book, for pedagogical reasons we do not aim for the highest generality and minimal smoothness and regularity assumptions. An introduction to a more general and more abstract setting can be found in [68 Section 3].

6.3. Causal Variational Principles in the Non-Compact Setting

In the compact setting, spacetime $M$ is a compact subset of $\mathcal{F}$. This is not suitable for describing situations when spacetime has an asymptotic future or past or when spacetime has singularities (like at the big bang or inside a black hole). For studying such situations, it is preferable to work in the so-called non-compact setting introduced in [64, Section 2.1]. Thus we now let $\mathcal{F}$ be a non-compact smooth manifold of dimension $m \geq 1$. We choose the Lagrangian again in the form (6.2.1) or (6.2.5), again with the properties (i) and (ii) on page 103. In the non-compact setting, it is not sensible to work with normalized measures. Instead, the total volume $\rho(\mathcal{F})$ is infinite. In order to introduce a well-defined variational principle, we let $\tilde{\rho}$ be another regular Borel measure on $\mathcal{F}$ which satisfies the conditions

\[ |\tilde{\rho} - \rho| (\mathcal{F}) < \infty \quad \text{and} \quad (\tilde{\rho} - \rho)(\mathcal{F}) = 0 \quad \text{(6.3.1)} \]

(see Definition 2.3.5 in Section 2.3) where $(\tilde{\rho} - \rho)(\mathcal{F})$ is defined as $\mu^+ (\mathcal{F}) - \mu^- (\mathcal{F})$). We then consider the difference of the actions defined by

\[
\left( S(\tilde{\rho}) - S(\rho) \right) = \int_{\mathcal{F}} d(\tilde{\rho} - \rho)(x) \int_{\mathcal{F}} d\rho(y) \mathcal{L}(x,y) \\
+ \int_{\mathcal{F}} d\rho(x) \int_{\mathcal{F}} d(\tilde{\rho} - \rho)(y) \mathcal{L}(x,y) + \int_{\mathcal{F}} d(\tilde{\rho} - \rho)(x) \int_{\mathcal{F}} d(\tilde{\rho} - \rho)(y) \mathcal{L}(x,y). \quad \text{(6.3.2)}
\]

The measure $\rho$ is said to be a minimizer of the causal action with respect to variations of finite volume if this difference is non-negative for all $\tilde{\rho}$ satisfying (6.3.1),

\[
(S(\tilde{\rho}) - S(\rho)) \geq 0. \quad \text{(6.3.3)}
\]

Exactly as mentioned at the end of the previous section, the assumption that $\mathcal{F}$ is a smooth manifold can be weakened. From the point of view of calculus of variations, the right setting is to assume that $\mathcal{F}$ is a $\sigma$-locally compact topological Hausdorff space (for details see again [68 Section 3]).

6.4. The Local Trace is Constant

Causal variational principles as introduced in the previous sections are of interest in their own right as a novel class of nonlinear variational principles. But, being primarily interested in causal fermion systems, it is an important task for us to get a concise mathematical connection to the causal action principle. In preparation, we now analyze the trace constraint and derive a first result on minimizing measures of the causal action principle. We do this at such an early stage of this book because the result can be used to simplify the setup of causal fermion systems, getting the desired connection to causal variational principles (see Section 6.5 below). The following result was first obtained in [12] (albeit with a different method); see also [42 Proposition 1.4.1]. For technical simplicity, we here only consider the finite-dimensional setting.

**Proposition 6.4.1.** Consider the causal variational principle in the finite-dimensional setting $\dim \mathcal{F} < \infty$. Let $\rho$ be a minimizer of finite total volume, $\rho(\mathcal{F}) < \infty$. Then there is a real constant $c$ such that

\[
\text{tr}(x) = c \quad \text{for all} \ x \in M := \text{supp} \rho. \quad \text{(6.4.1)}
\]
We often refer to \( \text{tr}(x) \) as the *local trace* at the point \( x \).

**Proof of Proposition 6.4.1.** The method is to construct a suitable variation of the measure

\[
(\rho_\tau)_{\tau \in (-\delta,\delta)} \quad \text{with} \quad \rho_0 = \rho
\]

(for some \( \delta > 0 \)). The variation must satisfy the constraints. Then we can make use of the fact that \( \rho \) is a minimizer.

For the construction we combine two different methods. One method is to multiply \( \rho \) by a positive function \( f_\tau : M \to \mathbb{R}^+ \),

\[
\rho_\tau = f_\tau \rho \, . \tag{6.4.2}
\]

Clearly, this variation does not change the support of the measure. In order to change the support, one can consider a function \( F_\tau : M \to \mathcal{F} \) and take the push-forward measure,

\[
\rho_\tau = (F_\tau)_* \rho \, . \tag{6.4.3}
\]

Combining these methods, we are led to considering the family of measures

\[
\rho_\tau = (F_\tau)_*(f_\tau \rho) \, . \tag{6.4.4}
\]

The condition \( \rho_0 = \rho \) gives rise to the conditions

\[
f_0 \equiv 1 \quad \text{and} \quad F_0 \equiv 1 \, . \tag{6.4.5}
\]

Finally, we assume that the functions \( f_\tau \) and \( F_\tau \) are defined and smooth in \( \tau \).

The ansatz (6.4.4) is particularly convenient for computations. Namely, by definition of the push-forward measure,

\[
\int_M \mathcal{L}(x,y) \, d\rho_\tau(y) = \int_M \mathcal{L}(x,F_\tau(y)) \, f_\tau(y) \, d\rho(y) 
\]

and similarly for all other integrals. Next we choose \( F_\tau \) in such a way that this integral does not change. To this end we choose

\[
F_\tau(x) = \frac{x}{\sqrt{f_\tau(x)}} \, . \tag{6.4.6}
\]

Using that \( \mathcal{L}(x,y) \) is homogeneous in \( y \) of degree two, it follows that

\[
\int_M \mathcal{L}(x,F_\tau(y)) \, f_\tau(y) \, d\rho(y) = \int_M \mathcal{L}\left(x, \frac{y}{\sqrt{f_\tau(y)}}\right) \, f_\tau(y) \, d\rho(y) \\
= \int_M \mathcal{L}(x,y) \, \frac{1}{f_\tau(y)} \, f_\tau(y) \, d\rho(y) = \int_M \mathcal{L}(x,y) \, d\rho(y) 
\]

Arguing similarly in the variable \( x \), one sees that our variation does not change the action. Since the expression \( |xy|^2 \) is also homogeneous of degree two in \( x \) and \( y \), the above argument also applies to the functional \( \mathcal{T} \), showing that the boundedness constraint is also respected by our variation.

Let us analyze the volume and trace constraints. In order to satisfy the volume constraint, we make the ansatz

\[
f_\tau = 1 + \tau g \, , \tag{6.4.7}
\]

where \( g \) is a bounded function with zero mean,

\[
\int_M g(x) \, d\rho(x) = 0 \quad \text{for all} \ \tau \in (-\delta,\delta) \, . \tag{6.4.8}
\]
We finally consider the variation of the trace constraint:
\[
\int_{\mathcal{F}} \text{tr}(x) \, d(\rho_{\tau} - \rho)(x) = \int_M \text{tr} \left( F_{\tau}(x) \right) f_{\tau}(x) \, d\rho(x) - \int_M \text{tr}(x) \, d\rho(x) \\
= \int_M \text{tr} \left( \frac{x}{\sqrt{f_{\tau}(x)}} \right) f_{\tau}(x) \, d\rho(x) - \int_M \text{tr}(x) \, d\rho(x) \\
= \int_M \text{tr} \left( \sqrt{f_{\tau}(x)} - 1 \right) \, d\rho(x) .
\]

Employing again the ansatz (6.4.7) and differentiating with respect to \( \tau \), we obtain for the first variation
\[
\frac{d}{d\tau} \int_{\mathcal{F}} \text{tr}(x) \, d(\rho_{\tau} - \rho)(x) \bigg|_{\tau=0} = \frac{1}{2} \int_M \text{tr}(x) \, g(x) \, d\rho(x) .
\]

If the local trace is constant, then the last integral vanishes in view of (6.4.8). This shows that for the considered first variation, all the constraints are satisfied and the action is stationary. Conversely, if the local trace is not constant, then by choosing \( g \) appropriately, one can arrange that the first variation of the local trace is strictly positive,
\[
\frac{d}{d\tau} \int_{\mathcal{F}} \text{tr}(x) \, d(\rho_{\tau} - \rho)(x) \bigg|_{\tau=0} =: d > 0 ,
\]
whereas the other constraints are satisfied and the action is again stationary. Transforming the measures according to
\[
\rho_{\tau} \rightarrow (G_{\tau})_{\ast}(\rho_{\tau})
\]
with
\[
G_{\tau}(x) = x \left( \int_K \text{tr}(x) \, d\rho \right) / \left( \int_K \text{tr}(x) \, d\rho + \tau \, d \right) , \tag{6.4.9}
\]
the trace constraint is satisfied to first order. Moreover, as the scaling factor in (6.4.9) is smaller than one, the first variation of the action and of the boundedness constraint are strictly negative, in contradiction to the fact that \( \rho \) is a minimizer. This concludes the proof. \( \square \)

### 6.5. How the Causal Action Principle Fits into the Non-Compact Setting

Under mild technical assumptions on the minimizing measure, the causal action principle for causal fermion systems is a special case of the causal variational principle in the non-compact setting, as we now explain.

Since for minimizers of the causal action principle, all operators in \( M \) have the same trace (see Proposition 6.4.1), we can simplify the setting by restricting attention to linear operators in \( \mathcal{F} \) which have constant trace. Then the trace constraint can be disregarded. We now implement this simplification by modifying our setting. At the same time, we implement the boundedness constraint by a Lagrange multiplier term. Here we apply this method naively by modifying the Lagrangian to
\[
\mathcal{L}_\kappa(x, y) := \frac{1}{4n} \sum_{i,j=1}^{2n} \left( |\lambda_i^x| - |\lambda_j^y| \right)^2 + \kappa \left( \sum_{i=1}^{2n} |\lambda_i^x| \right)^2 , \tag{6.5.1}
\]
where \( \kappa > 0 \) is the Lagrange multiplier. The justification for this procedure as given in [12] is a bit subtle, and for brevity we shall not enter these constructions here. It is important to note that, in contrast to the usual Lagrange multiplier, where a minimizer
under constraints merely gives rise to a critical point of the Lagrangian including the Lagrange multipliers, here we obtain again a minimizer of the effective action (for details see [12, Theorem 3.13]).

Finally, we make a mild technical simplification. A spacetime point \( x \in M \) is said to be regular if \( x \) has the maximal possible rank \( 2n \). Otherwise, the spacetime point is singular. In physical applications, all spacetime points are regular, except maybe at singularities like the center of black holes. With this in mind, we here assume that the causal fermion system is regular in the sense that all spacetime points are regular. This assumption has the advantage that the set of all regular points of \( \mathcal{F} \) is a smooth manifold (see Proposition 3.1.3 in Section 3.1). We remark that, in the case that \( \mathcal{H} \) is infinite-dimensional, the set of regular points of \( \mathcal{F} \) can be endowed with the structure of a Banach manifold (for details see [69, Section 3]).

These considerations lead us to the following setting: Let \( (\mathcal{H}, \langle .|.| \rangle_{\mathcal{H}}) \) be a complex Hilbert space. Moreover, we are given parameters \( n \in \mathbb{N} \) (the spin dimension), \( c > 0 \) (the constraint for the local trace) and \( \kappa > 0 \) (the Lagrange multiplier of the boundedness constraint). We let \( \mathcal{F}^{\text{reg}} \subset L(\mathcal{H}) \) be the set of all symmetric operators \( F \) on \( \mathcal{H} \) with the following properties:

(a) \( F \) has finite rank and (counting multiplicities) has \( n \) positive and \( n \) negative eigenvalues.

(b) The local trace is constant, i.e. \( \text{tr}(F) = c \).

On \( \mathcal{F}^{\text{reg}} \) we again consider the topology induced by the sup-norm on \( L(\mathcal{H}) \). We assume that \( \rho \) is a minimizer of the causal action principle, meaning that the action

\[
S_{\kappa}(\rho) = \iint_{\mathcal{F} \times \mathcal{F}} \mathcal{L}_\kappa(x, y) \, d\rho(x) \, d\rho(y)
\]

is minimal under variations which preserve the total volume. In this way, the causal action principle fits into the framework of causal variational principles in the non-compact setting as introduced in Section 6.5.3. In agreement with (6.2.5), the causal Lagrangian is continuous (in fact, it is even locally Hölder continuous; for details see [69, Section 5.1]). Moreover, it has the desired properties (i) and (ii) on page 103 (it is strictly positive because the Lagrangian can be estimated from below in terms of the local trace; see Exercise 5.2).

In order to avoid misunderstandings, we point out that the above description of causal fermion systems by measures on \( \mathcal{F}^{\text{reg}} \) is not a suitable setting for the existence theory. The reason is that \( \mathcal{F}^{\text{reg}} \) is not closed in \( \mathcal{F} \), because the boundary points in \( \mathcal{F} \) are missing. As a consequence, considering a minimizing sequence \( (\rho_n)_{n \in \mathbb{N}} \) of measures in \( \mathcal{F}^{\text{reg}} \), the limiting measure might well be supported also on \( \mathcal{F} \setminus \mathcal{F}^{\text{reg}} \). For this reason, there is no existence theory for measures on \( \mathcal{F}^{\text{reg}} \). But if a minimizing measure is given, it seems sensible to assume that the resulting causal fermion system is regular. Under this assumption, the analysis of the causal fermion system can be carried out exclusively in \( \mathcal{F}^{\text{reg}} \), whereas \( \mathcal{F} \) is no longer needed. For a convenient and compact notation, in such situations we shall even omit the superscript “reg”, so that \( \mathcal{F} \) denotes the set of all symmetric operators on \( \mathcal{H} \) with the above properties (a) and (b). Moreover, we shall omit the subscript \( \kappa \). Thus, with a slight abuse of notation, we shall denote the Lagrangian including the Lagrange multiplier term (6.5.1) again by \( \mathcal{L} \).
Exercises

Exercise 6.1. (support of a measure) In order to illustrate how to encode geometric information in the support of a measure, let $\mathcal{M} \subset \mathbb{R}^3$ be a smooth surface described in a parametrization $\Phi$. Thus given an open subset $\Omega \subset \mathbb{R}^2$, we consider a smooth injective map
\[
\Phi : \Omega \to \mathbb{R}^3
\]
with the property that $D\Phi|_p : \mathbb{R}^2 \to \mathbb{R}^3$ has rank two for all $p \in \Omega$. Then the surface $\mathcal{M}$ is defined as the image $\Phi(\Omega) \subset \mathbb{R}^3$. We now introduce the measure $\rho$ as the push-forward measure of the Lebesgue measure on $\mathbb{R}^2$. Let $\mu$ be the Lebesgue measure on $\mathbb{R}^2$. We define a set $U \subset \mathbb{R}^3$ to be $\rho$-measurable if and only if its preimage $\Phi^{-1}(U) \subset \mathbb{R}^2$ is $\mu$-measurable. On the $\rho$-measurable sets we define the measure $\rho$ by
\[
\rho(U) = \mu(\Phi^{-1}(U)).
\]
Verify that the $\rho$-measurable sets form a $\sigma$-algebra, and that $\rho$ is a measure. What are the sets of $\rho$-measure zero? What is the support of $\rho$?

Suppose that $\Phi$ is no longer assumed to be injective. Is $\rho$ still a well-defined measure? Is $\rho$ well-defined if $\Phi$ is only assumed to be continuous? What are the minimal regularity assumptions on $\Phi$ needed for the push-forward measure to be well-defined? What is the support of $\rho$ in this general setting?

Exercise 6.2. (Derivation of the causal variational principle on the sphere) We consider the causal fermion systems in the case $n = 1$ and $f = 2$. For a given parameter $\tau > 1$ we introduce the mapping $F : M \to \mathcal{F}$ by
\[
F(\vec{x}) = \tau \vec{x}\vec{\sigma} + \mathbf{1}.
\]
(a) Compute the eigenvalues of the matrix $F(\vec{x})$ and verify that it has one positive and one negative eigenvalue.
(b) Use the identities between Pauli matrices
\[
\sigma^i \sigma^j = \delta^{ij} + i \epsilon^{ijk} \sigma^k,
\]
to compute the matrix product,
\[
F(\vec{x}) F(\vec{y}) = (1 + \tau^2 \vec{x}\vec{y}) \mathbf{1} + \tau (\vec{x} + \vec{y}) \vec{\sigma} + i \tau^2 (\vec{x} \wedge \vec{y}) \vec{\sigma}.
\]
(c) Compute the eigenvalues of this matrix product to obtain
\[
\lambda_{1/2} = 1 + \tau^2 \cos \vartheta \pm \sqrt{1 + \cos \vartheta} \sqrt{2 - \tau^2 (1 - \cos \vartheta)},
\]
where $\vartheta$ denotes the angle $\vartheta$ between $\vec{x}$ and $\vec{y}$.
(d) Verify that if $\vartheta \leq \vartheta_{\text{max}}$ with
\[
\vartheta_{\text{max}} := \arccos \left(1 - \frac{2}{\tau^2}\right),
\]
then the eigenvalues $\lambda_{1/2}$ are both real. Conversely, if $\vartheta > \vartheta_{\text{max}}$, then the eigenvalues form a complex conjugate pair.
(e) Use the formula
\[
\lambda_1 \lambda_2 = \text{det}(F(\vec{x}) F(\vec{y})) = \text{det}(F(\vec{x})) \text{det}(F(\vec{y})) = (1 + \tau^2)^2 (1 - \tau^2)^2 > 0
\]
to conclude that if the eigenvalues $\lambda_{1/2}$ are both real, then they have the same sign.
(f) Combine the above findings to conclude that the causal Lagrangian (5.5.1) can be simplified to (6.1.5).
Exercise 6.3. (The action and boundedness constraint of the Lebesgue measure on the sphere) We consider the causal variational principle on the sphere as introduced in Section 6.1. We let $d\mu$ be the surface area measure, normalized such that $\mu(S^2) = 1$.

(a) Use the formula for the causal Lagrangian on the sphere (6.1.5) to compute the causal action (5.5.2). Verify that
\[
S[F] = \frac{1}{2} \int_0^{\theta_{\text{max}}} \mathcal{L}(\cos \theta) \sin \theta \, d\theta = 4 - \frac{4}{3\tau^2}.
\] (6.5.5)

(b) Show that the functional $T$ is given by
\[
T[F] = 4\tau^2(\tau^2 - 2) + 12 - \frac{8}{3\tau^2}.
\] (6.5.6)

Hence the causal action (6.5.5) is bounded uniformly in $\tau$, although the function $F$, (6.5.2), as well as the functional $T$, (6.5.6), diverge as $\tau \to \infty$.

Exercise 6.4. (A minimizer with singular support) We again consider the causal variational principle on the sphere as introduced in Section 6.1. Verify by direct computation that in the case $\tau = \sqrt{2}$, the causal action of the normalized counting measure supported on the octahedron is smaller than the action of $\mu$. Hint: For $\tau = \sqrt{2}$ the opening angle of the light cone is given by $\theta = 90^\circ$, so that all distinct spacetime points are spacelike separated. Moreover, the causal action of the normalized Lebesgue measure is given in Exercise 6.3 (a).

It turns out that normalized counting measure supported on the octahedron is indeed a minimizer of the causal action. More details and related considerations can be found in [40, 75, 51].

Exercise 6.5. (A causal variational principle on $\mathbb{R}$) We let $\mathcal{F} = \mathbb{R}$ and consider the Lagrangians
\[
\mathcal{L}_2(x,y) = (1 + x^2)(1 + y^2) \text{ and } \mathcal{L}_4(x,y) = (1 + x^4)(1 + y^4).
\] (6.5.7)

We minimize the corresponding causal actions (6.2.2) within the class of all normalized regular Borel measures on $\mathbb{R}$. Show with a direct estimate that the Dirac measure $\delta$ supported at the origin is the unique minimizer of these causal variational principles.

Exercise 6.6. (A causal variational principle on $S^1$) We let $\mathcal{F} = S^1$ be the unit circle parametrized as $e^{i\varphi}$ with $\varphi \in \mathbb{R}$ mod $2\pi$ and consider the Lagrangian
\[
\mathcal{L}(\varphi, \varphi') = 1 + \sin^2 (\varphi - \varphi' \mod 2\pi).
\] (6.5.8)

We minimize the corresponding causal action (6.2.2) within the class of all normalized regular Borel measures on $S^1$. Show by direct computation and estimates that every minimizer is of the form
\[
\rho = \tau \delta(\varphi - \varphi' - \varphi_0 \mod 2\pi) + (1 - \tau) \delta(\varphi - \varphi' - \varphi_0 + \pi \mod 2\pi)
\] (6.5.9)
for suitable values of the parameters $\tau \in [0,1]$ and $\varphi_0 \in \mathbb{R}$ mod $2\pi$. 
CHAPTER 7

The Euler-Lagrange Equations

In classical field theory, the dynamics of the physical system is revealed by analyzing the Euler-Lagrange equations corresponding to the classical action principle. These Euler-Lagrange equations are the physical equations (like the Maxwell or Einstein equations). They have the mathematical structure of partial differential equations. Likewise, for the causal action principle and causal variational principles, the Euler-Lagrange equations are the main analytic structure describing the dynamics. However, they are no longer differential equations but have a quite different form. In this chapter we shall derive the Euler-Lagrange equations and discuss their general structure.

7.1. The Euler-Lagrange Equations

Let \( \rho \) be a minimizer of the causal variational principle in the non-compact setting (more precisely, a minimizer with respect to variations of finite volume; see Section 6.3). We now derive the Euler-Lagrange (EL) equations, following the method in the compact setting \( [75] \), Lemma 3.4. We again define spacetime as the support of \( \rho \),

\[ M := \text{supp} \rho \subset \mathcal{F}. \]

In order to make mathematical sense of the variations, we make the following assumptions:

(i) The measure \( \rho \) is locally finite (meaning that any \( x \in \mathcal{F} \) has an open neighborhood \( U \) with \( \rho(U) < \infty \)).

(ii) The function \( \mathcal{L}(x,.) \) is \( \rho \)-integrable for all \( x \in \mathcal{F} \), giving a bounded continuous function on \( \mathcal{F} \).

We introduce the function

\[ \ell(x) = \int_{\mathcal{F}} \mathcal{L}(x,y) \, d\rho(y) - s : \mathcal{F} \rightarrow \mathbb{R} \text{ bounded and lower semi-continuous}, \] (7.1.1)

where the parameter \( s \in \mathbb{R} \) will be specified below.

**Theorem 7.1.1. (The Euler-Lagrange equations)** Let \( \rho \) be a minimizer of the causal action with respect to variations of finite volume. Then

\[ \ell|_{\text{supp} \rho} = \inf_{\mathcal{F}} \ell. \] (7.1.2)

**Proof.** Given \( x_0 \in \text{supp} \rho \), we choose an open neighborhood \( U \) with \( 0 < \rho(U) < \infty \). For any \( y \in \mathcal{F} \) we consider the family of measures \( (\tilde{\rho}_\tau)_{\tau \in [0,1]} \) given by

\[ \tilde{\rho}_\tau = \chi_{M \setminus U} \rho + (1 - \tau) \chi_U \rho + \tau \rho(U) \delta_y \] (7.1.3)

(where \( \delta_y \) is the Dirac measure supported at \( y \)). Then

\[ \tilde{\rho}_\tau - \rho = -\tau \chi_U \rho + \tau \rho(U) \delta_y = \tau (\rho(U) \delta_y - \chi_U \rho), \] (7.1.4)
implying that \( \tilde{\rho}_\tau \) satisfies the volume constraint. Hence

\[
0 \leq (S(\tilde{\rho}) - S(\rho)) = 2\tau \left( \rho(U) \left( \ell(y) + s \right) - \int_U \left( \ell(x) + s \right) \, d\rho(x) \right) + O(\tau^2).
\]

As a consequence, the linear term must be non-negative,

\[
\ell(y) \geq \frac{1}{\rho(U)} \int_U \ell(x) \, d\rho(x).
\]  

(7.1.5)

Assume that (7.1.2) is false. Then there is \( x_0 \in \text{supp} \rho \) and \( y \in \mathcal{F} \) such that \( \ell(x_0) > \ell(y) \).

Lower semi-continuity of \( \ell \) implies that there is an open neighborhood \( U \) of \( x_0 \) such that \( \ell(x) > \ell(y) \) for all \( x \in U \), in contradiction to (7.1.5). This gives the result. \( \square \)

It is indeed no loss of generality to restrict attention to first variations of the form (7.1.4); for details see Exercise 7.1.

We always choose the parameter \( s \) such that the infimum of \( \ell \) in (7.1.2) is zero. Then the EL equations read

\[
\ell|_{\text{supp} \rho} = \inf_{\mathcal{F}} \ell = 0.
\]  

(7.1.6)

The parameter \( s \) can be understood as “action per volume” (see Exercise 7.2).

7.2. The Restricted Euler-Lagrange Equations in the Smooth Setting

The EL equations (7.1.6) make a statement on the function \( \ell \) even at points \( x \in \mathcal{F} \) which are far away from spacetime \( M \) (see the left of Figure 7.1). In this way, the EL equations contain much more information than conventional physical equations formulated in spacetime. At present, it is unclear how this additional information can be used or interpreted. One way of understanding this situation is to take the point of view that all information on the physical system must be obtained by performing observations or measurements in spacetime, which means that the information contained in \( \ell \) away from \( M \) is inaccessible for principal reasons. Here we shall not take sides or discuss whether or to which extent this point of view is correct. Instead, we simply note that it seems preferable and physically sensible to restrict attention to the function \( \ell \) in an arbitrarily small neighborhood \( U \) of \( M \) in \( \mathcal{F} \) (see the right of Figure 7.1). In practice, this means that we shall evaluate \( \ell \) as well as its derivatives only on \( M \). In this way, the causal action principle gives rise to an interaction described by equations in spacetime.

This concept leads us to the so-called restricted EL equations which we now introduce. For technical simplicity, we assume that the Lagrangian is smooth (see (6.2.4) and the discussion thereafter); for a more general derivation see [64, Section 4]. In this case, the minimality of \( \ell \) implies that the derivative of \( \ell \) vanishes on \( M \). We thus obtain the equations

\[
\ell|_M \equiv 0 \quad \text{and} \quad D\ell|_M \equiv 0
\]  

(7.2.1)
7.3. SYMMETRIES AND SYMMETRIC CRITICALITY

(where $D\ell(p) : T_p\mathcal{F} \to \mathbb{R}$ is the derivative). In order to combine these two equations in a compact form, it is convenient to consider a pair $u := (a, u)$ consisting of a real-valued function $a$ on $M$ and a vector field $u$ on $T\mathcal{F}$ along $M$, and to denote the combination of multiplication and directional derivative by

$$\nabla_u\ell(x) := a(x)\ell(x) + (D_u\ell)(x). \quad (7.2.2)$$

The pair $u = (a, u)$ is referred to as a jet. This jet is a vector in a corresponding jet space $\mathcal{J}$ defined by

$$u = (a, u) \in \mathcal{J} := C^\infty(M, \mathbb{R}) \oplus C^\infty(M, T\mathcal{F}), \quad (7.2.3)$$

where $C^\infty(M, \mathbb{R})$ and $\Gamma(M, T\mathcal{F})$ denote the space of real-valued functions and vector fields on $M$, respectively, which admit a smooth extension to $\mathcal{F}$. Then the equations (7.2.1) imply that $\nabla_u\ell(x)$ vanishes for all $x \in M$,

$$\nabla_u\ell|_M = 0 \quad \text{for all } u \in \mathcal{J}. \quad (7.2.4)$$

These are the so-called restricted EL equations. For brevity, a solution of the restricted EL equations is also referred to as a critical measure. We remark that, in the literature, the restricted EL equations are sometimes also referred to as the weak EL equations. Here we prefer the notion “restricted” in order to avoid potential confusion with weak solutions of these equations (as constructed in [21]; see also Chapter 14 below).

7.3. Symmetries and Symmetric Criticality

In many applications, variational principles have an underlying symmetry (for example spherical symmetry or time independence). Typically, it simplifies the variational problem to vary within the class of functions which respect this symmetry. Having found a minimizer within this restricted class, the question arises whether it is also a minimizer of the full variational problem. The general answer to this question is no, simply because the absolute minimizer does not necessarily respect the symmetry of the variational principle.

For causal variational principles, the situation is similar, if we only replace “function” by “measure.” As a simple example, we saw in Section 6.1 for the causal variational principle on the sphere that, although the variational principle is spherically symmetric, minimizing measures are typically weighted counting measures, thus breaking spherical symmetry.

Nevertheless, one can hope that minimizers within the class of symmetric functions are critical points of the full variational problem. This statement, referred to as the principle of symmetric criticality, has been formulated and proven under general assumptions in [111]. In this section we explain how the principle of symmetric criticality can be stated and proved in the setting of causal variational principles. As we shall see, the proof is quite simple and rather different from that in the classical calculus of variations. We begin by explaining the basic idea in the simplest possible setting, we only consider the compact setting and assume that also the symmetry group is compact. Afterward we explain how to treat a non-compact symmetry group.

As in Section 6.2 we let $\mathcal{F}$ be a compact manifold. Moreover, we again assume that the Lagrangian $L$ is continuous (6.2.5), symmetric and strictly positive on the diagonal

\[1\]We remark that the question on whether a function or vector field on $M$ can be extended smoothly to $\mathcal{F}$ is rather subtle. The needed conditions are made precise by Whitney’s extension theorem (see for example the more recent account in [81]). Here we do not enter the details of these conditions, but use them as implicit assumptions entering our definition (7.2.3). We remark that these conditions are fulfilled whenever $M := \text{supp } \rho$ carries a manifold structure.
(see the assumptions (i) and (ii) on page 103). In order to describe the symmetry, we let \( \mathcal{G} \) be a compact Lie group, which should act as a group of diffeomorphisms on \( \mathcal{F} \). To this end, we let \( \Phi : \mathcal{G} \times \mathcal{F} \rightarrow \mathcal{F} \) be a continuous mapping with the properties that \( \Phi_g := \Phi(g, .) \) is a diffeomorphism of \( \mathcal{F} \) and that
\[
\Phi_g \circ \Phi_h = \Phi_{gh} \quad \text{for all } g, h \in \mathcal{G}.
\]
Moreover, the symmetry is expressed by the condition that the Lagrangian be invariant under the group action, i.e.
\[
\mathcal{L}(\Phi_g x, \Phi_g y) = \mathcal{L}(x, y) \quad \text{for all } x, y \in \mathcal{F} \text{ and } g \in \mathcal{G}.
\] (7.3.1)

We denote the set of normalized regular Borel measures on \( \mathcal{F} \) by \( \mathcal{M} \). Taking the push-forward of \( \Phi \), we obtain a group action on \( \mathcal{M} \) (for the definition of the push-forward measure see Section 2.3). We denote the measures which are invariant under this group action by \( \mathcal{M}^\mathcal{G} \), i.e.
\[
\mathcal{M}^\mathcal{G} := \{ \rho \in \mathcal{M} \mid (\Phi_g)_* \rho = \rho \quad \text{for all } g \in \mathcal{G} \}.
\] (7.3.2)

We also refer to the measures in \( \mathcal{M}^\mathcal{G} \) as being equivariant (for more details on equivariant causal variational principles see [12, Section 4]).

**Theorem 7.3.1.** Let \( \rho \) be a minimizer of the causal action under variations within the class \( \mathcal{M}^\mathcal{G} \) of equivariant measures. Then \( \rho \) is a critical point of the full variational principle in the sense that the EL equations (7.1.6) hold.

**Proof.** We denote the orbits of the group action by \( \langle x \rangle := \Phi_g x \) with \( x \in \mathcal{F} \). Since \( \mathcal{G} \) is compact, so are the orbits. Let \( \mu \) be the normalized Haar measure on \( \mathcal{G} \). A particular class of equivariant measures are obtained by taking the push-forward of \( \mu \) by the mapping \( \Phi(., x) \). More precisely, for given \( x \in \mathcal{F} \) we define the measure \( \delta_{\langle x \rangle} \) by
\[
\delta_{\langle x \rangle}(\Omega) := \mu(\{ g \in \mathcal{G} \mid \Phi(g, x) \in \Omega \}) \quad \text{for all } x \in \mathcal{F}.
\] (7.3.3)
The subscript \( \langle x \rangle \) clarifies that, being equivariant, this measure depends only on the orbit.

Given \( y \in \mathcal{F} \), we now consider the variation \( (\tilde{\rho}_\tau)_{\tau \in [0, 1]} \) within the class of equivariant measures
\[
\tilde{\rho}_\tau = (1 - \tau) \rho + \tau \delta_{\langle y \rangle}.
\] (7.3.4)
Using that \( \rho \) is a minimizer within this class, we can follow the procedure in the proof of Theorem 7.1.1 to obtain
\[
\int_{\mathcal{F}} \ell(x) \, d\delta_{\langle y \rangle}(x) \geq \int_{\mathcal{F}} \ell(x) \, d\rho(x).
\] (7.3.5)
Moreover, it follows by symmetry that the function \( \ell \) is constant on the orbits, because
\[
\ell(\Phi_g y) = \int_{\mathcal{F}} \mathcal{L}(\Phi_g y, x) \, d\rho(x) - s = \int_{\mathcal{F}} \mathcal{L}(y, \Phi^{-1}_g x) \, d\rho(x) - s
\]
\[
= \int_{\mathcal{F}} \mathcal{L}(y, x) \, d\rho(x) - s = \ell(y),
\]
where in the last line we used that \( \rho \) is equivariant. Hence, integrating over the orbit, we obtain
\[
\ell(y) = \int_{\mathcal{F}} \ell(x) \, d\delta_{\langle y \rangle}.
\]
Combining this identity with (7.3.5), we conclude that
\[
\ell(y) \geq \int_{\mathcal{F}} \ell(x) \, d\rho \quad \text{for all } y \in \mathcal{F}.
\]
Now we can argue exactly as in the proof of Theorem 7.1.1 to obtain the result.

We next consider the case that the symmetry group $G$ is a noncompact Lie group. A typical example is the translation group, giving rise to the homogeneous causal action principle as considered in [48]. We again assume that $G$ acts on $\mathcal{F}$ as a group of diffeomorphisms $\Phi : G \times \mathcal{F} \to \mathcal{F}$. We can again single out the equivariant measures $M_G$ by (7.3.2). Moreover, on $G$ one can introduce an invariant measure $\mu$. However, in contrast to the case of a compact Lie group, the measure $\mu$ has infinite total volume. As a consequence, it cannot be normalized, and moreover it is unique only up to a positive constant. It is a basic difficulty that for any non-zero equivariant measure $\rho$, the integrals in the causal action (6.2.2) diverge, because the integral over the group elements $g$ describing the symmetry (7.3.1) diverge. In simple terms, this group integral gives an infinite prefactor. Therefore, one can cure the problem simply by leaving out this integral. To this end, we decompose $\mathcal{F}$ as $\mathcal{F} = (\mathcal{F}/G) \times G$ (where $\mathcal{F}/G$ denote is the set of group orbits) and write the equivariant measure as

$$\rho = \rho_{\mathcal{F}/G} \times \mu,$$

where $\rho_{\mathcal{F}/G}$ is a measure on the orbits. Then we replace the action (6.2.2) by

$$S(\rho) = \int_{\mathcal{F}/G} d\rho_{\mathcal{F}/G}(x) \int_{\mathcal{T}} d\rho(y) \mathcal{L}(x, y) \quad \text{with } \rho \in \mathcal{M}^G.$$  

(7.3.6)

The equivariant causal variational principle is to minimize this action under variations in $\mathcal{M}^G$, leaving the total volume of $\rho_{\mathcal{F}/G}$ fixed. If $\mathcal{F}/G$ is compact, we can normalize this total volume by demanding that $\rho_{\mathcal{F}/G}(\mathcal{F}/G) = 1$.

(7.3.7)

If $\mathcal{F}/G$ is non-compact, the volume constraint can be treated similar as explained for causal variational principles in the non-compact setting in Section 6.3. For more details on this procedure and the resulting existence theory we refer to [12, Section 4] and [48].

We now state symmetric criticality in the case that $\mathcal{F}/G$ is compact.

**Theorem 7.3.2.** Let $\mathcal{S}$ be a noncompact Lie group acting on $\mathcal{F}$ as a group of diffeomorphisms. Let $\rho$ be a minimizer of the equivariant causal action principle which is normalized on the orbits (7.3.7). Then $\rho$ is a critical point of the full variational principle in the sense that the EL equations (7.1.6) hold.

**Proof.** The measure (7.3.3) is normalized on $\mathcal{F}/G$. Therefore, the variation (7.3.4) satisfies the volume constraint (7.3.7). Computing the first variation of the action, in analogy to (7.3.4) we now obtain

$$\int_{\mathcal{F}/G} \ell(x) \, d\delta(y)(x) \geq \int_{\mathcal{F}/G} \ell(x) \, d\rho_{\mathcal{F}/G}(x)$$

(note that the integrands are constant on the orbits). Carrying out the integral on the left side, we conclude that

$$\ell(y) = \int_{\mathcal{F}/G} \ell(x) \, d\rho_{\mathcal{F}/G}(x),$$

giving the claim. □

In the case that $\mathcal{F}/G$ is not compact, it is not clear if minimizers exist. One strategy for constructing minimizers is to exhaust $\mathcal{F}/G$ by compact sets, similar as is done in [68] for causal variational principles in the non-compact setting. If an equivariant
minimizer $\rho$ exists, we know by symmetry that $\ell$ is constant on the orbits, and moreover the corresponding EL equations imply that $\ell$ is minimal on the orbits in the support of $\rho$. Combining these facts, we immediately obtain the EL equations (7.1.2). In this way, we conclude that symmetric criticality always holds for causal variational principles.

**Exercises**

**Exercise 7.1.** *(More general first variations)* In the proof of Theorem 7.1.1 we restricted attention to very specific variations (7.1.3). In this exercise we verify that the resulting EL equations (7.1.2) guarantee that the action is minimal also under more general variations. To this end, let $\mu$ be a normalized measure on $F$, for technical simplicity with compact support. Consider variations of the form

$$\tilde{\rho}_\tau = \chi_{M\setminus U} \rho + (1 - \tau) \chi_U \rho + \tau \rho(U) \mu$$

Show that (7.1.2) implies the inequality

$$\frac{d}{d\tau} S(\tilde{\rho}_\tau) \bigg|_{\tau=0} \geq 0.$$

**Exercise 7.2.** Assume that $\rho$ is a minimizer of a causal variational principle with finite total volume. Show that the parameter $s$ in (7.1.2) takes the value

$$s = \frac{S(\rho)}{\rho(F)}.$$

**Exercise 7.3.** *(Non-smooth EL equations)* We return to the example of the counting measure on the octahedron as considered in Exercise 7.4.

(a) Compute the function $\ell(x)$. Show that the EL equations (7.1.2) are satisfied.

(b) Show that the function $\ell$ is not differentiable at any point $x$ of the octahedron. Therefore, it is not possible to formulate the restricted EL equations (7.2.4).

This example illustrates why in the research papers [63, 54] one carefully keeps track of differentiability properties by introducing suitable jet spaces.

**Exercise 7.4.** *(Symmetric criticality on the sphere)* We consider the causal variational principle on the sphere as introduced in Section 6.1.

(a) Show that the symmetric measure on the sphere

$$d\mu(\vartheta, \varphi) = \frac{1}{4\pi} d\varphi \sin \vartheta d\vartheta$$

is critical in the sense that it satisfies the EL equations (7.1.2).

(b) Use the minimizer with singular support constructed in Exercise 7.4 to argue that minimizers within the class of symmetric measure are in general not minimizers within the class of measures without symmetries. More details on this effect of symmetry breaking can be found in [40, 75, 51].
The Linearized Field Equations

The EL equations as derived in the previous chapter (see Theorem 7.1.1 of the restricted EL equations in (7.2.4)) are nonlinear equations. This can be seen immediately from the fact that the measure $\rho$ enters in a twofold way: It determines the function $\ell$ via the integration (7.1.1), and it also determines via its support $M$ where the function $\ell$ is to be evaluated. As usual, such nonlinear equations are difficult to analyze. Therefore, it is a good idea to simplify these equations by linearization. This leads us to the so-called linearized field equations which describe linear perturbations of the system which respect the EL equations. This chapter is devoted to the derivation of the linearized field equations and to the construction of explicit examples. We remark that the linearized field equations are also a suitable starting point for the analysis of the full EL equations, for example by using perturbative methods (see [47] or Chapter 18).

8.1. Derivation of the Linearized Field Equations in the Smooth Setting

Linearized fields often appear in physics, for example when describing linearized oscillations or linear waves. In order to derive the linearized equations, one typically considers a family $G_\tau$ of solutions. The parameter $\tau$ can be thought of as the “amplitude” of the perturbation, and $G_\tau|_{\tau=0}$ describes the unperturbed system (for example an anharmonic oscillator at rest or the vacuum). Then the derivative

$$\frac{d}{d\tau}G_\tau|_{\tau=0}$$

is the linearized field; it satisfies a linear equation obtained by differentiating the nonlinear equation (like Hamilton’s equation for the anharmonic oscillator or the nonlinear wave equation) with respect to $\tau$.

The concept of linearization is also fruitful in the context of causal variational principles. Since the system is described by the measure $\rho$, the above family of solutions now corresponds to a family of measures $(\tilde{\rho}_\tau)_{\tau\in[0,\delta)}$ which are all critical points of the causal action principle. The basic question is how to vary the measure. Indeed, there are many ways of varying. We begin with a simple method, which we will generalize and discuss afterward. In order to keep the presentation as simple as possible, we again restrict attention to the smooth setting. We choose a family $f_\tau$ of positive weight functions and a family $F_\tau$ of mapping from $M$ to $\mathcal{F}$. These functions should all be smooth, also in the parameter $\tau$, i.e.

$$f \in C^\infty([0,\delta) \times M, \mathbb{R}^+) \quad \text{and} \quad F \in C^\infty([0,\delta) \times M, \mathcal{F}) .$$

We multiply $\rho$ by $f_\tau$ and then take the push-forward under $F_\tau$,

$$\tilde{\rho}_\tau := (F_\tau)_*(f_\tau \rho) . \quad (8.1.1)$$

We assume that for $\tau = 0$ the variation is trivial,

$$f_0 \equiv 1 \quad \text{and} \quad F_0 \equiv 1 . \quad (8.1.2)$$
Since multiplying by a positive function leaves the support unchanged, the support of the measure is transformed only by $F_{\tau}$; more precisely,

$$\text{supp} \tilde{\rho}_\tau = F_{\tau}(\text{supp} \rho)$$  \hspace{1cm} (8.1.3)

(for details see Exercise 8.1).

The assumption that all the measures $\tilde{\rho}_\tau$ are critical means that they all satisfy the restricted EL equations (7.2.4). Taking into account that the support of the measures changes according to (8.1.3), we know that for all $u \in J_0$ and all $x \in M$,

$$0 = \nabla_u \left( \int_\mathcal{F} \mathcal{L}(F_{\tau}(x), y) \, d\tilde{\rho}_\tau(y) - s \right)$$

$$= \nabla_u \left( \int_\mathcal{F} \mathcal{L}(F_{\tau}(x), F_{\tau}(y)) \, f_{\tau}(y) \, d\rho(y) - s \right),$$

where in the last line we used the definition of the push-forward measure. It is convenient to multiply this equation by $f_{\tau}(x)$. We can write this factor inside the brackets,

$$0 = \nabla_u \left( \int_\mathcal{F} f_{\tau}(x) \, \mathcal{L}(F_{\tau}(x), F_{\tau}(y)) \, f_{\tau}(y) \, d\rho(y) - f_{\tau}(x) \, s \right),$$

because the terms obtained when the derivative $\nabla_u$ acts on $f_{\tau}(x)$ vanish in view of the restricted EL equations (7.2.4). Since this equation holds for all $\tau \in [0, \delta)$, we can differentiate at $\tau = 0$ to obtain the equation

$$\nabla_u \left( \int_\mathcal{F} (\nabla_{1,0} + \nabla_{2,0}) \, \mathcal{L}(x, y) \, d\rho(y) - \nabla_v \, s \right) = 0,$$  \hspace{1cm} (8.1.4)

where $v$ is the jet generated by the functions $f_{\tau}$ and $F_{\tau}$,

$$v := \frac{d}{d\tau}(f_{\tau}, F_{\tau}) \big|_{\tau=0} \in J.$$  \hspace{1cm} (8.1.5)

Here $\nabla_{1,0}$ and $\nabla_{2,0}$ denote partial derivatives acting on the first and second argument of the Lagrangian, respectively. Here and throughout this book, we use the following conventions for partial derivatives and jet derivatives:

(i) Partial and jet derivatives with an index $i \in \{1, 2\}$ only act on the respective variable of the function $\mathcal{L}$. This implies, for example, that the derivatives commute,

$$\nabla_{1,0} \nabla_{1,0} \mathcal{L}(x, y) = \nabla_{1,0} \nabla_{1,0} \mathcal{L}(x, y).$$

(ii) The partial or jet derivatives which do not carry an index act as partial derivatives on the corresponding argument of the Lagrangian. This implies, for example, that

$$\nabla_u \int_\mathcal{F} \nabla_{1,0} \mathcal{L}(x, y) \, d\rho(y) = \int_\mathcal{F} \nabla_{1,0} \nabla_{1,0} \mathcal{L}(x, y) \, d\rho(y).$$

We point out that jets are never differentiated. This is a very convenient convention. In (8.1.4) this convention can be used because the terms obtained if the derivative $\nabla_u$ acted on the jet $v$ again vanish as a consequence of the restricted EL equations. We remark that, from a differential geometric perspective, defining higher derivatives on $\mathcal{F}$ would make it necessary to introduce a connection on $\mathcal{F}$. While this could be done, we here use the simpler method that higher derivatives on $\mathcal{F}$ are defined as partial derivatives carried out in distinguished charts. More precisely, around each point $x \in \mathcal{F}$ we distinguish a chart and carry out derivatives as partial derivatives acting on each tensor component in this chart. We remark that, in the setting of causal fermion systems, an atlas of distinguished
8.1. DERIVATION OF THE LINEARIZED FIELD EQUATIONS IN THE SMOOTH SETTING

The derivation of the linearized field equations in the smooth setting is provided by the so-called symmetric wave charts (for details see [62, Section 6.1] or [69, Section 3]).

**Definition 8.1.1.** A jet \( v \in J \) is referred to as a solution of the linearized field equations if

\[
\langle u, \Delta v \rangle(x) := \nabla u \left( \int_{\mathcal{F}} (\nabla_{1,v} + \nabla_{2,v}) L(x,y) \, d\rho(y) - \nabla v \, s \right) = 0
\]

for all \( u \in J \) and all \( x \in M \). The vector space of all linearized solutions is denoted by \( J^{\text{lin}} \subset J \).

We often write the linearized field equation in the short form \( \Delta v = 0 \). For the mathematical analysis of the linearized field equations, it is preferable to include an inhomogeneity \( w \in J \)

\[
\Delta v = w
\]

We conclude this section with a brief discussion of our ansatz (8.1.1). Intuitively speaking, this ansatz means that the support of the measure is changed smoothly as a whole. In particular, if \( M \) is a smooth four-dimensional submanifold of \( \mathcal{F} \), then the varied measure \( M_{\tau} \) will again have this property. In physical terms, measures where \( M \) has such a manifold structure describe classical spacetimes. Consequently, the ansatz (8.1.1) and the corresponding linearization (8.1.5) correspond to classical fields in a classical spacetime. In contrast, if the support \( M := \text{supp} \, \rho \) of the measure does not have the structure of a four-dimensional manifold, then we refer to \( M \) as a quantum spacetime.

The notion “quantum spacetime” appears in the literature in different contexts with rather different meanings. Here we take the above notion as the mathematical definition of what we mean by a quantum spacetime.

In order to give an idea for how such a quantum spacetime may look like, let us consider the example where the unperturbed measure \( \rho \) describes a classical spacetime \( M \) (for example Minkowski space \( M \simeq \mathbb{R}^4 \)). As just explained, the ansatz (8.1.1) changes the support of the measure smoothly as a whole (see Figure 8.1 (a)). More generally, one can consider the situation where the measure \( \rho \) “disintegrates” into several “components” which are perturbed differently (see Figure 8.1 (b)). To this end, we choose a parameter \( L \in \mathbb{N} \) (the “number of subsystems”) and consider mappings

\[
f_a \in C^\infty([0, \delta) \times M, \mathbb{R}^+) \quad \text{and} \quad F_a \in C^\infty([0, \delta) \times M, \mathcal{F}) \quad \text{with} \quad a = 1, \ldots, L.
\]

For the so-called measure with fragmentation, in generalization of (8.1.1) we make the ansatz

\[
\tilde{\rho}_\tau = \frac{1}{L} \sum_{a=1}^{L} (F_a, \tau)_* (f_a, \tau) \rho.
\]
The larger $L$ is chosen, the more freedom we have in perturbing the measure. We point out that we may choose $L$ arbitrarily large. In the limit $L \to \infty$, one can even describe situations where the support of the measure $\rho$ is “enlarged” by the perturbation, as is shown in Figure 8.1 (c).

Assuming that the family $(\tilde{\rho}_\tau)_{\tau \in [0,\delta]}$ satisfies the restricted EL equations for all $\tau$, we can again linearize in $\tau$ to obtain the corresponding linearized field equations. They again have the form (8.1.6), but now with $v$ being the “averaged jet”

$$v = \frac{1}{L} \sum_{a=1}^{L} v_a \quad \text{with} \quad v_a = \frac{d}{d\tau} (f_a, \tau, F_a, \tau) \big|_{\tau=0}.$$ 

Therefore, for linearized fields the fragmentation does not give anything essentially new. But on the nonlinear level, fragmentation yields additional effects. We refer the interested reader for more details to [45, Section 5] and [47, Section 5] as well as to the applications to quantum field theory in [55] (see also Chapter 22).

In view of this consideration, the only restriction in describing linear perturbations of a measure $\rho$ by a jet $v$ of the form (8.1.5) is that the support of the measure $\rho$ is changed continuously in $\tau$, in the sense the support $\text{supp} \tilde{\rho}_\tau$ lies in a small neighborhood of $M$ (for details see Exercise 8.2). In particular, we do not cover variations of the form (7.1.3) where part of the measure is “transported” to a a point $y \in F$ which may be far away from $M$. The reason for disregarding such variations is that, similar as explained before introducing the restricted EL equations in Section 7.2 (see Figure 7.1), analyzing the EL equations outside a small neighborhood of $M$ does not seem to be of physical relevance.

### 8.2. Commutator Jets in Causal Fermion Systems

In order to illustrate the linearized field equations, we conclude this chapter by deriving explicit classes of solutions. These solutions correspond to inherent symmetries of the system. In this section, we consider commutator jets, which describe the unitary invariance of a causal action principle. In the next section (Section 8.3), we shall derive inner solutions by using the invariance of the measure under diffeomorphisms of $M$ combined with a suitable multiplication of $\rho$ by a smooth weight function.

Let $(\mathcal{H}, \mathcal{F}, \rho)$ be a causal fermion system. The causal action principle is unitarily invariant in the following sense. Let $U \in U(\mathcal{H})$ be a unitary transformation. Given a measure $\rho$ on $\mathcal{F}$, we can unitarily transform the measure by setting

$$U\rho(\Omega) = \rho(U^{-1} \Omega U) \quad \text{for} \quad \Omega \subset \mathcal{F}. \quad (8.2.1)$$

Since the eigenvalues of an operator are invariant under unitary transformations, a measure $\rho$ is a minimizer or critical point of the causal action principle if and only if $U\rho$ is.

Infinitesimally, this unitary invariance gives rise to a special class of solutions of the linearized field equations: Let $\rho$ be a critical measure. We let $A$ be a symmetric operator on $\mathcal{H}$, for technical simplicity of finite rank. By exponentiating, we obtain a family of unitary operators $(U_\tau)_{\tau \in \mathbb{R}}$ with

$$U_\tau := \exp(i\tau A). \quad (8.2.2)$$

According to (8.2.1), the support of the measures $\tilde{\rho}_\tau := U_\tau \rho$ is given by

$$\tilde{M}_\tau := \text{supp} \tilde{\rho}_\tau = U_\tau M U_\tau^{-1}. \quad (8.2.3)$$
Due to the unitary invariance of the Lagrangian, the measures $\tilde{\rho}_\tau$ all satisfy the EL equations. Infinitesimally, the unitary transformations are described by the jet $v$ given by

$$v := (0, v) \in J_2^\infty \quad \text{with} \quad v(x) = \frac{d}{d\tau}(U_\tau x U_\tau^{-1}) \bigg|_{\tau=0} = i[A, x] . \quad (8.2.4)$$

Due to the commutator in the last equation, we refer to jets of this form as \textbf{commutator jets}. The fact that commutator jets generate families of critical measures implies that the they satisfy the linearized field equations:

**Lemma 8.2.1.** The commutator jet $v$ in (8.2.4) satisfies the linearized field equations \((8.1.6)\).

**Proof.** Due to the unitary invariance of the Lagrangian,

$$\mathcal{L}(U_\tau x U_\tau^{-1}, U_\tau y U_\tau^{-1}) = \mathcal{L}(x, y) .$$

Differentiating with respect to $\tau$ and applying the chain rule gives

$$(D_{1,v} + D_{2,v}) \mathcal{L}(x, y) \, d\rho(y) = 0 . \quad (8.2.5)$$

Hence the integrand in \((8.1.6)\) vanishes for all $x, y \in \mathcal{F}$. As a consequence, the integral in \((8.1.6)\) vanishes for all $x \in \mathcal{F}$. Consequently, also its derivative in the direction of $u$ vanishes. Using our convention that the jet derivatives act only on the Lagrangian (see the end of Section 8.1), this directional derivative differs from the jet derivative in \((8.1.6)\) by the term $D_{D_{u,v}}\ell(x)$. This term vanishes in view of the restricted EL equations \((7.2.4)\). \[\Box\]

### 8.3. Inner Solutions in Smooth Spacetimes

We now return to the setting of causal variational principles. We introduce an additional smoothness assumption and explain why it is useful in some applications.

**Definition 8.3.1.** Spacetime $M := \mathrm{supp} \rho$ has a \textbf{smooth manifold structure} if the following conditions hold:

(i) $M$ is diffeomorphic to a smooth oriented manifold $\mathcal{M}^k$ of dimension $k$.

(ii) In a chart $(x, U)$ of $\mathcal{M}^k$, the measure $\rho$ is absolutely continuous with respect to the Lebesgue measure with a smooth, strictly positive weight function, i.e.

$$d\rho = h(x) \, d^k x \quad \text{with} \quad h \in C^\infty(\mathcal{M}^k, \mathbb{R}^+) . \quad (8.3.1)$$

Even though there is no reason why physical spacetime should have a smooth manifold structure on the Planck scale, this assumption is clearly justified on the macroscopic scale of atomic and gravitational physics. With this in mind, the assumption of a smooth manifold structure seems admissible in all applications in which the microscopic structure of spacetime should be irrelevant. Before going on, we point out that one should carefully distinguish the assumption of a smooth manifold structure from the smooth setting introduced in Section 8.2. One should keep in mind that the smoothness of $\mathcal{L}$ does not imply that $M$ has a smooth manifold structure, nor vice versa.

The fact that $\rho$ is defined independent of charts implies that the function $h$ in \((8.3.1)\) transform like a tensor density. Thus on the overlap of two charts $(x, U)$ and $(\tilde{x}, \tilde{U})$, we know that

$$h(x) \, d^k x = \tilde{h}(\tilde{x}) \, d^k \tilde{x}$$

and thus

$$h(x) = \det \left( \frac{\partial x^i}{\partial \tilde{x}^j} \right) \tilde{h}(\tilde{x}) .$$
This transformation law makes it possible to define the covariant divergence of a vector field \( v \) on \( M \cong M^k \) in a local chart by
\[
\text{div} \, v = \frac{1}{h} \partial_j (h \, v^j) \quad (8.3.2)
\]
(where following the Einstein summation convention we sum over \( j = 0, \ldots, k \)). Alternatively, the divergence of a vector field \( v \in \Gamma(M, TM) \) can be defined independent of charts by the relation
\[
\int_M \text{div} \, v \, \eta(x) \, d\rho = -\int_M D_v \eta(x) \, d\rho(x),
\]
to be satisfied for all test functions \( \eta \in C_0^\infty(M, \mathbb{R}) \).

**Definition 8.3.2.** An inner solution is a jet \( v \in J^1 \) of the form
\[
v = (\text{div} \, v, v) \quad \text{with} \quad v \in \Gamma(M, TM).
\]
The vector space of all inner solution is denoted by \( J^\text{in} \subset J^1 \).

The name “inner solution” is justified by the following lemma:

**Lemma 8.3.3.** Every inner solution \( v \in J^\text{in} \) of compact support is a solution of the linearized field equations, i.e.
\[
\langle u, \Delta v \rangle_M = 0 \quad \text{for all} \quad u \in \mathfrak{g}.
\]

**Proof.** Applying the Gauss divergence theorem, one finds that for every \( f \in C_0^1(M, \mathbb{R}) \),
\[
\int_M \nabla_v f \, d\rho = \int_M (\text{div} \, v f + D_v f) \, d\rho = \int_M \text{div} \, (fv) \, d\rho = 0.
\]
Likewise, in the linearized field equations we may integrate by parts in \( y \),
\[
\langle u, v \rangle_M = \nabla_u \left( \int_M (\nabla_{1,y} + \nabla_{2,y}) \mathcal{L}(x, y) \, d\rho(y) - \nabla_y \mathfrak{g} \right)
\]
\[
= \nabla_u \left( \int_M \nabla_{1,y} \mathcal{L}(x, y) \, d\rho(y) - \nabla_y \mathfrak{g} \right)
\]
\[
= \nabla_u \nabla_y \ell(x) = \nabla_y (\nabla_u \ell(x)) - \nabla D_u \ell(x) = 0,
\]
where the last term vanishes in view of the EL equations. Moreover, we used that the function \( \nabla_u \ell \) vanishes identically on \( M \) in view of the restricted EL equations. Therefore, this function is differentiable in the direction of every vector field on \( M \), and this directional derivative is zero. \( \square \)

This result also holds for inner solutions \( v \) of non-compact support, provided that the vector field \( v \) has suitable decay properties at infinity. For details we refer to [54 Section 3].

We now turn to the question which scalar components can be realized by inner solutions. This question can be answered in great generality by applying Moser’s theorem (see for example [102 Section XVIII, §2] or straightforward generalizations to non-compact manifolds). For simplicity, we here make additional assumptions which make it possible to use hyperbolic methods.
Theorem 8.3.4. Assume that $M \approx \mathcal{M}^k$ has a smooth manifold structure. Moreover, assume that $\mathcal{M}$ is topologically of the form $\mathcal{M} = \mathbb{R} \times \mathcal{N}$ with a manifold $\mathcal{N}$ which admits a complete Riemannian metric $g_N$. Let $a \in C^\infty_c(\mathcal{M}, \mathbb{R})$ be a smooth function with spatially compact support (meaning that, for all $t \in \mathbb{R}$, the function $a(t,.)$ is compactly supported in $\mathcal{N}$). Then there is a vector field $v \in C^\infty_c(\mathcal{M}, T\mathcal{M})$, again with spatially compact support, such that the jet $v := (a, v)$ is an inner solution.

**Proof.** Our task is to solve the equation $\text{div} v = a$, which can be written equivalently as

$$\partial_j (hv^j) = ha.$$  (8.3.3)

We first consider the case that $a$ has compact support. In order to solve the partial differential equation (8.3.3), it is useful to choose a Lorentzian metric with

$$ds^2 = dt^2 - g_N.$$  (8.3.4)

Here the choice of the Riemannian metric $g_N$ is irrelevant, and the arbitrariness in choosing this metric corresponds to the fact that (8.3.3) is an under-determined equation which admits many different solutions. Let $\Box$ be the corresponding wave operator. Using for example retarded Green’s operators, there is a solution $\phi \in C^\infty_c(\mathcal{M}, \mathbb{R})$ with $\Box \phi = ha$ (for details see Section 13 below). Then the vector field

$$v^j := \frac{1}{h} g^{jk} \partial_k \phi$$  (8.3.5)

satisfies (8.3.3) (note that, in view of (8.3.1), we may divide by $h$ to again obtain a smooth vector field with spatially compact support).

In the case that $a$ merely has spatially compact support, we decompose $a$ as

$$a = a_+ + a_-,$$

where $a_+$ is supported in the set $\{t > 0\}$ and $a_-$ is supported in the set $\{t < 0\}$. Denoting the advanced and retarded Green’s operators of the scalar wave equation corresponding to the Lorentzian metric (8.3.4) by $S^\lor$ and $S^\land$, respectively, the function

$$\phi := S^\land (ha_+) + S^\lor (ha_-)$$

is a well-defined solution of the equation $\Box \phi = ha$ which is smooth and has spatially compact support. Therefore, we can again define the vector field $v$ by (8.3.5). This gives the result. \qed

Inner solutions can be regarded as infinitesimal generators of transformations of $M$ which leave the measure $\rho$ unchanged. Therefore, inner solutions do not change the causal fermion system, but merely describe symmetry transformations of the measure. The result of the previous proposition can be used to change the scalar component of a linearized solution arbitrarily. As a concrete example, let us consider a causal fermion system describing an interacting system in Minkowski space which near spatial infinity is the vacuum. In this case, all the jets describing the interaction have spatially compact support. Therefore, we can compensate the scalar components by corresponding inner solutions. After doing so, the interacting system is described purely in terms of jets without scalar components. We denote the corresponding jet space similar to (7.2.3) by

$$\Gamma^\infty := \{0\} \oplus C^\infty(M, T\mathcal{F}).$$

For clarity, we again point out that this simplification can be made only if spacetime has a smooth manifold structure.
We conclude by proving that, in the above setting, the scalar components of the jets can also be left out for testing. Thus the restricted EL equations (7.2.4) and the linearized field equations (8.1.6) can be written equivalently as

\[ D_u \ell |_M = 0 \quad \text{for all } u \in \Gamma^\infty_0 \]  \hspace{1cm} (8.3.6)

\[ D_u \int_{\mathcal{J}} (D_v + D_2,v) \mathcal{L}(x,y) \, d\rho(y) = 0 \quad \text{for all } u \in \Gamma^\infty_0 . \]  \hspace{1cm} (8.3.7)

In order to show that (8.3.6) implies (7.2.4), we assume that (8.3.6) holds. We can choose \( u \) as a compactly supported, divergence-free vector field on \( M \) (because then \( u := (0,u) \in \mathcal{J}^\text{in} \cap \Gamma^\infty_0 \)). Since this vector field can be chosen arbitrarily at any given point \( x \), it follows that the function \( \ell \) is constant on \( M \). After changing the Lagrange parameter \( s \) if necessary, the function \( \ell \) vanishes identically, implying (7.2.4). For the linearized field equations (8.3.7) one argues similarly.
Exercises

Exercise 8.1. Let $F : \mathcal{F} \to \mathcal{F}$ be continuous and $\rho$ a measure on $\mathcal{F}$. Show that
\[ \text{supp } F_* \rho = F(\text{supp } \rho). \]

Hint: Recall the definition of the support of a measure (2.3.4) and use that the preimage of an open set under a continuous mapping is open.

Exercise 8.2. (a) Assume that $\mathcal{F}$ is locally compact. Moreover, assume that $F \in C^0([0, \delta) \times M, \mathcal{F})$ is continuous and that its preimage of any compact set is compact. Then for any $y \notin M$ there is a $\tau_0 \in (0, \delta)$ such that
\[ y \notin \text{supp } \tilde{\rho}_{\tau} \text{ for all } \tau \in [0, \tau_0] \]

(where $\tilde{\rho}_{\tau}$ are again the measures (8.1.1)) Hint: Use the result of Exercise 8.1.

(b) Show that this result remains valid for the variation (8.1.8) with a finite number of subsystems.

(c) What happens for an infinite number of subsystems? Also, is the assumption necessary that the preimage of a compact set under $F$ is compact?

Exercise 8.3. (Linearization of nonlinear partial differential equations) In this exercise you are given two non-linear partial differential equations with corresponding (solution) solutions. Check that the functions $\phi$ do indeed solve the equations. Then try to figure out what it means to linearize the equations around the given solutions and do it.

(a) The sine-Gordon equation of velocity $v \in (-1, 1)$:
\[ \partial_{tt} \phi - \partial_{xx} \phi + \sin \phi = 0, \quad \phi(t, x) = 4 \arctan \left( \frac{x - vt}{\sqrt{1 - v^2}} \right). \]

(b) The Korteweg-de-Vries equation of unit speed:
\[ \partial_t \phi + 6 \phi \partial_x \phi + \partial_{xxx} \phi = 0, \quad \phi(t, x) = \frac{1}{2} \text{sech}^2 \left( \frac{x - vt}{2} \right). \]

Hint: You may use the following identities,
\[ \sin(4 \arctan(x)) = -4 \frac{x^3 - x}{(1 + x^2)^2}, \quad \tanh(x) - \tanh^3(x) = \text{sech}^2(x) \tanh(x). \]

Exercise 8.4. (Linearized fields on the sphere) Let $\rho$ be a minimizing measure of the causal variational principle of the sphere as introduced in Section 6.1 (for example the octahedron in Exercise 7.4 (b)).

(a) Let $v$ be the vector field $\partial / \partial \varphi$ (where $\varphi$ is the azimuth angle). Show that $v = (0, v)$ is a solution of the linearized field equations. Hint: One can use the fact that the causal variational principle is rotationally symmetric.

(b) Show that $v$ can be written as a commutator jet, i.e. in analogy to (8.2.4),
\[ v(x) = i \left[ c \sigma^3, F(x) \right], \]

where $F : S^2 \subset \mathbb{R}^3 \to \mathcal{F}$ is the mapping in (6.1.3). Compute the constant $c$.

Exercise 8.5. (Linearized fields for the causal variational principle on $\mathbb{R}$) We return to the causal variational principles on $\mathbb{R}$ introduced in Exercise 6.5. Let $\rho = \delta$ be the unique minimizer.

(a) Show that the jet $v = (0, v)$ with the vector field $v = \partial_x$ is a solution of the linearized field equations for the causal variational principle corresponding to $L_4$. 
(b) Show that the jet $v = (0, v)$ from (a) does not satisfy the linearized field equations for the causal variational principle corresponding to $L_2$.

**Exercise 8.6.** (Linearized fields for the causal variational principle on $S^1$) We return to the causal variational principle on $\mathbb{R}$ introduced in Exercise 6.6. Let $\rho$ be a minimizing measure (6.5.9) for $0 < \tau < 1$.

(a) Show that the jet $v = (0, v)$ with the vector field $v = \partial_\phi$ satisfies the linearized field equations. *Hint:* One can use the fact that the variational principle is rotationally symmetric.

(b) Show that the jet $v = (b, 0)$ with $b(\phi_0) = -b(\phi_0 + \pi)$ is a solution of the linearized field equations. *Hint:* Use that the causal action is independent of the parameter $\tau$.

(c) Show that every solution of the linearized field equations is a linear combination of the linearized fields in (a) and (b).

**Exercise 8.7.** (The commutator of commutator jets) For any symmetric operator $A$ of finite rank, the commutator vector field $C(A)$ is defined by $C(A)(x) = i[A, x]$ (see (8.2.1)). It is a vector field on $M$. For two vector fields $u, v$ on $M$, their commutator is defined by $[u, v](f) = u(v(f)) - v(u(f))$ (with $f$ any smooth function on $M$). Show that the commutator of two commutator vector fields is again a commutator vector field and

$$[C(A), C(B)] = -C(i[A, B]).$$

*Hint:* The proof can be found in [56 Lemma A.2].
CHAPTER 9

Surface Layer Integrals and Conservation Laws

In this chapter we introduce surface layer integrals as an adaptation of surface integrals to causal fermion systems and causal variational principles. The mathematical structure of a surface layer integral fits nicely to the analytic structures (namely, the EL equations and the linearized field equations as introduced in Chapters 7 and 8). This will become apparent in conservation laws which generalize Noether’s theorem and the symplectic form to the setting of causal variational principles. Next, we introduce a so-called nonlinear surface layer integral which makes it possible to compare two measures \( \rho \) and \( \tilde{\rho} \) at a given time. Finally, we shall explain how two-dimensional surface integrals can be described by surface layer integrals.

9.1. The Concept of a Surface Layer Integral

In daily life we experience space and objects therein. These objects are usually described by densities, and integrating these densities over space gives particle numbers, charges, the total energy, etc. In mathematical terms, the densities are typically described as the normal components of vector fields on a Cauchy surface, and conservation laws express that the values of these integrals do not depend on the choice of the Cauchy surface, i.e.

\[
\int_{\mathcal{N}_1} J^k v_k \, d\mu_{\mathcal{N}_1}(x) = \int_{\mathcal{N}_2} J^k v_k \, d\mu_{\mathcal{N}_2}(x),
\]

where \( \mathcal{N}_1 \) and \( \mathcal{N}_2 \) are two Cauchy surfaces, \( \nu \) is the future-directed normal, and \( d\mu_{\mathcal{N}_{1/2}} \) is the induced volume measure.

In the setting of causal variational principles, surface integrals like (9.1.1) are undefined. Instead, one considers so-called surface layer integrals, as we now explain. In general terms, a surface layer integral is a double integral of the form

\[
\int_{\Omega} \left( \int_{M\setminus\Omega} (\cdots) \mathcal{L}(x,y) \, d\rho(y) \right) \, d\rho(x),
\]

where one variable is integrated over a subset \( \Omega \subset M \), and the other variable is integrated over the complement of \( \Omega \). Here \( (\cdots) \) stands for a differential operator acting on the Lagrangian. In order to explain the basic idea, we make the assumption that the Lagrangian is of short range in the following sense. We let \( d \in C^0(\mathbb{M} \times \mathbb{M}, \mathbb{R}^+_{\text{e}}) \) be a suitably chosen distance function on \( M \). Then the assumption of short range can be quantified by demanding that \( \mathcal{L} \) should vanish on distances larger than \( \delta \), i.e.

\[
d(x,y) > \delta \implies \mathcal{L}(x,y) = 0.
\]

Under this assumption, the surface layer integral (9.1.2) only involves pairs \( (x,y) \) of distance at most \( \delta \), where \( x \) lies in \( \Omega \), whereas \( y \) lies in the complement \( M \setminus \Omega \). As a consequence, the integral only involves points in a layer around the boundary of \( \Omega \) of
width $\delta$, i.e.

$$x, y \in B_{\delta}(\partial \Omega).$$

Therefore, a double integral of the form (9.1.2) can be regarded as an approximation of a surface integral on the length scale $\delta$, as shown in Figure 9.1. In the setting of causal variational principles, such surface layer integrals take the role of surface integrals. We remark that in applications in Minkowski space or on a Lorentzian manifold, the Lagrangian typically decays on the Compton scale $1/m$ (where $m$ denotes the rest mass of the Dirac particles).

9.2. Noether-Like Theorems

In modern physics, the connection between symmetries and conservation laws is of central importance. For continuous symmetries, this connection is made mathematically precise by Noether’s theorem (see [108] or the textbooks [86], Section 13.7, [6], Chapter III). As shown in [63], the connection between symmetries and conservation laws can be extended to the setting of causal variational principles. As we shall see, both the statement and the proof are quite different from the classical Noether theorem; this is why we refer to our result as a Noether-like theorem.

The first step is to introduce a symmetry condition for the Lagrangian $\mathcal{L}(x, y)$ of a causal variational principle. Similar to the procedure in Section 7.3, one could describe the symmetry by a group of diffeomorphisms. For the purposes here, the correct setting would be to consider a one-parameter group of diffeomorphisms $\Phi_{\tau}$, i.e.

$$\Phi : \mathbb{R} \times \mathcal{F} \rightarrow \mathcal{F} \quad \text{with} \quad \Phi_{\tau'} \Phi_{\tau} = \Phi_{\tau + \tau'},$$

(9.2.1)

(we usually write the first argument as a subscript, i.e. $\Phi_{\tau}(x) \equiv \Phi(\tau, x)$). The symmetry condition could be imposed by demanding that the Lagrangian be invariant under this one-parameter group in the sense that

$$\mathcal{L}(x, y) = \mathcal{L}(\Phi_{\tau}(x), \Phi_{\tau}(y)) \quad \text{for all } \tau \in \mathbb{R} \text{ and } x, y \in \mathcal{F}.$$  

(9.2.2)

It turns out that this condition is unnecessarily strong for two reasons. First, it suffices to consider families which are defined locally for $\tau \in (-\tau_{\text{max}}, \tau_{\text{max}})$. Second, the mapping $\Phi$ does not need to be defined on all of $\mathcal{F}$. Instead, it is more appropriate to impose the symmetry condition only on spacetime $M \subset \mathcal{F}$. This leads us to consider instead of (9.2.1) a mapping

$$\Phi : (-\tau_{\text{max}}, \tau_{\text{max}}) \times M \rightarrow \mathcal{F} \quad \text{with} \quad \Phi_{0} = \text{id}_{M}.$$  

(9.2.3)

We refer to $\Phi_{\tau}$ as a variation of $M$ in $\mathcal{F}$. Next, we need to specify what we mean by “smoothness” of this variation. This is a subtle point because, as explained in the example of the causal variational principle on the sphere in Section 6.1, the support of a minimizing measure will in general be singular. Moreover, the function $\ell$ defined
by (7.1.1) in general will only be Lipschitz continuous. Our Noether-like theorems only require that this function be differentiable in the direction of the variations:

**Definition 9.2.1.** A variation $\Phi_\tau$ of the form (9.2.3) is continuously differentiable if the composition

$$\ell \circ \Phi : (-\tau_{\text{max}}, \tau_{\text{max}}) \times M \to \mathbb{R}$$

is continuous and if its partial derivative $\partial_\tau (\ell \circ \Phi)$ exists and is continuous.

The next question is how to adapt the symmetry condition (9.2.2) to the mapping $\Phi$ defined only on $(-\tau_{\text{max}}, \tau_{\text{max}}) \times M$. This is not obvious because setting $\tilde{x} = \Phi_\tau(x)$ and using the group property, the condition (9.2.2) can be written equivalently as

$$L(\Phi_{-\tau}(\tilde{x}), y) = L(\tilde{x}, \Phi_\tau(y)) \quad \text{for all } \tau \in \mathbb{R} \text{ and } \tilde{x}, y \in \mathcal{F}.$$  \hspace{1cm} (9.2.4)

But if we restrict attention to pairs $x, y \in M$, the equations in (9.2.2) and (9.2.4) are different. It turns out that the correct procedure is to work with the expression in (9.2.4).

**Definition 9.2.2.** A variation $\Phi_\tau$ of the form (9.2.3) is a symmetry of the Lagrangian if

$$L(x, \Phi_\tau(y)) = L(\Phi_{-\tau}(x), y) \quad \text{for all } \tau \in (-\tau_{\text{max}}, \tau_{\text{max}}) \text{ and } x, y \in M.$$ \hspace{1cm} (9.2.5)

We now state and prove our Noether-like theorem.

**Theorem 9.2.3.** Let $\rho$ be a critical measure and $\Phi_\tau$ a continuously differentiable symmetry of the Lagrangian. Then for any compact subset $\Omega \subset M$,

$$\frac{d}{d\tau} \int_{\Omega} d\rho(x) \int_{M \setminus \Omega} d\rho(y) \left( L(\Phi_\tau(x), y) - L(\Phi_{-\tau}(x), y) \right) \bigg|_{\tau = 0} = 0.$$ \hspace{1cm} (9.2.6)

**Proof.** Integrating (9.2.5) over $\Omega \times \Omega$ gives

$$0 = \int_{\Omega \times \Omega} \left( L(x, \Phi_\tau(y)) - L(\Phi_{-\tau}(x), y) \right) d\rho(x) d\rho(y)$$

$$= \int_{\Omega} d\rho(x) \int_{M} d\rho(y) \chi_\Omega(y) \left( L(\Phi_\tau(x), y) - L(\Phi_{-\tau}(x), y) \right),$$

where in the last step we used the symmetry of the Lagrangian (9.2.5) as well as the symmetry of the integrand in $x$ and $y$. We rewrite the characteristic function $\chi_\Omega(y)$ as $1 - (1 - \chi_\Omega(y))$, multiply out and use the definition of $\ell$, (7.1.1). We thus obtain

$$0 = \int_{\Omega} \left( \ell(\Phi_\tau(x)) - \ell(\Phi_{-\tau}(x)) \right) d\rho(x)$$

$$- \int_{\Omega} d\rho(x) \int_{M \setminus \Omega} d\rho(y) \chi_{M \setminus \Omega}(y) \left( L(\Phi_\tau(x), y) - L(\Phi_{-\tau}(x), y) \right).$$

We thus obtain the identity

$$\int_{\Omega} d\rho(x) \int_{M \setminus \Omega} d\rho(y) \left( L(\Phi_\tau(x), y) - L(\Phi_{-\tau}(x), y) \right)$$

$$= \int_{\Omega} \left( \ell(\Phi_\tau(x)) - \ell(\Phi_{-\tau}(x)) \right) d\rho(x).$$ \hspace{1cm} (9.2.7)

Using that $\ell(\Phi_\tau(x))$ is continuously differentiable (see Definition 9.2.1) and that $\Omega$ is compact, we conclude that the right side of this equation is differentiable at $\tau = 0$. 

**9.2. NOETHER-LIKE THEOREMS 129**
Moreover, we are allowed to interchange the \(\tau\)-differentiation with integration. The EL equations (7.1.6) imply that
\[
\frac{d}{d\tau} \ell(\Phi(x)) \bigg|_{\tau=0} = 0 = \frac{d}{d\tau} \ell(\Phi^{-\tau}(x)) \bigg|_{\tau=0}.
\]
Hence the right side of (9.2.7) is differentiable at \(\tau = 0\), and the derivative vanishes. This gives the result. \(\square\)

This theorem requires a detailed explanation. We first clarify the connection to surface layer integrals. To this end, let us assume that \(\Phi\), and the Lagrangian are differentiable in the sense that the derivatives
\[
\frac{d}{d\tau} \Phi(x) \bigg|_{\tau=0} = u(x) \quad \text{and} \quad \frac{d}{d\tau} \mathcal{L}(\Phi(x), y) \bigg|_{\tau=0}
\]
exist for all \(x, y \in M\) and are continuous on \(M\) respectively \(M \times M\). Then one may exchange differentiation and integration in (9.2.6) and apply the chain rule to obtain
\[
\int_{\Omega} d\rho(x) \int_{M \setminus \Omega} d\rho(y) D_{1,u} \mathcal{L}(x, y) = 0,
\]
where \(D_{1,u}\) is the partial derivative at \(x\) in the direction of the vector field \(u(x)\). This expression is a surface layer integral as in (9.1.2). In general, the derivatives in (9.2.9) need not exist, because we merely imposed the weaker differentiability assumption of Definition 9.2.1. In this case, the statement of the theorem implies that the derivative of the integral in (9.2.6) exists and vanishes.

We next explain the connection to conservation laws. Let us assume that \(M\) admits a sensible notion of “spatial infinity” and that the vector field \(\partial_{\tau} \Phi \in \Gamma(M, TF)\) has suitable decay properties at spatial infinity. Then one can choose a sequence \(\Omega_n \subset M\) of compact sets which form an exhaustion of a set \(\Omega\) which extends up to spatial infinity (see Figure 9.2 (a) and (b)). Considering the surface layer integrals for \(\Omega_n\) and passing to limit, one concludes that also the surface layer integral corresponding to \(\Omega\) vanishes. Let us assume that the boundary \(\partial \Omega\) has two components \(N_1\) and \(N_2\) (as in Figure 9.2 (b)). Then the above theorem implies that the surface layer integrals over \(N_1\) and \(N_2\) coincide (where the surface layer integral over \(N\) is defined as the surface layer integral corresponding to a set \(\Omega_N\) with \(\partial \Omega_N = N\) as shown in Figure 9.2 (c)). In other words, the quantity
\[
\frac{d}{d\tau} \int_{\Omega_N} d\rho(x) \int_{M \setminus \Omega_N} d\rho(y) \left( \mathcal{L}(\Phi(x), y) - \mathcal{L}(\Phi^{-\tau}(x), y) \right) \bigg|_{\tau=0}
\]
is well-defined and independent of the choice of \(N\). In this setting, the surfaces \(N\) can be interpreted as Cauchy surfaces, and the conservation law of Theorem 9.2.3 means that the surface layer integral is preserved under the time evolution.
As a concrete example, the unitary invariance of the causal action principle gives rise to a conservation law, which corresponds to current conservation. This example will be considered in detail in Section 9.4. We finally remark that the conservation laws for energy-momentum can also be obtained from Theorem 9.2.3 assuming that the causal fermion system has symmetries as described by generalized Killing symmetries. We refer the interested reader to [63, Section 6].

9.3. A CLASS OF CONSERVATION LAWS IN THE SMOOTH SETTING

In the previous section we saw that surface layer integrals can be used to formulate a Noether-like theorem which relates symmetries to conservation laws. In this section we shall derive conservation laws even in the absence of symmetries. Instead, these conservation laws are closely tied to the structure of the linearized field equations as derived in Section 8.1. In order to focus on the essence of the construction, we again restrict attention to the smooth setting (6.2.4).

The basic idea of the construction is explained in the following proposition:

**Proposition 9.3.1.** Let \( \Omega \subset M \) be compact. Then for any solution \( v \in J_{\text{lin}} \) of the linearized field equations (8.1.6),

\[
\gamma_{\rho}^{\Omega}(v) := \int_{\Omega} d\rho(x) \int_{M \setminus \Omega} d\rho(y) \left( \nabla_{1,v} - \nabla_{2,v} \right) \mathcal{L}(x, y) = \int_{\Omega} \nabla v \cdot \mathbb{S} d\rho. \tag{9.3.1}
\]

**Proof.** In view of the anti-symmetry of the integrand,

\[
\int_{\Omega} d\rho(x) \int_{\Omega} d\rho(y) \left( \nabla_{1,v} - \nabla_{2,v} \right) \mathcal{L}(x, y) = 0.
\]

Adding this equation to the left side of (9.3.1), we obtain

\[
\gamma_{\rho}^{\Omega} = \int_{\Omega} d\rho(x) \int_{M} d\rho(y) \left( \nabla_{1,v} - \nabla_{2,v} \right) \mathcal{L}(x, y)
\]

\[
= \int_{\Omega} d\rho(x) \left( 2 \nabla v \left( \ell(x) + \mathbb{S} \right) - \left( \Delta v \right)(x) - \nabla v \cdot \mathbb{S} \right),
\]

where in the last line we used the definitions of \( \ell \) and \( \Delta \) (see (7.1.1) and (8.1.6)). Applying the restricted EL equations (7.2.4) and the linearized field equations (8.1.6) gives the result. \( \square \)

We remark that the identity (9.3.1) has a similar structure as the conservation law in the Noether-like theorem (9.2.6). In order to make the connection precise, one describes the symmetry \( \Phi_{\tau} \) infinitesimally by a jet \( v \) with vanishing scalar component,

\[
v(x) := \frac{d}{d\tau}(0, \Phi_{\tau}(x)) \bigg|_{\tau=0}.
\]

Using the symmetry property (9.2.5), one verifies similar as in the proof of Lemma 8.2.1 that this jet satisfies the linearized field equations (8.1.6). Therefore, Proposition 9.3.1 applies, and the right side vanishes because \( v \) because \( v \) has no scalar component. We thus recover the identity obtained by carrying out the \( \tau \)-derivative in (9.2.6).

We conclude that Proposition 9.3.1 is a generalization of Theorem 9.2.3. Instead of imposing symmetries, the identity (9.3.1) is a consequence of the linearized field equations. Again choosing \( \Omega \) as the region between two Cauchy surfaces (see Figure 9.2), one obtains a relation between the surface layer integrals around \( N_1 \) and \( N_2 \). If the scalar component
of \(\nu\) vanishes, we obtain a conservation law. Otherwise, the right side of (9.3.1) tells us how the surface layer integral changes in time.

We now generalize Proposition 9.3.1. The basic idea is to integrate anti-symmetric expressions in \(x\) and \(y\) which involve higher derivatives of the Lagrangian. We again restrict attention to the smooth setting (for the general proof see \([65]\)). Let \(\tilde{\rho}_{s,t}\) with \(s, t \in (-\delta, \delta)\) be a two-parameter family of measures which are solutions of the restricted EL equations. We assume that these measures are of the form

\[
\tilde{\rho}_{s,t} = (F_{s,t})^* (f_{s,t} \rho),
\]

(9.3.2)

where \(f_{s,t}\) and \(F_{s,t}\) are smooth,

\[
f \in C^\infty((-\delta, \delta)^2 \times \mathcal{F}, \mathbb{R}^+) \quad \text{and} \quad F \in C^\infty((-\delta, \delta)^2 \times \mathcal{F}, \mathcal{F}),
\]

(9.3.3)

and are trivial in the case \(s = t = 0\) \((6.4.5)\). Moreover, we make the following regularity assumption:

(ra) For all \(x \in M\), \(p, q \geq 0\) and \(r \in \{0, 1\}\), the following partial derivatives exist and can be interchanged with integration:

\[
\int_M \partial_x^r \partial_{y}^q \partial_{y}^{q'} \mathcal{L}(F_{s+t,x}(x), F_{s+t,y}(y)) \bigg|_{s' = s = t = 0} \, d\rho(y) = \partial_x^r \partial_y^q \int_M \mathcal{L}(F_{s+t,x}(x), F_{s+t,y}(y)) \, d\rho(y) \bigg|_{s' = s = t = 0}.
\]

Theorem 9.3.2. Let \(f\) and \(F\) be as in \((9.3.3)\) and \((6.4.5)\) which satisfy the above regularity assumption (ra). Moreover, assume that the measures \(\tilde{\rho}_{s,t}\) given by \((9.3.2)\) satisfy the restricted EL equations for all \(s\) and \(t\). Then for every compact \(\Omega \subset M\) and every \(k \in \mathbb{N}\),

\[
I_{k+1}^\Omega := \int_\Omega d\rho(x) \int_{M \setminus \Omega} d\rho(y) \times \left(\partial_{1,s} - \partial_{2,s}\right) \left(\partial_{1,t} + \partial_{2,t}\right)^k f_{s,t}(x) \mathcal{L}(F_{s,t}(x), F_{s,t}(y)) f_{s,t}(y) \bigg|_{s = t = 0} = \mathbb{S} \int_{\Omega} \partial_x^k f_{s,t}(x) \bigg|_{s = t = 0} \, d\rho(x).
\]

Proof. Introducing the short notation

\[
\mathcal{L}(x_{s,t}, y_{s,t}) = f_{s,t}(x) \mathcal{L}(F_{s,t}(x), F_{s,t}(y)) f_{s,t}(y),
\]

(9.3.5)

the restricted EL equations \((8.1.6)\) read

\[
\nabla_u \left( \int_M \mathcal{L}(x_{s,t}, y_{s,t}) \, d\rho(y) - s f_{s,t}(x) \right) = 0 \quad \text{for all} \quad u \in \mathcal{F}.
\]

In particular for any \(k \geq 0\) and any vector \(v = v^s \partial_s + v^t \partial_t\), we obtain

\[
\int_M \partial_{1,s} \left( \partial_{1,v} + \partial_{2,v} \right)^k \mathcal{L}(x_{s,t}, y_{s,t}) \, d\rho(y) \bigg|_{s = t = 0} = \mathbb{S} \partial_v^k f_{s,t}(x) \bigg|_{s = t = 0} \quad (9.3.6)
\]

\[
\int_M \left( \partial_{1,v} + \partial_{2,v} \right)^{k+1} \mathcal{L}(x_{s,t}, y_{s,t}) \, d\rho(y) \bigg|_{s = t = 0} = \mathbb{S} \partial_v^{k+1} f_{s,t}(x) \bigg|_{s = t = 0} \quad (9.3.7)
\]

(the derivatives exist and can be exchanged with the integration according to the above regularity assumption (ra)). Differentiating the last equation with respect to \(v^s\) and
dividing by $k + 1$, we obtain
\[
\int_M (\partial_{1,s} + \partial_{2,s})(\partial_{1,v} + \partial_{2,v})^k L(x_{s,t}, y_{s,t}) \, dp(y) = s \partial_s \partial_v^k f_{s,t}(x).
\]
Subtracting twice the identity (9.3.6), we obtain for any $k \geq 0$ the equation
\[
\int_M (\partial_{1,s} - \partial_{2,s})(\partial_{1,v} + \partial_{2,v})^k L(x_{s,t}, y_{s,t}) \, dp(y) = s \partial_s \partial_v^k f_{s,t}(x).
\]
Integrating the last equation over $\Omega$ gives
\[
\hat{\Omega} d\mu_v(x) \hat{M} d\rho(y) (\partial_{1,s} - \partial_{2,s})(\partial_{1,v} + \partial_{2,v})^k L(x_{s,t}, y_{s,t}) = \partial_s \partial_v^k f_{s,t}(x).
\]
On the other hand, since the integrand is anti-symmetric in its arguments $x$ and $y$, we also know that
\[
\hat{\Omega} d\mu_v(x) \hat{M} d\rho(y) (\partial_{1,s} - \partial_{2,s})(\partial_{1,v} + \partial_{2,v})^k L(x_{s,t}, y_{s,t}) = 0.
\]
Subtracting this equation from (9.3.8) and evaluating at $s = t = 0$ gives the result. \( \square \)

We conclude this section by discussing the conservation law of Proposition 9.3.1 for inner solutions as considered in Section 8.3 (commutator jets will be considered afterward in Section 9.4). To this end, we need to assume again that spacetime has a smooth manifold structure. We first define an integration measure on the boundary of $\Omega$.

**Definition 9.3.3.** Let $v = (\text{div } v, v) \in \mathcal{J}_{\rho}^{\text{in}}$ be an inner solution and $\Omega \subset M$ closed with smooth boundary $\partial \Omega$. On the boundary, we define the measure $d\mu_v(x)$ as the contraction of the volume form on $M$ with $v$, i.e. in local charts
\[
d\mu_v(x) = h \epsilon_{ijkl} v^i dx^j dx^k dx^l,
\]
where $\epsilon_{ijkl}$ is the totally anti-symmetric Levi-Civita symbol (normalized by $\epsilon_{0123} = 1$).

Similar as in Lemma 8.3.3, we can integrate by parts with the help of the Gauß divergence theorem. But now boundary terms remain,
\[
\gamma^\Omega_{\rho}(v) = \int_{\partial \Omega} d\mu_v(x) \int_M d\rho(y) \mathcal{L}(x, y) + \int_{\Omega} d\rho(x) \int_{\partial \Omega} d\mu_v(y) \mathcal{L}(x, y)
\]
\[= \int_{\partial \Omega} d\mu_v(x) \int_M d\rho(y) \mathcal{L}(x, y) = s \int_{\partial \Omega} d\mu_v(x) = s \mu_v(\partial \Omega),
\]
where in the last line we used the symmetry of $\mathcal{L}$ and employed the EL equations. In this way, the surface layer integral reduces to a usual surface integral over the hypersurface $\partial \Omega$.

### 9.4. The Commutator Inner Product for Causal Fermion Systems

As a concrete example of a conservation law, we now consider current conservation. To this end, we consider the setting of causal fermion systems. As in Section 8.2 we again let $A$ be a symmetric operator of finite rank on $\mathcal{H}$ and $U_\tau$ be the corresponding one-parameter family of unitary transformations (8.2.2). Infinitesimally, this one-parameter family is described by the commutator jet $v$ (8.2.3). The unitary invariance
of the causal action implies that the commutator jets satisfy the linearized field equations (see Lemma 8.2.1). Moreover, using that the scalar component of commutator jets vanishes, Proposition 9.3.1 gives for any compact \( \Omega \subset M \) the conservation law

\[
\gamma^\Omega_\rho (v) := \int_\Omega d\rho(x) \int_{M \setminus \Omega} d\rho(y) \left( \nabla_{1,y} - \nabla_{2,y} \right) \mathcal{L}(x,y) = 0.
\]

In order to understand the significance of this conservation law, it is useful to choose \( A \) more specifically as an operator of rank one. More precisely, given a non-zero vector \( \psi \in \mathcal{H} \), we form the symmetric linear operator

\[
A \in L(\mathcal{H}) \text{ of rank one by }
A u := \langle u | \psi \rangle \mathcal{H} \psi \quad (9.4.1)
\]

(3) (thus in bra/ket notation, \( A = |\psi\rangle \langle \psi| \)). We now form the corresponding commutator jet \( (8.2.4) \). Varying the vector \( \psi \), we obtain a mapping

\[
j : \mathcal{H} \to \mathfrak{J}^\text{lin}, \quad \psi \mapsto v. \quad (9.4.2)
\]

Moreover, we choose \( \Omega \) again as the past of a Cauchy surface (as shown in Figure 9.2 (c)). We write the resulting conserved quantity as

\[
\mathcal{C}^\Omega_\rho (u,v) := \int_\Omega d\rho(x) \int_{M \setminus \Omega} d\rho(y) \left( D_{1,y}(u) - D_{2,y}(u) \right) \mathcal{L}(x,y) \quad \text{with } u \in \mathcal{H}, \quad (9.4.3)
\]

where for technical simplicity we assume smoothness in order to interchange differentiation with integration. Clearly, the mapping \( j \) in \( (9.4.2) \), and consequently also the mapping \( \mathcal{C}^\Omega_\rho \), are homogeneous of degree two, i.e.

\[
\mathcal{C}^\Omega_\rho (\lambda u) = |\lambda|^2 \mathcal{C}^\Omega_\rho (u) \quad \text{for all } u \in \mathcal{H} \text{ and } \lambda \in \mathbb{C}.
\]

Therefore, we can use the polarization formula to define a sesquilinear form on the Hilbert space \( \mathcal{H} \),

\[
\langle u | v \rangle^\Omega_\rho := \frac{1}{4} \left( \mathcal{C}^\Omega_\rho (u + v) - \mathcal{C}^\Omega_\rho (u - v) \right) - \frac{i}{4} \left( \mathcal{C}^\Omega_\rho (u + iv) - \mathcal{C}^\Omega_\rho (u - iv) \right)
\]

This sesquilinear form is referred to as the \textit{commutator inner product} (for details see [56, Section 3]). In [63, Section 5.2] it is shown that for Dirac systems in Minkowski space, this conserved quantity gives back the conservation of the Dirac current (up to an irrelevant prefactor). We thus recover current conservation as special case of a more general conservation law for causal fermion systems. Since in most known examples, the conserved surface layer integral \( \mathcal{C}^\Omega_\rho (u,v) \) gives back the Hilbert space scalar product, we give this property a name:

**Definition 9.4.1.** Given a critical measure \( \rho \) and a subset \( \Omega \subset M \), the surface layer integral \( \mathcal{C}^\Omega_\rho \) is said to \textbf{represent the scalar product} if there is a non-zero real constant \( c \) such that for every symmetric operator \( A \) of finite rank, the corresponding commutator jet as defined by \( (8.2.4) \) has the property that

\[
\langle u | u \rangle^\Omega_\rho = c \| u \|^2_{\mathcal{H}}. \quad (9.4.4)
\]

In view of the conservation law of Proposition 9.3.1, this property remains valid if \( \Omega \) is changed by a compact subset of \( M \).

Although being true in most examples, at present there is no general argument why the surface layer integral \( \mathcal{C}^\Omega_\rho \) should represent the scalar product. Therefore, in this book we shall not assume that this property holds. Instead, we make the following weaker
assumption. We assume that the sesquilinear form $C^\Omega_\rho$ is equivalent to the scalar product in the sense that
\[ \langle u|v \rangle^\Omega_\rho = \langle u|C_\rho v \rangle_\mathcal{H}, \]
where $C_\rho$ is a bounded linear operator on $\mathcal{H}$ with bounded inverse. Under this assumption, the Hilbert space scalar product can be expressed by
\[ \langle u|v \rangle_\mathcal{H} = \langle u|C^{-1}_\rho v \rangle^\Omega_\rho. \]
In this way, the Hilbert space scalar product can be represented by a surface layer integral involving the physical wave functions in spacetime.

We finally remark that in [56] Section 4] the commutator product was extended to wave functions which are not necessarily the physical wave functions. Current conservation continues to hold for the extension, provided that the wave functions satisfy the so-called dynamical wave equation
\[ \int_M Q^{\text{dyn}}(x,y) \psi(y) \, d\rho(y) = 0. \quad (9.4.5) \]
Here the integral kernel $Q^{\text{dyn}}$ is constructed from first variations of the causal Lagrangian.

In this formulation, the commutator inner product takes the form
\[ \langle \psi|\phi \rangle^\Omega_\rho := -2i \left( \int_\Omega d\rho(x) \int_{M \setminus \Omega} d\rho(y) - \int_{M \setminus \Omega} d\rho(x) \int_\Omega d\rho(y) \right) \langle \psi(x)|Q^{\text{reg}}(x,y) \phi(y) \rangle_x. \quad (9.4.6) \]

### 9.5. THE SYMPLECTIC FORM AND THE SURFACE LAYER INNER PRODUCT

For the applications, the most important surface layer integrals are $I^\Omega_1$ (also denoted by $\gamma^\Omega_\rho$; see Proposition [9.3.1] and Theorem [9.3.2] in the case $k = 0$) and $I^\Omega_2$ (see Theorem [9.3.2] in the case $k = 1$). We now have a closer look at the surface layer integral $I^\Omega_2$. It is defined by
\[ I^\Omega_2 = \int_\Omega d\rho(x) \int_{M \setminus \Omega} d\rho(y) \langle \partial_{1,s} - \partial_{2,s}\rangle \langle \partial_{1,t} + \partial_{2,t}\rangle f_{s,t}(x) \mathcal{L}(F_{s,t}(x), F_{s,t}(y)) f_{s,t}(y) \big|_{s=t=0} \]
and satisfies for any compact subset $\Omega \subset M$ the identity
\[ I^\Omega_2 = \text{sgn} \int_\Omega \partial_s \partial_t f_{s,t}(x) \big|_{s=t=0} d\rho(x). \quad (9.5.2) \]

These formulas simplify considerably if we anti-symmetrize in the parameters $s$ and $t$. Namely, the formula for $I^\Omega_2$ reduces to the surface layer integral
\[ \int_\Omega d\rho(x) \int_{M \setminus \Omega} d\rho(y) \big|_{s=t=0} \langle \partial_{1,s} \partial_{2,t} - \partial_{1,t} \partial_{2,s} \rangle f_{s,t}(x) \mathcal{L}(F_{s,t}(x), F_{s,t}(y)) f_{s,t}(y) \big|_{s=t=0}. \]
Since this expression involves only first partial derivatives, it can be rewritten with jet derivatives as
\[ \sigma^\Omega_\rho(u, v) := \int_\Omega d\rho(x) \int_{M \setminus \Omega} d\rho(y) (\nabla_u \nabla_v - \nabla_v \nabla_u) \mathcal{L}(x, y), \quad (9.5.3) \]
where the jets $u$ and $v$ are the linearized solutions
\[ u = \partial_t (f_{s,t}, F_{s,t}) \big|_{s=t=0} \quad \text{and} \quad v = \partial_t (f_{s,t}, F_{s,t}) \big|_{s=t=0}. \quad (9.5.4) \]
Moreover, the right side of (9.5.2) vanishes when anti-symmetrizing in $s$ and $t$. We conclude that

$$\sigma^\Omega_\rho(u, v) = 0 \quad \text{for every compact } \Omega \subset M.$$  

Choosing $\Omega$ again as explained in Figure 9.2, we obtain a conservation law for a surface layer integral over a neighborhood of a hypersurface $N$ which extends to spatial infinity. We refer to $\sigma^\Omega_\rho$ as the symplectic form (the connection to symplectic geometry will be explained after (9.5.6) below).

Symmetrizing $I^\Omega_2$ in the parameters $s$ and $t$ gives the surface layer integral

$$\int_\Omega d\rho(x) \int_{M \setminus \Omega} d\rho(y) (\partial_1 s \partial_1 t - \partial_2 s \partial_2 t) f_{s,t}(x) \mathcal{L}(F_{s,t}(x), F_{s,t}(y)) f_{s,t}(y) \bigg|_{s=t=0}. \quad (9.5.5)$$

This expression has a more difficult structure because it involves second partial derivatives. Such second partial derivatives cannot be expressed directly in terms of second jet derivatives, because the derivatives of the jets also need to be taken into account. In a differential geometric language, defining second derivatives would make it necessary to introduce a connection on $\mathcal{F}$. As explained after (ii) on page 118 we here use the simpler method of taking second partial derivatives in distinguished charts. Then it is useful to introduce the surface layer inner product $\langle \cdot, \cdot \rangle^\Omega_\rho$ as the contribution to (9.5.5) involving second derivatives of the Lagrangian, i.e.

$$\langle u, v \rangle^\Omega_\rho := \int_\Omega d\rho(x) \int_{M \setminus \Omega} d\rho(y) (\nabla_{1,u} \nabla_{1,v} - \nabla_{2,u} \nabla_{2,v}) \mathcal{L}(x, y),$$

where the jets $u$ and $v$ are again the linearized solutions (9.5.4). We point out that, in contrast to the symplectic form, the surface layer inner product does not correspond to a conservation law. This has two reasons: First because the right side of (9.5.2) gives rise to a volume term, and second because the derivatives of the jets $u$ and $v$ gives additional correction terms. For the details and the interpretation of these correction terms we refer to [65]. Here we only remark that the significance of the surface layer inner product is that it is an approximate conservation law. In particular, it can be used for estimating solutions of the linearized field equations and for proving existence. We will come back to these applications in Section 14.

We finally comment on the name symplectic form. Clearly, this name is taken from symplectic geometry, where it refers to a closed and non-degenerate two-form $\sigma$ on a manifold which we denote by $\mathcal{B}$. The connection to the surface layer integral (9.5.3) is obtained if we assume that the set of all critical measures of the form (8.1.1) forms a smooth manifold $\mathcal{B}$ (which may be a infinite-dimensional Banach manifold). In this case, a jet $v$ describing first variations of a measure (8.1.5) is a tangent vector in $T_\rho \mathcal{B}$. Consequently, the jet space $\mathcal{J}$ can be identified with the tangent space $T_\rho \mathcal{B}$. The surface layer integral (9.5.3) can be regarded as a mapping

$$\sigma^\Omega_\rho : T_\rho \mathcal{B} \times T_\rho \mathcal{B} \to \mathbb{R}. \quad (9.5.6)$$

Being antisymmetric, it can be regarded as a two-form. Similarly, the conserved surface layer integral $\gamma^\Omega_\rho$ in (9.3.1) can be regarded as a one-form. Moreover, the $t$-derivative in (9.5.1) can be regarded as a directional derivative acting on $I^\Omega_1 = \gamma^\Omega_\rho$. Anti-symmetrizing in $s$ and $t$ corresponds to taking the outer derivative. We thus obtain

$$\sigma^\Omega_\rho = d\gamma^\Omega_\rho,$$
which also shows again that $\sigma^\Omega_\rho$ is closed. Thus, exactly as in symplectic geometry, the symplectic form defined as the surface layer integral (9.5.6) is a closed two-form. However, in contrast to symplectic geometry, it does not need to be non-degenerate. But this can be arranged by restricting attention to a more specific class of measures of the form (9.3.2). We refer to \[64\] for a more general discussion of this point.

9.6. The Nonlinear Surface Layer Integral

We now introduce a different type of surface layer integral, which can be regarded as a generalization of the surface layer integrals considered so far. In order to explain the basic concept, we return to the general structure of a surface layer integral (9.1.2). The differential operator $(\cdots)$ in the integrand can be regarded as describing first or second variations of the measure $\rho$. As we saw above, the resulting surface layer integrals give rise to conserved currents, the symplectic form and scalar products. Instead of considering first or second variations of a measure $\rho$, we now consider an additional measure $\tilde{\rho}$ which can be thought of as a finite perturbation of the measure $\rho$. Consequently, we also have two spacetimes $M := \text{supp } \rho$ and $\tilde{M} := \text{supp } \tilde{\rho}$.

Choosing two compact subsets $\Omega \subset M$ and $\tilde{\Omega} \subset \tilde{M}$ of the corresponding spacetimes, we form the nonlinear surface layer integral by

$$\gamma^{\tilde{\Omega}, \Omega}(\tilde{\rho}, \rho) := \int_\Omega \tilde{\rho}(x) \int_{\tilde{M} \setminus \tilde{\Omega}} d\rho(y) \mathcal{L}(x, y) - \int_{\tilde{\Omega}} d\rho(x) \int_{\tilde{M} \setminus \tilde{\Omega}} d\tilde{\rho}(y) \mathcal{L}(x, y). \tag{9.6.1}$$

Note that one argument of the Lagrangian is in $M$, whereas the other is in $\tilde{M}$. Moreover, one argument lies inside the set $\Omega$ respectively $\tilde{\Omega}$, whereas the other argument lies outside. In this way, the nonlinear surface layer integral “compares” the two spacetimes near the boundaries of $\Omega$ and $\tilde{\Omega}$, as is illustrated in Figure 9.3. If $\tilde{\rho}$ is a first or second variation of $\rho$, one recovers surface layer integrals of the form (9.1.2). In this way, the nonlinear surface layer integral can be regarded as a generating functional for the previous surface layer integrals. Moreover, it has the advantage that it does not rely on continuous variations or a perturbative treatment. Instead, it can be used for comparing two arbitrary measures $\rho$ and $\tilde{\rho}$. This nonlinear surface layer integral was introduced in \[54\]. It plays a central role for getting the connection to quantum field theory (as will be outlined in Chapter 22).

The nonlinear surface layer integral comes with a corresponding conservation law, as we now explain. For technical simplicity, we assume that the measure $\tilde{\rho}$ can be obtained from $\rho$ by multiplication with a weight function and a push-forward, i.e.

$$\tilde{\rho} = F_*(f\rho) \tag{9.6.2}$$
with smooth functions $f \in C^\infty(M, \mathbb{R}^+)$ and $F \in C^\infty(M, \mathcal{F})$. We use the mapping $F$ in order to identify $M$ with $\tilde{M}$. In particular, we choose

$$\tilde{\Omega} = F(\Omega).$$

Then, using the definition of the push-forward measure, the nonlinear surface layer integral can be written alternatively as

$$\gamma^{\tilde{\Omega}, \Omega}(\tilde{\rho}, \rho) = \int_\Omega \rho(x) \left( f(x) \mathcal{L}(F(x), y) - \mathcal{L}(x, F(y)) f(y) \right) \, d\tilde{\rho}(y) \, d\rho(x). \quad (9.6.3)$$

Similar as explained in Section 9.2 in the connection of Noether-like theorems, by a “conservation law” we mean that the nonlinear surface layer integral should vanish for all compact $\Omega$. In preparation for analyzing how to satisfy this condition, we rewrite the nonlinear surface layer integral as a volume integral by using the antisymmetry of the integrand in (9.6.3),

$$\gamma^{\tilde{\Omega}, \Omega}(\tilde{\rho}, \rho) = \int_\Omega \rho(x) \left( f(x) \mathcal{L}(F(x), y) - \mathcal{L}(x, F(y)) f(y) \right) \, d\tilde{\rho}(y) \, d\rho(x). \quad (9.6.4)$$

In order to write this equation in a simpler form, we introduce a measure $\nu$ on $M$ and a measure $\tilde{\nu}$ on $\tilde{M}$ by

$$d\nu(x) := \left( \int_M \mathcal{L}(x, y) \, d\tilde{\rho}(y) \right) \, d\rho(x) \quad \text{and} \quad d\tilde{\nu}(x) := \left( \int_M \mathcal{L}(x, y) \, d\rho(y) \right) \, d\tilde{\rho}(x).$$

Intuitively speaking, these measures describe how the measures $\rho$ and $\tilde{\rho}$ are connected to each other by the Lagrangian. We refer to them as the correlation measures. Then we can rewrite (9.6.4) as

$$\gamma^{\tilde{\Omega}, \Omega}(\tilde{\rho}, \rho) = \tilde{\nu}(F(\Omega)) - \nu(\Omega).$$

In order to obtain a conservation law, this expression should vanish for all compact $\Omega$. In other words, the measure $\nu$ should be the push-forward of the measure $\tilde{\nu}$ under the mapping $F$,

$$\nu = F_* \tilde{\nu}. \quad (9.6.5)$$

In this way, the task of finding a conservation law is reduced to the following abstract problem: Given two measures $\nu$ on $M$ and $\tilde{\nu}$ on $\tilde{M}$, under which assumptions can one measure be realized as the push-forward of the other? If $M$ and $\tilde{M}$ are volume forms on compact manifolds, such a push-forward mapping is obtained from a classical theorem of Jürgen Moser (see for example [102], Section XVIII, §2). In the non-compact case, the existence of $F$ has been proven under general assumptions in [88]. In this way, the conservation law for the nonlinear surface layer integral can be arranged by adjusting the identification of the spacetimes $M$ and $\tilde{M}$.

We finally remark how the nonlinear surface layer integral can be used to “compare” two causal fermion systems $(\mathcal{H}, \mathcal{F}, \rho)$ and $(\mathcal{H}, \tilde{\mathcal{F}}, \tilde{\rho})$. In this setting, one must keep in mind that the causal fermion systems are defined on different Hilbert spaces. Therefore, before forming the nonlinear surface layer integral, we must identify the Hilbert space $\mathcal{H}$ and $\tilde{\mathcal{H}}$ by a unitary transformation $V : \mathcal{H} \to \tilde{\mathcal{H}}$. Since this identification is not unique, we are left with the freedom to transform $V$ according to

$$V \to V \mathcal{U} \quad \text{with} \quad \mathcal{U} \in L(\mathcal{H}) \text{ unitary}.$$
A possible strategy for getting information independent of this freedom is to integrate over the unitary group. For example, this leads to the so-called partition function

$$Z_{\tilde{\Omega}, \Omega}^{\tilde{\rho}, \rho} := \int_{G} e^{\beta \cdot \tilde{\Omega}_{\rho}(\cdot \cdot \cdot)} d\mu_{G}(U),$$

where $\beta$ is a real parameter, and $G$ is a compact subgroup of the unitary group on $H$ with Haar measure $d\mu_{G}$. For more details we refer to [55] or Chapter 22.

9.7. Two-Dimensional Surface Layer Integrals

The surface layer integrals considered so far were intended to generalize integrals over hypersurfaces. We now explain how lower-dimensional integrals can be described by surface layer integrals. We restrict attention to two-dimensional integrals, noting that the methods can be applied similarly to one-dimensional integrals (i.e. integrals along a curve). It is most convenient to describe a two-dimensional surface $S \subset M$ as

$$S = \partial \Omega \cap \partial V,$$

where $\Omega$ can be thought of as being the past of a Cauchy surface, and $V$ describing a spacetime cylinder. This description has the advantage that the resulting surface layer integrals will be well-defined even in cases when spacetime is singular or discrete, in which case the boundaries $\partial \Omega$ and $\partial V$ are no longer a sensible concept. The most obvious way of introducing a surface layer integral localized in a neighborhood of $S$ is a double integral of the form

$$\int_{\partial \Omega \cap \partial V} \left( \int_{M \setminus (\Omega \cup V)} (\cdot \cdot \cdot) \mathcal{L}(x, y) \, d\rho(y) \right) \, d\rho(x) \quad (9.7.1)$$

(where $\mathcal{L}(x, y)$ again stands for a differential operator acting on the Lagrangian). If the Lagrangian has short range, we only get contributions to this surface layer integral if both $x$ and $y$ are close to the two-dimensional surface $S$ (see the left of Figure 9.4).

The disadvantage of this method is that the surface layer integral (9.7.1) does not seem to fit together with the EL equations and the linearized field equations. Therefore, at present there is no corresponding conservation law. If one considers flows of two-surfaces, it seems preferable to use the following method introduced in [20]. We need to assume that $M$ has a smooth manifold structure and is four-dimensional (see Definition 8.3.1) and that $v$ is a vector field which is transverse to the hypersurface $\partial \Omega$ and tangential to $\partial V$ (see the right of Figure 9.4). Following Definition 9.3.3, the inner solution corresponding to $v$ gives rise to a volume measure $\mu$ on $\partial \Omega$. Thus we can introduce a two-dimensional surface layer integral by

$$A := \int_{\partial \Omega \cap \partial V} d\mu(v, x) \int_{M \setminus (\Omega \cup V)} d\rho(y) (\cdot \cdot \cdot) \mathcal{L}(x, y).$$
Applying the Gauß divergence theorem, this surface layer integral can also be written in the usual way as a double spacetime integral involving jet derivatives of the inner solution,

\[
A = \int_{\Omega \cap V} d\rho(x) \int_{M \setminus V} d\rho(y) \left( \cdots \right) \mathcal{L}(x, y) \quad (9.7.2)
\]

where the notation \(\pm\) means that the formula holds for either choice of the sign (this is because the corresponding term vanishes, as one sees after integrating by parts as in the proof of Lemma 8.3.3 and using that \(v\) is tangential to \(\partial V\)). The obtained surface layer integral (9.7.3) harmonizes with the structures of the EL equations and the linearized field equations, as is exemplified in [20] by a simple connection between area change and matter flux.

**Exercises**

**Exercise 9.1. (Noether-like theorems)** The goal of this exercise is to illustrate the Noether-like theorems mentioned in the lecture. In order to simplify the problem as far as possible, we consider the compact setting and assume furthermore that the Lagrangian is smooth, i.e. \(\mathcal{L} \in C^\infty(\mathcal{F} \times \mathcal{F}, \mathbb{R}^+_0)\). Let \(\rho\) be a minimizer of the action under variations of \(\rho\) in the class of (positive) normalized regular Borel measures. Let \(u \in T\mathcal{F}\) be a vector field on \(\mathcal{F}\). Assume that \(u\) is a symmetry of the Lagrangian in the sense that

\[
\left( u(x)^j \frac{\partial}{\partial x^j} + u(y)^j \frac{\partial}{\partial y^j} \right) \mathcal{L}(x, y) = 0 \quad \text{for all } x, y \in \mathcal{F}. \quad (9.7.4)
\]

Prove that for any measurable set \(\Omega \subset \mathcal{F}\),

\[
\int_{\Omega} d\rho(x) \int_{\mathcal{F} \setminus \Omega} d\rho(y) u(x)^j \frac{\partial}{\partial x^j} \mathcal{L}(x, y) = 0.
\]

*Hint:* Integrate (9.7.4) over \(\Omega \times \Omega\). Transform the integral using the symmetry \(\mathcal{L}(x, y) = \mathcal{L}(y, x)\). Finally make use of the Euler-Lagrange equations.

**Exercise 9.2. (Commutator jets and conserved surface layer integrals)** Let \((\mathcal{H}, \mathcal{F}, \rho)\) be a causal fermion system on a finite-dimensional Hilbert space. For any self-adjoint \(S \in L(\mathcal{H})\), we define the corresponding commutator jet by

\[
\mathcal{C}_S := (0, C_S), \quad \text{with} \quad C_S(x) := i[S, x] \quad \text{for all } x \in \mathcal{F}.
\]

Prove the following identity between the conserved one-form and the conserved symplectic form:

\[
\gamma^\Omega_\rho((0, [C_A, C_B])) = -\frac{1}{2} \sigma^\Omega_\rho(\mathcal{C}_A, \mathcal{C}_B),
\]

where \([C_A, C_B]\) denotes the commutator of vector fields on \(\mathcal{F}\).

**Exercise 9.3. (On the surface layer inner product)** The goal of this exercise to show that, under a suitable restriction of the jet space, the surface-layer inner product is indeed non-negative. On \(\mathcal{F} = \mathbb{R}^2\) we define the Lagrangian

\[
\mathcal{L}(x, y) = \frac{1}{2} \eta(x_1 - y_1)(x_2 - y_2)^2, \quad \text{where} \ \eta \in C^\infty_0(\mathbb{R}, \mathbb{R}^+).
\]
Let \( M = \mathbb{R} \subset \mathcal{F} \) equipped with the canonical measure one dimensional Lebesgue measure and consider the set of jets

\[
\mathcal{J} := \left\{ (0, u) \left| u = \sum_{i=1}^{2} u_i \partial_i \in T\mathcal{F} \text{ with } u_1(t, 0) = 0 \text{ and } \partial_1 u_2(t, 0) \leq 0 \text{ for all } t \in \mathbb{R} \right. \right\}.
\]

Let \( \Omega_t := (-\infty, t) \subset M \). Show that the surface-layer inner product \( (\cdot, \cdot)_{\Omega_t}|_{\mathcal{J} \times \mathcal{J}} \) is non-negative.

*Hint:* Remember that jets are never differentiated in expressions like \( \nabla_{i,u} \nabla_{j,u} \).
CHAPTER 10

Positive Functionals

10.1. Motivation and Setup

Many physical quantities have a definite sign (for example positive mass, positive energy, negative charge, etc.). With this in mind, it is an important question whether the structure of a causal variational principle gives rise to positive functionals. We now briefly explain the structural results known at present. These were obtained with two different methods. One method is to make use of the fact that, given a minimizer of a variational principle, second variations are always non-negative. This method was worked out in [45], and we will give an outline in Sections 10.2 and 10.3. The second method is to use that the action of a giving minimizing measure $\rho$ is smaller than the action of any other test measure $\tilde{\rho}$. By a suitable choice of $\tilde{\rho}$, one gets surface layer integral with a definite sign. This second method is explored in detail in [52], and applications are worked out. Here we only explain the basic idea in Section 10.4.

For technical simplicity, we restrict attention to causal variational principles in the noncompact smooth setting (see (6.2.4) and Section 6.3).

10.2. Positivity of the Hessian of $\ell$

Let $\rho$ be a minimizer of the causal action. According to the EL equations (7.1.2), the function $\ell$ is minimal on $M$. This clearly implies that its Hessian (as computed in any chart) is positive semi-definite, i.e.

$$D^2\ell(x) \geq 0 \quad \text{for all } x \in M := \text{supp } \rho.$$  

(10.2.1)

This is the first non-negative quantity obtained from the fact that $\rho$ is a minimizer. In view of the restricted EL equations (7.2.1), the zero and first order derivatives of $\ell$ vanish for all $x \in M$. Adding such lower derivative terms, we can write (10.2.1) with jet derivatives as

$$\nabla^2\ell|_x(u,u) \geq 0 \quad \text{for all } x \in M,$$

where, following our conventions (i) and (ii) on page 118,

$$\nabla^2\ell|_x(u,u) := a(x)^2 \ell(x) + 2 a(x) D_u \ell(x) + D^2\ell|_x(u,u).$$

Integrating over $M$ gives the following result:

**Proposition 10.2.1.** Let $\rho$ be a minimizer of the causal action. Then

$$\int_M \nabla^2\ell|_x(u,u) \, d\rho(x) \geq 0 \quad \text{for all } u \in J_0.$$
10.3. Positivity of Second Variations Generated by Jets

We now analyze second variations for a special class of variations of the measure $\rho$ to obtain another positive functional on jets. Similar as in [64 Section 3] we consider measures of the form

$$\tilde{\rho}_r = (F_r)_*(f_r \rho) \quad \text{for } \tau \in (-\tau_{\text{max}}, \tau_{\text{max}})$$

(10.3.1)

with smooth mappings

$$f \in C^\infty((-\tau_{\text{max}}, \tau_{\text{max}}) \times M, \mathbb{R}^+) \quad \text{and} \quad F \in C^\infty((-\tau_{\text{max}}, \tau_{\text{max}}) \times M, \mathcal{F}),$$

where the star denotes the push-forward measure defined by $((F_r)_* \mu)(\Omega) = \mu(F_r^{-1}(\Omega))$ (where $\Omega \subset \mathcal{F}$; for basics see for example [134 Section 3.6]). We assume that for $\tau = 0$ the variation is trivial, (8.1.2). Moreover, for technical simplicity we assume that $F_r$ and $f_r$ are compactly supported, meaning that they are trivial outside a compact set $K \subset M$, i.e.

$$f_r|_{M \setminus K} = 1 \quad \text{and} \quad F_r|_{M \setminus K} \equiv 1 .$$

(10.3.2)

Finally, in order to satisfy the volume constraint on the right side of (6.3.1), we assume that

$$\int_K f_r(x) \, d\rho(x) = \rho(K) \quad \text{for all } \tau \in (-\tau_{\text{max}}, \tau_{\text{max}}).$$

(10.3.3)

Then the transformation (10.3.1) is described infinitesimally by a smooth and compactly supported jet,

$$u = (a, u) := (\dot{f}_0, \ddot{f}_0) \in \mathcal{J}_0 .$$

Moreover, differentiating the volume constraint (10.3.3) gives

$$\int_K a(x) \, d\rho(x) = 0 .$$

(10.3.4)

We now compute the first and second variation of the action. Combining (6.3.2) with the definition of the push-forward measure, we obtain

$$S(\tilde{\rho}_r) - S(\rho) = 2 \int_K d\rho(x) \int_{M \setminus K} d\rho(y) \left( f_r(x) \mathcal{L}(F_r(x), y) - \mathcal{L}(x, y) \right) + \int_K d\rho(x) \int_K d\rho(y) \left( f_r(x) f_r(y) \mathcal{L}(F_r(x), F_r(y)) - \mathcal{L}(x, y) \right) .$$

Then the first variation vanishes,

$$\left. \frac{d}{d\tau} S(\tilde{\rho}_r) \right|_{\tau=0} = 2 \int_K d\rho(x) \int_K d\rho(y) \nabla_{1, u} \mathcal{L}(x, y) = 2 \int_K \nabla_u \left( \ell(x) + s \right) d\rho(x) = 0 ,$$

where in the last step we used (7.2.4) and (10.3.4) (and $\nabla_1$ denotes the partial derivative acting on the first argument of the Lagrangian). Next, the second variation is computed by

$$\left. \frac{d^2}{d\tau^2} S(\tilde{\rho}_r) \right|_{\tau=0} = 2 \int_K d\rho(x) \int_K d\rho(y) \nabla_{1, u} \nabla_{2, u} \mathcal{L}(x, y)$$

$$+ 2 \int_K d\rho(x) \int_M d\rho(y) \left( a(x) D_{1, u} \mathcal{L}(x, y) + D_{1, u} D_{1, u} \mathcal{L}(x, y) + (\dot{f}_0(x) + D_{1, f_0}) \mathcal{L}(x, y) \right) .$$

In the last line we can carry out the $y$-integration using (7.1.1). Again combining the EL equations (7.2.4) with (10.3.4) (and similarly for $\dot{f}$), we obtain the simple formula

$$\frac{1}{2} \left. \frac{d^2}{d\tau^2} S(\tilde{\rho}_r) \right|_{\tau=0} = \int_K d\rho(x) \int_K d\rho(y) \nabla_{1, u} \nabla_{2, u} \mathcal{L}(x, y) + \int_K \nabla^2 \ell(x, u) \, d\rho(x) .$$

(10.3.5)
Since $\rho$ is a minimizer and the first variation vanishes, the second variation is necessarily non-negative, giving rise to the inequality
\[
\int_M d\rho(x) \int_M d\rho(y) \nabla_{1,u} \nabla_{2,u} \mathcal{L}(x, y) + \int_M \nabla^2 \ell|_x(u, u) \, d\rho(x) \geq 0,
\]
subject to the condition that the jet $u$ must satisfy the volume constraint \[(10.3.4)\]. In the next proposition we remove this condition with a limiting procedure:

**Proposition 10.3.1.** Let $\rho$ be a minimizer of the causal action. Then
\[
\int_M d\rho(x) \int_M d\rho(y) \nabla_{1,u} \nabla_{2,u} \mathcal{L}(x, y) + \int_M \nabla^2 \ell|_x(u, u) \, d\rho(x) \geq 0 \quad \text{for all } u \in \mathcal{J}_0.
\]

**Proof.** Let $u = (a, u) \in \mathcal{J}_0$ be a jet which violates the volume constraint \[(10.3.4)\]. Then, choosing a compact set $\Omega \subset M$ with $\rho(\Omega) > 0$, the jet $\hat{u} := (\hat{a}, u)$ with
\[
\hat{a}(x) = a(x) - c(\Omega) \chi_{\Omega}(x) \quad \text{and} \quad c(\Omega) := \frac{1}{\rho(\Omega)} \int_\Omega a(x) \, d\rho(x)
\]
(where $\chi_{\Omega}$ is the characteristic function) does satisfy \[(10.3.4)\]. Choosing the scalar variation $f_\tau = (1 - \tau) + \tau \hat{a}$ and a family of diffeomorphisms $F_\tau$ with $F_0 = u$, we obtain a variation which satisfies the volume constraint \[(10.3.3)\] (note that $\hat{\mathcal{J}} = 0$). Clearly, due to the characteristic function, the jet $\hat{u}$ is no longer smooth, but it has again compact support, and an approximation argument using Lebesgue’s dominated convergence theorem shows that the inequality \[(10.3.6)\] also holds for $\hat{u}$. Expanding in powers of $c$, we thus obtain the inequality
\[
0 \leq \int_K d\rho(x) \int_K d\rho(y) \nabla_{1,u} \nabla_{2,u} \mathcal{L}(x, y) + \int_K \nabla^2 \ell|_x(u, u) \, d\rho(x)
\]
\[
- 2c \int_M d\rho(x) \int_K d\rho(y) \chi_{\Omega}(x) \nabla_{2,u} \mathcal{L}(x, y)
\]
\[
+ c^2 \int_M d\rho(x) \int_M d\rho(y) \chi_{\Omega}(x) \chi_{\Omega}(y) \mathcal{L}(x, y)
\]
\[
+ \int_M \left( -2c \chi_{\Omega}(x) \nabla_u \ell(x) + c^2 \chi_{\Omega}(x)^2 \ell(x) \right) d\rho(x)
\]
(the integrand in the last line arises from the contributions to $\nabla^2 \ell|_x(u, u)$ involving the scalar components of the jets). The last line vanishes due to the restricted EL equations \[(7.2.4)\]. Hence
\[
\int_K d\rho(x) \int_K d\rho(y) \nabla_{1,u} \nabla_{2,u} \mathcal{L}(x, y) + \int_K \nabla^2 \ell|_x(u, u) \, d\rho(x)
\]
\[
\geq 2c \int_\Omega d\rho(x) \int_\Omega d\rho(y) \nabla_{1,u} \mathcal{L}(x, y) - c^2 \int_K d\rho(x) \int_K d\rho(y) \mathcal{L}(x, y) =: A(\Omega).
\]

We now let $(\Omega_n)_{n \in \mathbb{N}}$ be an exhaustion of $M$ by compact sets. We distinguish the two cases when $\rho(M)$ is finite and infinite and treat these cases separately. If the total volume $\rho(M)$ is finite, one can take the limit $n \to \infty$ with Lebesgue’s dominated convergence
As a consequence, where in the last line we substituted the value of $c(M)$ in (10.3.7).

In the remaining case that the volume $\rho(M)$ is infinite, we estimate the terms as follows,

\[
\lim_{n \to \infty} A(\Omega_n) = 2 c(M) s \int_K a(x) \, d\rho(x) - c(M)^2 \rho(M) s
\]

\[
= \frac{\nu}{2\rho(M)} \left( \int_K a(x) \, d\rho(x) \right)^2 \geq 0,
\]

where in the last line we substituted the value of $c(M)$ in (10.3.7).

We note that, restricting attention to scalar jets, i.e. $u = (a, 0)$ with $a$ a real-valued function on $M$, the inequality in Proposition (10.3.1) reduces to

\[
\int_M d\rho(x) \int_M d\rho(y) a(x) \, \mathcal{L}(x, y) \geq 0 \quad \text{for all } a \in \mathcal{C}_0^\infty(M).
\]

(10.3.8)

This inequality was first derived in [75, Lemma 3.5] and used for the analysis of minimizing measures. For more details see also Exercise (10.4).

### 10.3.1. Application: Hilbert Spaces of Jets

As an application, we now explain how our positive functionals can be used to endow spaces of jets in spacetime with Hilbert space structures. These Hilbert space structures should be very useful because they make functional analytic tools applicable to the analysis of the jet spaces and the causal action principle.

We introduce the following bilinear forms on $\mathfrak{J}_0$,

\[
\langle u, v \rangle := \int_M d\rho(x) \int_M d\rho(y) \nabla_{1,u} \nabla_{2,v} \mathcal{L}(x, y) + \int_M \nabla^2 \ell|_x(u, v) \, d\rho(x)
\]

(10.3.9)

\[
\langle \langle u, v \rangle \rangle := \langle u, v \rangle + \int_M \nabla^2 \ell|_x(u, v) \, d\rho(x).
\]

(10.3.10)

By Propositions (10.2.1) and (10.3.1), both bilinear forms are positive semi-definite. Thus dividing out the null space and forming the completion gives real Hilbert spaces of jets denoted by $\mathcal{H}^{(\cdot \cdot)}$ and $\mathcal{H}^{\langle \langle \cdot \cdot \rangle \rangle}$, respectively. Obviously,

\[
\langle u, u \rangle \leq \langle \langle u, u \rangle \rangle,
\]

giving rise to a norm-decreasing mapping $\mathcal{H}^{\langle \langle \cdot \cdot \rangle \rangle} \to \mathcal{H}^{(\cdot \cdot)}$. 
For the scalar components of the jets, the two scalar products (10.3.9) and (10.3.10) obviously agree. But they are quite different for the vector components. In order to understand this difference, it is instructive to consider a jet \( u = (0, u) \) which describes a symmetry of the Lagrangian, i.e. (for details see [63, Section 3.1])

\[
(D_1, u + D_2, u) \mathcal{L}(x, y) = 0 \quad \text{for all } x, y \in M.
\]

For this jet, a direct computation shows that

\[
\langle u, u \rangle = 0.
\]

Hence symmetry transformations lie in the kernel of the bilinear form \( \langle ., . \rangle \) and thus correspond to the zero vector in \( \mathcal{H}^{(-)} \). Generally speaking, the scalar product \( \langle ., . \rangle \) makes it possible to disregard symmetry transformations of the causal Lagrangian. However, jets describing symmetry transformations do in general correspond to non-zero vectors of the Hilbert space \( \mathcal{H}^{(-)} \).

10.3.2. Application: A Positive Surface Layer Integral. We now derive a surface layer integral which is not necessarily conserved, but which has a definite sign. Similar as explained at the beginning of Section 10.3.1, this can be used to endow the jet space with a Hilbert structure. But in contrast to the scalar products in Section 10.3.1, where the jets were integrated over spacetime, here the scalar product is given as a surface layer integral. This should be very useful for analyzing the dynamics of jets in spacetime.

**Proposition 10.3.2.** Assume that \( v \) is a solution of the linearized field equations (8.1.6). Then for any compact \( \Omega \subset M \), the following surface layer integral is positive,

\[
-\int_{\Omega} d\rho(x) \int_{M \setminus \Omega} d\rho(y) \nabla_{1,v} \nabla_{2,v} \mathcal{L}(x, y) \geq 0.
\]

**Proof.** Denoting the components of \( v \) by \( v = (b, v) \), we evaluate (8.1.6) for \( u = v \) and integrate over \( \Omega \). The resulting integrals can be rewritten as follows,

\[
0 = \int_{\Omega} d\rho(x) \int_{M} d\rho(y) \nabla_{1,v}(\nabla_{1,v} + \nabla_{2,v}) \mathcal{L}(x, y) - \int_{\Omega} b(x)^2 d\rho(x)
\]

\[
= \int_{\Omega} \nabla^2 \ell_{x}(v, v) d\rho(x) + \int_{\Omega} d\rho(x) \int_{M} d\rho(y) \nabla_{1,v} \nabla_{2,v} \mathcal{L}(x, y)
\]

\[
= \int_{\Omega} \nabla^2 \ell_{x}(v, v) d\rho(x) + \int_{\Omega} d\rho(x) \int_{\Omega} d\rho(y) \nabla_{1,v} \nabla_{2,v} \mathcal{L}(x, y) + \int_{\Omega} d\rho(x) \int_{M \setminus \Omega} d\rho(y) \nabla_{1,v} \nabla_{2,v} \mathcal{L}(x, y).
\]

Using characteristic functions, the expression (10.3.11) can be written as

\[
\int_{M} \nabla^2 \ell_{x}(\chi_{\Omega} v, \chi_{\Omega} v) d\rho(x) + \int_{\Omega} d\rho(x) \int_{M} d\rho(y) \nabla_{1,\chi_{\Omega} v} \nabla_{2,\chi_{\Omega} v} \mathcal{L}(x, y).
\]

Approximating the jet \( \chi_{\Omega} v \) by smooth jets with compact support, one finds that the integrals in (10.3.11) are non-negative by Proposition 10.3.1. This gives the result. □

We finally remark that in [46, Section 6] the surface layer integral in the last proposition is computed in Minkowski space.
10.4. A Positive Nonlinear Surface Layer Integral

As in Section 9.6 we again consider two measures: A measure \( \rho \) which describes the vacuum spacetime, and another measure \( \tilde{\rho} \) which typically describes an interacting spacetime. We assume that the vacuum measure is a minimizer of the causal action principle as defined in Section 6.3 (see (6.3.3) and (6.3.2)). We choose subsets \( \Omega \subset M \) and \( \tilde{\Omega} \subset M \) having the same finite volume, 
\[
\rho(\Omega) = \tilde{\rho}(\tilde{\Omega}) < \infty.
\]

In order to construct an admissible test measure \( \hat{\rho} \), we “cut out” \( \Omega \) from \( \rho \) and “glue in” the set \( \tilde{\Omega} \), i.e.
\[
\hat{\rho} := \chi_{\tilde{\Omega}} \tilde{\rho} + \chi_{M \setminus \Omega} \rho.
\]
The measures \( \hat{\rho} \) differs from \( \rho \) only on a set of finite volume and preserves the volume constraint (see (6.3.1)). Therefore, we obtain from (6.3.3) and (6.3.2) (with \( \tilde{\rho} \) replaced by \( \hat{\rho} \)) that
\[
0 \leq (S(\hat{\rho}) - S(\rho)) = 2 \int_{\tilde{\Omega}} d(\hat{\rho} - \rho)(x) \int_{M} d\rho(y) \mathcal{L}(x, y) + \int_{\tilde{\Omega}} d(\hat{\rho} - \rho)(x) \int_{M} d(\hat{\rho} - \rho)(y) \mathcal{L}(x, y)
\]
\[
= 2 \int_{\tilde{\Omega}} d\hat{\rho}(x) \int_{M} d\rho(y) \mathcal{L}(x, y) - 2 \int_{\Omega} d\rho(x) \int_{M} d\rho(y) \mathcal{L}(x, y)
\]
\[
+ \int_{\tilde{\Omega}} d\hat{\rho}(x) \int_{M \setminus \Omega} d\rho(y) \mathcal{L}(x, y) - 2 \int_{\Omega} d\rho(x) \int_{M \setminus \Omega} d\rho(y) \mathcal{L}(x, y) + \int_{\Omega} d\rho(x) \int_{\Omega} d\rho(y) \mathcal{L}(x, y)
\]
\[
= 2 \int_{\tilde{\Omega}} d\hat{\rho}(x) \int_{M \setminus \Omega} d\rho(y) \mathcal{L}(x, y) - 2 \int_{\Omega} d\rho(x) \int_{M \setminus \Omega} d\rho(y) \mathcal{L}(x, y)
\]
\[
+ \int_{\tilde{\Omega}} d\hat{\rho}(x) \int_{M \setminus \Omega} d\rho(y) \mathcal{L}(x, y) - \int_{\Omega} d\rho(x) \int_{\Omega} d\rho(y) \mathcal{L}(x, y).
\]

The first summand in (10.4.1) coincides with the first summand in the nonlinear surface layer integral as introduced in (9.6.1). Thus it is a nonlinear surface layer integral with a somewhat different structure. As a consequence, it is not conserved, but instead it satisfies an inequality. The second summand in (10.4.1) can be interpreted as the surface area of \( \partial \Omega \). The two summands in (10.4.2), on the other hand, can be regarded as volume integrals over \( \tilde{\Omega} \) and \( \Omega \).

This method can be generalized and adapted in various ways, also to cases when \( \tilde{\Omega} \) and \( \Omega \) do not have the same volume. Moreover, in can be written in particularly useful form if also the measure \( \hat{\rho} \) satisfies the EL equations. We refer the interested reader to [52].

We finally remark that, assuming that \( \tilde{\rho} \) is again of the form (10.3.1) and expanding in powers of \( \tau \), one gets inequalities for surface layer integrals involving jet derivatives.

Exercises

Exercise 10.1. (Positive functionals for the causal variational principle on \( \mathbb{R} \)) We return to the causal variational principles on \( \mathbb{R} \) corresponding to the Lagrangian \( \mathcal{L}_2 \) introduced in Exercise 6.5. Let \( \rho = \delta \) be the unique minimizer.

(a) Compute the function \( \ell(x) \) and verify that its Hessian is positive (see (10.2.1)).
(b) Compute the functional in Proposition 10.3.1 for the jets \( u = (0, \partial_x) \) and \( u = (1, 0) \).
(c) What are the resulting scalar products (10.3.9) and (10.3.10)?
EXERCISE 10.2. (Positive functionals for the causal variational principle on $S^1$) We return to the causal variational principle on $\mathbb{R}$ introduced in Exercise 6.6. Let $\rho$ be a minimizing measure (6.5.9) for $0 < \tau < 1$. We choose $\mathcal{J}_0^{\text{test}}$ as the four-dimensional vector space generated by the scalar jet $(1,0)$ and the vector jet $(0,\partial_\varphi)$ at the two points.

(a) Compute the function $\ell(x)$ and verify that its Hessian.
(b) Compute the bilinear form in Proposition 10.3.1.
(c) What are the resulting scalar products (10.3.9) and (10.3.10)? What are the resulting Hilbert spaces of jets $H^{k \langle \cdot \rangle}$ and $H^{k \langle \cdot \rangle}$? Which dimensions do they have? How can this result be understood in view of the space of linearized solutions as computed in Exercise 8.6?

EXERCISE 10.3. (A positive operator on scalar jets) In this exercise we specialize the statement of Proposition 10.3.1 to scalar jets and work out a few consequences.

(a) Show that for jets of the form $u = (a,0)$, the statement of Proposition 10.3.1 reduces to the inequality (10.3.8).
(b) Let $\rho$ be a minimizing measure and $x_0, \ldots, x_N \in M$ be a finite number of spacetime points. Show that the Gram matrix $L$ defined by

$$L = \left( \mathcal{L}(x_i, x_j) \right)_{i,j=0,\ldots,N}$$

is symmetric and positive semi-definite.
(c) Show that the operator $\mathcal{L}_\rho$ defined by

$$\mathcal{L}_\rho : C^\infty_0(M) \subset L^2(M, d\rho) \to L^2(M, d\rho), \quad (\mathcal{L}_\rho \psi)(x) := \int_M \mathcal{L}(x,y) \psi(y) \, d\rho(y)$$

is a symmetric, densely defined operator on the Hilbert space $L^2(M, d\rho)$. Prove that this operator is positive semi-definite.

EXERCISE 10.4. The goal of this exercise is to explore the positive nonlinear surface layer integral of Section 10.4 in the limiting case when the measures of the sets $\Omega$ and $\tilde{\Omega}$ tend to zero. For technical simplicity, let us assume that for given $x \in M$ and $y \in \tilde{M}$, there are sequences of open neighborhoods $\Omega_k$ of $x$ and $\tilde{\Omega}_k$ of $y$ with $\rho(\Omega_k) = \tilde{\rho}(\tilde{\Omega}_k)$ for all $k \in \mathbb{N}$ and $\lim_{k \to \infty} \rho(\Omega_k) = \lim_{k \to \infty} \tilde{\rho}(\tilde{\Omega}_k) = 0$. Show that, in the limit $k \to \infty$, the inequality (10.4.1) and (10.4.2) reduces to the inequality

$$\ell(y) \geq \ell(x).$$

Thus we get back the EL equation (7.1.6).

In view of this limiting case, the positive nonlinear surface layer integral in Section 10.4 can be regarded as a refined nonlinear version of the EL equations.
CHAPTER 11

Topological and Geometric Structures

This chapter is devoted to the topological and geometric structures of a causal fermion system. We closely follow the presentation in \[53\] and \[50\].

11.1. A Topological Vector Bundle

For the topological structures, it is not essential that the operators in $\mathcal{F}$ have at most $n$ positive and at most $n$ negative eigenvalues (see Definition 5.3.1). Instead, it is preferable for the sake of greater generality and broader applicability relax this condition in the following way.

**Definition 11.1.1.** Given a complex Hilbert space $(\mathcal{H}, \langle \cdot | \cdot \rangle_{\mathcal{H}})$ and parameters $p, q \in \mathbb{N}_0$ with $p \leq q$, we let $\mathcal{F} \subset \text{L}(\mathcal{H})$ be the set of all self-adjoint operators on $\mathcal{H}$ of finite rank, which (counting with multiplicities) have at most $p$ positive and at most $q$ negative eigenvalues. On $\mathcal{F}$ we are given a positive measure $\rho$ (defined on a $\sigma$-algebra of subsets of $\mathcal{F}$). We refer to $(\mathcal{H}, \mathcal{F}, \rho)$ as a topological fermion system of spin signature $(p, q)$.

If $p = 0$, we call $(\mathcal{H}, \mathcal{F}, \rho)$ a Riemannian fermion system of spin dimension $n := q$. Clearly, the case $p = q$ gives back a causal fermion system (see Definition 5.3.1). It should be noted that the assumption $p \leq q$ merely is a convention, because otherwise one may always arrange to replace $\mathcal{F}$ by $-\mathcal{F}$.

In Section 2.5 the notion of a topological vector bundle was introduced (see Definition 2.5.2). Again setting $M = \text{supp} \, \rho$, we want to construct a topological vector bundle having the spin space $S_x$ as the fiber at the point $x \in M$. To this end, all the spin spaces must have the same dimension and signature, making it necessary to impose the following condition:

**Definition 11.1.2.** The topological fermion system is called **regular** if for all $x \in M$, the operator $x$ has the maximal possible rank $p + q$.

We note that most of our constructions can be extended to non-regular topological fermion systems by decomposing $M$ into subsets on which $x$ has fixed rank and a fixed number of positive and negative eigenvalues (for details see \[53\] Section 7).

We define $\mathcal{B}$ as the set of pairs

$$\mathcal{B} = \{(x, \psi) \mid x \in M, \, \psi \in S_x\}$$

and let $\pi$ be the projection onto the first component. Moreover, we let $(Y, \langle \cdot | \cdot \rangle_Y)$ be an indefinite inner product space of signature $(q, p)$, and choose $G = \text{U}(q, p)$ as the group of unitary transformations on $Y$. In order to construct the bundle charts, for any given $x \in M$ we choose a unitary mapping $\sigma : S_x \to Y$. By restricting the projection $\pi_x$ in (5.6.1) to $S_y$, we obtain the mapping

$$\pi_x|_{S_y} : S_y \to S_x.$$
In order to compute its adjoint with respect to the spin scalar product (??), for \( \psi \in S_x \) and \( \phi \in S_y \) we make the computation
\[
\langle \psi | \pi_x | S_y \phi \rangle_x = -\langle \psi | x \phi \rangle_{\mathcal{H}} = -\langle x \psi | \phi \rangle_{\mathcal{H}} = -\langle \pi_y x \psi | \phi \rangle_{\mathcal{H}} = -\langle y (y|S_y) \rangle_{\mathcal{H}} x \psi | \phi \rangle_{\mathcal{H}}
\]
\[
= -\langle (y|S_y) \rangle_{\mathcal{H}} x \psi | y \phi \rangle_{\mathcal{H}} = \langle (y|S_y) \rangle_{\mathcal{H}} x \psi | \phi \rangle_{\mathcal{H}}.
\]
Hence
\[
\pi_x | S_y \phi | S_y = (y|S_y) \rangle_{\mathcal{H}} x | S_x .
\]
We now introduce the operator
\[
T_{xy} = (\pi_x | S_y) \pi_x | S_y \rangle_{\mathcal{H}} x | S_x .
\]
By construction, this operator is symmetric and \( T_{xx} = I \). We now form the polar decomposition of \( T_{xy} \) to obtain a unitary operator \( U_{xy} \). By continuity, there is a neighborhood \( U \) of \( x \) such that for all \( y \in U \), the operator \( T_{xy} \) is invertible and has a unique square root \( \rho_{xy} \) (defined for example by the power series \( \sqrt{T_{xy}} = \sqrt{1 + (T_{xy} - 1)} = 1 + \frac{1}{2}(T_{xy} - 1) + \cdots \)). Introducing the mapping
\[
U_{xy} = \rho_{xy}^{-1} \pi_x | S_y : S_y \rightarrow S_x ,
\]
the calculation
\[
U_{xy} U_{xy}^* = \rho_{xy}^{-1} \pi_x | S_y \pi_x | S_y \rangle_{\mathcal{H}} x | S_x \]
shows that the mapping \( U_{xy} \) is unitary. Moreover, it clearly depends continuously on \( y \in U \).

We define the bundle chart \( \phi_U \) by
\[
\phi_U : (y, \sigma \circ U_{xy} | S_y) .
\]
The commutativity of the diagram (2.5.1) is clear by construction. Moreover, the transition functions \( g_{UV} \) in (2.5.2) are in \( G \) because we are working with unitary mappings of the fibers throughout. We choose the topology on \( \mathcal{B} \) such that all the bundle charts are homeomorphisms.

**Definition 11.1.3.** The topological vector bundle \( \mathcal{B} \rightarrow M \) is referred to as the vector bundle associated to the regular topological fermion system \( (\mathcal{H}, \mathcal{F}, \rho) \), or simply the associated vector bundle.

The next result shows that every vector bundle over a manifold can be realized as the associated vector bundle of a corresponding topological fermion system.

**Theorem 11.1.4.** Let \( X \rightarrow \mathcal{M} \) be a vector bundle over a \( k \)-dimensional topological manifold \( \mathcal{M} \), whose fibers are isomorphic to an indefinite inner product space of signature \( (q, p) \). Then there is a regular topological fermion system \( (\mathcal{H}, \mathcal{F}, \rho) \) of signature \( (p, q) \) such that the associated vector bundle (see Definition 11.1.3) is isomorphic to \( X \). If \( \mathcal{M} \) is compact, the Hilbert space \( \mathcal{H} \) can be chosen to be finite-dimensional.

The proof can be found in [53, Section 3.3].

### 11.2. Geometric Structures of a Causal Fermion System

We now outline constructions from [50] which give general notions of a connection and curvature (see Theorem 11.2.9, Definition 11.2.10 and Definition 11.2.11). So far, these constructions have been carried out only in the case of spin dimension \( n = 2 \). This is the most important case because it allows for the description of Dirac spinors in a four-dimensional spacetime.
11.2. Geometric Structures of a Causal Fermion System

11.2.1. Construction of the Spin Connection. Let \((\mathcal{H}, \mathcal{F}, \rho)\) be a causal fermion system of spin dimension \(n = 2\). Moreover, we assume that it is regular (see Definition 11.1.2).

An important structure from spin geometry missing so far is Clifford multiplication. To this end, we need a Clifford algebra represented by symmetric operators on \(S_x\). For convenience, we first consider Clifford algebras with the maximal number of five generators; later we reduce to four spacetime dimensions (see Definition 11.2.13 below). We denote the set of symmetric linear endomorphisms of \(S_x\) by \(\text{Symm}(S_x)\); it is a 16-dimensional real vector space.

**Definition 11.2.1.** A five-dimensional subspace \(K \subset \text{Symm}(S_x)\) is called a Clifford subspace if the following conditions hold:

(i) For any \(u, v \in K\), the anti-commutator \(\{u, v\} \equiv uv + vu\) is a multiple of the identity on \(S_x\).

(ii) The bilinear form \(\langle \cdot, \cdot \rangle\) on \(K\) defined by

\[
\frac{1}{2} \{u, v\} = \langle u, v \rangle 1
\]

for all \(u, v \in K\)

is non-degenerate and has signature \((1, 4)\).

In view of the situation in spin geometry, we would like to distinguish a specific Clifford subspace. In order to partially fix the freedom in choosing Clifford subspaces, it is useful to impose that \(K\) should contain a given so-called sign operator.

**Definition 11.2.2.** An operator \(v \in \text{Symm}(S_x)\) is called a sign operator if \(v^2 = 1\) and if the inner product \(<\cdot|\cdot>: S_x \times S_x \to \mathbb{C}\) is positive definite.

**Definition 11.2.3.** Given a sign operator \(v\), the set of Clifford extensions \(T^v\) is defined as the set of all Clifford subspaces containing \(v\),

\[
T^v = \{K \text{ Clifford subspace with } v \in K\}.
\]

Considering \(x\) as an operator on \(S_x\), this operator has by definition of the spin dimension two positive and two negative eigenvalues. Moreover, the calculation

\[
<u|(-x)u>_x = \langle u|x^2u\rangle > 0 \quad \text{for all } u \in S_x \setminus \{0\}
\]

shows that the operator \((-x)\) is positive definite on \(S_x\). Thus we can introduce a unique sign operator \(s_x\) by demanding that the eigenspaces of \(s_x\) corresponding to the eigenvalues \(\pm 1\) are precisely the positive and negative spectral subspaces of the operator \((-x)\). This sign operator is referred to as the Euclidean sign operator. It is worth noting that for Clifford extensions of the Euclidean sing operator, the bilinear form \(\langle \cdot, \cdot \rangle\) always has Lorentzian signature (see Exercise 11.1).

A straightforward calculation shows that for two Clifford extensions \(K, \tilde{K} \in T^v\), there is a unitary transformation \(U \in e^{i\mathcal{R}_v}\) such that \(\tilde{K} = UKU^{-1}\) (for details see [50, Section 3]). By dividing out this group action, we obtain a five-dimensional vector space, endowed with the inner product \(\langle \cdot, \cdot \rangle\). Taking for \(v\) the Euclidean signature operator, we regard this vector space as a generalization of the usual tangent space.

**Definition 11.2.4.** The tangent space \(T_x\) is defined by

\[
T_x = T^v_x / \exp(i\mathcal{R}_x).
\]

It is endowed with an inner product \(\langle \cdot, \cdot \rangle\) of signature \((1, 4)\).
We next consider two spacetime points. We need the following assumption.

**Definition 11.2.5.** Two points \( x, y \in M \) are said to be **properly time-like** separated if the closed chain \( A_{xy} \) has a strictly positive spectrum and if the corresponding eigenspaces are definite subspaces of \( S_x \).

This definition clearly implies that \( x \) and \( y \) are time-like separated (see Definition 5.5.1 and Exercise 11.3). Moreover, the eigenspaces of \( A_{xy} \) are definite if and only if those of \( A_{yx} \) are, showing that Definition 11.2.5 is again symmetric in \( x \) and \( y \). As a consequence, the spin space can be decomposed uniquely into an orthogonal direct sum \( S_x = I^+ \oplus I^- \) of a positive definite subspace \( I^+ \) and a negative definite subspace \( I^- \) of \( A_{xy} \). This allows us to introduce a unique sign operator \( v_{xy} \) by demanding that its eigenspaces corresponding to the eigenvalues \( \pm 1 \) are the subspaces \( I^\pm \). This sign operator is referred to as the **directional sign operator** of \( A_{xy} \). Having two sign operators \( s_x \) and \( v_{xy} \) at our disposal, we can distinguish unique corresponding Clifford extensions, provided that the two sign operators satisfy the following generic condition.

**Definition 11.2.6.** Two sign operators \( v, \tilde{v} \) are said to be **generically separated** if their commutator \([v, \tilde{v}]\) has rank four.

**Lemma 11.2.7.** Assume that the sign operators \( s_x \) and \( v_{xy} \) are generically separated. Then there are unique Clifford extensions \( K^{(y)}_x \in \mathcal{T}^{s_x} \) and \( K_{xy} \in \mathcal{T}^{v_{xy}} \) and a unique operator \( \rho \in K^{(y)}_x \cap K_{xy} \) with the following properties:

(i) The relations \( \{s_x, \rho\} = 0 = \{v_{xy}, \rho\} \) hold.

(ii) The operator \( U_{xy} := e^{i\rho} \) transforms one Clifford extension to the other,

\[ K_{xy} = U_{xy} K^{(y)}_x U^{-1}_{xy} \, . \]

(iii) If \( \{s_x, v_{xy}\} \) is a multiple of the identity, then \( \rho = 0 \).

The operator \( \rho \) depends continuously on \( s_x \) and \( v_{xy} \).

We refer to \( U_{xy} \) as the **synchronization map**. Exchanging the roles of \( x \) and \( y \), we also have two sign operators \( s_y \) and \( v_{yx} \) at the point \( y \). Assuming that these sign operators are again generically separated, we also obtain a unique Clifford extension \( K_{yx} \in \mathcal{T}^{v_{yx}} \).

After these preparations, we can now explain the construction of the spin connection \( D \) (for details see [50, Section 3]). For two spacetime points \( x, y \in M \) with the above properties, we want to introduce an operator

\[ D_{x,y} : S_y \to S_x \]

(usually speaking, by the subscript \( xy \) we always denote an object at the point \( x \), whereas the additional comma \( x,y \) denotes an operator which maps an object at \( y \) to an object at \( x \)). It is natural to demand that \( D_{x,y} \) is unitary, that \( D_{y,x} \) is its inverse, and that these operators map the directional sign operators at \( x \) and \( y \) to each other,

\[ D_{x,y} = (D_{y,x})^\dagger = (D_{y,x})^{-1} \quad \text{(11.2.1)} \]
\[ v_{xy} = D_{x,y} v_{yx} D_{y,x} \, . \quad \text{(11.2.2)} \]

The obvious idea for constructing an operator with these properties is to take a polar decomposition of \( P(x,y) \); this amounts to setting

\[ D_{x,y} = A_{xy}^{\dagger} P(x,y) \, . \quad \text{(11.2.3)} \]
This definition has the shortcoming that it is not compatible with the chosen Clifford extensions. In particular, it does not give rise to a connection on the corresponding tangent spaces. In order to resolve this problem, we modify (11.2.3) by the ansatz
\[
D_{x,y} = e^{i\varphi_{xy} v_{xy}} A_{xy}^{-\frac{1}{2}} P(x,y) \tag{11.2.4}
\]
with a free real parameter \(\varphi_{xy}\). In order to comply with (11.2.1), we need to demand that
\[
\varphi_{xy} = -\varphi_{yx} \mod 2\pi; \tag{11.2.5}
\]
then (11.2.2) is again satisfied. We can now use the freedom in choosing \(\varphi_{xy}\) to arrange that the distinguished Clifford subspaces \(K_{xy}\) and \(K_{yx}\) are mapped onto each other,
\[
K_{xy} = D_{x,y} K_{yx} D_{y,x}. \tag{11.2.6}
\]
It turns out that this condition determines \(\varphi_{xy}\) up to multiples of \(\frac{\pi}{2}\). In order to fix \(\varphi_{xy}\) uniquely in agreement with (11.2.5), we need to assume that \(\varphi_{xy}\) is not a multiple of \(\frac{\pi}{4}\).

**Definition 11.2.8.** Two points \(x, y \in M\) are called spin connectable if the following conditions hold:

(a) The points \(x\) and \(y\) are properly timelike separated (note that this already implies that \(x\) and \(y\) are regular as defined in Section 11.2.1).

(b) The Euclidean sign operators \(s_x\) and \(s_y\) are generically separated from the directional sign operators \(v_{xy}\) and \(v_{yx}\), respectively.

(c) Employing the ansatz (11.2.4), the phases \(\varphi_{xy}\) which satisfy condition (11.2.6) are not multiples of \(\frac{\pi}{4}\).

We denote the set of points which are spin connectable to \(x\) by \(I(x)\). It is straightforward to verify that \(I(x)\) is an open subset of \(M\).

Under these assumptions, we can fix \(\varphi_{xy}\) uniquely by imposing that
\[
\varphi_{xy} \in \left(-\frac{\pi}{2}, -\frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right), \tag{11.2.7}
\]
giving the following result (for the proofs see [50], Section 3.3).

**Theorem 11.2.9.** Assume that two points \(x, y \in M\) are spin connectable. Then there is a unique spin connection \(D_{x,y} : S_y \to S_x\) of the form (11.2.4) having the properties (11.2.1), (11.2.2), (11.2.6) and (11.2.7).

### 11.2.2. The Metric Connection and Curvature.

We now outline a few further constructions from [50], Section 3]. The spin connection induces a connection on the corresponding tangent spaces, as we now explain. Suppose that \(u_y \in T_y\). Then, according to Definition 11.2.4 and Lemma 11.2.7, we can consider \(u_y\) as a vector of the representative \(K_y^{(x)} \in T^s_y\). By applying the synchronization map, we obtain a vector in \(K_{yx}\),
\[
u_{yx} := U_{yx} u_y U_{yx}^{-1} \in K_{yx}.
\]
According to (11.2.6), we can now “parallel transport” the vector to the Clifford subspace \(K_{xy}\),
\[
u_{xy} := D_{x,y} u_{yx} D_{y,x} \in K_{xy}.
\]
Finally, we apply the inverse of the synchronization map to obtain the vector
\[
u_x := U_{xy}^{-1} \nu_{xy} U_{xy} \in K_x^{(y)}.
\]
As $K_x^{(y)}$ is a representative of the tangent space $T_x$ and all transformations were unitary, we obtain an isometry from $T_y$ to $T_x$.

**Definition 11.2.10.** The isometry between the tangent spaces defined by

$$\nabla_{x,y} : T_y \to T_x : u_y \mapsto u_x$$

is referred to as the **metric connection** corresponding to the spin connection $D$.

We next introduce a notion of curvature.

**Definition 11.2.11.** Suppose that three points $x, y, z \in M$ are pairwise spin connectable. Then the associated **metric curvature** $R$ is defined by

$$R(x, y, z) = \nabla_{x,y} \nabla_{y,z} \nabla_{z,x} : T_x \to T_x \quad \text{(11.2.8)}$$

The metric curvature $R(x, y, z)$ can be thought of as a discrete analog of the holonomy of the Levi-Civita connection on a manifold, where a tangent vector is parallel transported along a loop starting and ending at $x$. On a manifold, the curvature at $x$ is immediately obtained from the holonomy by considering the loops in a small neighborhood of $x$. With this in mind, Definition 11.2.11 indeed generalizes the usual notion of curvature to causal fermion systems.

The following construction relates directional sign operators to vectors of the tangent space. Suppose that $y$ is spin connectable to $x$. By synchronizing the directional sign operator $v_{xy}$, we obtain the vector

$$\hat{y}_x := U^{-1}_{xy} v_{xy} U_{xy} \in K_x^{(y)} \quad \text{(11.2.9)}$$

As $K_x^{(y)} \in T^{s_x}$ is a representative of the tangent space, we can regard $\hat{y}_x$ as a tangent vector. We thus obtain a mapping

$$\mathcal{I}(x) \to T_x : y \mapsto \hat{y}_x .$$

We refer to $\hat{y}_x$ as the **directional tangent vector** of $y$ in $T_x$. As $v_{xy}$ is a sign operator and the transformations in (11.2.9) are unitary, the directional tangent vector is a timelike unit vector with the additional property that the inner product $\langle \hat{y}_x, \hat{y}_x \rangle$ is positive definite.

We finally explain how to reduce the dimension of the tangent space to four, with the desired Lorentzian signature $(1, 3)$.

**Definition 11.2.12.** The fermion system is called **chirally symmetric** if to every $x \in M$ we can associate a spacelike vector $u(x) \in T_x$ which is orthogonal to all directional tangent vectors, $\langle u(x), \hat{y}_x \rangle = 0$ for all $y \in \mathcal{I}(x)$, and is parallel with respect to the metric connection, i.e.

$$u(x) = \nabla_{x,y} u(y) \nabla_{y,x} \quad \text{for all } y \in \mathcal{I}(x) .$$

**Definition 11.2.13.** For a chirally symmetric fermion system, we introduce the **reduced tangent space** $T_x^{\text{red}}$ by

$$T_x^{\text{red}} = \langle u_x \rangle^\perp \subset T_x .$$

Clearly, the reduced tangent space has dimension four and signature $(1, 3)$. Moreover, the operator $\nabla_{x,y}$ maps the reduced tangent spaces isometrically to each other. The local operator $\Gamma := -iu/\sqrt{-u^2}$ takes the role of the **pseudo-scalar matrix**.
11.3. Correspondence to Lorentzian Spin Geometry

We also explain how these notions correspond to the usual objects of differential geometry in Minkowski space (Theorem 11.3.1) and on a globally hyperbolic Lorentzian manifold (Theorem 11.3.2). We closely follow the presentation in [51, Section 3.3]; see also the review [44].

We let \((M,g)\) be a time-oriented Lorentzian spin manifold with spinor bundle \(S^\dagger M\) (for basic definitions see Section 4.5). In order to obtain a corresponding causal fermion system, we adapt the construction in Minkowski space given in Section 5.4: First, we choose a closed subspace \(H\) of the Hilbert space of Dirac solutions \((\mathcal{H}_m, \langle . | . \rangle)\) (as introduced in Section 4.5). Endowed with the induced scalar product \(\langle . | . \rangle_{\mathcal{H}} := \langle . | . \rangle_{\mathcal{H}\times\mathcal{H}}\), we obtain a Hilbert space \((\mathcal{H}, \langle . | . \rangle_{\mathcal{H}})\). Next, one introduces a regularization operator (5.4.1), for example by mollifying the initial data on a Cauchy surface (as is explained in [72, Section 4]). Introducing the local correlation operator \(F_\varepsilon (x)\) for every \(x \in M\) again by (5.4.4), we define the measure \(\rho\) on \(F\) as the push-forward of the volume measure \(\mu\) on \(M\), i.e.

\[
\rho = (F_\varepsilon)_\ast \mu,
\]

where, in local coordinates, the measure \(\mu\) has the form

\[
d\mu = \sqrt{|\det g|} \, d^4x.
\]

We thus obtain a causal fermion system \((\mathcal{F}, \mathcal{H}, \rho)\) describing the curved spacetime \((M,g)\).

Let \(\gamma(t)\) be a smooth, future-directed and timelike curve, for simplicity parametrized by the arc length, defined on the interval \([0,T]\) with \(\gamma(0) = y\) and \(\gamma(T) = x\). Then the parallel transport of tangent vectors along \(\gamma\) with respect to the Levi-Civita connection \(\nabla^{\text{LC}}\) gives rise to the isometry

\[
\nabla^{\text{LC}}_{x,y} : T_y \to T_x.
\]

In order to compare with the metric connection \(\nabla\) of Definition 11.2.10, we subdivide \(\gamma\) (for simplicity with equal spacing, although a non-uniform spacing would work just as well). Thus for any given \(N\), we define the points \(x_0, \ldots, x_N\) by

\[
x_n = \gamma(t_n) \quad \text{with} \quad t_n = \frac{nT}{N}.
\]

We define the parallel transport \(\nabla^N_{x,y}\) by successively composing the parallel transport between neighboring points,

\[
\nabla^N_{x,y} := \nabla_{x_0,x_{N-1}} \nabla_{x_{N-1},x_{N-2}} \cdots \nabla_{x_1,x_0} : T_y \to T_x.
\]

We first state a result in the Minkowski vacuum. We choose \(\mathcal{H}\) as the subspace of all negative-energy solutions of the Dirac equation (describing the Dirac sea; see the preliminaries in Section 1.5). For technical simplicity, we choose the \(i\varepsilon\)-regularization, where the regularization operator (5.4.1) is the multiplication operator by \(e^{i\varepsilon\omega}\) in momentum space in (5.4.2).

**Theorem 11.3.1.** For every \(\varepsilon > 0\) we consider the causal fermion systems \((\mathcal{F}, \mathcal{H}, \rho)\) describing the vacuum with \(i\varepsilon\)-regularization. Then for a generic curve \(\gamma\) and for every \(N \in \mathbb{N}\), there is \(\varepsilon_0\) such that for all \(\varepsilon \in (0,\varepsilon_0]\) and all \(n = 1, \ldots, N\), the points \(x_n\) and \(x_{n-1}\) are spin connectable. Moreover,

\[
\nabla^{\text{LC}}_{x,y} = \lim_{N \to \infty} \lim_{\varepsilon \searrow 0} \nabla^N_{x,y}.
\]
By a *generic curve* we mean that the admissible curves are dense in the $C^\infty$-topology (i.e., for any smooth $\gamma$ and every $K \in \mathbb{N}$, there is a sequence $\gamma_\ell$ of admissible curves such that $D^k\gamma_\ell \to D^k\gamma$ uniformly for all $k = 0, \ldots, K$). The restriction to generic curves is needed in order to ensure that the Euclidean and directional sign operators are generically separated (see Definition 11.2.8 (b)). The proof of the above theorem is given in [50, Section 4].

Clearly, in this theorem the connection $\nabla_{x,y}^{LC}$ is trivial. In order to show that our connection also coincides with the Levi-Civita connection in the case with curvature, in [50, Section 5] a globally hyperbolic Lorentzian manifold is considered. For technical simplicity, we assume that the manifold is flat Minkowski space in the past of a given Cauchy hypersurface.

**Theorem 11.3.2.** Let $(\mathcal{M}, g)$ be a globally hyperbolic manifold which is isometric to Minkowski space in the past of a given Cauchy-hypersurface $\mathcal{N}$. For given $\gamma$, for any $\varepsilon > 0$ we consider the causal fermion system $(\mathcal{H}, \mathcal{F}, \rho)$ which in the past of $\mathcal{N}$ coincides with the causal fermion system in Minkowski space considered in Theorem 11.3.1. Then for a generic curve $\gamma$ and for every sufficiently large $N$, there is $\varepsilon_0$ such that for all $\varepsilon \in (0, \varepsilon_0]$ and all $n = 1, \ldots, N$, the points $x_n$ and $x_{n-1}$ are spin connectable. Moreover,

$$\lim_{N \to \infty} \lim_{\varepsilon \searrow 0} \nabla^N_{x,y} \rightarrow \nabla^{LC}_{x,y} = \mathcal{O}\left(\frac{L(\gamma)}{m^2}\right) \left(1 + \mathcal{O}\left(\frac{\text{scal}}{m^2}\right)\right),$$

where $R$ denotes the Riemann curvature tensor, $\text{scal}$ is scalar curvature, and $L(\gamma)$ is the length of the curve $\gamma$.

Thus the metric connection of Definition 11.2.10 indeed coincides with the Levi-Civita connection, up to higher order curvature corrections. For detailed explanations and the proof we refer to [50, Section 5].

We conclude this section with a few remarks on further constructions [50]. First, there is the subtle point that the unitary transformation $U \in \exp(i\mathbb{R}s_x)$ which is used to identify two representatives $K, \tilde{K} \in T_x$ via the relation $\tilde{K} = UKU^{-1}$ (see Definition 11.2.4) is not unique. More precisely, the operator $U$ can be transformed according to $U \rightarrow -U$ and $U \rightarrow s_x U$.

As a consequence, the metric connection (see Definition 11.2.10) is defined only up to the transformation

$$\nabla_{x,y}u \rightarrow s_x (\nabla_{x,y}u) s_x.$$

Note that this transformation maps representatives of the same tangent vector into each other, so that $\nabla_{x,y}u \in T_x$ is still a well-defined tangent vector. But we get an ambiguity when composing the metric connection several times (as for example in the expression for the metric curvature in Definition 11.2.11). This ambiguity can be removed by considering *parity-preserving systems* as introduced in [50, Section 3.4].

At first sight, one might conjecture that Theorem 11.3.2 should also apply to the spin connection in the sense that

$$D^{LC}_{x,y} = \lim_{N \to \infty} \lim_{\varepsilon \searrow 0} D^N_{x,y},$$

where $D^{LC}$ is the spin connection on $S\mathcal{M}$ induced by the Levi-Civita connection and

$$D^N_{x,y} := D_{x_{N},x_{N-1}}D_{x_{N-1},x_{N-2}} \cdots D_{x_{1},x_{0}} : S_y \rightarrow S_x \quad (11.3.1)$$
EXERCISES 159

(and $D$ is the spin connection of Theorem 11.2.9). It turns out that this conjecture is false. But the conjecture becomes true if we replace (11.3.1) by the operator product

$$D^N_{(x,y)} := D_{x_N,x_{N-1}} U^{(x_N|x_{N-2})} D_{x_{N-1},x_{N-2}} U^{(x_{N-1}|x_{N-3})} \cdots U^{(x_2|x_0)} D_{x_1,x_0}.$$ 

Here the intermediate factors $U^{(\cdot|\cdot)}$ are the so-called splice maps given by

$$U^z_{x|y} = U^{xz} V U^{yz}_{x|y},$$

where $U^{xz}$ and $U^{xy}$ are synchronization maps, and $V \in \exp(i R_{s_x})$ is an operator which identifies the representatives $K_{xy}, K_{xz} \in T_x$ (for details see [50, Section 3.7 and Section 5]). The splice maps also enter the spin curvature $\mathfrak{R}$, which is defined in analogy to the metric curvature (11.2.8) by

$$\mathfrak{R}(x,y,z) = U_{x,y}^{(z|y)} D_{x,y} U_{y,z}^{(x|z)} D_{y,z} U_{z,x}^{(y|x)} D_{z,x} : S_x \to S_x.$$

**Exercises**

**Exercise 11.1.** *(Signature of Clifford extensions)*

(a) Let $T^{s_x}$ be a Clifford extension of the Euclidean sign operator $s_x$. Show that resulting bilinear form $\langle \cdot, \cdot \rangle$ on $T^{s_x}$ is Lorentzian, i.e. that it has signature $(1, k)$ with $k \in \mathbb{N}$. Hint: it is most convenient to work in an orthonormal eigenvector basis of the Euclidean sign operator. You also find the proof in [53, Lemma 4.4].

(b) Now let $T^v$ be a Clifford extension of a general sign operator $v$. Is the signature of $\langle \cdot, \cdot \rangle$ necessarily Lorentzian? Hint: It may be helpful to have a look at [50, Lemma 3.2].

**Exercise 11.2.** *(Clifford extensions on the Dirac sphere)* We return to the Dirac sphere considered in Exercise 5.12. Thus we let $F : S^2 \to F$ and $M := \supp \rho = F(S^2)$.

(a) Given $p \in S^2$, we consider the spacetime point $x = F(p) \in M$. Construct the Euclidean sign operator $s_x$ at $x$.

(b) What is the maximal dimension of Clifford extensions of the Euclidean sign operator?

Show that the Clifford extension of maximal dimension is unique.

(c) Give an explicit parametrization of this Clifford extension. How does the inner product $\langle \cdot, \cdot \rangle$ look like in your parametrization?

**Exercise 11.3.** *(Stability of the causal structure)* A binary relation $P$ on $F$ is said to be stable under perturbations if

$$(x_0, y_0) \in P \implies \exists \ r > 0 : B_r(x_0) \times B_r(y_0) \subset P.$$ 

Following Definition 11.2.5, two points $x, y \in F$ are said to be properly timelike separated if the closed chain $A_{xy}$ has a strictly positive spectrum and if all eigenspaces are definite subspaces of $(S_x, \prec \cdot, \cdot \prec)$.

(a) Show that proper timelike separation implies timelike separation.

(b) Show by a counterexample with $3 \times 3$ matrices that the notion of timelike separation is not stable under perturbations.

(c) Show that the notion of properly timelike separation is stable under perturbations.
Part 3

Mathematical Methods and Analytic Constructions
Measure-Theoretic Methods

The main goal of this chapter is to prove the existence of minimizers for the causal action principle in the case that $\mathcal{H}$ is finite dimensional and $\rho$ is normalized, i.e.

$$\dim \mathcal{H} =: f < \infty \quad \text{and} \quad \rho(\mathcal{F}) = 1. \quad (12.0.1)$$

After introducing the necessary methods (Sections 12.1 and 12.2) we first apply them in order to prove existence of minimizers for causal variational principles in the compact setting (Section 12.3). In preparation for the proof for the causal action principle, we illustrate the constraints by a few examples (Section 12.4). The difficulties revealed by these examples can be resolved by working with the so-called moment measures. After introducing the needed mathematical methods (Section 12.5), the moment measures are introduced (Section 12.6). Then the existence proof is completed (Section 12.7). In order to give a first idea for how to deal with an infinite total volume, we finally prove existence of minimizers for causal variational principles in the non-compact setting (Section 12.8).

Our general strategy is to apply the direct method of the calculus of variations, which can be summarized as follows:

(a) Choose a minimizing sequence, i.e. a sequence of measures $(\rho_k)$ which satisfy the constraint such that

$$S(\rho_k) \to \inf_{\rho} S(\rho).$$

Such a minimizing sequence always exists by definition of the infimum (note that the action and therefore also its infimum are non-negative).

(b) Show that a subsequence of the measures converges in a suitable sense,

$$\rho_{k_l} \to \rho.$$  

Here the quotation marks indicate that we still need to specify in which sense the sequence should converge (convergence in which space, strong or weak convergence, etc.).

(c) Finally, one must show that the action is lower semi-continuous, i.e.

$$S(\rho) \leq \liminf_{l \to \infty} S(\rho_{k_l}).$$

Also, one must prove that the limit measure $\rho$ satisfies the constraints.

Once these three steps have been carried out, the measure $\rho$ is a desired minimizer. We point out that this procedure does not give a unique minimizer, simply because there may be different minimizing sequences, and because the choice of the subsequences may involve an arbitrariness. Indeed, for the causal action principle we do not expect uniqueness. There should be many different minimizers, which describe different physical systems (like the vacuum, a system involving particles and fields, etc.). This intuitive picture is confirmed by the numerical study in [75] which shows that, even if the dimension of $\mathcal{H}$ is small (equal to two), there are indeed many different minimizers.
12.1. The Banach-Alaoglu Theorem

For our purposes, it suffices to consider the case that the Banach space is separable, in which case the theorem was first proved by Banach (Alaoglu proved the generalization to non-separable Banach spaces; this makes use of Tychonoff’s theorem and goes beyond what we need here). Indeed, the idea of proof of the theorem can be traced back to Eduard Helly’s doctoral thesis in 1912, where the closely related “Helly’s selection theorem” is proved (of course without reference to Banach spaces, which were introduced later). We closely follow the presentation in [105, Section 10.3].

Let \((E, \|\cdot\|_{E})\) be a separable (real or complex) Banach space and \((E^*, \|\cdot\|_{E^*})\) its dual space with the usual sup-norm, i.e.

\[
\|\phi\|_{E^*} = \sup_{u \in E, \|u\| = 1} |\phi(u)| .
\]

(12.1.1)

A sequence \((\phi_n)_{n \in \mathbb{N}}\) in \(E^*\) is said to be weak*-convergent to \(\phi \in E^*\) if

\[
\lim_{n \to \infty} \phi_n(u) = \phi(u) \quad \text{for all } u \in E .
\]

**Theorem 12.1.1. (Banach-Alaoglu in the separable case)** Let \(E\) be a separable Banach space. Then every bounded sequence in \(E^*\) has a weak*-convergent subsequence.

**Proof.** Let \(\phi_n\) be a bounded sequence in \(E^*\), meaning that there is a constant \(c > 0\)

\[
\|\phi_n\|_{E^*} \leq c \quad \text{for all } n \in \mathbb{N} .
\]

(12.1.2)

We let \((u_\ell)_{\ell \in \mathbb{N}}\) be a sequence in \(E\) which is dense in \(E\). Combining (12.1.2) with (12.1.1), the estimate

\[
|\phi_n(u_1)| \leq \|\phi_n\|_{E^*} \|u_1\|_E \leq c \|u_1\|_E
\]

(12.1.3)

shows that \((\phi_n(u_1))_{n \in \mathbb{N}}\) is a bounded sequence. Thus we can choose a convergent subsequence. By inductively choosing subsequences and taking the diagonal sequence, we obtain a subsequence \((\phi_{n_j})\) such that the limit \(\lim_{j \to \infty} \phi_{n_j}(u_\ell)\) exists for all \(\ell \in \mathbb{N}\). Hence setting

\[
\phi(u_\ell) := \lim_{j \to \infty} \phi_{n_j}(u_\ell) ,
\]

we obtain a densely defined functional. Taking the limit in (12.1.3) (and the similar inequalities for \(u_2, u_3, \ldots\)), one sees that this functional is again continuous. Therefore, it has a unique continuous extension to \(E\). By continuity, the resulting functional \(\phi \in E^*\) satisfies the relations

\[
\phi(u) = \lim_{j \to \infty} \phi_{n_j}(u) \quad \text{for all } u \in H .
\]

This concludes the proof. \[\square\]

12.2. The Riesz Representation Theorem

In this section and Section 12.5, we shall introduce the methods from measure theory needed for the existence proofs. Apart from the books already mentioned in the preliminaries (Section 2.3), we recommend [30] is also a good reference. However, this book is only concerned with measures in \(\mathbb{R}^n\), but otherwise goes far beyond what we need here.

For our purposes, it suffices to restrict attention to the case that the base space \(\mathcal{K}\) is a compact topological space. We always consider bounded regular Borel measures on \(\mathcal{K}\) (for the preliminaries see Section 2.3). In order to avoid confusion, we note that by a measure we always mean a positive measure (signed measures will not at all be considered in this
lecture). A bounded measure, also referred to as a measure of finite total volume. Often, we normalize the measure such that $\mu(K) = 1$.

In words, the Riesz representation theorem makes it possible to represent a linear functionals on the Banach space of continuous functions of a topological space by a regular Borel measures on this topological space. We remark that we already came across the Riesz representation theorem in the functional analysis course, where it was used for the construction of spectral measures. However, back then we only proved it in the special case that the topological space was an interval of the real line. We now state the general theorem and outline its proof, mainly following the presentation in [92, §56].

As a simple example, one can choose $K$ as the closed unit ball in $\mathbb{R}^n$. Restricting the Lebesgue measure to the Borel subsets of $K$ gives a Radon measure. The Lebesgue measure itself is a completion of this Radon measure obtained by extending the $\sigma$-algebra of measurable sets by all subsets of Borel sets of measure zero. Since this completion is a rather trivial extension, in what follows we prefer to work with Radon measures or, equivalently, with normalized regular Borel measures.

**Theorem 12.2.1. (Riesz representation theorem)** Let $K$ be a compact topological space, and $E = C^0(K, \mathbb{R})$ the Banach space of continuous functions on $K$ with the usual sup-norm,

$$\|f\| = \sup_{x \in K} |f(x)|.$$  

Let $\Lambda \in E^*$ be a continuous linear functions which is positive in the sense that

$$\Lambda(f) \geq 0 \quad \text{for all nonnegative function } f \in C^0(K, \mathbb{R}).$$

Then there is a unique regular Borel measure $\mu$ such that

$$\Lambda(f) = \int_K f \, d\mu \quad \text{for all } f \in C^0(K, \mathbb{R}).$$

**Outline of the Proof.** We follow the strategy in [92, §56]. Given a Borel set $A \subset K$, we set

$$\lambda(A) = \inf \{ \Lambda(f) \mid f \in C^0(K, \mathbb{R}) \text{ and } f \geq \chi_A \} \in \mathbb{R}_0^+.$$  

Intuitively speaking, $\lambda$ gives us the desired “volume” of the set $A$. But there is the technical problem that $\lambda$ is in general not a regular Borel measure. Instead, it merely is a content, meaning that it has the following properties:

(i) non-negative and finite: $0 \leq \lambda(A) < \infty$

(ii) monotone: $C, D$ compact and $C \subset D \implies \lambda(C) \leq \lambda(D)$

(iii) additive: $C, D$ compact and disjoint $\implies \lambda(C \cup D) = \lambda(C) + \lambda(D)$

(iv) subadditive: $C, D$ compact $\implies \lambda(C \cup D) \leq \lambda(C) + \lambda(D)$

At this stage, we are in a similar situation as in the elementary measure theory course after saying that a cube of length $\ell$ in $\mathbb{R}^3$ should have volume $\ell^3$. In order to get from this “volume measure” to a measure in the mathematical sense, one has to proceed in several steps invoking the subtle and clever constructions of measure theory (due to Lebesgue, Hahn, Carathéodory and others) in order to get a mapping from a $\sigma$-algebra to the non-negative real numbers which is $\sigma$-additive. In simple terms, repeating these constructions starting from the above content gives the desired Borel measure $\mu$. For brevity, we here merely outline the constructions and refer for details to text books on measure theory (like for example [92, Chapter X]).
The first step is to approximate (or exhaust) from inside by compact sets. Thus one introduces the inner content \( \lambda^* \) by
\[
\lambda^*(U) = \sup \{ \lambda(C) \mid C \subset U \text{ compact} \}.
\]
This inner content is countably subadditive and countably additive. The second step is to exhaust from outside by open sets. This gives the outer measure \( \mu^* \),
\[
\mu^*(U) = \inf \{ \lambda^*(\Omega) \mid \Omega \supset U \text{ open} \}.
\]
The outer measure is defined for any subset of \( K \). Therefore, it remains to distinguish the measurable sets. This is accomplished by Carathéodory's criterion, which defines a set \( A \subset K \) to be measurable if
\[
\mu^*(A) = \mu^*(A \cap B) + \mu^*(A \setminus B)
\]
for every subset \( B \subset K \). Then Carathéodory’s lemma (for a concise proof see for example [17, Lemma 2.8]) implies that the measurable sets form a \( \sigma \)-algebra, and that the restriction of \( \mu^* \) to the measurable sets is indeed a measure, denoted by \( \mu \).

In order to complete the proof, one still needs to verify that every Borel set is \( \mu \)-measurable. Moreover, it remains to show that the resulting Borel measure is regular. To this end, one first needs to show that the content \( \lambda \) is regular in the following sense:

(v) regular: For every compact \( C \),
\[
\lambda(C) = \inf \left\{ \lambda(D) \mid D \text{ compact and } C \subset \overset{\circ}{D} \right\}.
\]
As the proofs of these remaining points are rather straightforward and not very instructive, we refer for the details to [92, §54–§56].

12.3. Existence of Minimizers for Causal Variational Principles in the Compact Setting

We now apply the above methods in order to prove existence for causal variational principles in the compact setting. Our strategy is to apply the Banach-Alaoglu theorem to a specific Banach space, namely the continuous functions on a compact metric space.

We first verify that this Banach space is indeed separable.

**Proposition 12.3.1.** Let \( K \) be a compact metric space. Then \( C^0(K, \mathbb{R}) \) is a separable Banach space.

**Proof.** The proposition is a consequence of the Stone-Weierstrass theorem, whose proof can be found for example in [24, 7.3.1] We closely follow the proof given in [24, 7.4.4].

Covering \( K \) by a finite number of open balls of radii 1, 1/2, 1/3, \ldots, one gets an enumerable basis of the open sets \( (U_n)_{n \in \mathbb{N}} \). For any \( n \in \mathbb{N} \), we let \( g_n \) be the continuous function
\[
g_n(x) = d(x, K \setminus U_n).
\]
Clearly, the algebra generated by these functions (by taking finite products and finite linear combinations) is again separable. Therefore, it suffices to show that this algebra is dense in \( C^0(K, \mathbb{R}) \). To this end, we need to verify the assumptions of the Stone-Weierstrass theorem. The only assumption which is not obvious is that the algebra separates the points. This can be seen as follows: Let \( x \) and \( y \) be two distinct points in \( K \). Since the \( (U_n) \) are a basis of the topology, there is \( U_n \) with \( x \in U_n \) and \( y \not\in U_n \). As a consequence, \( g_n(x) > 0 \) but \( g_n(y) = 0 \).
We proceed by proving a compactness result for Radon measures.

**Theorem 12.3.2.** Let \( \rho_n \) be a series of regular Borel measures on \( C^0(K, \mathbb{R}) \) which are bounded in the sense that there is a constant \( c > 0 \) with
\[
\rho_n(K) \leq c \quad \text{for all } n.
\]
Then there is a subsequence \((\rho_{n_k})\) which converges as a measure, i.e.
\[
\lim_{k \to \infty} \int_K f \, d\rho_{n_k} = \int_K f \, d\rho \quad \text{for all } f \in C^0(K, \mathbb{R}).
\] (12.3.1)
Moreover, the total volume converges, i.e.
\[
\rho(K) = \lim_{k \to \infty} \rho_{n_k}(K).
\] (12.3.2)

**Proof.** Via
\[
\phi_n(f) := \int_K f \, d\rho_n,
\]
every measure can be identified with a positive linear functional on \( E := C^0(K, \mathbb{R}) \). Since \( E \) is separable (Proposition 12.3.1), we can apply the Banach-Alaoglu theorem in the separable case (Theorem 12.1.1) to conclude that there is a weak*-convergent subsequence, i.e.
\[
\lim_{k \to \infty} \phi_{n_k}(f) = \phi(f) \quad \text{for all } f \in C^0(K, \mathbb{R}).
\] (12.3.3)
Clearly, since all \( \phi_{n_k} \) are positive, the same is true for the limit \( \phi \). Therefore, the Riesz representation theorem (Theorem 12.2.1) makes it possible to represent \( \phi \) by a regular Borel measure \( \rho \), i.e.
\[
\phi(f) = \int_K f \, d\rho \quad \text{for all } f \in C^0(K, \mathbb{R}).
\] (12.3.4)
Choosing \( f \) as the constant function, one obtains (12.3.2). This concludes the proof. \( \square \)

**Theorem 12.3.3.** Assume that \( \mathcal{F} \) is a compact topological space and the Lagrangian is continuous,
\[
\mathcal{L} \in C^0(\mathcal{F} \times \mathcal{F}, \mathbb{R}_0^+) \, .
\]
Then the causal variational principle where the causal action \( (6.2.2) \) is minimized in the class of regular Borel measures under the volume constraint \( (6.2.3) \) is well-posed in the sense that every minimizing sequence \((\rho_n)_{n \in \mathbb{N}}\) has a subsequence which converges as a measure to a minimizer \( \rho \).

**Proof.** The existence of a convergent subsequence \((\rho_{n_k})_{k \in \mathbb{N}}\) is proven in Theorem 12.3.2. It remains to show that the action is continuous, i.e.
\[
\lim_{k \to \infty} S(\rho_{n_k}) = S(\rho).
\] This is verified in detail as follows. Using that the Lagrangian is continuous in its second argument, we know that
\[
\lim_{k \to \infty} \int_{\mathcal{F}} \mathcal{L}(x, y) \, d\rho_{n_k}(y) = \int_{\mathcal{F}} \mathcal{L}(x, y) \, d\rho(y) \quad \text{for all } x \in \mathcal{F}.
\] (12.3.5)
Next, since \( \mathcal{F} \) is compact, the Lagrangian is even uniformly continuous on \( \mathcal{F} \times \mathcal{F} \). Therefore, given \( \varepsilon > 0 \), every point \( x \in \mathcal{F} \) has an open neighborhood \( U(x) \subset \mathcal{F} \) such that
\[
|\mathcal{L}(\tilde{x}, y) - \mathcal{L}(x, y)| < \varepsilon \quad \text{for all } \tilde{x} \in U(x) \text{ and } y \in \mathcal{F}.
\]
Integrating over \( y \) with respect to any normed regular Borel measure \( \tilde{\rho} \), it follows that
\[
\left| \int_{\mathcal{F}} \mathcal{L}(\hat{x}, y) \, d\tilde{\rho}(y) - \int_{\mathcal{F}} \mathcal{L}(x, y) \, d\rho(y) \right| \leq \varepsilon \quad \text{for all } \hat{x} \in U(x). \quad (12.3.6)
\]

Covering \( \mathcal{F} \) by a finite number of such neighborhoods \( U(x_1), \ldots, U(x_N) \), one can combine the pointwise convergence \((12.3.5)\) for \( x = x_1, \ldots, x_N \) with the estimate \((12.3.6)\) to conclude that for any \( \varepsilon > 0 \) there is \( k_0 \in \mathbb{N} \) such that
\[
\left| \int_{\mathcal{F}} \mathcal{L}(x, y) \, d\rho_{n_k}(y) - \int_{\mathcal{F}} \mathcal{L}(x, y) \, d\rho(y) \right| \leq 3\varepsilon \quad \text{for all } x \in \mathcal{F} \text{ and } k \geq k_0.
\]

Integrating over \( y \) with respect to \( \rho_{n_k} \) and \( \rho \) gives for all \( k \geq k_0 \) the respective inequalities
\[
\left| \mathcal{S}(\rho_{n_k}) - \int_{\mathcal{F}} d\rho_{n_k}(x) \int_{\mathcal{F}} d\rho(y) \, \mathcal{L}(x, y) \right| \leq 3\varepsilon, \\
\left| \int_{\mathcal{F}} d\rho(x) \int_{\mathcal{F}} d\rho_{n_k}(y) \, \mathcal{L}(x, y) - \mathcal{S}(\rho) \right| \leq 3\varepsilon.
\]

Combining these inequalities and using that the Lagrangian is symmetric in its two arguments, we conclude that
\[
\left| \mathcal{S}(\rho_{n_k}) - \mathcal{S}(\rho) \right| \leq 6\varepsilon.
\]

This gives the result. \( \Box \)

We finally remark that the statement of this theorem also holds if the Lagrangian merely is lower semi-continuous, as is worked out in [68, Section 3.2].

### 12.4. Examples Illustrating the Constraints

Compared to causal variational principles in the compact setting, the existence proof for the causal action principle is considerably harder because we need to handle the constraints \((5.5.3)–(5.5.5)\) and must face the difficulty that the set \( \mathcal{F} \) is unbounded and therefore non-compact. We now explain the constraints in a few examples. The necessity of the volume constraint is quite obvious: If we dropped the constraint of fixed total volume \((5.5.3)\), the measure \( \rho = 0 \) would be a trivial minimizer. The role of the trace constraint is already less obvious. It is explained in the next two examples.

**Example 12.4.1.** (necessity of the trace constraint) Let \( x \) be the operator with the matrix representation
\[
x = \text{diag}(1, \ldots, 1, -1, \ldots, -1, 0, 0, \ldots)
\]
Moreover, we choose \( \rho \) as a multiple of the Dirac measure supported at \( x \). Then \( \mathcal{T} > 0 \) but \( \mathcal{S} = 0 \). \( \Diamond \)

**Example 12.4.2.** (non-triviality of the action with trace constraint) Let \( \rho \) be a normalized measure which satisfies the trace constraint in a non-trivial way, i.e.
\[
\int_{\mathcal{F}} \text{tr}(x) \, d\rho(x) = \text{const} \neq 0.
\]
Let us prove that the action is non-zero. This will show that the trace constraint really avoids trivial minimizers of the causal action principle.
(a) Since the integral over the trace is non-zero, there is a point \( x \) in the support of \( \rho \) with \( \text{tr}(x) \neq 0 \). We denote the non-trivial eigenvalues of \( x \) by \( \nu_1, \ldots, \nu_{2n} \), and order them according to

\[
\nu_1 \leq \cdots \leq \nu_n \leq 0 \leq \nu_{n+1} \leq \cdots \leq \nu_{2n}.
\]

The fact that the trace of \( x \) is non-zero clearly implies that the \( \nu_i \) do not all have the same absolute value. As a consequence, the nontrivial eigenvalues of the operator product \( x^2 \) given by \( \lambda^{xx} = \nu_j^2 \) are all non-negative and not all equal. Using the form of the Lagrangian in (5.5.1), we conclude that \( \mathcal{L}(x, x) > 0 \).

(b) Since the Lagrangian is continuous in both arguments, there is an open neighborhood \( U \subset \mathcal{F} \) of \( x \) such that \( \mathcal{L}(y, z) > 0 \) for all \( y, z \in U \). Since \( x \) lies in the support of \( \rho \), we know that \( \rho(U) > 0 \). As a consequence,

\[
S \geq \int_U d\rho(x) \int_U d\rho(y) \mathcal{L}(x, y) > 0
\]

(because if the integrals vanished, then the integrand would have to be zero almost everywhere, a contradiction).

We remark that this argument is quantified in [39, Proposition 4.3].

We now come to the boundedness constraint. In order to explain how it comes about, we give an explicit example with \( (4 \times 4) \)-matrices (for a similar example with \( (2 \times 2) \)-matrices see Exercise 6.3).

**Example 12.4.3. (necessity of the boundedness constraint)** The following example explains why the boundedness constraint (5.5.5) is needed to ensure the existence of minimizers. It was first given in [40, Example 2.9]. Let \( \mathcal{H} = \mathbb{C}^4 \). We introduce the four \( 4 \times 4 \)-matrices acting on \( \mathcal{H} \) by

\[
\gamma^\alpha = \begin{pmatrix} \sigma^\alpha & 0 \\ 0 & -\sigma^\alpha \end{pmatrix}, \quad \alpha = 1, 2, 3 \quad \text{and} \quad \gamma^4 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]

(where the \( \sigma^\alpha \) are again the Pauli matrices [1.3.4]). Given a parameter \( \tau > 1 \), we consider the following mapping from the sphere \( S^3 \subset \mathbb{R}^4 \) to the linear operators on \( \mathcal{H} \),

\[
F : S^3 \to \text{L}(\mathcal{H}) \ , \quad F(x) = \sum_{i=1}^{4} \tau x^i \gamma^i + 1.
\]

(a) **The matrices** \( F(x) \) **have two positive and two negative eigenvalues:**

Since the computation of the eigenvalues of \( 4 \times 4 \)-matrices is tedious, it is preferable to proceed as follows. The matrices \( \gamma^i \) are the Dirac matrices of Euclidean \( \mathbb{R}^4 \), satisfying the anti-commutation relations

\[
\{ \gamma^i, \gamma^j \} = 2\delta^{ij} 1 \quad (i, j = 1, \ldots, 4).
\]
As a consequence,
\[ F(x) - 1 = \sum_{i=1}^{4} \tau x^i \gamma^i \]
\[ (F(x) - 1)^2 = \sum_{i,j=1}^{4} \tau^2 x^i x^j \gamma^i \gamma^j = \frac{\tau^2}{2} \sum_{i,j=1}^{4} x^i x^j \{ \gamma^i, \gamma^j \} \]
\[ = \frac{\tau^2}{2} \sum_{i,j=1}^{4} x^i x^j 2 \delta_{ij} 1 = \tau^2 1. \]

Hence the matrix \( F(x) \) satisfies the polynomial equation
\[ (F(x) - 1)^2 = \tau^2 1. \]

We conclude that \( F(x) \) has the eigenvalues
\[ \nu_\pm = 1 \pm \tau. \]

Since \( F(x) - 1 \) is trace-free, each eigenvalue must appear with multiplicity two. Using that \( \tau > 1 \), we conclude that \( \hat{F}(x) \) really has two positive and two negative eigenvalues.

(b) Construction of a causal fermion system:
Let \( \mu \) be the normalized Lebesgue measure on \( S^3 \subset \mathbb{R}^4 \). Setting \( \rho = F_* \mu \) defines a causal fermion system of spin dimension two and total volume one. Since the matrices \( F(x) \) all have trace four, we also know that
\[ \int \text{tr}(x) \, d\rho(x) = \int_{S^3} \text{tr}(F(x)) \, d\mu(x) = 4. \]

Therefore, the volume constraint (5.5.3) and the trace constraint (5.5.4) are satisfied, both with constants independent of \( \tau \).

(c) Computation of the eigenvalues of \( F(x) F(y) \):
Again, this can be computed most conveniently using the Clifford relations.
\[ F(x) F(y) = \left( \sum_{i=1}^{4} \tau x^i \gamma^i + 1 \right) \left( \sum_{j=1}^{4} \tau y^j \gamma^j + 1 \right) \]
\[ = (1 + \tau^2 \langle x, y \rangle) 1 + \tau \sum_{i=1}^{4} (x^i + y^j) \gamma^i + \frac{\tau^2}{2} \sum_{i,j=1}^{4} x^i y^j \{ \gamma^i, \gamma^j \}. \] (12.4.3)

Using that
\[ \gamma^i \{ \gamma^i, \gamma^j \} = -[\gamma^i, \gamma^j] \gamma^i, \]
we conclude that
\[ \left( F(x) F(y) - (1 + \tau^2 \langle x, y \rangle) 1 \right)^2 = \tau^2 \sum_{i=1}^{4} (x^i + y^j)^2 + \left( \frac{\tau^2}{2} \sum_{i,j=1}^{4} x^i y^j \{ \gamma^i, \gamma^j \} \right)^2. \]
This can be simplified with the help of the relations
\[
\sum_{i=1}^{5} (x^i + y^i)^2 = 2 + 2 \langle x, y \rangle
\]
\[
(\sum_{i,j=1}^{4} x^i y^j [\gamma^i, \gamma^j])^2 = -4 \sin^2 \vartheta = -4 (1 - \langle x, y \rangle^2),
\]
where \( \vartheta \) is the angle between the vectors \( x, y \in \mathbb{R}^4 \). The relation \((12.4.5)\) can be verified in detail as follows. The rotational symmetry of the Euclidean Dirac operator on \( \mathbb{R}^5 \) means that for every rotation \( O \in \text{SO}(4) \) there is a unitary operator \( U \in \text{SU}(4) \) such that
\[
O^i \gamma^j = U \gamma^i U^{-1}.
\]
Making use of this rotational symmetry, we can arrange that the vector \( x \) is the basis vector \( e_1 \) and that \( y = \cos \vartheta e_1 + \sin \vartheta e_2 \). As a consequence,
\[
\sum_{i,j=1}^{5} x^i y^j [\gamma^i, \gamma^j] = 2 \sin \vartheta \gamma^1 \gamma^2
\]
and applying the anti-commutation relations gives \((12.4.5)\).

Combining the above equations, we conclude that the product \( F(x) F(y) \) satisfies the polynomial equation
\[
\left( F(x) F(y) - (1 + \tau^2 \langle x, y \rangle) 1 \right)^2 = 2 \tau^2 (1 + \langle x, y \rangle) - \tau^4 (1 - \langle x, y \rangle^2)
\]
\[
= \tau^2 \left( 1 + \langle x, y \rangle \right) \left( 2 - \tau^2 (1 - \langle x, y \rangle) \right).}
\]
Taking the square root, the zeros of this polynomial are computed by
\[
\lambda_{1/2} = 1 + \tau^2 \langle x, y \rangle \pm \tau \sqrt{1 + \langle x, y \rangle} \sqrt{2 - \tau^2 (1 - \langle x, y \rangle)}.
\]
Moreover, taking the trace of \((12.4.3)\), one finds
\[
\text{tr} (F(x) F(y)) = 4 \left( 1 + \tau^2 \langle x, y \rangle \right).
\]
This implies that each eigenvalue in \((12.4.6)\) has algebraic multiplicity two.

(d) **Computation of the Lagrangian:**
Again denoting the angle between the vectors \( x, y \in \mathbb{R}^4 \) by \( \vartheta \). Then if \( \vartheta \) is sufficiently small, then the term \( (1 - \langle x, y \rangle) \) is close to zero, and thus the arguments of the square roots are all positive. However, if \( \vartheta \) becomes so large that
\[
\vartheta \geq \vartheta_{\max} := \arccos \left( 1 - \frac{2}{\tau^2} \right),
\]
then the argument of the last square root in \((12.4.6)\) becomes negative, so that the \( \lambda_{1/2} \) form a complex conjugate pair. Moreover, a short calculation shows that
\[
\lambda_1 \lambda_2 = (1 + \tau)^2 (1 - \tau)^2 > 0,
\]
implying that if the $\lambda_{1/2}$ are both real, then they have the same sign. Using this information, the Lagrangian simplifies to

$$L(F(x), F(y)) = \frac{1}{8} \sum_{i,j=1}^{4} \left( |\lambda_i^x y| - |\lambda_j^x y| \right)^2 = \frac{1}{2} \sum_{i,j=1}^{2} \left( |\lambda_i| - |\lambda_j| \right)^2$$

$$= \frac{1}{2} \Theta(\vartheta_{\text{max}} - \vartheta) \sum_{i,j=1}^{2} \left( \lambda_i - \lambda_j \right)^2 = \Theta(\vartheta_{\text{max}} - \vartheta)(\lambda_1 - \lambda_2)^2$$

$$= 4\tau^2 (1 + \cos \vartheta) \left( 2 - \tau^2 (1 - \cos \vartheta) \right) \Theta(\vartheta_{\text{max}} - \vartheta).$$

(e) **Computation the action:**

Inserting this Lagrangian in (5.5.2) and using the definition of the push-forward measure, we obtain

$$S = \int_{S^3} d\mu(x) \int_{S^3} d\mu(y) L(F(x), F(y))$$

$$= \int_{S^3} d\mu(y) L(F(x), F(y)) = \frac{2}{\pi} \int_{0}^{\vartheta_{\text{max}}} L(\cos \vartheta) \sin^2 \vartheta d\vartheta$$

$$= \frac{512}{15\pi} \frac{1}{\tau} + O(\tau^{-2}).$$

Thus setting $F_k = F|_{\tau=k}$, we have constructed a divergent minimizing sequence. However, the integral in the boundedness constraint (5.5.5) also diverges as $k \to \infty$. This example shows that leaving out the boundedness constraint, there is no minimizer. ♦

We finally remark that this example is not as artificial or academic as it might appear at first sight. Indeed, as observed by Niki Kilbertus in his master thesis [99], when discretizing a Dirac system in $\mathbb{R} \times S^3$ (where the sphere can be thought of as a spatial compactification of Minkowski space), then in the simplest case of four occupied Dirac states (referred to as “one shell,” i.e $\dim \mathcal{H} = 4$), this system reduces precisely to the last example. In simple terms, this observation can be summarized by saying that Clifford structures tend to make the causal action small.

### 12.5. The Radon-Nikodym Theorem

As already mentioned at the beginning of the previous section, one difficulty in the existence proof for the causal action principle is the fact that the set $\mathcal{F}$ is unbounded and thus non-compact. In order to deal with this difficulty, we need one more mathematical tool: the Radon-Nikodym theorem. We now give the proof of the Radon-Nikodym theorem by von Neumann following the presentation in [121, Chapter 6]. An alternative method of proof is given in [92, 30]. As in Section 12.2, it again suffices to consider the case that the base space $\mathcal{K}$ is a compact topological space.

**Definition 12.5.1.** A Radon measure $\lambda$ is **absolutely continuous** with respect to another Radon measure $\nu$, denoted by

$$\lambda \ll \nu,$$

if the implication

$$\nu(E) = 0 \implies \lambda(E) = 0$$
holds for any Borel set $E$. The measure $\mu$ is **concentrated** on the Borel set $A$ if $\lambda(E) = \lambda(E \cap A)$ for all Borel sets $E$. The measures $\lambda$ and $\mu$ are **mutually singular**, denoted by

$$\lambda \perp \nu,$$

if there are disjoint Borel sets $A$ and $B$ such that $\lambda$ is concentrated in $A$ and $\nu$ is concentrated in $B$.

In order to avoid confusion, we point out that the supports of two mutually singular measures are not necessarily disjoint, as one sees in the simple example of the Lebesgue measure on $(0, 1)$ and the Dirac measure supported at the origin,

$$\lambda := dx|_{(0, 1)} \quad \text{and} \quad \mu = \delta_0.$$

Since the support is by definition a closed set (see (2.3.4)), the support of $dx|_{(0, 1)}$ contains the origin, which is precisely the support of the Dirac measure. But clearly, the two measures are concentrated on the sets $(0, 1)$ and $\{0\}$, respectively, and are thus mutually singular.

**Theorem 12.5.2. (Radon-Nikodym)** Let $\mu$ and $\lambda$ be Radon measures on the compact topological space $\mathcal{X}$.

(a) There is a unique pair of Borel measures $\lambda_a$ and $\lambda_s$ such that

$$\lambda = \lambda_a + \lambda_s$$

and

$$\lambda_a \ll \mu, \quad \lambda_s \perp \mu.$$  

(b) There is a unique function $h \in L^1(\mathcal{X}, d\mu)$ such that

$$\lambda_a(E) = \int_E h \, d\mu$$

for every Borel set $E$.  

The pair $(\lambda_a, \lambda_s)$ is also referred to as the **Lebesgue decomposition** of $\lambda$ with respect to $\mu$.

**Proof of Theorem 12.5.2.** The uniqueness of the decomposition is easily seen as follows: Suppose that $(\lambda'_a, \lambda'_s)$ is another Lebesgue decomposition. Then

$$\lambda'_a - \lambda_a = \lambda_s - \lambda'_s.$$  

Since $\lambda_a \perp \mu$ and $\lambda'_s \perp \mu$, the measures $\lambda_s$ and $\lambda'_s$ are concentrated in a Borel set $A$ with $\mu(A) = 0$. Evaluating (12.5.2) on Borel subsets of $A$, the left side vanishes, because $\lambda_a$ and $\lambda'_a$ are both absolutely continuous with respect to $\mu$. Hence $\lambda'_a - \lambda_a = 0$. This proves uniqueness.

For the existence proof, we let $\rho$ be the measure $\rho = \lambda + \mu$. Then

$$\int_{\mathcal{X}} f \, d\rho = \int_{\mathcal{X}} f \, d\lambda + \int_{\mathcal{X}} f \, d\mu$$

for any non-negative Borel function $f$. If $f \in L^2(\mathcal{X}, d\rho)$, the Schwarz inequality gives

$$\left| \int_{\mathcal{X}} f \, d\lambda \right| \leq \int_{\mathcal{X}} |f| \, d\rho \leq \sqrt{\rho(\mathcal{X})} \|f\|_{L^2(\mathcal{X}, d\rho)}.$$

Therefore, the mapping $f \mapsto \int_{\mathcal{X}} f \, d\lambda$ is a bounded linear functional on $L^2(\mathcal{X}, d\rho)$. By the Fréchet-Riesz theorem, we can represent this linear functional by a function $g \in L^2(\mathcal{X}, d\rho)$, i.e.

$$\int_{\mathcal{X}} f \, d\lambda = \int_{\mathcal{X}} g \, f \, d\rho$$

for all $f \in L^2(\mathcal{X}, d\rho)$.
We next want to show that, by modifying \( g \) on a set of \( \rho \)-measure zero, we can arrange that \( g \) takes values in the interval \([0, 1]\). To this end, we let \( E \) be any Borel set with \( \rho(E) > 0 \). Evaluating (12.5.4) for \( f = \chi_E \), we obtain

\[
0 \leq \frac{1}{\rho(E)} \int_E g \, d\rho = \frac{\lambda(E)}{\rho(E)} \leq 1.
\]

Now the claim follows from elementary measure theory (see for example [121, Theorem 1.40]).

Using (12.5.3), we can rewrite (12.5.4) as

\[
\int_K (1 - g) \, df = \int_K gf \, d\mu \quad \text{for all non-negative } f \in L^2(K, d\rho).
\]  

(12.5.5)

We introduce the Borel sets

\[
A = \{ x \in K \mid 0 \leq g(x) < 1 \} \quad \text{and} \quad B = \{ x \in K \mid g(x) = 1 \}.
\]

and define the measures \( \lambda_a \) and \( \lambda_s \) by

\[
d\lambda_a = \chi_A \, d\lambda \quad \text{and} \quad d\lambda_s = \chi_B \, d\lambda.
\]

Choosing \( f = \chi_B \) in (12.5.5), one sees that \( \mu(B) = 0 \), implying that \( \lambda_s \perp \mu \).

Moreover, since \( g \) is bounded, we can evaluate (12.5.5) for

\[
f = (1 + g + \cdots + g^n) \, \chi_E
\]

for any \( n \in \mathbb{N} \) and any Borel set \( E \). Using the same transformation with “telescopic sums” as in the evaluation of the geometric or Neumann series, we obtain

\[
\int_E (1 - g^{n+1}) \, d\lambda = \int_E g (1 + g + \cdots + g^n) \, d\mu.
\]

(12.5.6)

At every point of \( B \), the factor \( (1 - g^{n+1}) \) in the integrand on the left vanishes. At every point of \( A \), on the other hand, the factor \( (1 - g^{n+1}) \) is monotone increasing in \( n \) and converges to one. Hence Lebesgue’s monotone convergence theorem implies that the left side of (12.5.6) converges to

\[
\lim_{n \to \infty} \int_E (1 - g^{n+1}) \, d\lambda = \lambda(E \cap A).
\]

The integrand on the right side of (12.5.6), on the other hand, is monotone increasing in \( n \), so that the limit

\[
h(x) := \lim_{n \to \infty} g(x) (1 + g(x) + \cdots + g^n(x)) \quad \text{exists in } \mathbb{R}_0^+ \cup \{\infty\}.
\]

Moreover, the monotone convergence theorem implies that

\[
\lim_{n \to \infty} \int_E g (1 + g + \cdots + g^n) \, d\mu = \int_E h \, d\mu \in \mathbb{R}_0^+ \cup \{\infty\}.
\]

We conclude that, in the limit \( n \to \infty \), the relation (12.5.6) yields

\[
\lambda_a(E) = \lambda(E \cap A) = \int_E h \, d\mu \quad \text{for any Borel set } E.
\]

Choosing \( E = \mathcal{K} \), one sees that \( h \in L^1(\mathcal{K}, d\mu) \). This concludes the proof of (12.5.1).

Finally, the representation (12.5.1) implies that \( \lambda_a \ll \mu \).
12.6. Moment Measures

We now introduce an important concept needed for the existence proof: the moment measures. We again assume that the Hilbert space is finite-dimensional and that the measure $\rho$ is normalized \[12.0.1\]. We consider $\mathcal{F}$ with the metric induced by the sup-norm on $L(\mathcal{F})$, i.e.

$$d(p,q) = \|p-q\|$$

(and $\|\cdot\|$ as in \(5.5.6\)). The basic difficulty in applying the abstract theorems is that $\mathcal{F}$ is not compact (indeed, it is a star-shaped in the sense that $p \in \mathcal{F}$ implies $\lambda p \in \mathcal{F}$ for all $\lambda \in \mathbb{R}$). If the metric space is non-compact, our abstract results no longer apply, as becomes clear in the following simple example.

**Example 12.6.1.** Consider the Banach space $C_0^0(\mathbb{R}, \mathbb{R})$ of compactly supported continuous functions. Let $\rho_n = \delta_n$ be the sequence of Dirac measures supported at $n \in \mathbb{N}$. Then for any $f \in C_0^0(\mathbb{R}, \mathbb{R})$,

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f \, d\rho_n = \lim_{n \to \infty} f(n) = 0.$$ 

Hence the sequence $(\rho_n)_{n \in \mathbb{R}}$ converges as a measure to zero. Thus the limiting measure is no longer normalized. This shows that Theorem \[12.3.2\] fails to hold if the base space is non-compact. ♦

The way out is to make use of the fact that the causal action as well as the constraints are formed of functionals which are homogeneous under the scaling $p \to \lambda p$ of degree zero, one or two. This makes it possible to restrict attention to a compact subset of $\mathcal{F}$, and to consider three measures on this compact set.

**Definition 12.6.2.** Let $\mathcal{K}$ be the compact metric space

$$\mathcal{K} = \{p \in \mathcal{F} \text{ with } \|p\| = 1\} \cup \{0\}.$$ 

For a given measure $\rho$ on $\mathcal{F}$, we define the measurable sets of $\mathcal{K}$ by the requirement that the sets $\mathbb{R}^+ \Omega = \{\lambda p | \lambda \in \mathbb{R}^+, p \in \Omega\}$ and $\mathbb{R}^- \Omega$ should be $\rho$-measurable in $\mathcal{F}$. We introduce the measures $m^{(0)}$, $m^{(1)}_\pm$ and $m^{(2)}$ by

\begin{align*}
m^{(0)}(\Omega) &= \frac{1}{2} \rho(\mathbb{R}^+ \Omega \setminus \{0\}) + \frac{1}{2} \rho(\mathbb{R}^- \Omega \setminus \{0\}) + \rho(\Omega \cap \{0\}) \quad (12.6.1) \\
m^{(1)}_+(\Omega) &= \frac{1}{2} \int_{\mathbb{R}^+ \Omega} \|p\| \, d\rho(p) \quad (12.6.2) \\
m^{(1)}_-\Omega(\Omega) &= \frac{1}{2} \int_{\mathbb{R}^- \Omega} \|p\| \, d\rho(p) \quad (12.6.3) \\
m^{(2)}(\Omega) &= \frac{1}{2} \int_{\mathbb{R}^+ \Omega} \|p\|^2 \, d\rho(p) + \frac{1}{2} \int_{\mathbb{R}^- \Omega} \|p\|^2 \, d\rho(p). \quad (12.6.4)
\end{align*}

The measures $m^{(l)}$ and $m^{(l)}_\pm$ are referred to as the $l$th moment measure.

We remark that, as a short notation, it is convenient to abbreviate the difference of the first moment measures by

$$m^{(1)}(\Omega) := m^{(1)}_+(\Omega) - m^{(1)}_-\Omega(\Omega). \quad (12.6.5)$$

In mathematical terms, $m^{(1)}$ can be regarded as a signed measure (see for example [92, §28] or [121, Chapter 6]). For simplicity, we here avoid the concept of signed measures.
by working instead with the measures $m_{\pm}^{(1)}$. Nevertheless, we introduce an $m^{(1)}$-integral as a short notation for the difference of the integrals with respect to $m_{+}^{(1)}$ and $m_{-}^{(1)}$, i.e.

$$\int_{\mathcal{X}} h \, dm^{(1)} := \int_{\mathcal{X}} h \, dm_{+}^{(1)} - \int_{\mathcal{X}} h \, dm_{-}^{(1)},$$

where for simplicity we always assume that $h$ is continuous.

The $\rho$-integrals of homogeneous functions can be rewritten as integrals over $\mathcal{X}$ using the moment measures, as we now make precise.

**Definition 12.6.3.** A function $h \in C^0(\mathcal{F})$ is called **homogeneous of degree** $\ell$ with $\ell \in \{0, 1, 2\}$ if

$$h(\nu x) = \nu^\ell h(x) \quad \text{for all } \nu \in \mathbb{R} \text{ and } x \in \mathcal{F}. \quad (12.6.6)$$

**Lemma 12.6.4.** Let $h \in C^0(\mathcal{F})$ be a function which is homogeneous of degree $\ell \in \{0, 1, 2\}$. Then

$$\int_{\mathcal{F}} h \, d\rho = \int_{\mathcal{X}} h \, dm^{(\ell)}.$$ 

**Proof.** We first note that, using the homogeneity [(12.6.6)], the function $h$ is uniquely determined by its restriction to $\mathcal{X}$. Moreover, using an approximation argument with Lebesgue’s dominated convergence theorem, it suffices to consider a function $h$ which is homogeneous of degree $\ell$ and simple in the sense that its restriction to $\mathcal{X}$ takes a finite number of values, i.e.

$$h|_{\mathcal{X}} = \sum_{i=1}^{N} c_i \chi_{\Omega_i}$$

with Borel sets $\Omega_1, \ldots, \Omega_N \subset \mathcal{X}$ and real coefficients $c_1, \ldots, c_N$. For such functions,

$$\int_{\mathcal{F}} h \, d\rho = \sum_{i=1}^{N} c_i \int_{\mathbb{R}^+ \Omega_i} \|p\|^\ell \, d\rho(p) = \sum_{i=1}^{N} c_i \, m^\ell(\Omega_i) = \int_{\mathcal{X}} h \, dm^{(\ell)}.$$ 

This concludes the proof. \hfill \Box

Applying this lemma, the normalization $\rho(\mathcal{F}) = 1$ can be expressed in terms of the moment measures as

$$(12.6.7) \quad m^{(0)}(\mathcal{X}) = 1,$$ 

whereas the action [(5.5.2)] as well as the functionals in the constraints [(5.5.5)] and [(5.5.4)] can be written as

$$S(\rho) = \iint_{\mathcal{X} \times \mathcal{X}} \mathcal{L}(p, q) \, dm^{(2)}(p) \, dm^{(2)}(q) \quad (12.6.8)$$

$$T(\rho) = \iint_{\mathcal{X} \times \mathcal{X}} |pq|^2 \, dm^{(2)}(p) \, dm^{(2)}(q) \quad (12.6.9)$$

$$\int_{\mathcal{F}} \text{tr}(x) \, d\rho(x) = \int_{\mathcal{X}} \text{tr}(p) \, dm^{(1)}_{+}(p) - \int_{\mathcal{X}} \text{tr}(p) \, dm^{(1)}_{-}(p). \quad (12.6.10)$$

Working with the moment measures has the advantage that they are measures on the compact space $\mathcal{X}$. We also learn that two measures $\rho$ and $\tilde{\rho}$ whose moment measures coincide yield the same values for the functionals $S$ and $T$ as well as for the integral [(12.6.10)] entering the trace constraint. It is most convenient to work exclusively with the moment measures. At the end, we shall construct a suitable representative $\rho$ of the limiting
moment measures. A key step for making this method work is the following a-priori estimate.

**Lemma 12.6.5.** There is a constant \( \varepsilon = \varepsilon(f, n) > 0 \) such that for every measure \( \rho \) on \( \mathcal{F} \) the corresponding moment measures (see Definition 12.6.2) satisfy for all measurable \( \Omega \subset \mathcal{K} \) the following inequalities:

\[
\left( m_+^{(1)}(\Omega) + m_-^{(1)}(\Omega) \right)^2 \leq m^{(0)}(\Omega) m^{(2)}(\Omega) 
\]

\[
m^{(2)}(\mathcal{K}) \leq \frac{\mathcal{T}(\rho)}{\varepsilon}. \tag{12.6.12}
\]

**Proof.** The inequality (12.6.11) follows immediately from Hölder’s inequality,

\[
\left| 2(m_+^{(1)}(\Omega) + m_-^{(1)}(\Omega)) \right|^2 \leq \left( \int_{\mathbb{R}^2} \|p\| \, d\rho(p) \right)^2 
\]

\[
\leq \rho(\mathbb{R}^2) \int_{\mathbb{R}^2} \|p\|^2 \, d\rho(p) \leq 4m^{(0)}(\Omega) m^{(2)}(\Omega). 
\]

In order to prove (12.6.12), we introduce the mapping \( \phi : \mathcal{K} \times \mathcal{K} \to \mathbb{R} : (p, q) \mapsto |pq| \).

Clearly, \( \phi \) is continuous and

\[
\phi(p, p) = |p|^2 = \text{Tr}(p^2) = \|p\|^2 = 1.
\]

Thus every point \( r \in \mathcal{K} \) has a neighborhood \( U(r) \subset \mathcal{K} \) with

\[
\phi(p, q) \geq \frac{1}{2} \quad \text{for all } p, q \in U(r). \tag{12.6.13}
\]

Since \( \mathcal{K} \) is compact, there is a finite number of points \( r_1, \ldots, r_N \) such that the corresponding sets \( U_i := U(r_i) \) cover \( \mathcal{K} \). Due to the additivity property of measures, there is an index \( i \in \{1, \ldots, N\} \) such that

\[
m^{(2)}(U_i) \geq \frac{m^{(2)}(\mathcal{K})}{N}. \tag{12.6.14}
\]

We write \( \mathcal{T} \) in the form (12.6.9) and apply (12.6.13) as well as (12.6.14) to obtain

\[
\mathcal{T}(\rho) \geq \int_{U_i \times U_i} |pq|^2 \, dm^{(2)}(p) \, dm^{(2)}(q) \geq \frac{1}{2} m^{(2)}(U_i)^2 \geq \frac{m^{(2)}(\mathcal{K})^2}{2N^2}.
\]

Setting \( \varepsilon = 1/(\sqrt{2N}) \), the result follows. \( \square \)

### 12.7. Existence of Minimizers for the Causal Action Principle

After the above preparations, we can follow the strategy of the direct method of the calculus of variations described at the beginning of Chapter 12 to obtain the following result.

**Theorem 12.7.1.** Let \( \mathcal{K} \) be a finite-dimensional Hilbert space and \( n \in \mathbb{N} \). Let \( \rho_k \) be a minimizing sequence of regular Borel measures on \( \mathcal{F} \) satisfying our constraints (5.5.3), (5.5.4) and (5.5.5) (for fixed and finite constants). Then there is a regular Borel measure \( \rho \) which also satisfies the constraints (again with the same constants) and

\[
\mathcal{S}(\rho) = \liminf_{n \to \infty} \mathcal{S}(\rho_n). 
\]
In short, the method for constructing $\rho$ is to take a limit of the moment measures of the $\rho_k$ and to realize this limit by the measure $\rho$. In more detail, we proceed as follows. In view of Lemma 12.6.5, we know that the moment measures are uniformly bounded measures on the compact metric space $K$. Applying the compactness result of Theorem 12.3.2 (based on the Banach-Alaoglu theorem and the Riesz representation theorem) we conclude that for a suitable subsequence (which we again denote by $(\rho_k)$), the moment measures converge in the $C^0(K)^*$-topology to regular Borel measures,

$$m_k^{(0)} \to m^{(0)}, \quad m_k^{(1)} \to m_+^{(1)} \quad \text{and} \quad m_k^{(2)} \to m^{(2)},$$

which again have the properties (12.6.7), (12.6.11) and (12.6.12).

We next form the Radon-Nikodym decompositions of $m^{(1)}_\pm$ and $m^{(2)}$ with respect to $m^{(0)}$. The inequality (12.6.11) shows that every set of $m^{(0)}$-measure zero is also a set of measure zero with respect to $m^{(1)}_\pm$ and $m^{(2)}$. In other words, the measures $m^{(1)}_\pm$ are absolutely continuous with respect to $m^{(0)}$. Hence, applying Theorem 12.5.2, we obtain the Radon-Nikodym decompositions

$$dm^{(1)}_\pm = f^{(1)} \, dm^{(0)} \quad \text{with} \quad f^{(1)} \in L^1(K, dm^{(0)}).$$

As a consequence, the signed measure $m^{(1)}$ in (12.6.5) has the decomposition

$$dm^{(1)} = f^{(1)} \, dm^{(0)} \quad \text{with} \quad f^{(1)} := f_+ - f_- \in L^1(K, dm^{(0)}).$$

(12.7.1)

As we do not know whether also $m^{(2)}$ is absolutely continuous with respect to $m^{(0)}$, Theorem 12.5.2 gives the decomposition

$$dm^{(2)} = f^{(2)} \, dm^{(0)} + dm^{(2)}_{\text{sing}} \quad \text{with} \quad f^{(2)} \in L^1(K, dm^{(0)}),$$

(12.7.2)

where the measure $m^{(2)}_{\text{sing}}$ is singular with respect to $m^{(0)}$.

**Lemma 12.7.2.** The functions $f^{(1)}$ and $f^{(2)}$ in the Radon-Nikodym decompositions (12.7.1) and (12.7.2) can be chosen such that

$$|f^{(1)}|^2 \leq f^{(2)}.$$

**Proof.** Since $m^{(2)}_{\text{sing}} \perp m^{(0)}$, there is a Borel set $V$ such that

$$\chi_V \, dm^{(0)} = dm^{(0)} \quad \text{and} \quad \chi_V \, dm^{(2)}_{\text{sing}} = 0.$$

Then, using the Radon-Nikodym decompositions (12.7.1) and (12.7.2) in (12.6.11), we obtain for any Borel set $U \subset V$ the inequality

$$\left| \int_U f^{(1)} \, dm^{(0)} \right|^2 \leq m^{(0)}(U) \int_U f^{(2)} \, dm^{(0)}.$$

If the function $f^{(1)}$ does not change signs on $U$, we conclude that

$$\inf_U |f^{(1)}|^2 \leq \sup_U f^{(2)}.$$

By decomposing $U$ into the two sets where $f^{(1)}$ is positive and negative, respectively, one readily sees that this inequality even holds for any Borel set $U \subset V$. As a consequence, the inequality $|f^{(1)}|^2 \leq f^{(2)}$ holds almost everywhere (with respect to the measure $m^{(0)}$), concluding the proof. □
In particular, we conclude that $f^{(1)}$ even lies in $L^2(\mathcal{K}, dm^{(0)})$. Setting $f = f^{(1)}$ and $\mathfrak{d}n = (f^{(2)} - |f|^2) \, dm^{(0)} + dm^{(2)}_{\text{sing}}$, we obtain the decomposition

$$
\begin{align*}
dm^{(1)} &= f \, dm^{(0)}, \\
\mathfrak{d}m^{(2)} &= |f|^2 \, dm^{(0)} + \mathfrak{d}n,
\end{align*}
$$

(12.7.3)

where $f \in L^2(\mathcal{K}, dm^{(0)})$, and $\mathfrak{n}$ is a positive measure which need not be absolutely continuous with respect to $m^{(0)}$. From the definition (12.6.5) it is clear that $f$ is odd, i.e.

$$
f(-p) = -f(p) \text{ for all } p \in \mathcal{K}.
$$

(12.7.4)

The remaining task is to represent the limiting moment measures $m^{(i)}$ in (12.7.3) by a measure $\rho$. Unfortunately, there is the basic problem that such a measure can exist only if $m^{(2)}$ is absolutely continuous with respect to $m^{(0)}$, as the following consideration shows: Assume conversely that $m^{(2)}$ is not absolutely continuous with respect to $m^{(0)}$. Then there is a measurable set $\Omega \subset \mathcal{K}$ with $m^{(0)}(\Omega) = 0$ and $m^{(2)}(\Omega) \neq 0$. Assume furthermore that there is a measure $\rho$ on $\mathcal{F}$ which represents the limiting moment measures in the sense that (12.6.1)–(12.6.4) hold. From (12.6.1) we conclude that the set $\mathbb{R} \Omega \subset \mathcal{F}$ has $\rho$-measure zero. But then the integral (12.6.4) also vanishes, a contradiction.

This problem can also be understood in terms of the limiting sequence $\rho_k$. We cannot exclude that there is a star-shaped region $\mathbb{R} \Omega \subset \mathcal{F}$ such that the measures $\rho_k(\mathbb{R} \Omega)$ tend to zero, but the corresponding moment integrals (12.6.4) have a non-zero limit. Using a notion from the calculus of variations for curvature functionals, we refer to this phenomenon as the possibility of bubbling. This bubbling effect is illustrated by the following example.

**Example 12.7.3. (Bubbling)** We choose $f = 2$ and $n = 1$. Furthermore, we let $\mathcal{M} = [0,1]$ with $\mu$ the Lebesgue measure. For any parameters $\kappa \geq 0$ and $\varepsilon \in (0, \frac{1}{2})$, we introduce the mapping $F_\varepsilon : \mathcal{M} \to \mathcal{F}$ by

$$
F_\varepsilon(x) = \frac{1}{1 - 2\varepsilon} \times \begin{cases} 
-\kappa \varepsilon^{-\frac{1}{2}} \sigma^3 & \text{if } x \leq \varepsilon \\
1 + \sigma^1 \cos(\nu x) + \sigma^2 \sin(\nu x) & \text{if } \varepsilon < x \leq 1 - \varepsilon \\
\kappa \varepsilon^{-\frac{1}{2}} \sigma^3 & \text{if } x > 1 - \varepsilon ,
\end{cases}
$$

where we set $\nu = 2\pi/(1 - 2\varepsilon)$ (and $\sigma^j$ are the Pauli matrices). The corresponding measure $\rho_\varepsilon$ on $\mathcal{F}$ has the following properties. On the set

$$
S := \{ 1 + \sigma^1 \sigma^1 + \sigma^2 \sigma^2 \text{ with } (\sigma^1)^2 + (\sigma^2)^2 = 1 \},
$$

which can be identified with a circle $S^1$, $\rho_\varepsilon$ is a multiple of the Lebesgue measure. Moreover, $\rho_\varepsilon$ is supported at the two points

$$
p_\pm := \pm \frac{\kappa \varepsilon^{-\frac{1}{2}}}{1 - 2\varepsilon} \sigma^3 \quad \text{with} \quad \rho_\varepsilon(\{p_+\}) = \rho_\varepsilon(\{p_-\}) = \varepsilon .
$$

(12.7.5)

A short calculation shows that the trace constraint is satisfied. Furthermore, the separations of the points $p_+$ and $p_-$ from each other and from $S$ are either spacelike or just in the boundary case between spacelike and timelike. Thus for computing the action, we only need to take into account the pairs $(p_+, p_+)$, $(p_-, p_-)$ as well as pairs $(x, y)$ with $x, y \in S$. A straightforward computation yields

$$
S(\rho_\varepsilon) = \frac{3}{(1 - 2\varepsilon)^2} , \quad T(\rho_\varepsilon) = \frac{6}{(1 - 2\varepsilon)^2} + \frac{16\kappa^2}{(1 - 2\varepsilon)^3} + \frac{16\kappa^4}{(1 - 2\varepsilon)^4} .
$$

(12.7.6)
Let us consider the limit $\varepsilon \to 0$. From (12.7.6) we see that the functionals $S$ and $T$ converge,

$$
\lim_{\varepsilon \to 0} S = 3, \quad \lim_{\varepsilon \to 0} T = 6 + 16(\kappa^2 + \kappa^4).
$$

Moreover, there are clearly no convergence problems on the set $S$. Thus it remains to consider the situation at the two points $p_{\pm}$, (12.7.5), which move to infinity as $\varepsilon$ tends to zero. These two points enter the moment measures only at the corresponding normalized points $\hat{p}_{\pm} = p_{\pm}/\|p_{\pm}\| \in \mathcal{K}$. A short calculation shows that the limiting moment measures $m^{(l)} = \lim_{\varepsilon \to 0} m^{(l)}(\varepsilon)$ satisfy the relations

$$
m^{(0)}(\{\hat{p}_{\pm}\}) = m^{(1)}(\{\hat{p}_{\pm}\}) = 0 \quad \text{but} \quad m^{(2)}(\{\hat{p}_{\pm}\}) = \kappa^2 > 0.
$$

Hence $m^{(2)}$ is indeed not absolutely continuous with respect to $m^{(0)}$.

In order to avoid misunderstandings, we point out that this example does not show that bubbling really occurs for minimizing sequences, because we do not know whether the family $(\rho_{\varepsilon})_{0 < \varepsilon < 1/2}$ is minimizing. But at least, our example shows that bubbling makes it possible to arrange arbitrary large values of $T$ without increasing the action $S$ (see (12.7.7) for large $\kappa$).

In order to handle possible bubbling phenomena, it is important to observe that the second moment measure does not enter the trace constraint. Therefore, by taking out the term $dm$ in (12.7.3) we decrease the functionals $S$ and $T$ (see (12.6.8) and (12.6.9)), without affecting the trace constraint. It remains to show that the resulting moment measure can indeed be realized by a measure $\rho$. This is shown in the next lemma.

**Lemma 12.7.4.** For any normalized regular Borel measure $m^{(0)}$ on $\mathcal{K}$ and any function $f \in L^2(\mathcal{K}, \mathbb{R})$, there is a normalized regular Borel measure $\tilde{\rho}$ whose moment measures $\tilde{m}^{(l)}$ are given by

$$
\tilde{m}^{(0)} = m^{(0)}, \quad d\tilde{m}^{(1)} = f dm^{(0)}, \quad d\tilde{m}^{(2)} = |f|^2 dm^{(0)}.
$$

**Proof.** We introduce the mapping

$$
F : \mathcal{K} \to \mathcal{F}, \quad F(x) = f(x) x.
$$

Choosing $\tilde{\rho} := F_* m^{(0)}$, a direct computation shows that the corresponding moment measures indeed satisfy (12.7.8).

This concludes the proof of Theorem 12.7.1. We finally remark that the fact that we dropped the measure $dm$ in (12.7.3) we decrease the value of $T$ might decrease in the limit. This is the only reason why the boundedness constraint (5.5.5) is formulated as an inequality, and not as an equality. It is not clear if the causal action principle also admits minimizers if the inequality in (5.5.5) is replaced by an equality. We conjecture is that the answer is yes. But at present, there is no proof. For the physical applications, it makes no difference if (5.5.5) is an equality or an inequality, because then one works with the corresponding Euler-Lagrange equations, into which the constraints enter via Lagrange multiplier terms (for details see [12]).

12.8. Existence of Minimizers for Causal Variational Principles in the Non-Compact Setting

In Theorem 12.7.1 the existence of minimizers was established in the case that the Hilbert space $\mathcal{H}$ is finite-dimensional and the total volume $\rho(\mathcal{F})$ of spacetime is finite. From the physical point of view, this existence result is quite satisfying, because one
can take the point of view that it should be possible to describe our universe at least approximately by a causal fermion system with $\dim \mathcal{H} < \infty$ and $\rho(\mathcal{F}) < \infty$. From the mathematical point of view, however, it is interesting and important to also study the cases of an infinite-dimensional Hilbert space and/or infinite total volume. The case $\dim \mathcal{H} < \infty$ and $\rho(\mathcal{F}) = \infty$ is not sensible (see Exercise 12.6). In the case $\dim \mathcal{H} = \infty$ and $\rho(\mathcal{F}) < \infty$, on the other hand, there are minimizing sequences which converge to zero. Therefore, our strategy is to approach the problem in two steps. The first step is to deal with infinite total volume; this has been carried out in [68]. The second step, which involves the difficulty of dealing with non-locally compact spaces, is currently under investigation (for first results see [103]).

We now outline the basic strategy in the simplest possible case (more details and a more general treatment can be found in [68]. We consider causal variational principles in the non-compact setting as introduced in Section 6.3. We assume that the Lagrangian is smooth, $L \in C^\infty(\mathcal{F} \times \mathcal{F}, \mathbb{R}^+_0)$, and has the properties (i) and (ii) on page 103. Moreover, we make the following simplifying assumption.

**Definition 12.8.1.** The Lagrangian has **compact range** if for every compact set $K \subset \mathcal{F}$ there is a compact set $K' \subset \mathcal{F}$ such that $L(x, y) = 0$ for all $x \in K$ and $y \not\in K'$.

The goal of this section is to prove the following theorem.

**Theorem 12.8.2.** Under the above assumptions, there is a regular Borel measure $\rho$ on $\mathcal{F}$ (not necessarily bounded) which satisfies the EL equations

$$\ell \bigg|_{\text{supp} \rho} \equiv \inf_M \ell = 0 \quad \text{with} \quad \ell(x) := \int_{\mathcal{F}} L(x, y) \, d\rho(y) - 1 . \quad (12.8.1)$$

For the proof, we first exhaust $\mathcal{F}$ by compact sets $(K_j)_{j \in \mathbb{N}}$, i.e.

$$K_1 \subset K_2 \subset \cdots \subset \mathcal{F} \quad \text{and} \quad \bigcup_{j=1}^{\infty} K_j = \mathcal{F} .$$

On each $K_j$ we consider the restricted variational principle where we minimize the action

$$S_{K_j}(\rho) = \int_{K_j} d\rho(x) \int_{K_j} d\rho(y) L(x, y)$$

under variations of $\rho$ within the class of normalized regular Borel measure on $K_j$. Using the existence theory in the compact setting (see Theorem 12.3.3), each of these restricted variational principles has a minimizer, which we denote by $\rho_j$. Each of these measures satisfies the EL equations stated in Theorem 7.1.1. Thus, introducing the functions

$$\ell_j \in C^0(K_j, \mathbb{R}) , \quad \ell(x) := \int_{K_j} L(x, y) \, d\rho_j(y) - s_j ,$$

one can choose the parameters $s_j > 0$ such that

$$\ell_j \bigg|_{\text{supp} \rho_j} \equiv \inf_{K_j} \ell_j = 0 .$$
Typically, the support of the measures \( \rho_j \) will be “spread out” over larger and larger subsets of \( \mathcal{F} \). This also means that, working with normalized measures, the measures \( \rho_j \) typically converge to the trivial measure \( \rho = 0 \). In order to ensure a non-trivial measure, we must perform a suitable rescaling. To this end, we introduce the measures

\[
\tilde{\rho}_j = \frac{\rho_j}{s_j}.
\]

These new measures are no longer normalized, but they satisfy the EL equations with \( \tilde{s}_j = 1 \), i.e.

\[
\tilde{\ell}_j|_{\text{supp} \tilde{\rho}_j} = \inf_{K_j} \tilde{\ell}_j = 0 \quad \text{with} \quad \tilde{\ell}_j(x) := \int_{K_j} \mathcal{L}(x,y) \, d\tilde{\rho}_j(y) - 1.
\]

Our next task is to construct a limit measure \( \rho \) of the measures \( \tilde{\rho}_j \). We first extend the measures \( \tilde{\rho}_j \) by zero to all of \( \mathcal{F} \) and denote them by \( \rho^{[j]} \),

\[
\rho^{[j]}(U) := \rho_j(U \cap K_j) \quad \text{for any Borel subset } U \subset \mathcal{F}.
\]

In the next lemma we show that these measures are bounded on every compact set.

**Lemma 12.8.3.** For every compact subset \( K \subset \mathcal{F} \) there is a constant \( C_K > 0 \) such that

\[
\rho^{[j]}(K) \leq C_K \quad \text{for all } j \in \mathbb{N}.
\]  

**Proof.** Since \( \mathcal{L}(x,\cdot) \) is continuous and strictly positive at \( x \), there is an open neighborhood \( U(x) \) of \( x \) with

\[
\mathcal{L}(y, z) \geq \frac{\mathcal{L}(x,x)}{2} > 0 \quad \text{for all } y, z \in U(x).
\]

Covering \( K \) by a finite number of such neighborhoods \( U(x_1), \ldots, U(x_L) \), it suffices to show the inequality [12.8.3] for the sets \( K \cap U(x_\ell) \) for any \( \ell \in \{1, \ldots, L\} \). Moreover, we choose \( N \) so large that \( K_N \supset K \) and fix \( k \geq N \). If \( K \cap \text{supp} \rho^{[k]} = \emptyset \), there is nothing to prove. Otherwise, there is a point \( z \in K \cap \text{supp} \rho^{[k]} \). Using the EL equations (12.8.2) at \( z \), it follows that

\[
1 = \int_{\mathcal{F}} \mathcal{L}(z, y) \, d\rho^{[k]}(y) \geq \int_{U(x_\ell)} \mathcal{L}(z, y) \, d\rho^{[k]}(y) \geq \frac{\mathcal{L}(x_\ell, x_\ell)}{2} \rho^{[k]}(U(x_\ell)).
\]

Hence

\[
\rho^{[k]}(U(x_\ell)) \leq \frac{2}{\mathcal{L}(x_\ell, x_\ell)}.
\]

This inequality holds for any \( k \geq N \). We introduce the constants \( c(x_\ell) \) as the maximum of \( 2/\mathcal{L}(x_\ell, x_\ell) \) and \( \rho^{[1]}(U(x_\ell)), \ldots, \rho^{[N-1]}(U(x_\ell)) \). Since the open sets \( U(x_1), \ldots, U(x_L) \) cover \( K \), we finally introduce the constant \( C_K \) as the sum of the constants \( c(x_1), \ldots, c(x_L) \).

Given a compact set \( K \), combining the result of the previous lemma with the compactness of measures on compact topological spaces (see Theorem 12.3.2), we conclude that there is a subsequence \( (\rho^{[j]}) \) whose restrictions to \( K \) converge as a measure (i.e. in the sense (12.3.1)). Proceeding inductively for the compact sets \( K_1, K_2, \ldots \) and choosing a diagonal sequence, one gets a subsequence of measures on \( \mathcal{F} \), denoted by \( \rho^{(k)} \), whose restriction to any compact set \( K_j \) converges, i.e.

\[
\rho^{(k)}|_{K_j} \text{ converges as } k \to \infty \text{ to } \rho|_{K_j} \text{ for all } j \in \mathbb{N},
\]

182 12. MEASURE-THEORETIC METHODS
where $\rho$ is a regular Borel measure on $\mathcal{F}$ (typically of infinite total volume). The convergence of measures in (12.8.5) is referred to as vague convergence (for more details see [7, Definition 30.1] or [68, Section 4.1]).

It remains to show that the obtained measure $\rho$ is a non-trivial minimizer. In order to show that it is non-trivial, we make use of the EL equations (12.8.2). Let $x \in \mathcal{F}$. Then (12.8.2) implies that

$$\int_{\mathcal{F}} \mathcal{L}(x, y) \, d\rho(y) \geq 1.$$  

(12.8.6)

This shows (in a quantitative way) that the measure $\rho$ is non-zero.

Our final step for proving the EL equations (12.8.1) is to show that the EL equations (12.8.2) are preserved in the limit. In view of the lower bound (12.8.6), it remains to show that $\ell$ vanishes on the support of $\rho$. Thus let $x \in \text{supp} \rho$. We choose a compact subset $K \subset \mathcal{F}$ such that $x$ lies in its interior. Again using that the Lagrangian has compact range, there is another compact subset $K' \subset \mathcal{F}$ such that (12.8.1) holds. The fact that $x$ lies in the support and that the measures $\rho^{(k)}$ converge vaguely to $\rho$ implies that there is a sequence $x_k \in \text{supp} \rho^{(k)}$ which converges to $x$. The EL equations for each $\rho^{(k)}$ imply that, for sufficiently large $k$,

$$\int_{K'} \mathcal{L}(x_k, y) \, d\rho^{(k)}(y) = 1.$$  

Taking the limit is a bit subtle because both the argument $x_k$ of the Lagrangian and the integration measure depend on $k$. Therefore, we begin with the estimate

$$\left| \int_{K'} \mathcal{L}(x, y) \, d\rho(y) - \int_{K'} \mathcal{L}(x_k, y) \, d\rho^{(k)}(y) \right| \leq \left| \ell(x) - \ell^{(k)}(x) \right| - \sup_j \left| \ell^{(j)}(x) - \ell^{(j)}(x_k) \right|,$$  

(12.8.7)

where we set

$$\ell^{(k)}(z) := \int_{K'} \mathcal{L}(z, y) \, d\rho^{(k)}(y) - 1.$$  

The first summand on the right side of (12.8.7) tends to zero because the measures $\rho^{(k)}$ converge vaguely to $\rho$. The second summand, on the other hand, tends to zero because the functions $\ell^{(j)}$ are equicontinuous (for more details on this argument see [68, Section 4.2]). This concludes the proof of Theorem 12.8.2.

We finally note that, starting from the EL equations (12.8.1), one can also show that $\rho$ is a minimizer under variations of finite volume, meaning that for every regular Borel measure $\tilde{\rho}$ satisfying (6.3.1), the difference of actions (6.3.2) is nonnegative (6.3.3). The proof can be found in [68, Section 4.3].

12.9. Tangent Cones and Tangent Cone Measures

In the previous sections, measure-theoretic methods have been used in order to prove existence of minimizers. But methods of measure theory are also useful for analyzing the structure of the minimizing measure. Since these methods might be important for the future development of the theory, we now briefly explain the concept of a tangent cone measure (more details and applications can be found in [53, Section 6]). We have
the situation in mind that spacetime $M$ does not have a smooth manifold structure, so
that the powerful methods of differential topology and geometry (like the tangent space,
the exponential map, etc.) cannot be used in spacetime. Nevertheless, the structure of
spacetime can be analyzed locally as follows. Let $x \in M$ be a spacetime point. We want
to analyze a neighborhood of $x$ in $M$. To this end, it is useful to consider a continuous
mapping $A$ from $M$ to the symmetric operators on the spin space at $x$. We always assume
that this mapping vanishes at $x$, i.e.

$$A : M \to \text{Symm}(S_x) \quad \text{with} \quad A(x) = 0. \quad (12.9.1)$$

There are different possible choices for $A$. The simplest choice is

$$A : y \mapsto \pi_x (y - x) \big|_{S_x} . \quad (12.9.2)$$

Here the factor $x$ on the right is needed for the operator to be symmetric, becau

$$\langle \psi | A \phi \rangle_x \overset{(5.6.6)}{=} -\langle \psi | x (\pi_x (y - x) \phi) \rangle_{\mathcal{H}} = -\langle \psi | x (y - x) x \phi \rangle_{\mathcal{H}} = -\langle \pi_x (y - x) x \psi | x \phi \rangle_{\mathcal{H}} = -A \langle \psi | \phi \rangle_x . \quad (12.9.2)$$

Alternatively, one can consider mappings involving the operators $s_y$ or $\pi_y$, like for example

$$A : y \mapsto \pi_x (s_y - s_x) x |_{S_x} \quad (12.9.3)$$

$$A : y \mapsto \pi_x (\pi_y - \pi_x) x |_{S_x} \quad (12.9.4)$$

(where $\pi_x$ again denotes the orthogonal projection in $\mathcal{H}$ on $S_x$). But of course, many
other choices of $A$ are possible. The detailed choice of $A$ depends on the application in
mind.

A \textit{conical set} is a set of the form $\mathbb{R}^+ A$ with $A \subset \text{Symm}(S_x)$. We denote the conical sets
whose preimages under $A$ are both $\rho$–measurable by $\mathfrak{M}$. For a conical set $A \subset \text{Symm}(S_x)$
we consider countable coverings by measurable conical sets,

$$A \subset \bigcup_{k=1}^\infty A_k \quad \text{with} \quad A_k \in \mathfrak{M}.$$ 

We denote the set of such coverings by $\mathcal{P}$. We define

$$\mu^*_\text{con}(A) = \inf_{\mathcal{P}} \sum_{k=1}^\infty \liminf_{\delta \to 0} \frac{1}{\rho(B_\delta(x))} \rho\left(A^{-1}(A_k) \cap B_\delta(x)\right) \quad (12.9.5)$$

(where $B_\delta(x) \subset L(\mathcal{H})$ is the Banach space ball). We remark for clarity that, since $x \in M := \text{supp } \rho$, it follows that the measure $\rho(B_\delta(x))$ is non-zero for all $\delta > 0$.

The mapping $\mu^*_\text{con}$ defines an outer measure on the conical sets in $\text{Symm}(S_x)$. By
applying the Carathéodory extension lemma (see for example [7, 14]), one can construct
a corresponding measure denoted by $\mu_\text{con}$. By restriction one obtains a Borel measure
(for details see [53, Section 6.1]).

\textbf{Definition 12.9.1.} We denote the conical Borel sets of $\text{Symm}(S_x)$ by $\mathfrak{B}\text{con}(x)$. We
denote the measure obtained by applying the above construction by

$$\mu_x : \mathfrak{B}\text{con}(x) \to [0, \infty].$$

It is referred to as the \textbf{tangent cone measure} corresponding to $A$. The \textbf{tangent cone} $C_x$ is defined as the support of the tangent cone measure,

$$C_x := \text{supp } \mu_x \subset \text{Symm}(S_x).$$
In simple terms, the tangent cone $C_x$ distinguishes directions in which the measure $\rho$ is non-zero. The tangent cone measure, on the other hand, is a measure supported on the tangent cone. By integrating functionals on conical subsets of Symm($S_x$) with respect to this measure, one can get fine information on the structure of the measure $\rho$ in different directions. As a concrete example, this method is used in [53, Section 6.2] in order to choose a distinguished Clifford section at $x$.

**Exercises**

**Exercise 12.1.** Let $\Lambda$ be the functional

$$\Lambda : C^0([0,1],\mathbb{R}) \to \mathbb{R}, \quad \Lambda(f) = \sup_{x\in[0,1]} f(x).$$

Can this functional be represented by a measure? Analyze how your findings are compatible with the Riesz representation theorem.

**Exercise 12.2.** Let $\rho$ be the Borel measure on $[0,\pi]$ given by

$$\rho(\Omega) = \int_{\Omega} \sin x \, dx + \sum_{n=1}^{\infty} \frac{1}{n^2} \chi_{\Omega}(\frac{1}{n}).$$

Compute the Lebesgue decomposition of $\rho$ with respect to the Lebesgue measure.

**Exercise 12.3.** Let $\mathcal{F} = \mathbb{R}^2$ and $\mathcal{K} = S^1 \cup \{0\}$ be a compact subset of $\mathcal{F}$. Given a Borel measure $\rho$ on $\mathcal{F}$, the moment measures $m^{(0)}$, $m^{(1)}$ and $m^{(2)}$ can be defined just as in the lecture. Compute these moment measures for the following choices of $\rho$:

(a) $\rho = F_*\mu_{S^1}$, where $F : S^1 \hookrightarrow \mathbb{R}^2$ is the natural injection and $\mu_{S^1}$ the normalized Lebesgue measure on $S^1$.

(b) $\rho = \delta_{(0,0)} + \delta_{(1,1)} + \delta_{(5,0)}$ (where $\delta_{(x,y)}$ denotes the Dirac measure supported at $(x,y) \in \mathbb{R}^2$).

(c) $\rho = F_*\mu_{\mathbb{R}}$, where

$$F : \mathbb{R} \to \mathbb{R}^2, \quad F(x) = (x,2)$$

and $\mu_{\mathbb{R}}$ is the Lebesgue measure.

**Exercise 12.4.** (a) Let $(\rho_n)_{n\in\mathbb{N}}$ be a sequence of normalized regular Borel measures on $\mathbb{R}$ with the property that there is a constant $c > 0$ such that

$$\int_{-\infty}^{\infty} x^2 \, d\rho_n(x) \leq c \quad \text{for all } n.$$

Show that a subsequence converges again to a normalized Borel measure on $\mathbb{R}$.

**Hint:** Apply the compactness result of the lecture to the measures restricted to the interval $[-L,L]$ and analyze the behavior as $L \to \infty$.

(b) More generally, assume that for a given non-negative function $f(x)$,

$$\int_{-\infty}^{\infty} f(x) \, d\rho_n(x) \leq c \quad \text{for all } n.$$

Which condition on $f$ ensures that the a subsequence of the measures converges to a normalized Borel measure? Justify your result by a counter example.
Exercise 12.5. Let $\mathcal{M} \subset \mathbb{R}$ be a closed embedded submanifold of $\mathbb{R}^3$. We choose a compact set $K \subset \mathbb{R}^3$ which contains $\mathcal{M}$. On $C^0(K, \mathbb{R})$ we introduce the functional

$$\Lambda : C^0(K, \mathbb{R}) \to \mathbb{R}, \quad \Lambda(f) = \int_{\mathcal{M}} f(x) \, d\mu_{\mathcal{M}}(x)$$

where $d\mu_{\mathcal{M}}$ is the volume measure corresponding to the induced Riemannian metric on $\mathcal{M}$. Show that this functional is linear, bounded and positive. Apply the Riesz representation theorem to represent this functional by a Borel measure on $K$. What is the support of this measure?

Exercise 12.6. This exercise explains why the causal action principle is ill-posed in the case $\dim \mathcal{H} = \infty$ and $\rho(\mathcal{F}) < \infty$. The underlying estimates were first given in the setting of discrete spacetimes in [39, Lemma 5.1].

(a) Let $\mathcal{H}_0$ be a finite-dimensional Hilbert space of dimension $n$ and $(\mathcal{H}_0, \mathcal{F}_0, \rho_0)$ be a causal fermion system of finite total volume $\rho_0(\mathcal{F}_0)$. Let $\iota : \mathcal{H}_0 \to \mathcal{H}$ be an isometric embedding. Construct a causal fermion system $(\mathcal{H}, \mathcal{F}, \rho)$ which has the same action, the same total volume and the same values for the trace and boundedness constraints as the causal fermion system $(\mathcal{H}_0, \mathcal{F}_0, \rho_0)$.

(b) Let $\mathcal{H}_1 = \mathcal{H}_0 \oplus \mathcal{H}_0$. Construct a causal fermion system $(\mathcal{H}_1, \mathcal{F}_1, \rho_1)$ which has the same total volume and the same value of the trace constraint as $(\mathcal{H}_0, \mathcal{F}_0, \rho_0)$ but a smaller action and a smaller value of the boundedness constraint. Hint: Let $F_{1/2} : L(\mathcal{H}_0) \to L(\mathcal{H}_1)$ be the linear mappings

$$(F_1(A))(u \oplus v) = (Au) \oplus 0, \quad (F_2(A))(u \oplus v) = 0 \oplus (Av).$$

Show that $F_{1/2}$ map $\mathcal{F}_0$ to $\mathcal{F}_1$. Define $\rho_1$ by

$$\rho_1 = \frac{1}{2} \left( (F_1)_* \rho + (F_2)_* \rho \right).$$

(c) Iterate the construction in (b) and apply (a) to obtain a series of universal measures on $\mathcal{F}$ of fixed total volume and with fixed value of the trace constraint, for which the action and the values of the boundedness constraint tend to zero. Do these universal measures converge? If yes, what is the limit?

Exercise 12.7. (Riesz representation theorem - part 1) Let $\Lambda$ be the functional

$$\Lambda : C^0([0,1], \mathbb{R}) \to \mathbb{R}, \quad \Lambda(f) := \sup_{x \in [0,1]} f(x).$$

Can this functional be represented by a measure? Analyze how your findings are compatible with the Riesz representation theorem.

Exercise 12.8. (Riesz representation theorem - part 2) Let $\mathcal{M}$ be a closed embedded submanifold of $\mathbb{R}^3$. We choose a compact set $K \subset \mathbb{R}^3$ which contain $\mathcal{M}$. On $C^0(K, \mathbb{R})$ we introduce the functional

$$\Lambda : C^0(K, \mathbb{R}) \to \mathbb{R}, \quad \Lambda(f) = \int_{\mathcal{M}} f(x) \, d\mu_{\mathcal{M}}(x),$$

where $d\mu_{\mathcal{M}}$ is the volume measure corresponding to the induced Riemannian metric on $\mathcal{M}$. Show that this functional is linear, bounded and positive. Apply the Riesz representation theorem to represent this functional by a Borel measure on $K$. What is the support of this measure?
**Exercise 12.9. (Radon-Nikodym decomposition)** Let \( \rho \) be the Borel measure on \([0, \pi]\) given by
\[
\rho(\Omega) := \int_{\Omega} \sin x \, dx + \sum_{n=1}^{\infty} \frac{1}{n^2} \chi_{\Omega} \left( \frac{1}{n} \right).
\]
Compute the Radon-Nikodym decomposition of \( \rho \) with respect to the Lebesgue measure.

**Exercise 12.10. (Normalized regular Borel measures: compactness results)**
(a) Let \((\rho_n)_{n \in \mathbb{N}}\) be a sequence of normalized regular Borel measures on \(\mathbb{R}\) with the property that there is a constant \(c > 0\) such that
\[
\int_{\mathbb{R}} x^2 \, d\rho_n(x) \leq c \quad \text{for all } n \in \mathbb{N}.
\]
Show that a subsequence converges again to a normalized Borel measure on \(\mathbb{R}\).

*Hint:* Apply the compactness result of the lecture to the measures restricted to the interval \([-L, L]\) and analyze the behavior as \(L \to \infty\).

(b) More generally, assume that for a given non-negative function \(f \in C^0(\mathbb{R}, \mathbb{R})\),
\[
\int_{\mathbb{R}} f(x) \, d\rho_n(x) \leq c \quad \text{for all } n \in \mathbb{N}.
\]
Which condition on \(f\) ensures that a subsequence of the measures converges to a normalized Borel measure? Justify your results by a counterexample.

**Exercise 12.11. (Derivative of measures)** Let \(\mu\) be the counting measure on the \(\sigma\)-algebra \(\mathcal{P}(\mathbb{N})\). Consider the measure
\[
\lambda(\emptyset) := 0, \quad \lambda(E) := \sum_{n \in E} (1 + n)^2, \quad E \in \mathcal{P}(\mathbb{N}).
\]
Show that \(\mu\) and \(\lambda\) are equivalent (one is absolutely continuous with respect to the other) and determine the Radon-Nikodym derivative \(\frac{d\mu}{d\lambda}\).

**Exercise 12.12. (Minimizers)** Let \(M\) denote the 2-sphere \(S^2 \subset \mathbb{R}^3\) and let \(d\mu_M\) be the normalized canonical surface measure. Consider a Lagrangian on \(M \times M\) defined by
\[
\mathcal{L}(x, y) := \frac{1}{1 + \|x - y\|_{\mathbb{R}^3}} \quad \text{for all } x, y \in M.
\]
Show that the action \(\mathcal{S}(\mu_M)\) is minimal under variations of the form
\[
d\rho_{x_0, t} := (1 - t)d\mu_M + t \, d\delta_{x_0}, \quad \text{with } t \in [0, 1),
\]
where \(\delta_{x_0}\) is the Dirac measure centered at \(x_0 \in M\).

**Exercise 12.13. (Moment measures)** Let \(\mathcal{F} = \mathbb{R}^2\) and \(K = S^1 \cup \{0\}\) be a compact subset of \(\mathcal{F}\). Given a Borel measure \(\rho\) on \(\mathcal{F}\), the moment measures \(m^{(0)}, m^{(1)}\) and \(m^{(2)}\) can be defined just as in the lecture. Compute these moment measures for the following choices of \(\rho\):
(a) \(\rho = F_* (\mu_S)\), where \(F : S^1 \hookrightarrow \mathbb{R}^2\) is the natural injection and \(\mu_S\) is the normalized Lebesgue measure on \(S^1\).
(b) \(\rho = \delta_{(0,0)} + \delta_{(1,1)} + \delta_{(5,0)}\) (where \(\delta_{(x,y)}\) denote the Dirac measure supported at \((x, y) \in \mathbb{R}^2\)).
(c) \(\rho = F_* (\mu_{\mathbb{R}})\), where \(\mu_{\mathbb{R}}\) is the Lebesgue measure on \(\mathbb{R}\) and
\[
F : \mathbb{R} \to \mathbb{R}^2, \quad F(x) = (x, 2).
\]
CHAPTER 13

Methods of Hyperbolic Partial Differential Equations

13.1. The Cauchy Problem, Linear Symmetric Hyperbolic Systems

In this section, we shall prove that the Cauchy problem for the Dirac equation in the presence of an external potential has a unique global solution. Moreover, we want to show that the finite speed of propagation as postulated by special relativity is indeed respected by the solutions of the Dirac equation. For later purposes, it is preferable to include an inhomogeneity. Thus we consider the Cauchy problem in Minkowski space

\[(i\partial + B - m)\psi = \phi \in C^\infty(M, S_M), \quad \psi|_{t_0} = \psi_0 \in C^\infty(\mathbb{R}^3, S_M)\]  \hspace{1cm} (13.1.1)

for a given inhomogeneity \(\phi\) and initial data \(\psi_0\). In order to make the standard methods available, we multiply the equation by \(-i\gamma^0\),

\[1_{\mathbb{C}^4} \partial_t \psi + \gamma^0 \gamma^\alpha \nabla \psi - i\gamma^0 (B - m) \psi = -i\gamma^0 \phi.\]  \hspace{1cm} (13.1.2)

Now the matrices in front of the derivatives are all Hermitian (with respect to the standard scalar product on \(\mathbb{C}^4\)). Moreover, the matrix in front of the time derivative is positive definite. Kurt Otto Friedrichs [82] observed that these properties are precisely what is needed in order to get a well-posed Cauchy problem. He combined these properties in the notion of a symmetric hyperbolic system. We now give its general definition. More specifically, we consider a system of \(N\) complex-valued equations with spatial coordinates \(\vec{x} \in \mathbb{R}^m\) and time \(t\) in an interval \([0, T]\) with \(T > 0\). The initial data will always be prescribed at time \(t = 0\). For notational clarity, we denote partial derivatives in spatial direction by \(\nabla\).

**Definition 13.1.1.** A linear system of differential equations of the form

\[A^0(t, \vec{x}) \partial_t u(t, \vec{x}) + \sum_{\alpha=1}^m A^\alpha(t, \vec{x}) \nabla_\alpha u(t, \vec{x}) + B(t, \vec{x}) u(t, \vec{x}) = w(t, \vec{x})\]  \hspace{1cm} (13.1.3)

with

\[A^0, A^\alpha, B \in C^\infty([0, T] \times \mathbb{R}^m, L(\mathbb{C}^N)), \quad w \in C^\infty([0, T] \times \mathbb{R}^m, \mathbb{C}^N)\].

is called symmetric hyperbolic if

(i) The matrices \(A^0\) and \(A^\alpha\) are Hermitian,

\[(A^0)^\dagger = A^0 \quad \text{and} \quad (A^\alpha)^\dagger = A^\alpha\]

(where \(\dagger\) denotes the adjoint with respect to the canonical scalar product on \(\mathbb{C}^N\)).

(ii) The matrix \(A^0\) is uniformly positive definite, i.e. there is a positive constant \(C\) such that

\[A^0(t, \vec{x}) > C 1_{\mathbb{C}^N} \quad \text{for all} \ (t, \vec{x}) \in ([0, T] \times \mathbb{R}^m)\].

In the case \(w \equiv 0\), the linear system is called homogeneous.
A good reference for linear symmetric hyperbolic systems is the book by Fritz John [97, Section 5.3] (who was Friedrichs’ colleague at the Courant Institute). Our presentation was also influenced by [118, Chapter 8]. We remark that the concept of symmetric hyperbolic systems can be extended to nonlinear equations of the form

\[
A^0(t, \bar{x}, u) \partial_t u(t, \bar{x}) + \sum_{\alpha=1}^{m} A^\alpha(t, \bar{x}, u) \nabla_\alpha u(t, \bar{x}) + B(t, \bar{x}, u) = 0 ,
\]

where the matrices \(A^0\) and \(A^\alpha\) should again satisfy the above conditions (i) and (ii). For details we refer to [129, Section 16] or [120, Section 7]. Having the Dirac equation in mind, we always restrict attention to linear systems. We also note that an alternative method for proving existence of fundamental solutions is to work with the so-called Riesz distributions (for a good textbook see [5]). Yet another method is to work with estimates in the interaction picture [23]. For completeness we finally remark that the concept of symmetric hyperbolic systems was extended by Friedrichs to so-called symmetric positive systems [83].

It is a remarkable fact that all partial differential equations in relativistic physics as well as most wave-type equations can be rewritten as a symmetric hyperbolic system. As an illustration, we now explain this reformulation in the example of a scalar hyperbolic equation.

**Example 13.1.2.** Consider a scalar hyperbolic equation of the form

\[
\partial_{tt} \phi(t, \bar{x}) = \sum_{\alpha, \beta=1}^{m} a_{\alpha\beta}(t, \bar{x}) \nabla_{\alpha\beta} \phi + \sum_{\alpha=1}^{m} b_{\alpha}(t, \bar{x}) \nabla_{\alpha} \phi + c(t, \bar{x}) \partial_t \phi + d(t, \bar{x}) \phi
\]

(13.1.4)

with \((a_{\alpha\beta})\) a symmetric, uniformly positive matrix (in the case \(a_{\alpha\beta} = \delta_{\alpha\beta}\) and \(b, c, d = 0\), one gets the scalar wave equation). Now the initial data prescribes \(\phi\) and its first time derivatives,

\[
\phi|_{t=0} = \phi_0 \in C^\infty(M) , \quad \partial_t \phi|_{t=0} = \phi_1 \in C^\infty(M) .
\]

(13.1.5)

In order to rewrite the equation as a symmetric hyperbolic system, we introduce the vector \(u\) with \(k := m + 2\) components by

\[
u_1 = \nabla_1 \phi, \ldots, u_m = \nabla_m \phi, \quad u_{m+1} = \partial_t \phi, \quad u_{m+2} = \phi .
\]

(13.1.6)

Then the system

\[
\begin{align*}
\sum_{\beta=1}^{m} a_{\alpha\beta} \partial_t u_\beta - \sum_{\beta=1}^{m} a_{\alpha\beta} \nabla_\beta u_{m+1} & = 0 \\
- \sum_{\alpha, \beta=1}^{m} a_{\alpha\beta} \nabla_\beta u_\alpha - \sum_{\alpha=1}^{m} b_{\alpha} \ u_\alpha & + \partial_t u_{m+1} - c \ u_{m+1} - d \ u_{m+2} & = 0 \\
0 & - u_{m+1} + \partial_t u_{m+2} & = 0
\end{align*}
\]

(13.1.7)

is symmetric hyperbolic (as one verifies by direct inspection). Also, a short calculation shows that if \(\phi\) is a smooth solution of the scalar equation (13.1.4), then the corresponding vector \(u\) is a solution of the system (13.1.7). Conversely, assume that \(u\) is a smooth solution of (13.1.7) which satisfies the initial condition \(u|_{t=0} = u_0\), where \(u_0\) is determined by \(\phi_0\) and \(\phi_1\) via (13.1.6). Setting \(\phi = u_{m+2}\), the last line in (13.1.7) shows that \(u_{m+1} = \partial_t \phi\). Moreover, the first line in (13.1.7) implies that \(\partial_t u_\beta = \nabla_\beta u_{m+1} = \partial_t \nabla_\beta \phi\). Integrating over \(t\) and using that the relation \(u_\beta = \nabla_\beta \phi\) holds initially, we conclude that
13.2. Finite Propagation Speed and Uniqueness of Solutions

For what follows, it is convenient to combine the time and spatial coordinates to a spacetime vector \( x = (t, \vec{x}) \in [0, T] \times \mathbb{R}^m \). We denote the spacetime dimension by \( n = m + 1 \). Moreover, setting \( \partial_0 \equiv \partial_t \), we use latin spacetime indices \( i \in \{0, \ldots, m\} \) and use the Einstein summation convention. Then our linear system (13.1.3) can be written in the compact form
\[
A^j(x) \partial_j u(x) + B(x) u(x) = w(x) .
\]
(13.2.1)

Next, a direction in spacetime can be described by a vector \( \xi = (\xi_i)_{i=0,\ldots,m} \in \mathbb{R}^{m+1} \). Contracting with the matrices \( A^j(x) \), we obtain the Hermitian \( N \times N \)-matrix
\[
A(x, \xi) := A^j(x) \xi_j ,
\]
referred to as the characteristic matrix. Note that in the example of the Dirac equation (13.1.2), the index \( i \) is a vector index in Minkowski space, and \( \xi \) should be regarded as a co-vector (i.e. a vector in the cotangent bundle). One should keep in mind that, despite the suggestive notation, the equation (13.2.1) should not be considered as being manifestly covariant, because it corresponds to the Hamiltonian formulation (13.1.2), where a time direction is distinguished.

The determinant of the characteristic matrix is referred to as the characteristic polynomial, being a polynomial in the components \( \xi_i \). For our purposes, it is most helpful to consider whether the characteristic matrix is positive or negative definite. If the vector \( \xi = (\tau, \vec{0}) \) points in the time direction, then \( A(x, \xi) = \tau A^0 \), which in view of Definition 13.1.1 is a definite matrix. By continuity, \( A(x, \xi) \) is definite if the spatial components of \( \xi \) are sufficiently small. In the example of the Dirac equation (13.1.2), the fact that
\[
A(x, \xi) = 1 \xi_0 + \gamma^0 \vec{\gamma} \vec{\xi} \quad \text{has eigenvalues} \quad \xi^0 \pm |\vec{\xi}| \quad (13.2.2)
\]
shows that \( A(x, \xi) \) is definite if and only if \( \xi \) is a timelike vector. Moreover, it is positive definite if and only if \( \xi \) is future-directed and timelike. This suggests that the causal properties of the equation are encoded in the positivity of the characteristic matrix. We simply use this connection to define the causal structure for a general symmetric hyperbolic system.

**Definition 13.2.1.** The vector \( \xi \in \mathbb{R}^{m+1} \) is called **timelike** at the spacetime point \( x \) if the characteristic matrix \( A(x, \xi) \) is definite. A timelike vector is called **future-directed** if \( A(x, \xi) \) is positive definite. If the characteristic polynomial vanishes, then the vector \( \xi \) is called **lightlike**. A hypersurface \( \mathcal{H} \subset [0, T] \times \mathbb{R}^m \) with normal \( \nu \) is called **spacelike** if the matrix \( A(x, \nu) \) is positive definite for all \( x \in \mathcal{H} \).

The notion “normal” used here requires an explanation. The simplest method is to represent the hypersurface locally as the zero set of a function \( \phi(x) \). Then the normal can be defined as the gradient of \( \phi \). In this way, the gradient is a co-vector, so that the contraction \( A^j \nu_j = A^j \partial_j \phi \) is well-defined without referring to a scalar product. In particular, the last definition is independent of the choice of a scalar product on spacetime.
vectors in $\mathbb{R}^n$. We always choose the normal to be future-directed, and we normalize it with respect to the Euclidean scalar product on $\mathbb{R}^{m+1}$, but these are merely conventions.

We shall now explain why and in which sense the solutions of symmetric hyperbolic systems comply with this notion of causality.

**Definition 13.2.2.** Let $u$ be a smooth solution of the linear symmetric hyperbolic system (13.2.1). A subset $K$ of the initial value surface $\{ t = 0 \}$ determines the solution at a spacetime point $x \in [0, T] \times \mathbb{R}^m$ if every smooth solution of the system which coincides on $K$ with $u$, also coincides with $u$ at $x$. The domain of determination of $K$ is the set of all spacetime points at which the solution is determined by the initial data on $K$.

**Definition 13.2.3.** An open subset $L \subset (0, T) \times \mathbb{R}^m$ is called a lens-shaped region if $L$ is relatively compact in $\mathbb{R}^n$ and if its boundary $\partial L$ is contained in the union of two smooth hypersurfaces $S_0$ and $S_1$ whose intersection with $L$ is spacelike. We set $(\partial L)^+ = \partial L \cap S_1$ and $(\partial L)^- = \partial L \cap S_0$, where we adopt the convention that $(\partial L)^+ \text{ lies to the future of } (\partial L)^-$. Figure 13.1 shows typical examples of lens-shaped regions. Often, one chooses $S_0 = \{ t = 0 \}$ as the initial data surface. Moreover, it is often convenient to write the hypersurface $S_1$ as a graph $S_1 = \{ (t, \vec{x}) \mid t = f(\vec{x}) \}$. In this case, $S_1$ is the zero set of the function $\phi(t, \vec{x}) = t - f(\vec{x})$, and the normal $\nu$ is the gradient of this function, i.e.

$$(\nu_j)_{j=0,\ldots,m} = (1, \nabla_1 f, \ldots, \nabla_m f).$$

We first consider the homogeneous equation

$$(A^j \partial_j + B) u = 0.$$  \hfill (13.2.3)

The idea for analyzing the domain of determination is to multiply this equation by a suitable test function and to integrate over a lens-shaped region. More precisely, we consider the equation

$$0 = \int_L e^{-Kt} 2\text{Re} \langle u, (A^j \partial_j + B)u \rangle d^n x,$$  \hfill (13.2.4)

where $\langle \ldots \rangle$ denotes the canonical scalar product on $\mathbb{C}^N$, and $K > 0$ a positive parameter to be determined later. Since the $A^j$ are Hermitian, we have

$$\partial_j \langle u, A^j u \rangle = 2 \text{Re} \langle u, A^j \partial_j u \rangle + \langle u, (\partial_j A^j)u \rangle,$$  \hfill (13.2.5)

and using this identity in (13.2.4) gives

$$0 = \int_L e^{-Kt} \left( \partial_j \langle u, A^j u \rangle + \langle u, (B + B^* - (\partial_j A^j))u \rangle \right) d^n x.$$  \hfill (13.2.6)
In the first term we integrate by parts with the Gauß divergence theorem,
\[
\int_L e^{-Kt} \partial_j \langle u, A^j u \rangle \, d^n x = K \int_L e^{-Kt} \langle u, A^0 u \rangle \, d^n x
\]
\[
+ \int_{(\partial L)_+} e^{-Kt} \langle u, \nu_j A^j u \rangle \, d\mu_{\partial L_+} - \int_{(\partial L)_-} e^{-Kt} \langle u, \nu_j A^j u \rangle \, d\mu_{\partial L_-}.
\]  \hfill (13.2.7)

We now use (13.2.7) in (13.2.6) and solve for the surface integral over \((\partial L)_+\),
\[
\int_{(\partial L)_+} e^{-Kt} \langle u, \nu_j A^j u \rangle \, d\mu_{\partial L_+} = \int_{(\partial L)_-} e^{-Kt} \langle u, \nu_j A^j u \rangle \, d\mu_{\partial L_-}
\]
\[
+ \int_L e^{-Kt} \langle u, (-K - B - B^* + (\partial_j A^j)) u \rangle \, d^n x.
\]  \hfill (13.2.8)

This identity is the basis for the following uniqueness results.

**Theorem 13.2.4.** Let \(u_1\) and \(u_2\) be two smooth solutions of the linear symmetric hyperbolic system (13.1.3) which coincide on the past boundary of a lens-shaped region \(L\),
\[
(u_1|_{\partial L}_-) = (u_2|_{\partial L}_-).
\]
Then \(u_1\) and \(u_2\) coincide in the whole set \(L\).

**Proof.** The function \(u := u_1 - u_2\) is a solution of the homogeneous system (13.2.3) with \(u|_{\partial L}_- = 0\). Hence (13.2.8) simplifies to
\[
\int_{(\partial L)_+} e^{-Kt} \langle u, \nu_j A^j u \rangle \, d\mu_{\partial L_+} = \int_L e^{-Kt} \langle u, (-K - B - B^* + (\partial_j A^j)) u \rangle.
\]
Assume that \(u\) does not vanish identically in \(L\). By choosing \(K\) sufficiently large, we can then arrange that the right side becomes negative. However, since \(\partial L_+\) is a spacelike hypersurface, the left side is non-negative. This is a contradiction. \(\square\)

As an immediate consequence, we obtain the following uniqueness result for solutions of the Cauchy problem.

**Corollary 13.2.5.** Let \(u_1\) and \(u_2\) be two smooth solutions of the linear symmetric hyperbolic system (13.1.3) with the same initial at time \(t = 0\). Then \(u_1 \equiv u_2\) in a neighborhood of the initial data surface.

*If the matrices \(A^j\) are uniformly bounded and \(A^0\) is uniformly positive, then \(u_1 \equiv u_2\) in \([0, T] \times \mathbb{R}^m\).*

**Proof.** The local uniqueness result follows immediately by covering the initial data surface by lens-shaped regions (see the left of Figure 13.2). For the global uniqueness, for any \(x_0 = (t_0, \vec{x}_0) \in [0, T] \times \mathbb{R}^m\) our task is to choose a lens-shaped region which contains \(x_0\) and whose past boundary \(S_0\) is contained in the surface \(\{t = 0\}\). We need to rule out the situation shown on the right of Figure 13.2 that the hypersurface \(S_1\) does not intersect \(S_0\), in which case we would not get a relatively compact lens-shaped region. To this end, we must use that the matrices \(A^j\) are uniformly bounded by assumption.
As a consequence, there is \( \epsilon > 0 \) such that the inequality \( \|\nabla f\| \leq \epsilon \) implies that the hypersurface \( S_1 = \{(t = f(\vec{x}), \vec{x})\} \) is spacelike. Possibly after decreasing \( \epsilon \), we may choose

\[
f(\vec{x}) = t_0 + \epsilon \left(1 - \sqrt{1 + \|\vec{x} - \vec{x}_0\|^2}\right).
\]

This concludes the proof. \( \square \)

By a suitable choice of lens-shaped region one can get an upper bound for the maximal propagation speed. For the Dirac equation, where the causal structure of Definition 13.2.1 coincides in view of (13.2.2) with that of Minkowski space, one can choose for \( S_1 \) a family of spacelike hypersurfaces which converge to the boundary of a light cone (see Figure 13.3). This shows that the maximal propagation speed for Dirac waves is indeed the speed of light (which, according to our conventions, is equal to one).

### 13.3. Global Existence of Smooth Solutions

In this section we will show that, by refining the above uniqueness argument, we even obtain an existence proof. The close connection between existence and uniqueness for linear equations is a familiar theme in mathematics. The simplest setting where it occurs is in the study of the linear equation \( Au = v \) with a given vector \( v \in \mathbb{R}^n \) and a quadratic matrix \( A \). In this case, the uniqueness of the solution implies that the matrix \( A \) is invertible, which in turn ensures existence. A more interesting example is Fredholm’s alternative for compact operators (see for example [116], Section VI.5). The procedure for globally hyperbolic systems follows somewhat similar ideas. Here the general strategy is to construct a bounded linear functional on a Hilbert space in such a way that the Fréchet-Riesz theorem (see Theorem 2.2.4) gives the desired solution.

Before beginning, we point out that, in view of uniqueness and finite propagation speed, it suffices to consider the problem in a bounded spatial region. Indeed, once we have constructed “local solutions” in small lens-shaped regions as shown on the left of Figure 13.2, uniqueness implies that these solutions agree in the overlap of the lens-shaped regions, making it possible to “glue them together” to obtain the desired solution which is global in space. We will come back to this construction in more detail in the context of the Dirac equation in Sections 13.4 and 13.6 (see also Figure 13.4). Having this construction in mind, we may start from a local problem and to extend the coefficients of the symmetric hyperbolic system in an arbitrary way outside. Therefore, it is no loss of generality to consider a problem in the whole space \( \mathbb{R}^m \). Choosing a bounded time interval \( t \in [0, T] \) (where \( t = 0 \) is the initial time), we are led to considering the time strip

\[
R_T := [0, T] \times \mathbb{R}^m.
\]

We now write the linear system (13.2.1) as

\[
Lu = w \quad \text{with} \quad L := A^j_j \partial_j + B,
\]

(13.3.1)
where we again sum over \( j = 0, \ldots, m \). Again using that the system can be extended arbitrarily outside a bounded spatial region, we may assume that that the functions \( A^j, B \) and \( w \) are uniformly bounded in \( R_T \) and that \( w \) has spatially compact support (meaning that \( w(t, \cdot) \in C^\infty_c(\mathbb{R}^m) \) for all \( t \in [0, T] \)). Moreover, for convenience we again assume smoothness of \( A^j, B \) and \( w \). In the Cauchy problem one seeks for a solution of the equation (13.3.1) with prescribed initial data \( u_0 \in C^\infty(\mathbb{R}^m) \) at time \( t = 0 \),

\[
Lu = w, \quad u|_{t=0} = u_0 \in C^\infty_0(\mathbb{R}^m) \tag{13.3.2}
\]

in \( C^s(R_T) \). First of all, we may restrict attention to the case \( u_0 = 0 \),

\[
Lu = w, \quad u|_{t=0} = 0. \tag{13.3.3}
\]

In order to see this, let \( u \) be a solution of the above Cauchy problem. Choosing a function \( v \in C^\infty(R_T) \) which at \( t = 0 \) coincides with \( u_0 \). Then the function \( \tilde{u} := (u - v) \) satisfies the equation \( \tilde{L} \tilde{u} = \tilde{w} \) with \( \tilde{w} = w + A^j \partial_j v + B v \) and vanishes at \( t = 0 \). If conversely \( \tilde{u} \) is a solution of the corresponding Cauchy problem with zero initial data, then \( u := \tilde{u} + v \) is a solution of the original problem (13.3.2).

In preparation of the existence proof, we need to introduce the notion of a weak solution. In order to get into the weak formulation, we multiply the equation (13.3.1) by a test function \( v(t, \vec{x}) \) and integrate over \( R_T \), giving rise to the equation

\[
\langle v, Lu \rangle_{L^2(R_T)} = \langle v, w \rangle_{L^2(R_T)}
\]

with the \( L^2 \)-scalar product defined by

\[
\langle v, v' \rangle_{L^2(R_T)} := \int_0^T dt \int_{\mathbb{R}^m} \langle v(t, \vec{x}), v'(t, \vec{x}) \rangle \, dm \, x. \tag{13.3.4}
\]

The next step is to integrate by parts, so that the derivatives act on the test function \( v \). Before doing so, we need to specify the regularity of the test functions. To this end, for \( \lambda \in [0, T] \) we consider the time strip

\[
R_\lambda := [0, \lambda] \times \mathbb{R}^m.
\]

We denote the \( s \)-times continuously differential functions on \( R_\lambda \) with spatially compact support by \( C^s(R_\lambda) \). The function spaces

\[
C^s(R_\lambda) \quad \text{and} \quad C^s(R_\lambda)
\]

are defined as the functions which in addition vanish at \( t = 0 \) and \( t = \lambda \), respectively. As the space of test functions we choose \( C^1(R_T) \); this guarantees that integrating by parts does not yield boundary terms at \( t = T \). For a classical solution \( u \in C^1(R_T) \) (i.e. a solution with zero Cauchy data (13.3.3)), also the boundary term at \( t = 0 \) vanishes. We thus obtain

\[
\langle v, w \rangle_{L^2(R_T)} = \langle \tilde{L} v, u \rangle_{L^2(R_T)} \quad \text{for all } v \in \overline{C^1(R_T)}, \tag{13.3.5}
\]

where \( \tilde{L} \) is the formal adjoint of \( L \) with respect to the scalar product (13.3.4), i.e.

\[
\tilde{L} := \tilde{A}^j \partial_j + \tilde{B} \quad \text{with} \quad \tilde{A}^j = -A^j \quad \text{and} \quad \tilde{B} = B - (\partial_j A^j). \tag{13.3.6}
\]

Now suppose that a function \( u \in C^1(R_T) \) satisfies (13.3.5). Testing with functions \( v \in \overline{C^1(R_T)} \cap C^1(R_T) \) which vanish both at times \( t = 0 \) and \( t = T \), we can integrate by parts without boundary terms. Using a standard denseness argument, one finds that \( u \) solves
the symmetric hyperbolic system (13.3.1). Next, testing with a function \( v \in C^1(\mathbb{R}_T) \) which does not vanish at \( t = 0 \), only the boundary remains, giving the equation

\[
\int_{\mathbb{R}_T^n} \langle v(t, \vec{x}), u(t, \vec{x}) \rangle \, d^m x = 0 \quad \text{for all } v \in C^1(\mathbb{R}_T),
\]

which in turn implies that \( u \) vanishes initially. Thus \( u \) is a solution of the Cauchy problem (13.3.3). To summarize, for functions \( u \in C^1(\mathbb{R}_T) \), the weak formulation (13.3.5) is equivalent to our Cauchy problem (13.3.1) and (13.3.3). Therefore, it is sensible to take (13.3.5) as the definition of a weak solution of the Cauchy problem. The main advantage of the weak formulation (13.3.5) is that it is well-defined even for functions which are not differentiable.

Our next step is to derive so-called energy estimates for a given solution \( u \in C^1(\mathbb{R}_T) \). To this end, we return to the formula for the divergence (13.2.5) and using the equation (13.3.1), we obtain

\[
\partial_j \langle u, A_j u \rangle + \langle u, Cu \rangle = 2 \text{Re} \langle u, w \rangle, \quad \text{for } \lambda > 0.
\]

(13.3.7)

\[
C := B + B^* - (\partial_j A_j).
\]

(13.3.8)

Next, we integrate (13.3.7) over \( \mathbb{R}_\lambda \), integrate by parts and use that the initial values at \( t = 0 \) vanish. We thus obtain

\[
E(\lambda) := \int_{t=\lambda}^t E(t) \, dt + \frac{1}{\mu^2} \int_{R\lambda} \langle w, A^0 w \rangle \, d^m x \cdot
\]

(13.3.9)

Since the matrix \( C \) is uniformly bounded and \( A_0 \) is uniformly positive, there is a constant \( K > 1 \) such that

\[ |\langle u, Cu \rangle| \leq K \langle u, A^0 u \rangle. \]

Moreover, the linear term in \( u \) can be estimated with the Schwarz inequality by

\[
2 \text{Re} \langle u, w \rangle \leq \mu \langle u, u \rangle + \frac{1}{\mu} \langle w, w \rangle \leq \langle u, A^0 u \rangle + \frac{1}{\mu^2} \langle w, A^0 w \rangle
\]

with a suitable constant \( \mu > 0 \). Applying these estimates in (13.3.9) gives

\[
E(\lambda) \leq (K + 1) \int_0^T E(t) \, dt \cdot \quad \text{for } \lambda > 0.
\]

Writing this inequality as

\[
\frac{d}{d\lambda} e^{-(K+1)\lambda} \int_0^\lambda E(t) \, dt \leq e^{-(K+1)\lambda} \frac{1}{\mu^2} \int_{R\lambda} \langle w, A^0 w \rangle \, d^m x,
\]

we can integrate over \( \lambda \) to obtain

\[
\int_0^T E(\lambda) \, d\lambda \leq e^{(K+1)T} - 1 \cdot \frac{1}{\mu^2} \int_{R\lambda} \langle w, A^0 w \rangle \, d^m x.
\]

Finally, we apply the mean value theorem and use that the exponential function is monotone to conclude that

\[
\int_0^T E(\lambda) \, d\lambda \leq \frac{T}{\mu^2} e^{(K+1)T} \int_{R\lambda} \langle w, A^0 w \rangle \, d^m x.
\]

(13.3.10)

This is the desired energy estimate. Before going on, we point out that the notion of “energy” used for the quantity \( E(\lambda) \) does in general not coincide with the physical energy.
In fact, for the Dirac equation (13.1.2), $E(\lambda)$ has the interpretation as the electric charge. Following Example 13.1.2, for the scalar wave equation $\Box \phi = 0$, we find
\[
E(\lambda) = \int_{\mathbb{R}^m} \left( |\partial_t \phi|^2 + |\nabla \phi|^2 + |\phi|^2 \right) d^n x .
\] (13.3.11)

This differs from the physical energy by the last summand $|\phi|^2$ (and an overall factor of two). The name “energy” for $E(\lambda)$ was motivated by the fact, considering only the highest derivative terms, the expression (13.3.11) is indeed the physical energy. We point out that, in contrast to the physical energy, the quantity $E(\lambda)$ does in general depend on time. The point is that (13.3.10) gives an a-priori control of the energy in terms of the inhomogeneity. The exponential factor in (13.3.10) can be understood in analogy to a Grönwall estimate.

For the following construction, it is convenient to introduce on $C^1(\mathbb{R}_T)$ the scalar product
\[
(u,v) = \int_{\mathbb{R}_T} \langle u, A^0 v \rangle \, d^n x .
\] (13.3.12)

We denote the corresponding norm by $\| \cdot \|$. Setting furthermore
\[
\Gamma^2 = \frac{T}{\mu^2} e^{(K+1)T} ,
\]
the energy estimate can be written in the compact form
\[
(u,u) \leq \Gamma^2 (w,w) .
\] (13.3.13)

This inequality holds for every solution $u$ of the differential equation $Lu = w$ which vanishes at $t = 0$. Noting that every function $u \in C^1(\mathbb{R}_T)$ is a solution of this differential equation with inhomogeneity $w := Lu$, we obtain
\[
\|u\| \leq \Gamma \| Lu\| \quad \text{for all } u \in C^1(\mathbb{R}_T) .
\] (13.3.13)

This is the form of the energy estimates suitable for an abstract existence proof. Note that the operator $\hat{L}$ in (13.3.6) is also symmetric hyperbolic and has the same boundedness and positivity properties as $L$. Hence, repeating the above arguments, we obtain similar to (13.3.13) the “dual estimate”
\[
\|v\| \leq \hat{\Gamma} \| \hat{L} v\| \quad \text{for all } v \in C^1(\mathbb{R}_T) .
\] (13.3.14)

We now want to show the existence of weak solutions with the help of the Fréchet-Riesz theorem (for basics on functional analysis see [116] or [105]). To this end, we first introduce on $C^1(\mathbb{R}_T)$ yet another scalar product denoted by
\[
\langle v,v' \rangle = (\hat{L} v, \hat{L} v) .
\] (13.3.15)

This scalar product is indeed positive definite, because for any $v \neq 0$,
\[
\langle v,v \rangle = (\hat{L} v, \hat{L} v) \geq \hat{\Gamma}^{-2} (v,v) \neq 0 ,
\]
where in the last step we applied (13.3.14). Forming the completion, we obtain the Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$. We denote the corresponding norm by $\| \cdot \|$. In view of (13.3.14) and (13.3.15), we know that every vector $v \in \mathcal{H}$ is a function in $L^2(\mathbb{R}_T, d^n x)$. Moreover, we know from (13.3.14) that $\hat{L} v$ is also in $L^2(\mathbb{R}_T, d^n x)$. We remark that, in the language of functional analysis, the space $\mathcal{H}$ can be identified with the Sobolev space $W^{1,2}(\mathbb{R}_T)$, but we do not need this here.
We now consider for \( w \in C^0(\mathbb{R}^T) \) and \( v \in C^1(\mathbb{R}^T) \) the linear functional \( \langle v, w \rangle_{L^2(\mathbb{R}^T)} \). In view of the estimate

\[
|\langle v, w \rangle_{L^2(\mathbb{R}^T)}| \leq \|v\|_{L^2(\mathbb{R}^T)} \|w\|_{L^2(\mathbb{R}^T)} \leq \frac{\Gamma}{C} \|w\|_{L^2(\mathbb{R}^T)} \|v\|,
\]

this functional is continuous in \( v \in \mathcal{H} \). The Fréchet-Riesz theorem shows that there is \( U \in \mathcal{H} \) with

\[
\langle v, w \rangle_{L^2(\mathbb{R}^T)} = \langle v, U \rangle = (\tilde{L}v, \tilde{L}U) \quad \text{for all } v \in \mathcal{H}.
\]

Rewriting the last scalar product as

\[
(\tilde{L}v, \tilde{L}U) = \langle L v, A^0 \tilde{L}U \rangle_{L^2(\mathbb{R}^T)},
\]

one sees that the function \( u := A^0 \tilde{L}U \in L^2(\mathbb{R}^T, d^n x) \) satisfies the equation (13.3.5) and is thus the desired weak solution. Note that all our methods apply for arbitrarily large \( T \).

We have thus proved the global existence of weak solutions. We next want to show that the solutions are smooth. Thus our task is to show that our constructed weak solution \( u \) is of the class \( C^s(\mathbb{R}^\lambda) \), where \( s \geq 1 \) can be chosen arbitrarily large. We first show that a linear symmetric hyperbolic system can be “enlarged” to include the partial derivatives of \( \phi \).

**Lemma 13.3.1.** Suppose that the system \( A^j \partial_j u + Bu = w \) is symmetric hyperbolic. Then there is a symmetric hyperbolic system of the form

\[
\tilde{A}^j \partial_j \Psi + \tilde{B} \Psi = \tilde{w}
\]

for the vector \( \Psi := (\partial_t u, \nabla_1 u, \ldots, \nabla_m u, u) \in \mathbb{C}^{(n+1)N} \).

**Proof.** Let \( i \) be a fixed spacetime index. We differentiate the equation \( Lu = w \),

\[
\partial_i w = \partial_i Lu = L \partial_i u + (\partial_i A^j) \partial_j u + (\partial_i B) u.
\]

This equation can be written as

\[
A^j \partial_j \Psi_i + \sum_{j=1}^n \tilde{B}^j_i \Psi_j + (\partial_i B) u = \tilde{w}_i,
\]

where we set

\[
\tilde{B}^j_i = B \delta^j_i + (\partial_i A^j) \quad \text{and} \quad \tilde{w}_i = \partial_i w.
\]

Combining these equations with the equation \( Lu = w \), we obtain a system of the form (13.3.16), where the matrices \( \tilde{A}^j \) are block diagonal in the sense that

\[
\tilde{A}^j = ((\tilde{A}^j)^\alpha_\beta)_{\alpha,\beta=0,...,m+1} \quad \text{with} \quad (\tilde{A}^j)^\alpha_\beta = A^j \delta^\alpha_\beta.
\]

Obviously, this system is again symmetric hyperbolic. \( \square \)

Iterating this lemma, we obtain (at least in principle) a symmetric hyperbolic system for \( u \) and all its partial derivatives up to any given order \( s \). Since the corresponding weak solution is in \( L^2(\mathbb{R}^T) \), we conclude that \( u \) and all its weak partial derivatives are square integrable. The next lemma, which is a special case of the general Sobolev embedding theorems (see for example [29, Section II.5.] or [128, Section 4]), gives smoothness of the solution.
Lemma 13.3.2. Let \( s > \frac{m}{2} \) be an integer. If a function \( g \) on \( \mathbb{R}^m \) is \( s \) times weakly differentiable and
\[
\int_{\mathbb{R}^m} |\nabla^\alpha g|^2 \, d^m x < C \tag{13.3.17}
\]
for all multi-indices \( \alpha \) with \( |\alpha| \leq s \), then \( g \) is bounded, \( g \in L^\infty(\mathbb{R}^m) \). Likewise, if \( g \) is \( s + l + 1 \) times weakly differentiable with \( l \geq 1 \) and \((13.3.17)\) holds for all \( \alpha \) with \( |\alpha| \leq s + l + 1 \), then \( g \in C^l(\mathbb{R}^m) \).

Proof. We apply the Schwarz inequality to the Fourier transform,
\[
|g(x)|^2 = \left| \int_{\mathbb{R}^m} \frac{d^m k}{(2\pi)^m} \hat{g}(k) e^{-ikx} \right|^2 \\
= \left| \int_{\mathbb{R}^m} \frac{d^m k}{(2\pi)^m} (1 + |k|^2)^{-\frac{s}{2}} (1 + |k|^2)^{\frac{s}{2}} \hat{g}(k) e^{-ikx} \right|^2 \\
\leq c_m \int_{\mathbb{R}^m} \frac{d^m k}{(2\pi)^m} (1 + |k|^2)^s |\hat{g}(k)|^2,
\]
where the constant \( c_m \) is finite due to our choice of \( s \),
\[
c_m = \int_{\mathbb{R}^m} \frac{d^m k}{(2\pi)^m} (1 + |k|^2)^{-s} < \infty.
\]
Using the Plancherel formula together with the fact that a factor \( k^2 \) corresponds to a Laplacian in position space, we obtain
\[
\int_{\mathbb{R}^m} \frac{d^m k}{(2\pi)^m} (1 + |k|^2)^s |\hat{g}(k)|^2 = \sum_{\ell=0}^s \binom{n}{\ell} \|\nabla^\ell g\|_{L^2(\mathbb{R}^m)}^2 < c.
\]
Hence \( \sqrt{c_m} c \) is an \( L^\infty \)-bound for \( g \).

Next, if \( g \) is \( s + l + 1 \) times weakly differentiable, then \( \|Dg\|_{L^\infty(\mathbb{R}^m)} < c \). As a consequence, the mean value theorem yields \( |g(x) - g(y)| \leq c|x - y| \), so that \( g \) is Lipschitz continuous. Finally, if \( g \) is \( s + l + 1 \) times weakly differentiable, then all partial derivatives \( \nabla^\alpha g \) of order \( |\alpha| \leq l \) are Lipschitz continuous, so that \( g \in C^l(\mathbb{R}^m) \).

More precisely, in order to apply this lemma, we fix a time \( t \) and consider the solution \( u(\lambda, \cdot) \). The identity \((13.3.9)\) implies that \( E(\lambda) \) is controlled in terms of \( \|w\| \) and \( \|u\| \). After iteratively applying Lemma \((13.3.1)\), we conclude that the weak derivatives of \( u(\lambda, \cdot) \) exist to any order and are in \( L^2(\mathbb{R}^m) \). It follows that \( u(\lambda, \cdot) \) is smooth. Finally, one uses the equation to conclude that \( u \) is also smooth in the time variable.

The results of this section can be summarized as follows.

Theorem 13.3.3. Consider the Cauchy problem
\[
(A^0 \partial_t + \sum_{\alpha=1}^m A^\alpha \nabla\alpha + B) u = w \in C^\infty_0([0, T] \times \mathbb{R}^m), \quad u|_{t=0} = u_0 \in C^\infty_0(\mathbb{R}^m).
\]
Assume that the matrices \( A^0, A^\alpha \) and \( B \) as well as the functions \( w \) and \( u_0 \) are smooth. Moreover, assume that all these functions as well as all their partial derivatives are uniformly bounded (where the bound may depend on the order of the derivatives). Then the Cauchy problem has a smooth solution on \([0, T] \times \mathbb{R}^m\).

This theorem also applies in the case \( T = \infty \), giving global existence of a smooth solution.

We finally show that the solutions depend smoothly on parameters.
Corollary 13.3.4. Suppose that the matrices $A^j, B$ and the functions $w, u_0$ depend smoothly on a parameter $\lambda$. Then the family of solutions $u(\lambda)$ is also smooth in $\lambda$.

Proof. First, similar as explained after (13.3.3), we may restrict attention to the case $u_0 = 0$. Differentiating the equation $Lu = w$ with respect to $\lambda$, we obtain

$$Lu_\lambda = (\partial_\lambda L)u + \partial_\lambda w =: \tilde{w},$$

where $u_\lambda$ stands for the formal derivative $\partial_\lambda u$. This is a symmetric hyperbolic system for $u_\lambda$. According to Theorem 13.3.3, we know that $u$ and therefore $\tilde{w}$ are smooth. Considering the limit of the difference quotients, one verifies that $u_\lambda$ really coincides with $\partial_\lambda u(\lambda)$ for our given family of solutions $u(\lambda)$. The higher $\lambda$-derivatives can be treated inductively. □

13.4. The Causal Dirac Green’s Operators in Minkowski Space

We now want to apply the previous general existence and uniqueness results to the Cauchy problem (13.1.1) for the Dirac equation in Minkowski space in the presence of an external potential $B$.

Theorem 13.4.1. Consider the Cauchy problem for the Dirac equation (13.1.1) for smooth initial data $\psi_0$, a smooth inhomogeneity $\phi$ and a smooth matrix-valued potential $B \in C^\infty(\mathcal{M}, \mathbb{C}^{4 \times 4})$. Then there is a unique global smooth solution $\psi \in C^\infty(\mathcal{M}, S\mathcal{M})$.

Proof. Writing the Dirac equation in the Hamiltonian form (13.1.2), we obtain a symmetric hyperbolic system. In view of the uniqueness result for smooth solutions of Corollary 13.2.5, it suffices to construct a smooth solution at any given time $T \in \mathbb{R}$. It suffices to consider the case $T > t_0$, because otherwise we reverse the time direction. Moreover, we can arrange by a time shift that $t_0 = 0$.

We cannot apply Theorem 13.3.3 directly because the coefficient functions in (13.1.2) do not need to be bounded, nor are our initial values compactly supported. For this reason, we need to construct local solutions and “glue them together” using linearity: We first extend the initial data $\psi_0$ smoothly to the time strip $R_T$ and consider the Cauchy problem for $\tilde{\psi} := \psi - \psi_0$,

$$(i\partial + B - m)\tilde{\psi} = \tilde{\phi} \in C^\infty(\mathcal{M}, S\mathcal{M}), \quad \tilde{\psi}|_{t=0} = 0.$$ (13.4.1)

We let $(\eta_k)_{k \in \mathbb{N}}$ be a smooth partition of unity of $\mathbb{R}^m$ with $\eta_k \in C^\infty_0(\mathbb{R}^m)$ (for details see for example [121] Theorem 2.13). We extend these functions to static functions on $R_T$ (i.e. $\eta_k(t, \vec{x}) := \eta_k(\vec{x})$). Given $k \in \mathbb{N}$, we first solve the Cauchy problem for the inhomogeneity $\eta_k \tilde{\phi}$. We choose a compact set $K \subset \mathbb{R}^m$ such that $[0, T] \times K$ contains the causal future of the support of $(\eta_k \tilde{\phi})$ (see Figure 13.4 more specifically, we could choose $K = B_2T(supp \eta_k)$). Next, we choose a smooth, compactly supported function $\theta \in C^\infty_0(\mathbb{R}^m)$ with $\theta|_K \equiv 1$. We again extend $\theta$ to a static function on $R_T$. 
We now consider the modified Cauchy problem
\[
\left( 1_{\text{C}} \partial_t \psi + \gamma^0 \nabla \theta - i \gamma^0 (\mathcal{B} - m) \right) \tilde{\psi}_k = -i \gamma^0 \eta_k \tilde{\phi}, \quad \tilde{\psi}_k|_{t_0} = 0.
\]
Now the coefficients in the PDE are uniformly bounded, and the inhomogeneity has compact support. Therefore, we can apply Theorem 13.3.3 to obtain a global smooth solution. Due to finite propagation speed (see Theorem 13.2.4, where we choose lens-shaped regions \( L \) as shown in Figure 13.4), this solution vanishes outside \( \mathcal{K} \). Therefore, it is also a solution of the unmodified Dirac equation, with initial data \( \eta_k \tilde{\phi} \).

Finally, summing over \( k \) gives the desired solution of the original Cauchy problem,
\[
\psi := \sum_{k=1}^{\infty} \tilde{\psi}_k.
\]
Here the series converges because, again due to finite propagation speed, it is locally finite.

We next explain how the previous existence and uniqueness results give rise to the existence of causal Green's functions, being defined as distributions. Our main tool is the Schwartz kernel theorem. We do not give a proof of this more advanced result of distribution theory but refer instead to [95, Section 5.2] or [128, Section 4.6]. For better consistency with the notation in the perturbative treatment in Section 18, from now on we denote the objects in the presence of an external potential with an additional tilde.

**Theorem 13.4.2.** Assume that the external potential \( \mathcal{B} \) is smooth and that \( \mathcal{B} \) and all its partial derivatives are uniformly bounded in Minkowski space. Then for any \( t, t_0 \) there is a unique distribution \( \tilde{k}_m(t, . ; t_0, .) \in D'(\mathbb{R}^3 \times \mathbb{R}^3) \) such that the solution of the Cauchy problem [17.0.1] has the representation
\[
\psi(t, \vec{x}) = 2\pi \int_N \tilde{k}_m(t, \vec{x}; t_0, \vec{y}) \gamma^0 \psi_0(\vec{y}) \, d^3 y.
\]
The integral kernel \( k_m \) is also a distribution in spacetime, \( k_m \in D'(M \times M) \) It is a distributional solution of the Dirac equation,
\[
(i \partial_x + \mathcal{B} - m) \tilde{k}_m(x, y) = 0.
\]

**Proof.** The energy estimates combined with the Sobolev embedding of Lemma 13.3.2 showed that there is \( k \in \mathbb{N} \) and a constant \( C = C(t, t_0, \vec{x}, \mathcal{B}) \) such that the solution \( \psi(t, .) \) of the Cauchy problem is bounded in terms of the initial data by
\[
|\psi(t, \vec{x})| \leq C |\psi_0|_{C^k},
\]
where \( |\psi|^2 := \langle \psi | \gamma^0 \psi \rangle \), and the \( C^k \)-norm is defined by
\[
|\psi_0|_{C^k} = \max_{|\beta| \leq k} \sup_{\vec{x} \in \mathbb{R}^3} |\nabla^\beta \psi_0(\vec{x})|.
\]
Moreover, this estimate is locally uniform in \( \vec{x} \), meaning that for any compact set \( \mathcal{K} \subset \mathbb{R}^3 \), there is a constant \( C \) such that (13.4.4) holds for all \( \vec{x} \in \mathcal{K} \). This makes it possible to apply the Schwartz kernel theorem [95, Theorem 5.2.1], showing that \( \tilde{k}_m(t, . ; t_0, .) \in D'(\mathbb{R}^3 \times \mathbb{R}^3) \).

Next, we note that the constant \( C \) in (13.4.4) can also be chosen locally uniformly in \( t \) and \( t_0 \). Thus, after evaluating weakly in \( t \) and \( t_0 \), we may again apply the Schwartz kernel
Theorem 13.4.3. Assume that the external potential \( \mathcal{B} \) is smooth and that \( \mathcal{B} \) and all its partial derivatives are uniformly bounded in Minkowski space. Then there are unique distributions
\[
\tilde{s}^\gamma_m, \tilde{s}\wedge_m \in \mathcal{D}'(\mathcal{M} \times \mathcal{M})
\]
which satisfy the distributional equations
\[
(i\partial_x + \mathcal{B} - m) \tilde{s}_m(x, y) = \delta^4(x - y)
\]
and are supported in the upper respectively lower light cone,
\[
\text{supp} \tilde{s}^\gamma_m(x, .) \subset J^\gamma_x, \quad \text{supp} \tilde{s}\wedge_m(x, .) \subset J^\wedge_x.
\]

Proof. It is clear by construction and the fact that the constant \( C \) in (13.4.4) can be chosen locally uniformly in \( x \) and \( y \) that the causal Green’s functions are well-defined distributions in \( \mathcal{D}'(\mathcal{M} \times \mathcal{M}) \). The support property (13.4.7) follows immediately from finite propagation speed as explained at the end of Section 13.2. The uniqueness of the Green’s functions is clear from the uniqueness of solutions of the Cauchy problem. In order to derive the distributional equations (13.4.6), we only consider the retarded Green’s function (the argument for the advanced Green’s function is analogous). Then, according to (13.4.2) and (13.4.5),
\[
\Theta(t - t_0) \psi(t, \vec{x}) = i \int_N \tilde{s}\wedge_m(t, \vec{x}; t_0, \vec{y}) \gamma^0 \psi_0(\vec{y}) \, d^3y,
\]
where \( \psi \) is the solution of the corresponding Cauchy problem. Applying the Dirac operator in the distributional sense yields
\[
i\gamma^0 \delta(t - t_0) \psi_0(t, \vec{x}) = i(D_x - m) \int_N \tilde{s}\wedge_m(t, \vec{x}; t_0, \vec{y}) \gamma^0 \psi_0(\vec{y}) \, d^3y.
\]
We now choose the initial values as the restriction of a test function in spacetime, \( \psi_0 = \phi\big|_{t=t_0} \) with \( \phi \in C_0^\infty(M, SM) \). Then we can integrate over \( t_0 \) to obtain
\[
i\gamma^0 \phi(x) = (D_x - m) \int_M \tilde{s}\wedge_m(x, y) i\gamma^0 \phi(y) \, d^4y.
\]
This gives the result.
We remark that, turning the above argument around, we can also use the causal Green’s functions in order to define the causal fundamental solution as a bi-distribution in spacetime,
\[ \tilde{k}_m := \frac{1}{2\pi i} (\tilde{s}_m^\vee - \tilde{s}_m^\wedge) \in \mathcal{D}'(\mathcal{M} \times \mathcal{M}) \].

We conclude this section by collecting a few useful properties of the causal fundamental solutions, which will be needed later in this book. First, the causal fundamental solution has the remarkable property that it relates the scalar product with the spacetime inner product. The following proposition goes back to John Dimock (see \[\text{Proposition 2.2}\]).

**Proposition 13.4.4.** For any \( \psi_m \in \mathcal{H}_m \) and \( \phi \in C_0^\infty(\mathcal{M}, S\mathcal{M}) \),
\[ (\psi_m \mid \tilde{k}_m \phi)_m = \langle \psi_m \mid \phi \rangle . \]

**Proof.** We first give the proof under the additional assumption that \( \psi_m \in C_0^\infty(\mathcal{M}, S\mathcal{M}) \). We choose Cauchy surfaces \( \mathcal{N}_+ \) and \( \mathcal{N}_- \) lying in the future and past of \( \text{supp} \phi \), respectively. Let \( \Omega \) be the spacetime region between these two Cauchy surfaces, i.e. \( \partial \Omega = \mathcal{N}_+ \cup \mathcal{N}_- \). Then, according to \[\text{Proposition 13.6.3}, \]
\[ (\psi_m \mid \tilde{k}_m \phi)_m = (\psi_m \mid \tilde{k}_m \phi)_{\mathcal{N}_+} = \frac{i}{2\pi} (\psi_m \mid \tilde{s}_m^\wedge \phi)_{\mathcal{N}_+} \]
\[ = \frac{i}{2\pi} \left[ (\psi_m \mid \tilde{s}_m^\wedge \phi)_{\mathcal{N}_+} - (\psi_m \mid \tilde{s}_m^\wedge \phi)_{\mathcal{N}_-} \right] \]
\[ = i \int_{\Omega} \nabla_j \langle \psi_m \mid \gamma^j \tilde{s}_m^\wedge \phi \rangle_x \, d\mu(x) , \]
where in the last line we applied the Gauss divergence theorem and used \[\text{Proposition 15.1.2}. \] Using that \( \psi_m \) satisfies the Dirac equation, a calculation similar to \[\text{Proposition 13.3.10} \]
\[ (\psi_m \mid \tilde{k}_m \phi)_m = \int_{\Omega} \langle \psi_m \mid (\mathcal{D} - m) \tilde{s}_m^\wedge \phi \rangle_x \, d\mu(x) = \int_{\Omega} \langle \psi_m \mid \phi \rangle_x \, d\mu(x) . \]
As \( \phi \) is supported in \( \Omega \), we can extend the last integration to all of \( \mathcal{M} \), giving the result.

In order to extend the result to general \( \psi_m \in \mathcal{H}_m \), we use the following approximation argument. Let \( \psi^{(n)}_m \in \mathcal{H}_m \cap C_0^\infty(\mathcal{M}, S\mathcal{M}) \) be a sequence which converges in \( \mathcal{H}_m \) to \( \psi_m \). Then obviously \( (\psi^{(n)}_m \mid \tilde{k}_m \phi)_m \rightarrow (\psi_m \mid \tilde{k}_m \phi)_m \). In order to show that the right side of \[\text{Proposition 13.4.9} \] also converges, it suffices to prove that \( \psi^{(n)}_m \) converges in \( L^2_{\text{loc}}(\mathcal{M}, S\mathcal{M}) \) to \( \psi_m \). Thus let \( K \subset \mathcal{M} \) be a compact set contained in the domain of a chart \( (x, U) \). Using Fubini’s theorem, we obtain for any \( \psi \in \mathcal{H}_m \cap C_0^\infty(\mathcal{M}, S\mathcal{M}) \) the estimate
\[ \int_K \langle \psi \mid \phi \rangle \, d\mu_{\mathcal{M}} = \int d^0 x \int \langle \psi \mid \phi \rangle \, \sqrt{|g|} \, d^3 x \leq C(K) \langle \psi \mid \psi \rangle_m . \]
Applying this estimate to the functions \( \psi = \psi^{(n)}_m - \psi^{(n')}_m \), we see that \( \psi^{(n)}_m \) converges in \( L^2(K, S\mathcal{M}) \) to a function \( \tilde{\psi} \). This implies that \( \psi^{(n)}_m \) converges to \( \tilde{\psi} \) pointwise almost everywhere (with respect to the measure \( d\mu_{\mathcal{M}} \)). Moreover, the convergence of \( \psi^{(n)}_m \) in \( \mathcal{H}_m \) to \( \psi_m \) implies that the restriction of \( \psi^{(n)}_m \) to any Cauchy surface \( \mathcal{N} \) converges to \( \psi_m|_\mathcal{N} \) pointwise almost everywhere (with respect to the measure \( d\mu_{\mathcal{N}} \)). It follows that \( \psi = \psi_m|_K \), concluding the proof. \[ \square \]
Corollary 13.4.5. The operator \( \tilde{k}_m \), is symmetric with respect to the inner product \( [13.1.3] \).

Proof. Using Proposition [13.4.4] we obtain for all \( \phi, \psi \in C_0^{\infty}(M, S_M) \),
\[
<\tilde{k}_m \phi | \psi> = (\tilde{k}_m \phi | \tilde{k}_m \psi)_m = <\phi | \tilde{k}_m \psi>,
\]
concluding the proof. \( \square \)

13.5. A Polynomial Estimate in Time

We now derive an estimate which shows that the solutions of the Dirac equation increase at most polynomially in time. This result will be needed in Section 17.2.1. For the proof we adapt standard methods of the theory of partial differential equations to the Dirac equation. In generalization of (16.3.4), we denote the spatial Sobolev norms by
\[
\| \phi \|_{W^a,2} = \sum_{\alpha \text{ with } |\alpha| \leq a} \int_{\mathbb{R}^3} \left| \nabla^\alpha \phi(\vec{x}) \right|^2 \ d^3 x.
\]

Lemma 13.5.1. We are given two non-negative integers \( a \) and \( b \) as well as a smooth time-dependent potential \( B \). In the case \( a > 0 \) and \( b \geq 0 \), we assume furthermore that the spatial derivatives of \( B \) decay faster than linearly for large times in the sense that
\[
\| \nabla B(t) \|_{C^{a-1}} \leq \frac{c}{1 + |t|^{1+\varepsilon}}
\]
for suitable constants \( c, \varepsilon > 0 \). Then there is a constant \( C = C(c, \varepsilon, a, b) \) such that every family of solutions \( \psi \in H^{\infty} \) of the Dirac equation \( [13.14] \) for varying mass parameter can be estimated for all times in terms of the boundary values at \( t = 0 \) by
\[
\| \partial^b_m \psi_m | t \|_{W^a,2} \leq C (1 + |t|^b) \sum_{p=0}^{b} \| \partial^p_m \psi_m | t = 0 \|_{W^a,2}.
\]

Proof. We choose a multi-index \( \alpha \) of length \( a := |\alpha| \) and a non-negative integer \( b \). Differentiating the Dirac equation \( [13.14] \) with respect to the mass parameter and to the spatial variables gives
\[
(i \partial_t + B - m) \nabla^\alpha \partial^b_m \psi_m = b \nabla^\alpha \partial^{b-1}_m \psi_m - \nabla^\alpha (B \partial^b_m \psi_m) + B \nabla^\alpha \partial^b_m \psi_m.
\]
Introducing the abbreviations
\[
\Xi := \nabla^\alpha \partial^b_m \psi_m \quad \text{and} \quad \phi := b \nabla^\alpha \partial^{b-1}_m \psi_m - \nabla^\alpha (B \partial^b_m \psi_m) + B \nabla^\alpha \partial^b_m \psi_m,
\]
we rewrite this equation as the inhomogeneous Dirac equation
\[
(D - m) \Xi = \phi.
\]
A calculation similar to current conservation yields
\[
-i \partial_j <\Xi | \gamma^j \Xi> = <(D - m) \Xi | \Xi> - <\Xi | (D - m) \Xi> = <\phi | \Xi> - <\Xi | \phi>.
\]
Integrating over the equal time hypersurfaces and using the Schwarz inequality, we obtain
\[
|\partial_t (\Xi | \Xi | _t)| \leq 2 \| \Xi | _t \| \| \phi | _t \|
\]
and thus
\[
|\partial_t | \Xi | _t \| \leq \| \phi | _t \|.
\]
Substituting the specific forms of $\Xi$ and $\phi$ and using the Schwarz and triangle inequalities, we obtain the estimate
\[
\left| \partial_t \left\| \nabla^a \partial_m^b \psi_m |t\right\| \right| \leq b \left\| \nabla^a \partial_m^{b-1} \psi_m |t\right\| + c a \left| \nabla \mathcal{B}(t) \right\|_{C^{a-1}} \left\| \partial_m^b \psi_m |t\right\|_{W^{a-1,2}}, \tag{13.5.2}
\]
where we used the notation (13.5.1).

We now proceed inductively in the maximal total order $a+b$ of the derivatives. In the case $a = b = 0$, the claim follows immediately from the unitarity of the time evolution. In order to prove the induction step, we note that in (13.5.2), the order of differentiation of the wave function on the right hand side is smaller than that on the left hand side at least by one. In the case $a = 0$ and $b \geq 0$, the induction hypothesis yields the inequality
\[
\left| \partial_t \left\| \partial_m^b \psi_m |t\right\| \right| \leq b \left\| \partial_m^{b-1} \psi_m |t\right\| \leq b C (1 + |t|^{b-1}) \sum_{p=0}^{b-1} \left\| \partial_m^p \psi_m |t=0\right\|,
\]
and integrating this inequality from 0 to $t$ gives the result. In the case $a > 0$ and $b \geq 0$, we apply (13.5.1) together with the induction hypothesis to obtain
\[
\left| \partial_t \left\| \partial_m^b \psi_m |t\right\| \right|_{W^{a,2}} \leq b C (1 + |t|^{b-1}) \sum_{p=0}^{b-1} \left\| \partial_m^p \psi_m |t=0\right\|_{W^{a,2}} \leq c C \frac{1 + |t|^b}{1 + |t|^{1+\epsilon}} \sum_{p=0}^{b} \left\| \partial_m^p \psi_m |t=0\right\|_{W^{a-1,2}}.
\]
Again integrating over $t$ gives the result. \qed

13.6. The Cauchy Problem in Globally Hyperbolic Spacetimes

We conclude this chapter by extending the global existence and uniqueness result for the Dirac equation to curved spacetime. These results were already stated in Section 4.5. We are now in the position for giving the proof. The reader not interested in or not familiar with curved spacetime may skip this section. We note that more details on the geometric properties of globally hyperbolic spacetimes can be found in [5, Section 3.2].

**Proof of Theorem 13.5.1** Exactly as explained in the proof of Theorem 13.4.1, by considering the Cauchy problem for $\psi - \psi_0$ one may reduce the problem to that of zero initial data zero. Moreover, choosing a partition of unity $(\eta_k)$ subordinate to the charts of a given atlas, it suffices to consider the compactly supported inhomogeneity $\eta_k \phi$ (the sum over $k$ is again locally finite, similar as explained in the proof of Theorem 13.4.1). In view of these constructions, it remains to consider the Cauchy problem
\[
(D - m)\psi = \phi \in C^\infty(M, S M), \quad \psi |_{N_t} = 0. \tag{13.6.1}
\]
We denote the support of $\phi$ by $K$.

Clearly, in local charts the Dirac equation can be written as a symmetric hyperbolic system. Therefore, the results in Sections 13.2 and 13.3 yield existence and uniqueness of solutions of the Cauchy problem in local charts. This also yields global uniqueness: Let $\psi$ and $\tilde{\psi}$ be two smooth solutions of the Cauchy problem (13.6.1). Then their difference $\Xi := \tilde{\psi} - \psi$ is a homogeneous solution which vanishes at time $t_0$. In view of a possible time
reversal, it suffices to consider the solution in the future of \( t_0 \). Thus let \( x \in M \) be in the future of \( t_0 \). Then the past light cone \( J^\Lambda(x) \) intersects the future of \( t_0 \) in a compact set,

\[
J^\Lambda(x) \cap \left( \bigcup_{t \geq t_0} N_t \right) \text{ is compact}.
\]

Therefore, we can choose \( \delta > 0 \) such that for every \( \hat{t} \), there is a finite number of lens-shaped regions which cover the time strip

\[
J^\Lambda(x) \cap \left( \bigcup_{t = \hat{t} + \delta} \mathcal{N}_t \right).
\]

On each lens-shaped regions, the solution for the Cauchy problem with zero initial data vanishes identically. Therefore, we can proceed inductively to conclude that \( \Xi(x) = 0 \). Since \( x \) is arbitrary, the solution \( \Xi \) vanishes identically on \( M \).

In order to prove global existence, we proceed indirectly. In view of a possible time reversal, it suffices to consider the Cauchy problem to the future. Thus suppose that the solution exists only up to finite time \( t_{\text{max}} \) (see Figure 13.5). Due to finite propagation speed, the solution is supported in the domain of causal dependence of \( K \),

\[
\text{supp } \psi \subset J^\Lambda(K) \cup J^\Lambda(K).
\]

By properties of globally hyperbolic spacetimes, the intersection \( D \) of this set with the Cauchy surface \( N_{t_{\text{max}}} \) is compact. Covering \( D \) by a finite number of charts, we choose \( \delta \) such that the sets \( J^\Lambda(D) \cup J^\Lambda(D) \cap \mathcal{N}_t \) lie in the domain of these charts for all \( t \in [t_{\text{max}} - \delta, t_{\text{max}} + \delta] \). Next we choose a finite number of lens-shaped regions \( L_\ell \) which also cover all these sets (see again Figure 13.5). In each of these lens-shaped regions we can solve the Cauchy problem with initial data at time \( t_{\text{max}} - \delta \). In this way, we get a solution up to time \( t_{\text{max}} + \delta \). This is a contradiction, thereby proving that the solution must exist for all times.

\[
\text{Proof of Theorem 13.5.2} \quad \text{By extending the initial data } \psi_0 \text{ to a smooth and compactly supported function in spacetime and considering the Cauchy problem for } \psi - \psi_0, \text{ it again suffices to consider the case of zero initial data } 13.6.1. \text{ The solution constructed subsequently the proof of Theorem thmcauchy was supported in } J^\Lambda(K) \subset J^\Lambda(K). \text{ By general properties of globally hyperbolic manifolds, the intersection of this set with every Cauchy surface is compact. This concludes the proof.}
\]

Similar as explained in Section 13.4 in Minkowski space, also in curved spacetime the solution of the Cauchy problem can be expressed in terms of the causal fundamental

\[
\text{Figure 13.5. Global solutions in globally hyperbolic spacetimes.}
\]
solution \( k_m \), as we now explain. Similar as explained in Minkowski space in Section 13.4 the retarded and advanced Green’s operators \( s_m^\wedge \) and \( s_m^\vee \) are linear mappings (for details see for example [25, 5])

\[
s_m^\wedge, s_m^\vee : C_c^\infty(\mathcal{M}, \mathcal{M}) \to C_c^\infty(\mathcal{M}, \mathcal{M}) \,.
\]

They satisfy the defining equation of the Green’s operator

\[
(D - m) \left( s_m^\wedge \phi \right) = \phi.
\]  

(13.6.2)

Moreover, they are uniquely determined by the condition that the support of \( s_m^\wedge \phi \) (or \( s_m^\vee \phi \)) lies in the future (respectively the past) of \( \text{supp} \phi \). The causal fundamental solution \( k_m \) is introduced by

\[
k_m := \frac{1}{2\pi i} \left( s_m^\vee - s_m^\wedge \right) : C_c^\infty(\mathcal{M}, \mathcal{M}) \to C_c^\infty(\mathcal{M}, \mathcal{M}) \cap \mathcal{H}_m.
\]  

(13.6.3)

Note that it maps to solutions of the Dirac equation.

**Proposition 13.6.1.** The solution of the Cauchy problem [1.5.1] has the representation

\[
\psi(x) = 2\pi \int_{\mathcal{N}} k_m(x, y) \psi_N(y) \, d\mu_N(y),
\]  

(13.6.4)

where \( k_m(x, y) \) is the causal fundamental solution [13.6.3].

**Proof.** Let us consider a point \( x \) in the future of \( \mathcal{N} \) (the case for the past is analogous). In this case, due to [13.6.3], the lemma simplifies to

\[
\psi(x) = i \int_{\mathcal{N}} s_m^\wedge(x, y) \psi(y) \psi_N(y) \, d\mu_N(y).
\]  

(13.6.5)

In preparation, we want to prove that for any \( \phi \in C_c(\mathcal{M}, \mathcal{M}) \) which has compact support to the past of \( \mathcal{N} \) and with the property that \( (D - m)\phi \) has compact support the equation

\[
\phi = s_m^\wedge (D - m) \phi
\]  

(13.6.6)

holds. To this end, we consider the function

\[
\Xi(x) := \phi - s_m^\wedge \left( (D - m) \phi \right).
\]

Applying the operator \( (D - m) \) and using the defining equation of the Green’s operators, one sees that \( \Xi \) is a solution of the Dirac equation. Moreover, \( \Xi \) obviously vanishes in the past of the support of \( \phi \). The uniqueness of the solution of the Cauchy problem implies that \( \Xi \) vanishes identically, proving [13.6.6].

In order to derive equation [13.6.5], we let \( \eta \in C_c(\mathcal{M}) \) be a function which is identically equal to one at \( x \) and on \( \mathcal{N} \), but such that the function \( \eta \psi \) has compact support to the past. (For example, in a foliation \( (\mathcal{N}_t)_{t \in \mathbb{R}} \) with \( \mathcal{N} = \mathcal{N}_{t_0} \) one can take \( \eta = \eta(t) \) as a smooth function with \( \eta|_{[t_0, \infty)} \equiv 1 \) which vanishes if \( t < t_0 - 1 \). Then we can apply [13.6.6] to the wave function \( \phi = \eta \psi \). We thus obtain for any \( x \) in the future of \( \mathcal{N} \) the relations

\[
\psi(x) = (\eta \psi)(x) = \left( s_m^\wedge ((D - m)(\eta \psi)) \right) (x) = \left( s_m^\wedge (i\gamma^j (\partial_j \eta) \psi) \right) (x),
\]  

(13.6.7)

where we have used that \( \psi \) is a solution of the Dirac equation.

To conclude the proof, for \( \eta \) in [13.6.7] we choose a sequence \( \eta_\ell \) which converges in the distributional sense to the function which in the future \( \mathcal{N} \) is equal to one and in the past of \( \mathcal{N} \) is equal to zero. This yields \( \partial_j \eta_\ell \to \nu \), and thus the right-hand-side of [13.6.7] is equal to the right-hand-side of [13.6.5].
13. METHODS OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

Exercises

Exercise 13.1. The homogeneous Maxwell equations for the electric field \( E : \mathbb{R}^3 \to \mathbb{R}^3 \) and the magnetic field \( B : \mathbb{R}^3 \to \mathbb{R}^3 \) read
\[
\nabla \times B = \partial_t E, \quad \nabla \times E = -\partial_t B.
\]
Rewrite these equations as a symmetric hyperbolic system. Remark: We here ignore the equations \( \text{div} \ E = \text{div} \ B = 0 \). The reason is that these equations hold automatically if they are satisfied initially.

Exercise 13.2. Consider the scalar wave equation \((\partial_{tt} - \Delta_{\mathbb{R}^m}) \phi(t, x) = 0\).
(a) Rewrite the equation as a symmetric hyperbolic system
\[
A^0 \partial_t u + \sum_{\alpha=1}^m A^\alpha \nabla_\alpha u + Bu = 0.
\]
(b) Determine the timelike and future-directed directions. Which directions \( \xi \) are characteristic (meaning that the characteristic polynomial \( \det A(x, \xi) \) vanishes)?
(c) Express the “energy”
\[
E(t) = \int_{\mathbb{R}^m} \langle u, A^0 u \rangle \, d^m x
\]
in terms of \( \phi(t, x) \). Compare the resulting expression with the conserved physical energy
\[
\int_{\mathbb{R}^m} (|\partial_t \phi|^2 + |\nabla \phi|^2) \, d^m x.
\]
(d) Compute \( \frac{dE(t)}{dt} \). Prove the inequality
\[
\frac{dE(t)}{dt} \leq E(t)
\]
and integrate it (Grönwall’s lemma).

Exercise 13.3. Consider the solution of the homogeneous wave equation
\((\partial_{tt} - \Delta_{\mathbb{R}^n}) \phi(t, x) = 0\)
for smooth initial data \( \phi(0, x) = f(x) \) and \( \partial_t \phi(0, x) = g(x) \).
Show by a suitable choice of lens-shaped regions that \( \phi(t_0, x_0) \) depends only on the initial data in the closed ball \( \{ x \in \mathbb{R}^n : |x - x_0| \leq t_0 \} \).

Exercise 13.4. We consider the system
\[
\begin{align*}
\partial_t u_1(t, x) + \partial_x u_1(t, x) + 4\partial_x u_2(t, x) &= 0 \\
\partial_t u_2(t, x) + 4\partial_x u_1(t, x) + \partial_x u_2(t, x) &= 0
\end{align*}
\]
(a) Write the system in symmetric hyperbolic form.
(b) Compute the solution of the Cauchy problem for initial data \( u_1(0, x) = \sin x \) and \( u_2(0, x) = \cos x \).

Exercise 13.5. (The Euler equations) The evolution equation for an isentropic compressible fluid reads
\[
\begin{align*}
\partial_t v + \nabla \cdot v + \frac{\gamma}{\rho} \text{grad}(p) &= 0 \\
\partial_t \rho + \nabla \cdot \rho v + \rho \text{div}(v) &= 0.
\end{align*}
\]
Here \( v : \mathbb{R}^+ \times \mathbb{R}^3 \to \mathbb{R}^3 \) is the velocity vector field, \( \rho : \mathbb{R}^+ \times \mathbb{R}^3 \to (0, \infty) \) the density and \( p = A\rho^\gamma \) the pressure (where \( A > 0 \) and \( \gamma > 1 \)).
(a) Show that \((13.6.8)\) is equivalent to a quasilinear symmetric hyperbolic system, provided that \(\rho\) is bounded away from zero.

(b) Show that for smooth solutions, the system \((13.6.8)\) is equivalent to

\[
\begin{align*}
\partial_t v + \nabla v \cdot v + \text{grad}(h(\rho)) &= 0 \\
\partial_t \rho + \text{div}(\rho v) &= 0,
\end{align*}
\]

where \(h \in C^\infty(\mathbb{R})\) satisfies the equation \(h'(\rho) = \rho^{-1}p'(\rho)\).

(c) Let \((v, \rho)\) be a solution of \((13.6.9)\) with \(v(t, x) = \nabla_x \varphi(t, x)\) for a real-valued potential \(\varphi\). Prove Bernoulli’s law: If \(\varphi\) and \(\rho\) decay at infinity sufficiently fast and if \(h(0) = 0\), then

\[
\partial_t \varphi + \frac{1}{2} |\nabla_x \varphi|^2 + h(\rho) = 0.
\]

(d) Show that \((13.6.8)\) can also be rewritten as a system for \((p, v)\),

\[
\begin{align*}
\partial_t v + \nabla v \cdot v + \rho(p)^{-1} \text{grad}(p) &= 0 \\
\partial_t p + \nabla v \cdot p + (\gamma p) \text{div}(v) &= 0.
\end{align*}
\]

Rewrite this system in symmetric hyperbolic form.

**Exercise 13.6.** Let \(\lambda > 0\). A symmetric hyperbolic system of the form

\[
\partial_t u + A^\alpha(u) \partial_\alpha u + \lambda u = 0,
\]

where the matrices \(A^\alpha\) are smooth, uniformly bounded and uniformly positive, is an example of a so-called dissipative system.

(a) Prove that for spatially compact solutions, the following energy estimate holds:

\[
\frac{d}{dt} \|u(t)\|^2_{H^p} \leq \left( -2\lambda + c\|u(t)\|_{C^1} \right) \|u(t)\|^2_{H^p}.
\]

(b) Prove: If the initial data \(u_0\) is sufficiently small in the \(C^1\)-norm, then there exists a global solution.

*Hint:* Choose \(p\) sufficiently large and use the Sobolev embedding theorem.

**Exercise 13.7.** (Causality in the setting of symmetric hyperbolic systems) The Dirac equation \((i\partial - m)\psi = 0\) can be rewritten as a symmetric hyperbolic system, i.e. in the form \((c > 0)\)

\[
(A^0(x) \partial_0 + A^\alpha(x) \partial_\alpha + B(x))\psi = 0, \quad \text{with} \quad (A^i)^\dagger = A^i \quad \text{and} \quad A^0(x) \geq cI.
\]

For such systems a notion of causality can be introduced: a vector \(\xi \in \mathbb{R}^4\) is said to be time-like or light-like at \(x \in \mathbb{R}^4\), if the matrix \(A(x, \xi) := A^i(x) \xi_i\) is definite (either positive or negative) or singular, respectively.

Find the matrices \(A^i\) and \(B\) for the Dirac equation and show that the above notions of time-like and light-like vectors coincide with the corresponding notions in Minkowski space as explained in the lecture.
CHAPTER 14

Energy Methods for the Linearized Field Equations

In the previous chapter, we used energy methods in order to study the Cauchy problem for linear symmetric hyperbolic systems. We now briefly explain how these methods can be adapted to the linearized field equations for causal variational principles as introduced in Chapter 7. These constructions are carried out in detail in [21]; for later developments see [56, 67]. Here we do not aim for the largest generality, but instead explain the basic ideas in the simplest possible setting.

14.1. Local Foliations by Surface Layers

We consider causal variational principles in the compact setting (see Section 6.3). Moreover, for technical simplicity we again assume that the Lagrangian is smooth (6.2.4). Following our procedure for symmetric hyperbolic systems, we want to analyze the initial problem “locally” in an open subset $U$ of space-time $M$. In analogy to the time function in a lens-shaped region $L$ (see Section 13.2) we here choose a foliation of a compact subset $L \subset U$ by surface layers. This motivates the following definition.

**Definition 14.1.1.** Let $U \subset M$ be an open subset of space-time and $I := [t_{\min}, t_{\max}]$ a compact interval. Moreover, we let $\eta \in C^\infty(I \times U, \mathbb{R})$ be a function with $0 \leq \eta \leq 1$ which for all $t \in I$ has the following properties:

(i) The function $\theta(t,.) := \partial_t \eta(t,.)$ is non-negative and compactly supported in $U$.
(ii) For all $x \in \text{supp} \theta(t,.)$ and all $y \in M \setminus U$, the function $L(x,y)$ as well as its first and second derivatives.

We also write $\eta(t, x)$ as $\eta_t(x)$ and $\theta(t, x)$ as $\theta_t(x)$. We refer to $(\eta_t)_{t \in I}$ as a **local foliation** inside $U$.

The situation in mind is shown in Figure 14.1. The parameter $t$ can be thought of as the time of a local observer and will be referred to simply as time. The support of the function $\theta_t$ is a surface layer. The function $\eta_t$ should be thought of as being equal to one in the past and equal to zero in the future of this surface layer. The condition (i) implies

![Figure 14.1. A local foliation.](image-url)
that the set $L$ defined by
\[ L := \bigcup_{t \in I} \text{supp} \theta_t \] (14.1.1)
is compact. It is the region of space-time described by the local foliation. The condition (ii) has the purpose to ensure that the dynamics in the region $L$ does not depend on the jets outside $U$, making it possible to restrict attention to the space-time region $U$. Sometimes, we refer to this property that $L$ is $L$-localized in $U$. One way of satisfying (ii) is to simply choose $U = M$. However, in the applications it may be desirable to "localize" the problem for example by choosing $U$ as the domain of a coordinate chart.

Following the procedure for hyperbolic partial differential equations, our first goal is to analyze the initial value problem For the following constructions, it will be useful to combine the functions $\eta_t$ and $\theta_t$ with the measure $\rho$ such as to form new measures: The measure
\[ d\rho_t(x) := \theta_t(x) \, d\rho(x) \] (14.1.2)
with $t \in I$ is supported in the surface layer at time $t$. Likewise, the measures $\eta_t \, d\rho$ and $(1 - \eta_t) \, d\rho$ are supported in the past respectively future of the surface layer at time $t$. For the measures supported in a space-time strip, we use the notation
\[ \eta_{[t_0, t_1]} \, d\rho \quad \text{with} \quad \eta_{[t_0, t_1]} := \eta_{t_1} - \eta_{t_0} \in C_0^\infty(U), \] (14.1.3)
where we always choose $t_0, t_1 \in I$ with $t_0 \leq t_1$. Note that the function $\eta_{[t_0, t_1]}$ is supported in $L$.

14.2. Energy Estimates and Hyperbolicity Conditions

For the analysis of the linearized field equations it is helpful to study the surface layer integrals as introduced in Section 9.5 for our local foliation $(\eta_t)_{t \in I}$. It is useful to “soften” these surface layer integrals by surface layer integrals by rewriting the integration domains with characteristic functions and replacing the characteristic functions by smooth cutoff functions formed of $\eta_t$, i.e. symbolically
\[ \int_\Omega d\rho(x) \int_{M \setminus \Omega} \cdots = \int_M d\rho(x) \int_M d\rho(y) \chi_\Omega(x) (1 - \chi_\Omega(y)) \cdots \]
\[ \rightarrow \int_M d\rho(x) \int_M d\rho(y) \eta_t(x) (1 - \eta_t(y)) \cdots. \]

We thus define the softened symplectic form and the softened surface layer inner product by
\[ (u, v)^t = \int_U d\rho(x) \eta_t(x) \int_U d\rho(y) (1 - \eta_t(y)) \left( \nabla_{1,u} \nabla_{1,v} - \nabla_{2,u} \nabla_{2,v} \right) \mathcal{L}(x, y) \] (14.2.1)
\[ \sigma^t(u, v) = \int_U d\rho(x) \eta_t(x) \int_U d\rho(y) (1 - \eta_t(y)) \left( \nabla_{1,u} \nabla_{2,v} - \nabla_{1,v} \nabla_{2,u} \right) \mathcal{L}(x, y). \] (14.2.2)

The quantity $(u, u)^t$ is of central importance for the following constructions, because it will play the role of the energy used in our energy estimates. In preparation of these estimates, we derive an energy identity:
Lemma 14.2.1. (energy identity) For any jet \( u = (a, u) \in \mathcal{J} \),
\[
\frac{d}{dt} \langle u, u \rangle = 2 \int_U \langle u, \Delta u \rangle \, d\rho(x)
- 2 \int_U \Delta_2[u, u] \, d\rho(x) + s \int_U a(x)^2 \, d\rho(x),
\tag{14.2.3}
\]
where the operator \( \Delta_2 : \mathcal{J} \times \mathcal{J} \to \mathbb{R} \) defined by
\[
\langle u, \Delta_2[u_1, u_2] \rangle(x) = \frac{1}{2} \nabla u \left( \int_M (\nabla_{1,u_1} + \nabla_{2,u_1})(\nabla_{1,u_2} + \nabla_{2,u_2}) \mathcal{L}(x, y) \, d\rho(y) - \nabla_{u_1} \nabla_{u_2} s \right).
\tag{14.2.4}
\]
Proof. Differentiating (14.2.1) with respect to \( t \) gives
\[
\frac{d}{dt} \langle u, u \rangle = \int_U d\rho(x) \, \theta_t(x) \int_U d\rho(y) \, (1 - \eta_t(y)) \left( \nabla_{1,u}^2 - \nabla_{2,u}^2 \right) \mathcal{L}(x, y)
- \int_U d\rho(x) \, \eta_t(x) \int_U d\rho(y) \, \theta_t(y) \left( \nabla_{1,u}^2 - \nabla_{2,u}^2 \right) \mathcal{L}(x, y)
= \int_U d\rho(x) \, \theta_t(x) \int_U d\rho(y) \left( \nabla_{1,u}^2 - \nabla_{2,u}^2 \right) \mathcal{L}(x, y).
\tag{14.2.5}
\]
Next, for all \( x \in L \) we may use Definition 14.1.1 (ii) to change the integration range in (8.1.6) from \( M \) to \( U \),
\[
\langle u, \Delta u \rangle(x) = \int_U \nabla_{1,u}(\nabla_{1,u} + \nabla_{2,u}) \, \mathcal{L}(x, y) \, d\rho(y) - s \int_U a(x)^2.
\]
Multiplying by \( \theta_t \) and integrating, we obtain
\[
0 = \int_U \theta_t(x) \langle u, \Delta u \rangle(x) \, d\rho(x) + s \int_U \theta_t(x) \, a(x)^2 \, d\rho(x)
- \int_U d\rho(x) \, \theta_t(x) \int_U d\rho(y) \left( \nabla_{1,u}^2 + \nabla_{1,u} \nabla_{2,u} \right) \mathcal{L}(x, y).
\]
We multiply this equation by two and add (14.2.5). This gives
\[
\frac{d}{dt} \langle u, u \rangle = - \int_U d\rho(x) \, \theta_t(x) \int_U d\rho(y) \left( \nabla_{1,u} + \nabla_{2,u} \right)^2 \mathcal{L}(x, y)
+ 2 \int_U \theta_t(x) \langle u, \Delta u \rangle(x) \, d\rho(x) + 2s \int_U \theta_t(x) \, a(x)^2 \, d\rho(x).
\]
Using the property in Definition 14.1.1 (ii), in the \( y \)-integral we may replace the integration range \( U \) by \( M \), making it possible to apply (14.2.4). Rewriting the obtained integrals using the notation (14.1.2) gives (14.2.3). \( \square \)

In order to make use of this energy identity, we need to impose a condition which we call hyperbolicity condition. This notion can be understood as follows. As explained in Chapter 13 in the theory of hyperbolic partial differential equations the hyperbolicity of the equations gives rise to a positive energy (see \( E(\lambda) \)) in (13.3.9). The positivity of this energy was a consequence of the structure of the equations (more precisely, for symmetric linear hyperbolic systems, it is a consequence of the positivity statement in Definition 13.1.1 (ii)). The positivity of the energy is crucial for the analysis of hyperbolic equations, because it gives both uniqueness (see Section 13.2) and existence of weak solutions (see Section 13.3). With this in mind, our strategy is to express the hyperbolic
nature of the linearized field equations by imposing a positivity condition for our “energy” \((u,u)^f\). As we shall see, this so-called hyperbolicity condition is precisely what is needed in order to obtain existence and uniqueness of solutions. For Dirac systems in Minkowski space, the hyperbolicity conditions can be verified by direct computation (for details see [46]). With this in mind, our hyperbolicity conditions are physically sensible. But in most situations, imposing the hyperbolicity conditions for all jets in \(J\) is a too strong assumption. Instead, these conditions will or can be satisfied only on a suitably chosen subspace of jets, which we denote by

\[
\mathcal{J}^{\text{vary}} \subset J.
\]  

Clearly, the smaller the jet space \(\mathcal{J}^{\text{vary}}\) is chosen, the easier it is to satisfy (14.2.8). The drawback is that the Cauchy problem will be solved in a weaker sense.

In order to define the hyperbolicity conditions, for all \(x \in M\) we choose the subspace of the tangent space spanned by the test jets,

\[
\Gamma_x := \{ u(x) \mid u \in \Gamma^{\text{test}} \} \subset T_x F.
\]

We introduce a Riemannian metric \(g_x\) on \(\Gamma_x\). The choice of the Riemannian metric is arbitrary; the resulting freedom can be used in order to satisfy the hyperbolicity conditions below (note, however, that for causal fermion systems a canonical Riemannian metric is obtained from the Hilbert-Schmidt scalar product; see [62, 69]). This Riemannian metric also induces a pointwise scalar product on the jets. Namely, setting

\[
\mathcal{J}_x := \mathbb{R} \oplus \Gamma_x,
\]

we obtain the scalar product on \(\mathcal{J}_x\)

\[
\langle \cdot, \cdot \rangle_x : \mathcal{J}_x \times \mathcal{J}_x \to \mathbb{R}, \quad \langle u, \tilde{u} \rangle_x := a(x) \tilde{a}(x) + g_x(u(x), \tilde{u}(x))
\]  

(14.2.7)

(9e) where we again denote the scalar and vector components of the jet by \(u = (a,u)\). We denote the corresponding norm by \(\| \cdot \|_x\).

**Definition 14.2.2.** The local foliation \((\eta_t)_{t \in I}\) inside \(U\) satisfies the **hyperbolicity condition** if there is a constant \(C > 0\) such that for all \(t \in I\),

\[
(u,u)^f \geq \frac{1}{C^2} \int_U \left( \|u(x)\|^2_x + \|\Delta_2 [u]u\| \right) \, d\rho_t(x) \quad \text{for all } u \in \mathcal{J}^{\text{vary}}.
\]

We point out that these hyperbolicity conditions also pose constraints for the choice of the functions \(\eta_t\); these constraints can be understood as replacing the condition in the theory of hyperbolic PDEs that the initial data surface be spacelike. In general situations, the inequality (14.2.8) is not obvious and must be arranged and verified in the applications. More specifically, one can use the freedom in choosing the jet space \(\mathcal{J}^{\text{vary}}\), the Riemannian metric in the scalar product (14.2.7) and the functions \(\eta_t\) in Definition [14.1.1] in order to ensure that (14.2.8) holds.

We now explain how the above hyperbolicity condition can be used to derive energy estimates. We let \(L\) be a lens-shaped region inside \(U\) with the local foliation \((\eta_t)_{t \in I}\). We denote the norm corresponding to the jet scalar product by \(\|u\|^f := \sqrt{(u,u)^f}\). We begin with a simple estimate of the energy identity in Lemma 14.2.1.

**Lemma 14.2.3.** Assume that the hyperbolicity condition of Definition [14.2.2] holds. Then for every \(t \in I\) and all \(u \in \mathcal{J}\),

\[
\frac{d}{dt} \|u\|^f \leq C \|\Delta u\|_{L^2(U,d\rho_t)} + c \|u\|^f
\]  

(14.2.9)
with
\[ c := C^2 + \frac{C^2 s}{2}. \]

**Proof.** Applying (14.2.8) in (14.2.3), we obtain
\[
\frac{d}{dt} \langle u, u \rangle_t \leq 2 \int_U \langle u, \Delta u \rangle_x \, d\rho_t(x) - 2 \int_U \Delta_2 [u, u] \, d\rho_t(x) + s \int b(x)^2 \, d\rho_t(x)
\]
\[
\leq 2 \int_U \langle u, \Delta u \rangle_x \, d\rho_t(x) + \left( 2C^2 + C^2 s \right) \langle u, u \rangle_t
\]
\[
\leq 2 \| u \|_{L^2(U, d\rho_t)} \| \Delta u \|_{L^2(U, d\rho_t)} + 2C \langle u, u \rangle_t
\]
\[
\leq 2C \| u \|_t \| \Delta u \|_{L^2(U, d\rho_t)} + 2c \langle u, u \rangle_t,
\]
where in the last line we applied (14.2.8). Using the relation \( \partial_t \| u \|_t = \partial_t \langle u, u \rangle_t / (2 \| u \|_t) \) gives the result. \( \square \)

Applying Grönwall-type estimates, the inequality (14.2.9) shows that \( \| u \|_t \) grows at most exponentially in time, provided that \( \Delta u \) decays in time sufficiently fast. We here make this statement precise by estimates in Hilbert spaces of jets with zero initial values.

In the lens-shaped region \( L \) we work with the \( L^2 \)-scalar product
\[
\langle u, v \rangle_{L^2(L)} := \int_L \langle u(x), v(x) \rangle_x \eta_I(x) \, d\rho(x),
\]
which, according to (14.1.2) and (14.1.3), can also be written in terms of a time integral,
\[
\langle u, v \rangle_{L^2(L)} = \int_{t_0}^{t_{\max}} \langle u, v \rangle_{L^2(U, d\rho_t)} \, dt.
\]

The corresponding norm is denoted by \( \| \cdot \|_{L^2(L)} \).

**Proposition 14.2.4. (energy estimate)** Assume that the hyperbolicity condition of Definition 14.2.2 holds. Then, choosing
\[
\Gamma = 2C e^{2c(t_{\max} - t_0)} (t_{\max} - t_0),
\]
the following estimate holds,
\[
\| u \|_{L^2(L)} \leq \Gamma \| \Delta u \|_{L^2(L)} \quad \text{for all } u \in \mathcal{J} \text{ with } \| u \|_{t_0} = 0.
\]

**Proof.** We write the energy estimate of Lemma 14.2.3 as
\[
\frac{d}{dt} (e^{-2ct} \langle u, u \rangle_t) \leq 2 e^{-2ct} C \| u \|_t \| \Delta u \|_{L^2(U, d\rho_t)}.
\]
Integrating over \( t \) from \( t_0 \) to some \( t \in \mathcal{I} \) and using the hyperbolicity condition (14.2.8), we obtain
\[
e^{-2ct} \langle u, u \rangle_t = \int_{t_0}^{t} \frac{d}{dt'} (e^{-2ct'} \langle u, u \rangle_{t'}) \, dt'
\]
\[
\leq 2C \int_{t_0}^{t} e^{-2ct'} \| u \|_{t'} \| \Delta u \|_{L^2(U, d\rho_{t'})} \, dt'.
\]
Multiplying by $e^{2ct}$ gives the inequality
\[
(u, u)^t \leq 2C \int_{t_0}^t e^{2c(t-t')} \|u\|^{t'} \|\Delta u\|_{L^2(U, d\rho_t')} \, dt'
\]
\[
\leq 2C e^{2c(t_{\text{max}}-t_0)} \int_{t_0}^{t_{\text{max}}} \|u\|^{t'} \|\Delta u\|_{L^2(U, d\rho_t')} \, dt'
\]
\[
\leq 2C e^{2c(t_{\text{max}}-t_0)} \|\Delta u\|_{L^2(L)} \left( \int_{t_0}^{t_{\text{max}}} (u, u)^t \, dt' \right)^\frac{1}{2},
\]
where in the last step we used the Schwarz inequality and (14.2.11). Integrating once again over $t$ from $t_0$ to $t_{\text{max}}$ gives
\[
\left( \int_{t_0}^{t_{\text{max}}} (u, u)^t \, dt \right)^\frac{1}{2} \leq 2C e^{2c(t_{\text{max}}-t_0)} (t_{\text{max}} - t_0) \|\Delta u\|_{L^2(L)}.
\] (14.2.13)

Finally, we apply the hyperbolicity condition (14.2.8) in (14.2.11),
\[
\|v\|_{L^2(L)} = \left( \int_{t_0}^{t_{\text{max}}} \|u\|_{L^2(U, d\rho_t')}^2 \, dt \right)^\frac{1}{2} \leq C \left( \int_{t_0}^{t_{\text{max}}} (u, u)^t \, dt \right)^\frac{1}{2}.
\]
Combining this inequality with (14.2.13) gives the result. □

14.3. Uniqueness of Strong Solutions

Based on the above energy estimates, we can now prove uniqueness of strong solutions of the Cauchy problem. The methods is quite similar to that employed in Section 13.2 for symmetric hyperbolic systems. In preparation of formulating the Cauchy problem, we need to introduce jets which vanish at initial time $t_{\text{min}}$. To this end, we demand that the jet vanishes in the surface layer and that the corresponding softened surface layer integrals (14.2.1) and (14.2.2) vanish,
\[
\tilde{J}_{\text{min}} := \{ u \in J \mid u_{\text{min}} \equiv 0 \} \quad \text{and} \quad (u, v)_{t_{\text{min}}} = 0 = \sigma_{t_{\text{min}}}^u(u, v) \quad \text{for all} \quad v \in J.
\] (14.3.1)

Similarly, we define the space of jets which vanish at final time $t_{\text{max}}$ by
\[
\tilde{J}_U^t_{\text{max}} := \{ u \in J \mid (1 - \eta_{t_{\text{max}}}) u \equiv 0 \}
\]
\[
\quad \text{and} \quad (u, v)_{t_{\text{max}}} = 0 = \sigma_{t_{\text{max}}}^u(u, v) \quad \text{for all} \quad v \in J.
\] (14.3.2)

A strong solution of the Cauchy problem is a jet $u \in \tilde{J}_U$ which satisfies the equations
\[
\Delta u = w \quad \text{in} \quad L \quad \text{and} \quad u - u_0 \in \tilde{J}_{\text{min}},
\] (14.3.3)
where $u_0 \in J$ is the initial data and $w$ is the inhomogeneity.

**Proposition 14.3.1. (uniqueness of strong solutions)** Let $(\eta_t)_{t \in I}$ be a local foliation inside $U$ which satisfies the hyperbolicity conditions (see Definitions 14.1.1 and 14.2.2). Then the Cauchy problem (14.3.3) with $u_0, w \in \tilde{J}_U$ has at most one solution $u$ in $L$.

**Proof.** Let $u$ be the difference of two solutions. Then $u$ is a solution of the homogeneous equation with zero initial data. Applying Lemma 14.2.5 we obtain
\[
\left| \frac{d}{dt} \|u\|^t \right| \leq c \|u\|^t \quad \text{and thus} \quad \frac{d}{dt} (e^{-ct} \|u\|^t) \leq 0.
\]
It follows that $\|u\|^t$ vanishes for all $t$ in the respective interval. Using (14.2.8), we conclude that $u$ vanishes identically in $L$. This gives the result. □
14.4. Existence of Weak Solutions

Our existence proof is inspired by the method invented by K.O. Friedrichs for symmetric hyperbolic systems in [82] as outlined in Section 13.3. Our first step is to formulate the linearized field equations weakly. To this end, we need to “integrate by parts” with the help of the following lemma.

**Lemma 14.4.1. (Green’s formula)** For all \(u, v \in J\),
\[
\sigma^{\text{max}}(u, v) - \sigma^{\text{min}}(u, v) = \langle u, \Delta v \rangle_{L^2(L)} - \langle \Delta u, v \rangle_{L^2(L)}.
\] (14.4.1)

**Proof.** Using the definition of the \(L^2\)-scalar product in (14.2.10) and the definition of the linearized field operator \([81.6]\), we obtain
\[
\langle u, \Delta v \rangle_{L^2(L)} - \langle \Delta u, v \rangle_{L^2(L)} = \int_U \left( \langle u, \Delta v \rangle - \langle \Delta u, v \rangle \right) \eta_I \, d\rho
\]
\[
= \int_U d\rho(x) \eta_I(x) \nabla_u \left( \int_M (\nabla_{1,v} + \nabla_{2,v}) \mathcal{L}(x, y) \, d\rho(y) - \nabla_v \mathcal{S} \right)
\]
\[
= \int_U d\rho(x) \eta_I(x) \nabla_v \left( \int_M (\nabla_{1,u} + \nabla_{2,u}) \mathcal{L}(x, y) \, d\rho(y) - \nabla_u \mathcal{S} \right).
\]
Here the space-time point \(x\) is in \(L\). Using Definition \([14.1.1]\) (ii), we get a contribution to the integrals only if \(y \in U\). Therefore, we may replace the integration range \(M\) by \(U\). We thus obtain
\[
\langle u, \Delta v \rangle_{L^2(L)} - \langle \Delta u, v \rangle_{L^2(L)} = \int_U d\rho(x) \eta_I(x) \int_U d\rho(y) (\nabla_{1,u} \nabla_{2,v} - \nabla_{2,u} \nabla_{1,v}) \mathcal{L}(x, y),
\] (14.4.2)
where we used that, following our convention \([81.1]\), the second derivatives of the Lagrangian are symmetric. Using the definition \([14.1.3]\) as well as the anti-symmetry of the integrand, the term \([14.4.2]\) can be rewritten as
\[
\int_U d\rho(x) \eta_I(x) \int_U d\rho(y) (\nabla_{1,u} \nabla_{2,v} - \nabla_{2,u} \nabla_{1,v}) \mathcal{L}(x, y)
\]
\[
= \int_U d\rho(x) \int_U d\rho(y) \eta_I(x) \left( \nabla_{1,u} \nabla_{2,v} - \nabla_{2,u} \nabla_{1,v} \right) \mathcal{L}(x, y) \Big|_{t_0}^{t_{\text{max}}}
\]
\[
= \int_U d\rho(x) \int_U d\rho(y) \left( \eta_I(x) - \eta_I(y) \right) \left( \nabla_{1,u} \nabla_{2,v} - \nabla_{2,u} \nabla_{1,v} \right) \mathcal{L}(x, y) \Big|_{t_0}^{t_{\text{max}}}
\]
\[
= \int_U d\rho(x) \int_U d\rho(y) \eta_I(x) \left( 1 - \eta_I(y) \right) (\nabla_{1,u} \nabla_{2,v} - \nabla_{2,u} \nabla_{1,v}) \mathcal{L}(x, y) \Big|_{t_0}^{t_{\text{max}}}
\]
\[
= \sigma^{\text{max}}(u, v) - \sigma^{\text{min}}(u, v).
\]
This gives the result. \(\square\)

Assume that \(u\) is a strong solution of the Cauchy problem \([14.3.3]\). As usual, replacing \(u\) by \(u - u_0\) and \(w\) by \(w - \Delta u_0 \in J\), it suffices to consider the Cauchy problem for zero initial data, i.e.
\[
\Delta u = w \quad \text{in } U \quad \text{and} \quad u \in \mathfrak{J}_{U_{\text{min}}}
\] (14.4.3)
Then, applying the above Green’s formula, we obtain for any \( v \in J \),
\[
\langle v, w \rangle_{L^2(L)} = \langle v, \Delta u \rangle_{L^2(L)} = \langle \Delta v, u \rangle_{L^2(L)} - \sigma^{t_{\text{max}}} (v, u) + \sigma^{t_{\text{min}}} (v, u).
\]

Having implemented the vanishing initial data by the condition \( u \in J_{t_0} \), the symplectic form vanishes at time \( t_{\text{min}} \). In order to also get rid of the boundary values at time \( t_{\text{max}} \), we restrict attention to test jets which vanish at \( t_{\text{max}} \). This leads us to the following definition:

**Definition 14.4.2.** A jet \( u \in L^2(L) \) is a weak solution of the Cauchy problem \( \Delta u = w \) with zero initial data if
\[
\langle \Delta v, u \rangle_{L^2(L)} = \langle v, w \rangle_{L^2(L)}
\]
for all \( v \in J_{t_{\text{max}}} \). (14.4.4)

Clearly, the energy estimate of Proposition 14.2.4 also holds if we exchange the roles of \( t_{\text{max}} \) and \( t_{\text{min}} \), i.e.
\[
\| u \|_{L^2(L)} \leq \Gamma \| \Delta u \|_{L^2(L)}
\]
for all \( u \in J_{t_{\text{max}}} \) (14.4.5)
(where the constant \( \Gamma \) is again given by (14.2.12)).

We introduce the positive semi-definite bilinear form
\[
<.,.>: J_{t_{\text{max}}}^u \times J_{t_{\text{max}}}^u \to \mathbb{R}, \quad <u, v> = \langle \Delta u, \Delta v \rangle_{L^2(L)}.
\]

Dividing out the null space and forming the completion, we obtain a Hilbert space \( (H, <.,.>) \). The corresponding norm is denoted by \( \| . \| \).

We now consider the linear functional \( \langle w, . \rangle_{L^2(L)} \) on \( J_{t_{\text{max}}}^u \). Applying the Schwarz inequality and (14.4.5), we obtain
\[
\| \langle w, u \rangle_{L^2(L)} \| \leq \| w \|_{L^2(L)} \| u \|_{L^2(L)} \leq \Gamma \| w \|_{L^2(L)} \| u \|,
\]
proving that the linear functional \( \langle w, . \rangle_{L^2(L)} \) on \( J_{t_{\text{max}}}^u \) is bounded on \( H \). Therefore, it can be extended uniquely to a bounded linear functional on all of \( H \). Moreover, by the Fréchet-Riesz theorem there is a unique vector \( U \in H \) with
\[
\langle w, v \rangle_{L^2(L)} = <U, v> = \langle \Delta U, \Delta v \rangle_{L^2(L)} \quad \text{for all } v \in J_{t_{\text{max}}}^u.
\]

Hence \( u := \Delta U \in L^2(L) \) is the desired weak solution. We point out that in the above estimates, the inhomogeneity \( w \) enters only via its \( L^2 \)-norm, making it possible to generalize our methods to \( w \in L^2(L) \). We have obtain the following result:

**Theorem 14.4.3.** Assume that \( (\eta_t)_{t \in I} \) is a local foliation satisfying the hyperbolicity conditions (see Definitions 14.1.1 and 14.2.2). Then for every \( w \in L^2(L) \) there is a weak solution \( u \in L^2(L) \) of the Cauchy problem (14.4.4).

**Exercises**
CHAPTER 15

Functional Analytic Methods in Space-Time

When constructing a causal fermion system in Minkowski space in Section 5.4, we chose $\mathcal{H}$ as a subspace of the solution space $\mathcal{H}_m$ of the Dirac equation. In principle, one can choose $\mathcal{H}$ as one likes, and different choices give rise to different causal fermion systems. However, if one wants to describe a given physical system, one must specify the subspace $\mathcal{H} \subset \mathcal{H}_m$, and it important to do it right. It is not obvious what “right” and “wrong” should be. Generally speaking, $\mathcal{H}$ can be thought of as the “occupied states” of the physical system in mind. If we want to describe the vacuum in Minkowski space (i.e. no particles and no interaction is present), then the natural and only physically reasonable choice is to let $\mathcal{H}$ be the subspace of all negative-frequency solutions of the Dirac equation. This choice corresponds to the physical concept of the Dirac sea as introduced by Dirac in 1930, which led to the prediction of anti-particles (discovered shortly afterward in 1932, earning Dirac the Nobel prize in 1933). Following these physical concepts, it is also clear that if particles and anti-particles (but no interaction of the matter) is present, then $\mathcal{H}$ is obtained from the subspace of all negative-frequency solutions by occupying additional particle states and by creating “holes” in the sea corresponding to the anti-particle states. Once an interaction (for example an electromagnetic field) is present, it is no longer clear how $\mathcal{H}$ is to be chosen. The reason is that as soon as the fields are time-dependent, the notion of positive and negative frequency solutions breaks down, so that there is no obvious decomposition of the solution space into two subspaces. But for the description of the physical system, a decomposition of the solution space is needed, and taking the “wrong” decomposition leads to artificial mathematical and physical difficulties.

We now explain a functional analytic method which gives rise to a canonical decomposition of the solution space into two subspaces, even in the time-dependent situation. In the static situation, this decomposition reduces to the canonical frequency splitting. This splitting is “right” in the sense that it gives rise to a physically sensible ground state of the system (a so-called Hadamard state, as we will learn in Chapter 19 later in this lecture). Moreover, when performing our construction perturbatively, one can compute the singularities of $P(x, y)$ explicitly working exclusively with bounded line integrals. These explicit computations are the backbone of the analysis of the continuum limit in \[42\]. Before outlining the perturbative constructions (see Chapter 18), we now explain the functional analytic construction.

15.1. General Setting and Basic Ideas

We now recall our setting and explain the idea of the construction. We first summarize the structures of Section 1 using a more general notation, which has the advantage that it can be used just as well if Minkowski space is replaced by a globally hyperbolic spacetime. Thus the reader who is familiar with general relativity and Lorentzian geometry, in what follows can consider $(\mathcal{M}, g)$ as a globally hyperbolic Lorentzian manifold with spinor
bundle \((\mathcal{S}\mathcal{M}, \langle \cdot, \cdot \rangle)\). The Dirac equation is written as
\[
(D - m)\psi = 0
\tag{15.1.1}
\]
(here the subscript \(m\) indicates the mass of the solution; this is of advantage because later on, we shall consider families of solutions with a varying mass parameter). In Minkowski space, one chooses \(D = i\partial + B\) such as to get back to (1.3.14). In a globally hyperbolic spacetime, the Dirac operator is a first order differential operator, but the coefficients depend on the metric (for details see Chapter 4). Next, we let \(\mathcal{N}\) be any Cauchy surface. Then the scalar product (1.3.12) on the solutions can be written more generally as
\[
(\psi_m | \phi_m)_m = 2\pi \hat{\mathcal{N}} \langle \psi_m \| \phi_m \rangle_x \, d\mu_N(x),
\tag{15.1.2}
\]
where \(\nu\) its future-directed normal and \(d\mu_N\) is the volume measure given by the induced Riemannian metric on \(\mathcal{N}\) (in Minkowski space and \(\mathcal{N} = \{t = \text{const}\}\), the normal has the components \(\nu^i = (1, 0, 0, 0)\) and \(d\mu_N = d^3x\), giving back (1.3.12)). Similar to the computation (1.3.10), the vector field \(\langle \psi_m \| \phi_m \rangle_x\) is again divergence-free, implying that this scalar product is independent of the choice of the Cauchy surface (for details see [72, Section 2]). Forming the completion gives the Hilbert space \((\mathcal{H}_m, \langle \cdot, \cdot \rangle_m)\).

For the following constructions, we make use of another structure which was not used so far. Namely, given two wave functions \(\psi\) and \(\phi\) (not necessarily solutions of the Dirac equation), one can integrate their pointwise inner product \(\langle \psi \| \phi \rangle_x\) over spacetime. In order for this integral to be well-defined, one can proceed for example as follows. We denote the smooth sections of the spinor bundle by \(C^\infty(\mathcal{M}, \mathcal{S}\mathcal{M})\). Similarly, \(C^\infty_0(\mathcal{M}, \mathcal{S}\mathcal{M})\) denotes the smooth sections with compact support. On the wave functions, one has the Lorentz invariant inner product
\[
\langle \cdot, \cdot \rangle : C^\infty(\mathcal{M}, \mathcal{S}\mathcal{M}) \times C^\infty_0(\mathcal{M}, \mathcal{S}\mathcal{M}) \to \mathbb{C},
\]

\[
\langle \psi \| \phi \rangle = \int_{\mathcal{M}} \langle \psi \| \phi \rangle_x \, d\mu_\mathcal{M}.
\tag{15.1.3}
\]

In order to explain the basic idea of the construction as first given in [72], let us assume for simplicity that the integral in (15.1.3) exists for all solutions \(\psi_m, \phi_m \in \mathcal{H}_m\). This condition is not satisfied in Minkowski space because the time integral in (15.1.3) in general diverges. But it is indeed satisfied in spacetimes of finite lifetime (for details see [72, Section 3.2]). Then the spacetime inner product can be extended by continuity to a bilinear form
\[
\langle \cdot, \cdot \rangle : \mathcal{H}_m \times \mathcal{H}_m \to \mathbb{C},
\]
which is bounded, i.e.
\[
|\langle \phi_m \| \psi_m \rangle| \leq c \|\phi_m\|_m \|\psi_m\|_m
\tag{15.1.4}
\]
(where \(\| \cdot \|_m = \langle \cdot \| \cdot \rangle_m^{1/2}\) is the norm on \(\mathcal{H}_m\)). Then, applying the Fréchet-Riesz theorem, we can uniquely represent this inner product with a signature operator \(S\),
\[
S : \mathcal{H}_m \to \mathcal{H}_m \quad \text{with} \quad \langle \phi_m \| \psi_m \rangle = (\phi_m \| S \psi_m)_m.
\tag{15.1.5}
\]
We refer to \(S\) as the **fermionic signature operator**. It is obviously a symmetric operator. Moreover, it is bounded according to (15.1.4). We conclude that it is self-adjoint. The spectral theorem gives the spectral decomposition
\[
S = \int_{\sigma(S)} \lambda \, dE_\lambda,
\]
where $E_\lambda$ is the spectral measure (see for example [116]). The spectral measure gives rise to the spectral calculus

$$f(\hat{S}) = \int_{\sigma(\hat{S})} f(\lambda) \, dE_\lambda : \mathcal{H}_m \to \mathcal{H}_m,$$

where $f$ is a bounded Borel function on $\sigma(\hat{S}) \subset \mathbb{R}$. Choosing $f$ as a characteristic function, one obtains the operators $\chi_{(0,\infty)}(\hat{S})$ and $\chi_{(-\infty,0)}(\hat{S})$. Their images are referred to as the positive and negative spectral subspace of $\mathcal{H}_m$, respectively. In this way, one obtains the desired decomposition of the solution space into two subspaces. We remark that the fermionic signature operator also gives a setting for doing spectral geometry and index theory with Lorentzian signature. We will not enter this subject here but refer the interested reader to the paper [50, 43].

The basic shortcoming of the above construction is that in many physically interesting spacetimes (like Minkowski space) the inequality (15.1.4) fails to be true. The idea to bypass this problem is to make use of the fact that a typical solution $\psi \in C^\infty(\mathcal{M}, S\mathcal{M}) \cap \mathcal{H}_m$ of the Dirac equation oscillates for large times. If we consider families of solutions with varying mass parameter, then the wave functions for different values of $m$ typically have different phases. Therefore, integrating over the mass parameter leads to destructive interference, giving rise to decay in time. In order to make this idea mathematically precise, one considers families of solutions $(\psi_m)_{m \in I}$ of the family of Dirac equations (15.1.1) with the mass parameter $m$ varying in an open interval $I$. We need to assume that $I$ does not contain the origin, because our methods for dealing with infinite lifetime do not apply in the massless case $m = 0$ (this seems no physical restriction because all known fermions in nature have a non-zero rest mass). By symmetry, it suffices to consider positive masses. Thus we choose

$$I := (m_L, m_R) \subset \mathbb{R} \quad \text{with parameters } m_L, m_R > 0. \quad (15.1.6)$$

We always choose the family of solutions $(\psi_m)_{m \in I}$ in the class $C^\infty_{sc,0}(\mathcal{M} \times I, S\mathcal{M})$ of smooth solutions with spatially compact support in Minkowski space $\mathcal{M}$ which depend smoothly on $m$ and vanish identically for $m$ outside a compact subset of $I$. Then the “decay due to destructive interference” can be made precise by demanding that there is a constant $c > 0$ such that

$$|\int_I \phi_m \, dm \mid \int_I \psi_m' \, dm'| \leq c \int_I \|\phi_m\|_m \, \|\psi_m\|_m \, dm \quad (15.1.7)$$

for all families of solutions $(\psi_m)_{m \in I}$, $(\phi_m)_{m \in I} \in C^\infty_{sc,0}(\mathcal{M} \times I, S\mathcal{M})$. The point is that we integrate over the mass parameter before taking the spacetime inner product. Intuitively speaking, integrating over the mass parameter generates a decay of the wave function, making sure that the time integral converges. The inequality (15.1.7) is one variant of the so-called mass oscillation property. If (15.1.7) holds, we shall prove that there is a representation

$$<\int_I \phi_m \, dm \mid \int_I \psi_m' \, dm'> = \int_I (\phi_m \mid \hat{S}_m \psi_m)_m \, dm,$$

which for every $m \in I$ uniquely defines the fermionic signature operator $\hat{S}_m$. This operator is bounded and symmetric with respect to the scalar product (15.1.2). Moreover, it does not depend on the choice of the interval $I$. Now the positive and negative spectral subspaces of the operator $\hat{S}_m$ again yield the desired splitting of the solution space into two subspaces.
15.2. The Mass Oscillation Properties

In a spacetime of infinite life time, the spacetime inner product \(<\psi_m|\phi_m>\) of two solutions \(\psi_m, \phi_m \in \mathcal{H}_m\) is in general ill-defined, because the time integral in \((15.1.3)\) may diverge. In order to avoid this difficulty, we shall consider families of solutions with a variable mass parameter. The so-called mass oscillation property will make sense of the spacetime integral in \((15.1.3)\) after integrating over the mass parameter.

We consider the mass parameter in a bounded open interval \(I\) \((15.1.6)\). For a given Cauchy surface \(\mathcal{N}\), we consider a function \(\psi_N(x, m) \in S_x\mathcal{M}\) with \(x \in \mathcal{N}\) and \(m \in I\). We assume that this wave function is smooth and has compact support in both variables, \(\psi_N \in C_0^\infty(\mathcal{N} \times I, \mathcal{S}\mathcal{M})\). For every \(m \in I\), we let \(\psi(., m)\) be the solution of the Cauchy problem for initial data \(\psi_N(., m)\),

\[
(D - m) \psi(x, m) = 0, \quad \psi(x, m) = \psi_N(x, m) \quad \forall \ x \in \mathcal{N}.
\]

Since the solution of the Cauchy problem is smooth and depends smoothly on parameters, we know that \(\psi \in C^\infty(\mathcal{M} \times I, \mathcal{S}\mathcal{M})\). Moreover, due to finite propagation speed, \(\psi(., m)\) has spatially compact support. Finally, the solution is clearly compactly supported in the mass parameter \(m\). We summarize these properties by writing

\[
\psi \in C^\infty_{sc,0}(\mathcal{M} \times I, \mathcal{S}\mathcal{M}),
\]

where \(C^\infty_{sc,0}(\mathcal{M} \times I, \mathcal{S}\mathcal{M})\) denotes the smooth wave functions with spatially compact support which are also compactly supported in \(I\). We often denote the dependence on \(m\) by a subscript, \(\psi_m(x) := \psi(x, m)\). Then for any fixed \(m\), we can take the scalar product \((15.1.2)\). On families of solutions \(\psi, \phi \in C^\infty_{sc,0}(\mathcal{M} \times I, \mathcal{S}\mathcal{M})\) of \((15.2.1)\), we introduce a scalar product by integrating over the mass parameter,

\[
(\psi|\phi) := \int_I (\psi_m|\phi_m)_m \ dm
\]

(where \(dm\) is the Lebesgue measure). Forming the completion gives the Hilbert space \((\mathcal{H}, (.,.))\). It consists of measurable functions \(\psi(x, m)\) such that for almost all \(m \in I\), the function \(\psi(., m)\) is a weak solution of the Dirac equation which is square integrable over any Cauchy surface. Moreover, this spatial integral is integrable over \(m \in I\), so that the scalar product \((15.2.3)\) is well-defined. We denote the norm on \(\mathcal{H}\) by \(\|\|\).

For the applications, it is useful to introduce a subspace of the solutions of the form \((15.2.2)\):

**Definition 15.2.1.** We let \(\mathcal{H}_\infty \subset C^\infty_{sc,0}(\mathcal{M} \times I, \mathcal{S}\mathcal{M}) \cap \mathcal{H}\) be a subspace of the smooth solutions with the following properties:

(i) \(\mathcal{H}_\infty\) is invariant under multiplication by smooth functions in the mass parameter,

\[
\eta(m) \psi(x, m) \in \mathcal{H}_\infty \quad \forall \ \psi \in \mathcal{H}_\infty, \ \eta \in C^\infty(I) .
\]

(ii) For every \(m \in I\), the set \(\mathcal{H}_m := \{\psi(., m) \ | \ \psi \in \mathcal{H}_\infty\}\) is a dense subspace of \(\mathcal{H}_m\),

\[
\overline{\mathcal{H}_\infty(., m)} = \mathcal{H}_m \quad \forall \ m \in I.
\]

We refer to \(\mathcal{H}_\infty\) as the domain for the mass oscillation property.

The simplest choice is to set \(\mathcal{H}_\infty = C^\infty_{sc,0}(\mathcal{M} \times I, \mathcal{S}\mathcal{M}) \cap \mathcal{H}\), but in some applications it is preferable to choose \(\mathcal{H}_\infty\) as a proper subspace of \(C^\infty_{sc,0}(\mathcal{M} \times I, \mathcal{S}\mathcal{M}) \cap \mathcal{H}\).

Our motivation for considering a variable mass parameter is that integrating over the mass parameter should improve the decay properties of the wave function for large times (similar as explained in the introduction in the vacuum Minkowski space). This decay
for large times should also make it possible to integrate the Dirac operator in the inner product \[\langle Dp\psi|p\phi\rangle = \langle p\psi|Dp\phi\rangle,\]
implying that the solutions for different mass parameters should be orthogonal with respect to this inner product. Instead of acting with the Dirac operator, it is technically easier to work with the operator of multiplication by \(m\), which we denote by 
\[T : \mathcal{H} \to \mathcal{H}, \quad (T\psi)_m = m\psi_m.\]
In view of property (i) in Definition \[15.2.1\] this operator leaves \(\mathcal{H}\) invariant,
\[T|_{\mathcal{H}} : \mathcal{H} \to \mathcal{H}.\]
Moreover, \(T\) is a symmetric operator, and it is bounded because the interval \(I\) is,
\[T^* = T \in L(\mathcal{H}).\] (15.2.4)
Finally, integrating over \(m\) gives the operation
\[p : \mathcal{H} \to \mathcal{C}_\infty(\mathcal{M},\mathcal{S}\mathcal{M}) , \quad p\psi = \int_I \psi_m \, dm.\] (15.2.5)
We point out for clarity that \(p\psi\) no longer satisfies a Dirac equation. The following notions were introduced in [73], and we refer the reader to this paper for more details.

**Definition 15.2.2.** The Dirac operator \(D = i\partial / + B\) on Minkowski space \(\mathcal{M}\) has the **weak mass oscillation property** in the interval \(I = (m_L,m_R)\) with domain \(\mathcal{H}\) if the following conditions hold:

(a) For every \(\psi,\phi \in \mathcal{H}\), the function \(\langle p\phi|p\psi\rangle\) is integrable on \(\mathcal{M}\). Moreover, there is a constant \(c = c(\psi)\) such that
\[|\langle p\psi|p\phi\rangle| \leq c\|\phi\| \quad \text{for all } \phi \in \mathcal{H}.\] (15.2.6)

(b) For all \(\psi,\phi \in \mathcal{H}\),
\[\langle pT\psi|p\phi\rangle = \langle p\psi|pT\phi\rangle.\] (15.2.7)

**Definition 15.2.3.** The Dirac operator \(D = i\partial / + B\) on Minkowski space \(\mathcal{M}\) has the **strong mass oscillation property** in the interval \(I = (m_L,m_R)\) with domain \(\mathcal{H}\) if there is a constant \(c > 0\) such that
\[|\langle p\psi|p\phi\rangle| \leq c \int_I \|\phi_m\|_m \|\psi_m\|_m \, dm \quad \text{for all } \psi,\phi \in \mathcal{H}.\] (15.2.8)

### 15.3. The Fermionic Signature Operator

In this section we give abstract constructions based on the mass oscillation property. We first assume that the **weak mass oscillation property** of Definition \[15.2.2\] holds. Then, in view of the inequality \[15.2.6\], every \(\psi \in \mathcal{H}\) gives rise to a bounded linear functional of \(\mathcal{H}\). By continuity, this linear functional can be uniquely extended to \(\mathcal{H}\). The Fréchet-Riesz theorem allows us to represent this linear functional by a vector \(u \in \mathcal{H}\), i.e.
\[(u|\phi) = \langle p\psi|p\phi\rangle \quad \forall \phi \in \mathcal{H}.\]
Varying \(\psi\), we obtain the linear mapping
\[S : \mathcal{H} \to \mathcal{H}, \quad (S\psi|\phi) = \langle p\psi|p\phi\rangle \quad \forall \phi \in \mathcal{H}.\]
This operator is symmetric because
\[(S\psi|\phi) = \langle p\psi|p\phi\rangle = (\psi|S\phi) \quad \forall \phi,\psi \in \mathcal{H}.\]
Moreover, \( \text{(15.2.7)} \) implies that the operators \( S \) and \( T \) commute,
\[
ST = TS : \mathcal{H}^\infty \to \mathcal{H}.
\] (15.3.1)

Thus the weak mass oscillation property makes it possible to introduce \( S \) as a densely defined symmetric operator on \( \mathcal{H} \). It is indeed possible to construct a self-adjoint extension of the operator \( S^2 \) (using the Friedrich’s extension), giving rise to a functional calculus with corresponding spectral measure (for details see [73, Section 3]). In this setting the operator \( S \) and the spectral measure are operators on the Hilbert space \( \mathcal{H} \) which involves an integration over the mass parameter. In simple terms, this implies that all objects are defined only for almost all values of \( m \) (with respect to the Lebesgue measure on \( I \subset \mathbb{R} \)), and they can be modified arbitrarily on subsets of \( I \) of measure zero. But it does not seem possible to “evaluate pointwise in the mass” by constructing operators \( S_m \) which act on the Hilbert space \( \mathcal{H}_m \) for fixed mass.

In view of this shortcoming, we shall not enter the spectral calculus based on the weak mass oscillation operator. Instead, we move on to the strong mass oscillation property, which makes life much easier because it implies that \( S \) is a bounded operator.

**Theorem 15.3.1.** The following statements are equivalent:

(i) The strong mass oscillation property holds.

(ii) There is a constant \( c > 0 \) such that for all \( \psi, \phi \in \mathcal{H}^\infty \), the following two relations hold:
\[
|<p\psi|p\phi>| \leq c \|\psi\| \|\phi\|,
\] (15.3.2)
\[
<pT\psi|p\phi> = <p\psi|pT\phi>.
\] (15.3.3)

(iii) There is a family of linear operators \( S_m \in \mathcal{L}(\mathcal{H}_m) \) which are uniformly bounded,
\[
\sup_{m \in I} \|S_m\| < \infty,
\]

such that
\[
<p\psi|p\phi> = \int_I (\psi_m | S_m \phi_m)_m dm \quad \forall \psi, \phi \in \mathcal{H}^\infty.
\] (15.3.4)

**Proof.** The implication (iii)\(\Rightarrow\)(i) follows immediately from the estimate
\[
|<p\psi|p\phi>| \leq \int_I |(\psi_m | S_m \phi_m)_m| dm \leq \sup_{m \in I} \|S_m\| \int_I \|\psi_m\| \|\phi\| dm dm.
\]

In order to prove the implication (i)\(\Rightarrow\)(ii), we first apply the Schwarz inequality to (15.2.8) to obtain
\[
|<p\psi|p\phi>| \leq c \int_I \|\phi_m\| \|\psi_m\| dm
\]
\[
\leq c \left( \int_I \|\phi_m\|^2 dm \right)^{\frac{1}{2}} \left( \int_I \|\psi_m\|^2 dm \right)^{\frac{1}{2}} = c \|\phi\| \|\psi\|,
\]
proving (15.3.2). Next, for given \( N \in \mathbb{N} \) we subdivide the interval \( I = (m_L, m_R) \) by choosing the intermediate points
\[
m_\ell = \frac{\ell}{N} (m_R - m_L) + m_L, \quad \ell = 0, \ldots, N.
\]
Moreover, we choose non-negative test functions $\eta_1, \ldots, \eta_N \in C_0^\infty(\mathbb{R})$ which form a partition of unity and are supported in small sub-intervals, meaning that
\[
\sum_{\ell=1}^{N} \eta_\ell|_I = 1|_I \quad \text{and} \quad \text{supp} \eta_\ell \subset (m_{\ell-1}, m_{\ell+1}) , \tag{15.3.5}
\]
where we set $m_{-1} = m_L - 1$ and $m_{N+1} = m_R + 1$. For any smooth function $\eta \in C_0^\infty(\mathbb{R})$ we define the bounded linear operator $\eta(T) : \mathcal{H}^\infty \rightarrow \mathcal{H}^\infty$ by
\[
(\eta(T)\psi)_m = \eta(m) \psi_m .
\]

Then by linearity,
\[
\langle pT\psi | p\phi \rangle - \langle p\psi | pT\phi \rangle = \sum_{\ell, \ell' = 1}^{N} \left( \langle pT \eta_\ell(T) \psi | p \eta_{\ell'}(T) \phi \rangle - \langle p \eta_\ell(T) \psi | pT \eta_{\ell'}(T) \phi \rangle \right)
\]
\[
= \sum_{\ell, \ell' = 1}^{N} \left( \langle p(T-m_\ell) \eta_{\ell'}(T) \psi | p \eta_{\ell'}(T) \phi \rangle - \langle p \eta_{\ell'}(T) \psi | p(T-m_\ell) \eta_{\ell'}(T) \phi \rangle \right) .
\]

Taking the absolute value and applying (15.2.8), we obtain
\[
|\langle pT\psi | p\phi \rangle - \langle p\psi | pT\phi \rangle| \leq c \sum_{\ell, \ell' = 1}^{N} \int_I |m - m_\ell| \eta_\ell(m) \eta_{\ell'}(m) \| \phi_m \|_m \| \psi_m \|_m \, dm .
\]

In view of the second property in (15.3.5), we only get a contribution if $|\ell - \ell'| \leq 1$. Moreover, we know that $|m - m_\ell| \leq 2|J|/N$ on the support of $\eta_\ell$. Thus
\[
|\langle pT\psi | p\phi \rangle - \langle p\psi | pT\phi \rangle| \leq \frac{6c|J|}{N} \sum_{\ell = 1}^{N} \int_I \eta_\ell(m) \| \phi_m \|_m \| \psi_m \|_m \, dm
\]
\[
= \frac{6c|J|}{N} \int_I \| \phi_m \|_m \| \psi_m \|_m \, dm .
\]

Since $N$ is arbitrary, we obtain (15.3.3).

It remains to prove the implication (ii) $\Rightarrow$ (iii). Combining (15.3.2) with the Fréchet-Riesz theorem, there is a bounded operator $S \in L(\mathcal{H})$ with
\[
\langle p\psi | p\phi \rangle = (\psi|S\phi) \quad \forall \psi, \phi \in \mathcal{H}^\infty . \tag{15.3.6}
\]

The relation (15.3.3) implies that the operators $S$ and $T$ commute. Moreover, these two operators are obviously symmetric and thus self-adjoint. Hence the spectral theorem for commuting self-adjoint operators implies that there is a spectral measure $F$ on $\sigma(S) \times I$ such that
\[
S^p T^q = \int_{\sigma(S) \times I} \nu^p m^q \, dF_{\nu,m} \quad \forall \, p, q \in \mathbb{N} . \tag{15.3.7}
\]

For given $\psi, \phi \in \mathcal{H}^\infty$, we introduce the Borel measure $\mu_{\psi,\phi}$ on $I$ by
\[
\mu_{\psi,\phi}(\Omega) = \int_{\sigma(S) \times I} \nu \, d(\psi|F_{\nu,m}\phi) . \tag{15.3.8}
\]

Then $\mu_{\psi,\phi}(I) = (\psi|S\phi)$ and
\[
\mu_{\psi,\phi}(\Omega) = \int_{\sigma(S) \times I} \nu \, d(\chi_{\Omega}(T) \psi | F_{\nu,m} \chi_{\Omega}(T) \phi) = (\chi_{\Omega}(T) \psi | S \chi_{\Omega}(T) \phi) .
\]
Since the operator $S$ is bounded, we conclude that
\[
|\mu_{\psi,\phi}(\Omega)| \leq c \|\chi_T(\Omega) \psi\| \|\chi_T(\Omega) \phi\| \leq c \left( \int_{\Omega} \|\psi\|_m^2 \, dm \int_{\Omega} \|\phi\|_{m'}^2 \, dm' \right)^{\frac{1}{2}} \leq c |\Omega| \left( \sup_{m \in \Omega} \|\psi_m\|_m \right) \left( \sup_{m' \in \Omega} \|\phi_{m'}\|_{m'} \right). \tag{15.3.9}
\]
This shows that the measure $\mu$ is absolutely continuous with respect to the Lebesgue measure. The Radon-Nikodym theorem (see Theorem 12.5.2) implies that there is a unique function $f_{\psi,\phi} \in L^1(I, dm)$ such that
\[
\mu_{\psi,\phi}(\Omega) = \int_{\Omega} f_{\psi,\phi}(m) \, dm. \tag{15.3.10}
\]
Using this representation in (15.3.9), we conclude that for any $\varphi \in \mathbb{R}$,
\[
\text{Re} \left( e^{i\varphi} \int_{\Omega} f_{\psi,\phi}(m) \, dm \right) \leq |\mu_{\psi,\phi}(\Omega)| \leq c |\Omega| \left( \sup_{m \in \Omega} \|\psi_m\|_m \right) \left( \sup_{m' \in \Omega} \|\phi_{m'}\|_{m'} \right).
\]
As a consequence, for almost all $m \in I$ (with respect to the Lebesgue measure $dm$),
\[
\text{Re} \left( e^{i\varphi} f_{\psi,\phi}(m) \right) \leq c \|\psi_m\|_m \|\phi_m\|_m.
\]
Since the phase factor is arbitrary, we obtain the pointwise bound
\[
|f_{\psi,\phi}(m)| \leq c \|\psi_m\|_m \|\phi_m\|_m \quad \text{for almost all } m \in I.
\]
Using this inequality, we can apply the Fréchet-Riesz theorem to obtain a unique operator $S_m \in L(\mathcal{H}_m)$ such that
\[
f_{\psi,\phi}(m) = (\psi_m|S_m\phi_m)_m \quad \text{and} \quad \|S_m\| \leq c. \tag{15.3.11}
\]
Combining the above results, for any $\psi, \phi \in \mathcal{H}^\infty$ we obtain
\[
\langle p\psi|p\phi \rangle = \langle \psi|S\phi \rangle = \int_{\sigma(S) \times I} \nu \, d(||S_m\phi_m||_m) = \int_I \mu_{\psi,\phi} = \int_I f_{\psi,\phi}(m) \, dm = \int_I (\psi_m|S_m\phi_m)_m \, dm.
\]
This concludes the proof. \qed

Comparing the statement of Theorem 15.3.1 (ii) with Definition 15.2.2, we immediately obtain the following result.

**Corollary 15.3.2.** The strong mass oscillation property implies the weak mass oscillation property.

We next show uniqueness as well as the independence of the choice of the interval $I$.

**Proposition 15.3.3. (uniqueness of $S_m$)** The family $(S_m)_{m \in I}$ in the statement of Theorem 15.3.1 can be chosen such that for all $\psi, \phi \in \mathcal{H}^\infty$, the expectation value $f_{\psi,\phi}(m) := (\psi_m|S_m\phi_m)_m$ is continuous in $m$,
\[
f_{\psi,\phi} \in C^0_0(I). \tag{15.3.12}
\]

The family $(S_m)_{m \in I}$ with the properties (15.3.4) and (15.3.12) is unique. Moreover, choosing two intervals $I$ and $\tilde{I}$ with $m \in \tilde{I} \subset I$ and $0 \notin \tilde{T}$, and denoting all the objects constructed in $\tilde{I}$ with an additional check, we have
\[
\tilde{S}_m = S_m. \tag{15.3.13}
\]
15.4. THE UNREGULARIZED KERNEL OF THE FERMIONIC PROJECTOR

Proof. Let us show that the function \( f_{\psi,\phi} \) is continuous. To this end, we choose a function \( \eta \in C^\infty_0(I) \). Then for any \( \varepsilon > 0 \) which is so small that \( B_\varepsilon(\text{supp } \eta) \subset I \), we obtain

\[
\int_I \left( f_{\psi,\phi}(m + \varepsilon) - f_{\psi,\phi}(m) \right) \eta(m) \, dm = \int_I f_{\psi,\phi}(m) \left( \eta(m - \varepsilon) - \eta(m) \right) \, dm
\]

\[
\eta(m) \, dm = \int_I f_{\psi,\phi}(m) \left( \eta(m) - \eta(m - \varepsilon) \right) \, dm \left| p \phi >
\]

where in (*) we used (15.3.7) and (15.3.8). Applying (15.3.2), we obtain

\[
\left| \int_I f_{\psi,\phi}(m + \varepsilon) - f_{\psi,\phi}(m) \right| \eta(m) \, dm \leq c \parallel \psi_{+\varepsilon} - \psi \parallel \parallel \phi \parallel \sup_I |\eta|,
\]

where the vector \( \psi_{+\varepsilon} \in \mathcal{H}^\infty \) is defined by \( (\psi_{+\varepsilon})_m := \psi_{m+\varepsilon} \). Since \( \lim_{\varepsilon \downarrow 0} \parallel \psi_{+\varepsilon} - \psi \parallel = 0 \) and \( \eta \) is arbitrary, we conclude that \( f_{\psi,\phi} \) is continuous (15.3.12). This continuity is important because it implies that the function \( f_{\psi,\phi} \) is uniquely defined pointwise (whereas in (15.3.10) this function could be modified arbitrarily on sets of measure zero).

In order to prove (15.3.13), we note that the representation (15.3.6) implies that

\[
(\psi|\check{S}\phi) = (\psi|\hat{S}\phi) \quad \text{for all } \psi,\phi \in \mathcal{H}^\infty.
\]

Using (15.3.8) and (15.3.10), it follows that

\[
\int_\Omega \check{f}_{\psi,\phi}(m) \, dm = \int_\Omega \hat{f}_{\psi,\phi}(m) \, dm \quad \text{for all } \Omega \subset \check{I}.
\]

Choosing \( \check{f}_{\psi,\phi}(m) \) and \( \hat{f}_{\psi,\phi}(m) \) as continuous functions, we conclude that they coincide for every \( m \in \check{I} \). It follows from (15.4.1) that the operators \( \check{S}_m \) and \( \hat{S}_m \) coincide. This concludes the proof. \( \square \)

15.4. The Unregularized Kernel of the Fermionic Projector

From Definition 15.3.4, the operator \( S_m \) is obviously symmetric. Thus the spectral theorem gives rise to the spectral decomposition

\[
S_m = \int_{\sigma(S_m)} \nu \, dE_\nu,
\]

where \( E_\nu \) is the spectral measure (see for example \[116\]). The spectral measure gives rise to the spectral calculus

\[
f(S_m) = \int_{\sigma(S_m)} f(\nu) \, dE_\nu,
\]

where \( f \) is a bounded Borel function.

Definition 15.4.1. Assume that the Dirac operator \( D \) on \( (\mathcal{M}, g) \) satisfies the strong mass oscillation property (see Definition 15.2.3). We define the operators \( P_\pm : C^\infty_0(\mathcal{M}, S\mathcal{M}) \to \mathcal{H}_m \) by

\[
P_+ = \chi_{[0,\infty)}(S_m) k_m \quad \text{and} \quad P_- = -\chi_{(-\infty,0)}(S_m) k_m
\]

(15.4.1)

(where \( \chi \) denotes the characteristic function). The fermionic projector \( P \) is defined by \( P = P_- \).
Proposition 15.4.2. For all \( \phi, \psi \in C^\infty_0(\mathcal{M}, S\mathcal{M}) \), the operators \( P_\pm \) are symmetric,
\[
<P_\pm \phi | \psi> = <\phi | P_\pm \psi>.
\]
Moreover, the image of \( P_\pm \) is the positive respectively negative spectral subspace of \( S_m \), i.e.
\[
P_+(C^\infty_0(\mathcal{M}, S\mathcal{M})) = E_{(0, \infty)}(\mathcal{H}_m), \quad P_-(C^\infty_0(\mathcal{M}, S\mathcal{M})) = E_{(-\infty, 0)}(\mathcal{H}_m).
\]

Proof. According to Proposition 13.4.4 and Definition 15.4.1,
\[
<P_- \phi | \psi> = <P_- \phi | k_m \psi>_m = -\langle \chi_{(-\infty, 0)}(S_m) k_m \phi | k_m \psi >_m
\]
\[
= -\langle k_m \phi | \chi_{(-\infty, 0)}(S_m) k_m \psi> = <\phi | P_- \psi>.
\]
The proof for \( P_+ \) is similar. The relations (15.4.2) follow immediately from the fact that \( k_m(C^\infty_0(\mathcal{M}, S\mathcal{M})) \) is dense in \( \mathcal{H}_m \).

Similar as in [72] Theorem 3.12, the fermionic projector can be represented by a two-point distribution on \( \mathcal{M} \). As usual, we denote the space of test functions (with the Fréchet topology) by \( \mathcal{D} \) and define the space of distributions \( \mathcal{D}' \) as its dual space.

Theorem 15.4.3. Assume that the strong mass oscillation property holds. Then there is a unique distribution \( \mathcal{P} \in \mathcal{D}'(\mathcal{M} \times \mathcal{M}) \) such that for all \( \phi, \psi \in C^\infty_0(\mathcal{M}, S\mathcal{M}) \),
\[
<\phi | \mathcal{P} \psi> = \mathcal{P}(\phi \otimes \psi).
\]

Proof. According to Proposition 13.4.4 and Definition 15.4.1
\[
<\phi | \mathcal{P} \psi> = \langle k_m \phi | \mathcal{P} \psi > = -\langle k_m \phi | \chi_{(-\infty, 0)}(S_m) k_m \psi>.
\]
Since the norm of the operator \( \chi_{(-\infty, 0)}(S_m) \) is bounded by one, we conclude that
\[
|<\phi | \mathcal{P} \psi>| \leq \|k_m \phi\| \|k_m \psi\| = (\langle \phi | k_m \phi > <\psi | k_m \psi >)^{\frac{1}{2}},
\]
where in the last step we again applied Proposition 13.4.4. As \( k_m \in \mathcal{D}'(\mathcal{M} \times \mathcal{M}) \), the right side is continuous on \( \mathcal{D}(\mathcal{M} \times \mathcal{M}) \). We conclude that also \( <\phi | \mathcal{P} \psi> \) is continuous on \( \mathcal{D}(\mathcal{M} \times \mathcal{M}) \). The result now follows from the Schwartz kernel theorem (see [95] Theorem 5.2.1), keeping in mind that this theorem applies just as well to bundle-valued distributions on a manifold simply by working with the components in local coordinates and a local trivialization.

Exactly as explained in [72] Section 3.5], it is convenient to use the standard notation with an integral kernel \( P(x, y) \),
\[
<\phi | \mathcal{P} \psi> = \iint_{\mathcal{M} \times \mathcal{M}} \langle \phi(x) | P(x, y) \psi(y) \rangle_x \, d\mu_{\mathcal{M}}(x) \, d\mu_{\mathcal{M}}(y)
\]
\[
(\mathcal{P} \psi)(x) = \int_{\mathcal{M}} P(x, y) \psi(y) \, d\mu_{\mathcal{M}}(y)
\]
(where \( P(\cdot, \cdot) \) coincides with the distribution \( \mathcal{P} \) above). In view of Proposition 15.4.2 we know that the last integral is not only a distribution, but a function which is square integrable over every Cauchy surface. Moreover, the symmetry of \( P \) shown in Proposition 15.4.4 implies that
\[
P(x, y)^* = P(y, x),
\]
where the star denotes the adjoint with respect to the spin inner product. Finally, exactly as shown in [72] Proposition 3.13, the spatial normalization property of Proposition 15.4.4 makes it possible to obtain a representation of the fermionic projector in
15.4. THE UNREGULARIZED KERNEL OF THE FERMIONIC PROJECTOR

terms of one-particle states. To this end, one chooses an orthonormal basis \((\psi_j)_{j \in \mathbb{N}}\) of the subspace \(\chi_{(-\infty,0)}(S_m) \subset \mathcal{H}_m\). Then

\[
P(x, y) = -\sum_{j=1}^{\infty} |\psi_j(x)\rangle \langle \psi_j(y)|
\]

with convergence in \(D'(\mathcal{M} \times \mathcal{M})\).

We now specify the normalization of the fermionic projector. We introduce an operator \(\Pi\) by

\[
\Pi : \mathcal{H}_m \to \mathcal{H}_m, \quad (\Pi \psi_m)(x) = -\frac{2\pi}{\hat{N}} \int_{\mathcal{N}} P(x, y) \psi(y) d\mu_N(y), \quad (15.4.3)
\]

where \(\mathcal{N}\) is any Cauchy surface.

**Proposition 15.4.4. (spatial normalization)** The operator \(\Pi\) is a projection operator on \(\mathcal{H}_m\).

**Proof.** According to Theorem [13.4.2] the spatial integral in (15.4.3) can be combined with the factor \(k_m\) in (15.4.1) to give the solution of the corresponding Cauchy problem. Thus

\[
\Pi : \mathcal{H}_m \to \mathcal{H}_m, \quad (\Pi \psi_m)(x) = \chi_{(-\infty,0)}(S_m) \psi_m,
\]

showing that \(\Pi\) is a projection operator. 

Instead of the spatial normalization, one could also consider the mass normalization (for details on the different normalization methods see [77]). To this end, one needs to consider families of fermionic projectors \(P_m\) indexed by the mass parameter. Then for all \(\phi, \psi \in C_0^\infty(\mathcal{M}, S\mathcal{M})\), we can use (15.3.4) and Proposition [13.4.4] to obtain

\[
<br(P_m\phi) | p(P_m\psi)> = \int_I (P_m\phi | S_m P_m\psi)_m dm = \int_I (k_m\phi | S_m \chi_{(-\infty,0)}(S_m) k_m \psi)_m dm
\]

\[
= \int_I <\phi | S_m \chi_{(-\infty,0)}(S_m) k_m \psi> dm = -<\phi | p(S_m P_m\psi)>,
\]

which can be written in a compact formal notation as

\[
P_m P_{m'} = \delta(m - m') (-S_m) P_m.
\]

Due to the factor \((-S_m)\) on the right, in general the fermionic projector does not satisfy the mass normalization condition. The mass normalization condition could be arranged by modifying the definition (15.4.1) to

\[
S_m^{-1} \chi_{(-\infty,0)}(S_m) k_m.
\]

Here we prefer to work with the spatial normalization. For a detailed discussion of the different normalization methods we refer to [77] Section 2.

We finally remark that corresponding causal fermion systems can be constructed exactly as in [72] Section 4] by introducing regularization operators \((\mathcal{I}_\varepsilon)_{\varepsilon > 0}\), computing the local correlation operators \(F^\varepsilon(x)\) and defining the universal measure by \(d\rho = F^\varepsilon d\mu_\mathcal{M}\).
Exercises

Exercise 15.1. Let $\mathcal{M}$ be the “spacetime strip”
$$\mathcal{M} = \{(t, \vec{x}) \in \mathbb{R}^{1,3} \text{ with } 0 < t < T\}.$$ Show that for any solution $\psi \in C^\infty_{sc}(\mathcal{M}, S\mathcal{M}) \cap \mathcal{H}_m$ of the Dirac equation, the following inequality holds,
$$\left| <\psi|\phi> \right| \leq T \|\psi\|_m \|\phi\|_m.$$ This estimate illustrates how in spacetimes of finite lifetime, the spacetime inner product is a bounded sesquilinear form on $\mathcal{H}_m$.

Exercise 15.2. Let $\mathcal{M}$ again be the “spacetime strip” of the previous exercise. As in the lecture, let $\psi, \phi \in H \cap C^\infty_{sc}(\mathcal{M} \times I, S\mathcal{M})$ be families of smooth Dirac solutions of spatially compact support, with compact support in the mass parameter. Moreover, we again define the operators $p, T : \mathcal{H} \to \mathcal{H}$ as in the lecture. Does the equation
$$<pT\psi|p\phi> = <p\psi|pT\phi>$$ (which appears in the weak mass oscillation property) in general hold? Justify your answer by a proof or a counter example.

Exercise 15.3. Let $\mathcal{M}$ again be the “spacetime strip” of the previous exercises. Moreover, as in Exercise 5.9 we again let $\mathcal{H} \subset \mathcal{H}_m$ be a finite-dimensional subspace of the Dirac solution space $\mathcal{H}_m$, consisting of smooth wave functions of spatially compact support, i.e.
$$\mathcal{H} \subset C^\infty_{sc}(\mathcal{M}, S\mathcal{M}) \cap H_m \quad \text{finite-dimensional}.$$ Show that the fermionic signature operator $S \in \mathcal{L}(\mathcal{H})$ defined by
$$<\psi|\phi> = (\psi|S\phi)_m \quad \text{for all } \psi, \phi \in \mathcal{H}$$ can be expressed within the causal fermion system by
$$S = -\int_M x \, d\rho(x)$$ (where $\rho$ is again the push-forward of $d\mu_M$).

Exercise 15.4. Let $E$ be the Banach space $E = C^0([0, 1], \mathbb{C})$ and $\Lambda : E \times E \to \mathbb{C}$ be sesquilinear, bounded and positive semi-definite.

(a) Assume that $\Lambda$ satisfies for a suitable constant $c > 0$ and all $f, g \in E$ the inequality
$$|\Lambda(f, g)| \leq c \sup_{x \in [0,1]} |f(x)| \, |g(x)|.$$ Show that there is a regular bounded Borel measure $\mu$ such that
$$\Lambda(f, g) = \int_0^1 \overline{f(x)} \, g(x) \, d\mu(x).$$ (b) Now make the stronger assumption that $\Lambda$ satisfies for a suitable constant $\tilde{c} > 0$ and all $f, g \in E$ the inequality
$$|\Lambda(f, g)| \leq \tilde{c} \int_0^1 |f(x)| \, |g(x)| \, dx.$$
Show that $\mu$ is absolutely continuous w.r.t. to the Lebesgue measure. Show that there is a non-negative function $h \in L^1([0,1],dx)$ such that
\[
\Lambda(f,g) = \int_0^1 \overline{f(x)} g(x) h(x) \, dx.
\]
Show that $h$ is pointwise bounded by $c$.

(c) In order to clarify the different assumptions in this exercise, give an example for a sesquilinear, bounded and positive semi-definite functional $\Lambda$ which violates (15.4.4).

Give an example which satisfies (15.4.4) but violates (15.4.5).

Exercise 15.5. (Towards the mass oscillation property - part 1) This exercise illustrates the mass oscillation property. Let $0 < m_L < m_R$ and $\eta \in C_0^{\infty}((m_L, m_R))$. Show that the function $f$ given by
\[
f(t) = \int_{m_L}^{m_R} \eta(m) e^{-i \sqrt{1+m^2} t} dm
\]
has rapid decay. Does this result remain valid if $m_L$ and $m_R$ are chosen to have opposite signs? Justify your finding by a proof or a counter example.

Exercise 15.6. (Towards the mass oscillation property - part 2) Let $R_T$ be the “spacetime strip”
\[
R_T = \{(t, \vec{x}) \in \mathbb{R}^{1,3} \text{ with } 0 < t < T \}.
\]
Show that for any solutions $\psi, \phi \in C_0^{\infty}(\mathbb{R}^4, \mathbb{C}^4) \cap \mathcal{H}_m$ of the Dirac equation, the following inequality holds,
\[
|<\psi|\phi>_{T}| \leq T \|\psi\|_m \|\phi\|_m, \quad \text{where} \quad <\psi|\phi>_T := \int_{R_T} \langle \psi(x) | \phi(x) \rangle_{\mathbb{C}^4} d^4x.
\]
This estimate illustrates how in spacetimes of finite lifetime, the spacetime inner product is a bounded sesquilinear form on $\mathcal{H}_m$.

Exercise 15.7. (Towards the mass oscillation property - part 3) Let $R_T$ again be the “spacetime strip” of the previous exercises. Moreover, we again let $\mathcal{H} \subset \mathcal{H}_m$ be a finite-dimensional subspace of the Dirac solution space $\mathcal{H}_m$, consisting of smooth wave functions of spatially compact support, i.e.
\[
\mathcal{H} \subset C_0^{\infty}(\mathbb{R}^4, \mathbb{C}^4) \cap \mathcal{H}_m \quad \text{finite-dimensional}.
\]
Show that the fermionic signature operator $S \in L(\mathcal{H})$ defined by
\[
<\psi|\phi>_T = (\psi|S\phi)_m \quad \text{for all } \psi, \phi \in \mathcal{H}
\]
can be expressed within the causal fermion system by
\[
S = -\int_{R_T} x \, d\rho(x)
\]
(where $\rho$ is again the push-forward of $d^4x$).

Exercise 15.8. (The external field problem) In physics, the notion of “particle” and “anti-particle” is often introduced as follows: Solutions of the Dirac equation with positive frequency are called “particles” and solutions with negative frequency “anti-particles”. In this exercise, we will check in how far this makes sense.

To this end, take a look at the Dirac equation in an external field:
\[
(i\bar{\psi} + B - m)\psi = 0. \tag{15.4.6}
\]
Assume that $B$ is time-dependent and has the following form:

$$B(t, x) = V \Theta(t - t_0) \Theta(t_1 - t),$$

where $V \in \mathbb{R}$, $\Theta$ denotes the Heaviside step function and $t_0 = 0$, $t_1 = 1$. In order to construct a solution thereof, for a given momentum $\vec{k}$, we use plane wave solutions of the Dirac equation,

$$\psi(t, \vec{x}) = e^{-i\omega t + i\vec{k}\vec{x}} \chi_{\vec{k}},$$

where $\chi_{\vec{k}}$ is a spinor $\in \mathbb{C}^4$, and patch them together suitably. (The quantity $\omega$ is called the “frequency” or “energy”, and $\vec{k}$ the “momentum”.) To simplify the calculation, we set $\vec{k} = (k_1, 0, 0)^T$.

**Proceed as follows:**

(a) First, take a look at the region $t < t_0$. Reformulate (15.4.6) such that there is only the time derivative on the left hand side. (Hint: Multiply by $\gamma_0$.)

(b) Insert the plane wave ansatz with $\vec{k} = (k_1, 0, 0)^T$ into the equation. Your equation now has the form $\omega \psi = H(k_1) \psi$. Show that the eigenvalues of $H(k_1)$ are $\pm \omega_0$ with $\omega_0 := \sqrt{(k_1)^2 + m^2}$.

(c) Show that one eigenvector belonging to $+\omega_0$ is $\chi_0^+ := \left(\sqrt{(m + \omega_0)/k_1}, 0, 0, 1\right)^T$ and that one eigenvector belonging to $-\omega_0$ is $\chi_0^- := \left(\sqrt{(m - \omega_0)/k_1}, 0, 0, 1\right)^T$. (Both eigenvalues have multiplicity 2, but we don’t need the other two eigenvectors here.)

(d) With this, you have constructed plane wave solutions $e^{-i(\pm\omega_0)t + i\vec{k}\vec{x}} \chi_0^\pm$ for $t < t_0$ and also for $t > t_1$. By transforming $m \rightarrow (m - V)$, you immediately obtain plane wave solutions also for $t_0 < t < t_1$. Denote the respective quantities by $\omega_1$ and $\chi_1^\pm$.

(e) Assume that for $t < t_0$ there is one “particle” present, i.e. set

$$\psi(t, \vec{x}) = e^{-i\omega_0 t + i\vec{k}\vec{x}} \chi_0^+ \quad \text{for } t < t_0.$$

Assume that the solution for $t_0 < t < t_1$ takes the form

$$A e^{-i\omega_1 t + i\vec{k}\vec{x}} \chi_1^+ + B e^{-i(-\omega_1) t + i\vec{k}\vec{x}} \chi_1^- \quad \text{with } A, B \in \mathbb{R}.$$

Calculate $A$ and $B$ for the case $k_1 = 1$ and $V = m$ by demanding continuity of the solution at $t = t_0$.

(f) Assume that for $t > t_1$ the solution takes the form

$$C e^{-i\omega_0 t + i\vec{k}\vec{x}} \chi_0^+ + D e^{-i(-\omega_0) t + i\vec{k}\vec{x}} \chi_0^- \quad \text{with } C, D \in \mathbb{C}.$$

Calculate $C$ and $D$ for $m = 2$ by demanding continuity of the solution at $t = t_1$ (here you may want to use computer algebra).

(g) Interpret what you have found. Why could this be called the “external field problem”?
CHAPTER 16

Fourier Methods

16.1. The Causal Green’s Operators

We already encountered Green’s operators in Chapter 13 when solving the Cauchy problem with methods of hyperbolic partial differential equations (see Theorem 13.4.3). In Minkowski space, these Green’s operators can be computed in more detail with Fourier methods. Our starting point is the definition of the Green’s function $s_m(x, y)$ of the vacuum Dirac equation by the distributional equation

\[ (i\partial_x - m) s_m(x, y) = \delta^4(x - y), \tag{16.1.1} \]

where $\delta^4(x, y)$ denotes the 4-dimensional Dirac distribution. Taking the Fourier transform of (16.1.1),

\[ s_m(x, y) = \int \frac{d^4k}{(2\pi)^4} s_m(k) e^{-ik(x-y)} \tag{16.1.2} \]

(where $x, y \in \mathcal{M}$ are spacetime points, $k$ is the four-momentum, and $k(x - y)$ denotes the Minkowski inner product) we obtain the algebraic equation

\[ (\slashed{k} - m) s_m(k) = 1 \tag{16.1.3} \]

Multiplying by $\slashed{k} + m$ and using the identity $(\slashed{k} - m)(\slashed{k} + m) = k^2 - m^2$, one sees that if $k^2 \neq m^2$, the matrix $\slashed{k} - m$ is invertible. If conversely $k^2 = m^2$, we have $(\slashed{k} - m)^2 = -2m(\slashed{k} - m)$, which shows that the matrix $\slashed{k} - m$ is diagonalizable with eigenvalues $-2m$ and zero. Since the Dirac matrices (13.3) are trace-free, we have $\text{Tr}(\slashed{k} - m) = -4m$. It follows that the matrix $\slashed{k} - m$ has a two-dimensional kernel if $k$ is on the mass shell. This shows that the Green’s function of the Dirac equation is not unique. If we add to it any vector in the kernel of $\slashed{k} - m$, i.e. if we add to it a solution of the homogeneous Dirac equation, it still satisfies the defining equation (16.1.1) (for details see [13]).

A convenient method for solving the equation (16.1.3) for $s_m(k)$ is to use a $\pm i\varepsilon$-regularization on the mass shell. Common choices are the advanced and the retarded Green’s functions, which are defined by

\[ s^\lor_m(k) = \lim_{\varepsilon \searrow 0} \frac{\slashed{k} + m}{k^2 - m^2 - i\varepsilon k^0}, \quad \text{and} \quad s^\land_m(k) = \lim_{\varepsilon \searrow 0} \frac{\slashed{k} + m}{k^2 - m^2 + i\varepsilon k^0}, \tag{16.1.4} \]

respectively (with the limit $\varepsilon \searrow 0$ taken in the distributional sense). Computing their Fourier transform (16.1.2), one sees that they are causal in the sense that their supports lie in the upper and lower light cone, respectively,

\[ \text{supp} s^\lor_m(x, \cdot) \subset J^+_x, \quad \text{supp} s^\land_m(x, \cdot) \subset J^-_x. \tag{16.1.5} \]

Mathematically, the formulas in (16.1.4) define the Green’s functions in momentum space as tempered distributions. Taking their Fourier transform (16.1.2), the advanced and retarded Green’s functions are tempered distributions in the variable $\xi := y - x$. We
also regard these distributions as integral kernels of corresponding operators on the wave functions, i.e.

\[(s_m(\psi))(x) := \int \mathcal{M} s_m(x, y) \psi(y) \, dy.\]

We thus obtain operators

\[s_m^\wedge, s_m^\vee : C^\infty_0(\mathcal{M}, S\mathcal{M}) \rightarrow C^\infty_{sc}(\mathcal{M}, S\mathcal{M}).\]  \hfill (16.1.6)

Here \(C^\infty_0(\mathcal{M}, S\mathcal{M})\) denote the smooth functions with compact support in \(\mathcal{M}\), taking values in the spinors, and \(C^\infty_{sc}\) denotes the smooth functions with spatially compact support.

### 16.2. The Causal Fundamental Solution and Time Evolution

We now state a few properties of the Green’s operators and explain why they are useful. The considerations in this section are valid more generally in the presence of an external potential. Then the defining equation of the Green’s function (16.1.1) is modified similar to (1.3.14) to

\[(i\partial_x + B - m) s_m(x, y) = \delta^4(x - y),\]  \hfill (16.2.1)

Then the existence of Green’s functions can no longer be proven by Fourier transformation. Instead, one can use methods of hyperbolic PDEs (symmetric hyperbolic systems) which we learned in the PDE2 course. Here we shall not enter these methods again. Instead, we simply assume that we are given advanced and retarded Green’s functions.

The causal fundamental solution \(k_m\) is defined as the difference of the advanced and the retarded Green’s function,

\[k_m(x, y) := \frac{1}{2\pi i} \left( s_m^\vee(x, y) - s_m^\wedge(x, y) \right).\]  \hfill (16.2.2)

It is a distribution which is causal in the sense that it vanishes if \(x\) and \(y\) have spacelike separation. Moreover, it is a distributional solution of the homogeneous Dirac equation,

\[(i\partial_x + B - m) k_m(x, y) = 0.\]

The unique solvability of the Cauchy problem allows us to introduce the time evolution operator of the Dirac equation as follows. Solving the Cauchy problem with initial data at time \(t\) and evaluating the solution with the help of Proposition 13.6.1 at some other time \(t'\) gives rise to a mapping

\[U_{t', t} : \mathcal{H}_t \rightarrow \mathcal{H}_{t'},\]

which we call time-evolution operator. Since the scalar product (15.1.2) is time independent, the operator \(U_{t', t}\) is unitary, and since the Cauchy problem can be solved forwards and backwards in time, the unitary time evolution operators form a representation of the group \((\mathbb{R}, +)\). More precisely,

\[U_{t, t} = 1 \quad \text{and} \quad U_{t'', t'} U_{t', t} = U_{t'', t}.\]

Proposition 13.6.1 immediately gives the following representation of \(U_{t', t}\):

\[\left( U_{t', t} \psi \right)(\bar{y}) = \int_{\mathbb{R}^3} U_{t', t}(\bar{y}, \bar{x}) \psi(t, \bar{x}) \, d^3 x,\]  \hfill (16.2.3)

where the kernel \(U_{t', t}(\bar{y}, \bar{x})\) is defined as

\[U_{t', t}(\bar{y}, \bar{x}) = 2\pi k_m((t', \bar{y}), (t, \bar{x})) \gamma^0.\]  \hfill (16.2.4)
16.3. Proof of the Weak Mass Oscillation Property in the Minkowski Vacuum

In the remainder of this chapter, we return to the Dirac equation in Minkowski space \( [16.1.1] \). An external potential will be considered in the next chapter (Chapter 17).

The mass oscillation property in the Minkowski vacuum can be proved using Fourier methods. Here we shall give two different approaches in detail. The method of the first space \( (16.1.1) \). An external potential will be considered in the next chapter (Chapter 17).

We again consider the foliation \( \mathcal{N}_t = \{(t, \vec{x}) \mid \vec{x} \in \mathbb{R}^3 \} \) of constant time Cauchy hypersurfaces in a fixed reference frame \( (t, \vec{x}) \) and a variable mass parameter \( m \) in the interval \( I = (m_L, m_R) \) with \( m_L, m_R > 0 \). The families of solutions \( \psi = (\psi_m)_{m \in I} \) of the Dirac equations \( (i\partial / t - m)\psi_m = 0 \) are contained in the Hilbert space \( (\mathcal{H}, (.,.)) \) with scalar product \( [15.2.3] \). The subspace \( \mathcal{H}^\infty \subset \mathcal{H} \) in Definition \( 15.2.1 \) is chosen as

\[
\mathcal{H}^\infty = C^\infty_{sc,0}(\mathcal{M} \times I, S, \mathcal{M}) \cap \mathcal{H}.
\]

For what follows, it is convenient to work with the Fourier transform in space, i.e.

\[
\hat{\psi}(t, \vec{k}) = \int_{\mathbb{R}^3} \psi(t, \vec{x}) e^{-i\vec{k}\cdot\vec{x}} \, d^3x, \quad \psi(t, \vec{x}) = \int_{\mathbb{R}^3} \frac{d^3k}{(2\pi)^3} \hat{\psi}(t, \vec{k}) e^{i\vec{k}\cdot\vec{x}}.
\]

Then a family of solutions \( \hat{\psi} \in \mathcal{H}^\infty \) has the representation

\[
\hat{\psi}_m(t, \vec{k}) = c_+(\vec{k}, m) e^{-i\omega(\vec{k}, m)t} + c_-\omega(\vec{k}, m) e^{i\omega(\vec{k}, m)t} \quad \text{for all } m \in I
\]

with suitable spinor-valued coefficients \( c_\pm(\vec{k}, m) \) and \( \omega(\vec{k}, m) := \sqrt{|\vec{k}|^2 + m^2} \). Integrating over the mass parameter, we obtain a superposition of waves oscillating at different frequencies. Intuitively speaking, this leads to destructive interference for large \( t \), giving rise to decay in time. This picture can be made precise using integration by parts in \( m \), as we now explain. Integrating \( [16.3.2] \) over the mass by applying the operator \( p \), \( [15.2.5] \), we obtain

\[
p\hat{\psi}(t, \vec{k}) = \int_I \left( c_+ e^{-i\omega t} + c_- e^{i\omega t} \right) dm
\]

\[
= \int_I \frac{i}{t} \frac{\partial_m}{\partial_m \omega} \left( c_+ \partial_m e^{-i\omega t} - c_- \partial_m e^{i\omega t} \right) dm
\]

\[
= -\frac{i}{t} \int_I \left[ \partial_m \left( \frac{c_+}{\partial_m \omega} \right) e^{-i\omega t} - \partial_m \left( \frac{c_-}{\partial_m \omega} \right) e^{i\omega t} \right] dm
\]

(we do not get boundary terms because \( \psi \in \mathcal{H}^\infty \) has compact support in \( m \)). With \( \partial_m \omega = m/\omega \), we conclude that

\[
p\hat{\psi}(t, \vec{k}) = -\frac{i}{t} \int_I \left[ \partial_m \left( \frac{\omega c_+}{m} \right) e^{-i\omega t} - \partial_m \left( \frac{\omega c_-}{m} \right) e^{i\omega t} \right] dm.
\]

Since the coefficients \( c_\pm \) depend smoothly on \( m \), the resulting integrand is bounded uniformly in time, giving a decay at least like \( 1/t \), i.e. \( |p\hat{\psi}(t, \vec{k})| \lesssim 1/t \). Iterating this procedure, one even can prove decay rates \( \lesssim 1/t^2, 1/t^3, \ldots \). The price one pays is that higher and higher powers in \( \omega \) come up in the integrand, which means that in order for the spatial Fourier integral to exist, one needs a faster decay of \( c_\pm \) in \( |\vec{k}| \). Expressed in terms of the initial data, this means that every factor \( 1/t \) gives rise to an additional
spatial derivative acting on the initial data. This motivates the following basic estimate.

**Lemma 16.3.1.** For any \( \psi \in \mathcal{H}^{\infty} \), there is a constant \( C = C(m_L) \) such that

\[
\| (p\psi) |_t \|_t \leq C \frac{\| I \|}{1 + t^2} \sum_{m \in I} \sum_{b = 0}^{2} \| (\partial_m^b \psi_m) |_{t=0} \|_{W^{2,2}} ,
\]

where \( \| . \|_t \) is the norm corresponding to the scalar product

\[
(.,.)_t := 2\pi \int_{\mathbb{R}^3} \nabla . \gamma^0 . \nabla \psi dx : L^2(\mathcal{N}_t, \mathcal{S(M)}) \times L^2(\mathcal{N}_t, \mathcal{S(M)}) \rightarrow \mathbb{C}
\]

(which is similar to (15.1.2)), but now applied to wave functions which do not need to be solutions), and \( \| . \|_{W^{2,2}} \) is the spatial Sobolev norm

\[
\| \phi \|_{W^{2,2}}^2 := \sum_{\alpha \text{ with } |\alpha| \leq 2} \int_{\mathbb{R}^3} |\nabla^\alpha \phi(\vec{x})|^2 d^3 x ,
\]

where \( \alpha \) is a multi-index.

The absolute value in (16.3.4) is the norm \( |.| := \sqrt{<.|\gamma^0 .|> \nabla} \) on the spinors. If we again identify all spinor spaces in the Dirac representation with \( \mathbb{C}^4 \), this simply is the standard Euclidean norm on \( \mathbb{C}^4 \).

The proof of this lemma will be given later in this section. Before, we infer the weak mass oscillation property.

**Corollary 16.3.2.** The vacuum Dirac operator \( i\partial_\nu \) in Minkowski space has the weak mass oscillation property with domain \( \text{dom \ 16.3.1} \).

**Proof.** For every \( \psi, \phi \in \mathcal{H}^{\infty} \), the Schwarz inequality gives

\[
|<p\psi|p\phi>| = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left( (p\psi)|_t \| \gamma^0 (p\phi)|_t \right) dt \leq \int_{-\infty}^{\infty} \| (p\psi)|_t \|_t \| (p\phi)|_t \|_t dt .
\]

Applying Lemma \( \text{16.3.1} \) together with the estimate

\[
\| (p\phi)|_t \|_t^2 = \int_{I \times I} (\phi_m|_t \| \phi_{m'}|_t) dm dm'
\]

\[
\leq \frac{1}{2} \int_{I \times I} \left( \| \phi_m \|^2 + \| \phi_{m'} \|^2 \right) dm dm' = |I| \| \phi \|^2 ,
\]

we obtain inequality \( \text{15.2.6} \) with

\[
c = C |I|^{\frac{3}{2}} \sup_{m \in I} \sum_{b = 0}^{2} \| \partial_m^b (\psi_m)|_{t=0} \|_{W^{2,2}} \int_{-\infty}^{\infty} \frac{1}{1 + t^2} dt < \infty .
\]

The identity \( \text{15.2.7} \) follows by integrating the Dirac operator by parts,

\[
<pT\psi|p\phi> = <pD\psi|p\phi> = <Dp\psi|p\phi> = \int_{\mathcal{M}} <Dp\psi|p\phi> \ d^4 x
\]

\[
= \int_{\mathcal{M}} -<p\psi|Dp\phi> \ d^4 x = <p\psi|Dp\phi> = <p\psi|pT\phi> .
\]

In (.), we used that the Dirac operator is formally self-adjoint with respect to the inner product \( <.|> \). Moreover, we do not get boundary terms because of the time decay in Lemma \( \text{16.3.1} \).
The remainder of this section is devoted to the proof of Lemma \[16.3.1\] Using the result of Proposition \[13.6.1\] we can express the solution \( \psi_m \) of the Cauchy problem in terms of the causal fundamental solution \( k_m \). In order to bring \( k_m \) into a more explicit form, we use \[16.2.2\] together with formulas for the advanced and retarded Green’s functions. Indeed, these Green’s functions are the multiplication operators in momentum space

\[
s_m^\vee(p) = \lim_{\varepsilon \to 0} \frac{\hat{p} + m}{p^{2} - m^{2} - i \varepsilon p^{0}} \quad \text{and} \quad s_m^\wedge(p) = \lim_{\varepsilon \to 0} \frac{\hat{p} + m}{p^{2} - m^{2} + i \varepsilon k^{0}}
\]

(with the limit \( \varepsilon \searrow 0 \) taken in the distributional sense, and where the vector \( p \) is the four-momentum). We thus obtain in momentum space

\[
k_m(p) = \frac{1}{2 \pi i} \left( \hat{p} + m \right) \lim_{\varepsilon \to 0} \left[ \frac{1}{p^{2} - m^{2} - i \varepsilon p^{0}} - \frac{1}{p^{2} - m^{2} + i \varepsilon k^{0}} \right] \epsilon(p^{0})
\]

(16.3.8)

It is convenient to transform spatial coordinates of the time evolution operator to momentum space. First, in the Minkowski vacuum, the time evolution operator can be represented as in \[16.2.3\] with an integral kernel \( U_{t,t'}(\vec{y},\vec{x}) \) which depends only on the difference vector \( \vec{y} - \vec{x} \). We set

\[
U_{t,t'}(\vec{k}) := \hat{R} \int \mathbb{R}^3 U_{t,t'}(\vec{y},0) e^{-i \vec{k} \vec{y}} d^3 y.
\]

Combining \[16.2.4\] with \[16.3.8\] yields

\[
U_{t,t'}(\vec{k}) = \sum_{\pm} \Pi_{\pm}(\vec{k}) e^{\mp i \omega(t-t')} \epsilon(\omega) e^{-i \omega(t-t')} d\omega.
\]

Carrying out the \( \omega \)-integral, we get

\[
U_{t,t'}(\vec{k}) = \sum_{\pm} \Pi_{\pm}(\vec{k}) e^{\mp i \omega(t-t')}, \quad (16.3.9)
\]

where we set

\[
\Pi_{\pm}(\vec{k}) := \pm \frac{1}{2 \omega(\vec{k})} (\hat{k}_{\pm} + m) \gamma^{0}
\]

(16.3.10)

with \( \omega(\vec{k}) = \sqrt{|\vec{k}|^2 + m^2} \) and \( k_{\pm} = (\pm \omega(\vec{k}), \vec{k}) \).

Moreover, applying Plancherel’s theorem, the scalar product \[15.1.2\] can be written in momentum space as

\[
(\psi_m | \phi_m)_m = (2\pi)^{-2} \int_{\mathbb{R}^3} \langle \hat{\psi}_m(t, \vec{k}) | \gamma^{0} \hat{\phi}_m(t, \vec{k}) \rangle d^3 k.
\]

The unitarity of the time evolution operator in position space implies that the matrix \( U_{t,t'}(\vec{k}) \) is unitary (with respect to the scalar product \( \langle ., . \rangle_{\mathbb{R}^2} \equiv \langle . | \gamma^0 . \rangle \), meaning
that its eigenvalues are on the unit circle and the corresponding eigenspaces are orthogonal. It follows that the operators \( \Pi_\pm(\vec{k}) \) in (16.3.9) are the orthogonal projection operators to the eigenspaces corresponding to the eigenvalues \( e^{\mp i \omega (t-t')} \), i.e.

\[
\gamma^0 \Pi_\gamma^0 = \Pi_s \quad \text{and} \quad \Pi_s(\vec{k}) \Pi_{s'}(\vec{k}) = \delta_{s,s'} \Pi_s(\vec{k}) \quad \text{for} \ s,s' \in \{+, -\} .
\]

(16.3.11)

(These relations can also be verified by straightforward computations using (16.3.10); see Exercise 16.8.)

The next two lemmas involve derivatives with respect to the mass parameter \( m \). For clarity, we again denote the \( m \)-dependence of the operators by the subscript \( m \).

**Lemma 16.3.3.** The time evolution operator in the vacuum satisfies the relation

\[
(t - t') U^{t,t'}_m(\vec{k}) = \frac{\partial}{\partial m} V^{t,t'}_m(\vec{k}) + W^{t,t'}_m(\vec{k}) ,
\]

where

\[
V^{t,t'}_m(\vec{k}) = \sum_{\pm} \frac{i}{2m} (\vec{k}_\pm + m) \gamma^0 e^{\mp i \omega (t-t')}
\]

(16.3.13)

\[
W^{t,t'}_m(\vec{k}) = \sum_{\pm} \frac{i}{2} \left( \frac{\vec{k}_\pm + \gamma^0}{m^2} + \frac{1}{\omega} \right) e^{\mp i \omega (t-t')} .
\]

(16.3.14)

The operators \( V^{t,t'}_m \) and \( W^{t,t'}_m \) are estimated uniformly by

\[
\| V^{t,t'}_m(\vec{k}) \| + \| W^{t,t'}_m(\vec{k}) \| \leq C \left( 1 + \frac{|\vec{k}|}{m} \right) .
\]

(16.3.15)

where the constant \( C \) is independent of \( m, \vec{k}, t \) and \( t' \) (and \( \| \cdot \| \) is any norm on the \( 2 \times 2 \)-matrices).

**Proof.** First, we generate the factor \( t-t' \) by differentiating the exponential in (16.3.9) with respect to \( \omega \),

\[
(t - t') U^{t,t'}_m(\vec{k}) = \sum_{\pm} \Pi_\pm(\vec{k}) \left( \pm i \frac{\partial}{\partial \omega} e^{\mp i \omega (t-t')} \right) .
\]

Next, we want to rewrite the \( \omega \)-derivative as a derivative with respect to \( m \). Taking the total differential of the dispersion relation \( \omega^2 - |\vec{k}|^2 = m^2 \) for fixed \( \vec{k} \), one finds that

\[
\frac{\partial}{\partial \omega} = \frac{\omega}{m} \frac{\partial}{\partial m} .
\]

Hence

\[
(t - t') U^{t,t'}_m = \sum_{\pm} \Pi_\pm \left( \pm i \frac{\omega}{m} \frac{\partial}{\partial m} e^{\mp i \omega (t-t')} \right)
= \frac{\partial}{\partial m} \sum_{\pm} \left( \pm i \frac{\omega}{m} \Pi_\pm e^{\mp i \omega (t-t')} \right) - \sum_{\pm} \left( \frac{\partial}{\partial m} \left[ \pm i \frac{\omega}{m} \Pi_\pm \right] \right) e^{\mp i \omega (t-t')} .
\]

Computing the operators in the round brackets using (16.3.10) gives the identities (16.3.13) and (16.3.14). Estimating these formulas, one obtains bounds which are at most linear in \( |\vec{k}| \), proving (16.3.15).
This method can be iterated to generate more factors of $t-t'$. In the next lemma, we prove at least quadratic decay in time. For later use, it is preferable to formulate the result in position space.

**Lemma 16.3.4.** The time evolution operator in the vacuum has the representation

$$U_{m}^{t,t'} = \frac{1}{(t-t')^2} \left( \frac{\partial^2}{\partial m^2} A_{m}^{t,t'} + \frac{\partial}{\partial m} B_{m}^{t,t'} + C_{m}^{t,t'} \right) \quad (16.3.17)$$

with operators

$$A_{m}^{t,t'}, B_{m}^{t,t'}, C_{m}^{t,t'} : W^{2,2}(\mathcal{N}_t, \mathcal{S} \mathcal{M}) \to L^2(\mathcal{N}_t, \mathcal{S} \mathcal{M}),$$

which are bounded uniformly in time by

$$\|A_{m}^{t,t'}(\phi)\|_t + \|B_{m}^{t,t'}(\phi)\|_t + \|C_{m}^{t,t'}(\phi)\|_t \leq c \|\phi\|_{W^{2,2}}, \quad (16.3.18)$$

where $c$ is a constant which depends only on $m$.

**Proof.** A straightforward computation using exactly the same methods as in Lemma 16.3.3 yields the representation

$$(t-t')^2 U_{m}^{t,t'}(\vec{k}) = \frac{\partial^2}{\partial m^2} A_{m}^{t,t'}(\vec{k}) + \frac{\partial}{\partial m} B_{m}^{t,t'}(\vec{k}) + C_{m}^{t,t'}(\vec{k}), \quad (16.3.19)$$

where the operators $A_{m}^{t,t'}, B_{m}^{t,t'}$ and $C_{m}^{t,t'}$ are bounded by

$$\|A_{m}^{t,t'}(\vec{k})\| + \|B_{m}^{t,t'}(\vec{k})\| + \|C_{m}^{t,t'}(\vec{k})\| \leq \frac{C}{m} \left( 1 + \frac{|\vec{k}|}{m} \right), \quad (16.3.20)$$

with a numerical constant $C > 0$. We remark that, compared to (16.3.12), the right of (16.3.20) involves an additional $1/m$. This prefactor is necessary for dimensional reasons, because the additional factor $t-t'$ in (16.3.19) (compared to (16.3.12)) brings in an additional dimension of length (and in natural units, the factor $1/m$ also has the dimension of length). The additional summand $|\vec{k}|^2/m^2$ in (16.3.20) can be understood from the fact that applying (16.3.16) generates a factor of $\omega/m$ which for large $|\vec{k}|$ scales like $|\vec{k}|/m$.

Translating this result to position space and keeping in mind that the vector $\vec{k}$ corresponds to the derivative $-i\nabla$, we obtain the result.

**Proof of Lemma 16.3.1.** First of all, the Schwarz inequality gives

$$\| (\psi| \psi)_t \|_t \leq \int |\psi_m|_m dm \leq \sqrt{|I|} \| \psi \|.$$ 

Thus it remains to show the decay for large $t$, i.e.

$$\| (\psi| \psi)_t \|_t \leq \frac{C |I|}{t^2} \sup_{m} \sum_{b=0}^{2} \| \partial_m^b (\psi_m) \|_{L^2} \| \psi_m \|_{W^{2,2}} \quad (16.3.21)$$

We apply Lemma 16.3.3 and integrate by parts in $m$ to obtain

$$(\psi| \psi)_t = \int I U_{m}^{t,0} \psi_m|_{t=0} dm = \frac{1}{t^2} \int I (\partial_m^2 A_{m}^{t,0} + \partial_m B_{m}^{t,0} + C_{m}^{t,0}) \psi_m|_{t=0} dm$$

$$= \frac{1}{t^2} \int I \left( A_{m}^{t,0} (\partial_m^2 \psi_m|_{t=0}) - B_{m}^{t,0} (\partial_m \psi_m|_{t=0}) + C_{m}^{t,0} \psi_m|_{t=0} \right) dm.$$ 

Taking the norm and using (16.3.18) gives (16.3.21).
We finally note that the previous estimates are not optimal for two reasons. First, the pointwise quadratic decay in (16.3.3) is more than what is needed for the convergence of the integral in (16.3.6). Second and more importantly, the Schwarz inequality (16.3.5) does not catch the optimal scaling behavior in \( \vec{k} \). This is the reason why the constant in (15.2.5) involves derivatives of \( \psi_m \) (cf. (16.3.6)), making it impossible to prove the inequality (15.2.8) which arises in the strong mass oscillation property. In order to improve the estimates, one needs to use Fourier methods both in space and time, as will be explained in the next section.

### 16.4. Proof of the Strong Mass Oscillation Property in the Minkowski Vacuum

**Theorem 16.4.1.** The vacuum Dirac operator in Minkowski space has the strong mass oscillation property with domain (16.3.1).

Our proof relies on a Plancherel argument in spacetime. It also provides an alternative method for establishing the weak mass oscillation property.

**Proof of Theorem 16.4.1.** Let \( \psi = (\psi_m)_{m \in I} \in \mathcal{H}^\infty \) be a family of solutions of the Dirac equation for a varying mass parameter in the Minkowski vacuum. Using Proposition (13.6.1), one can express \( \psi_m \) in terms of its values at time \( t = 0 \) by

\[
\psi_m(x) = 2\pi \int_{\mathbb{R}^3} k_m(x, (0, \vec{y})) \gamma^0 \psi_m|_{t=0}(\vec{y}) \, d^3\vec{y}.
\]

We now take the Fourier transform, denoting the four-momentum by \( k \). Using (16.3.8), we obtain

\[
\hat{\psi}_m(k) = 2\pi k_m(k) \gamma^0 \hat{\psi}_m^0(\vec{k}) = 2\pi \delta(k^2 - m^2) \epsilon(k^0) (\vec{k} + m) \gamma^0 \hat{\psi}_m^0(\vec{k}),
\]

where \( \hat{\psi}_m^0(\vec{k}) \) denotes the spatial Fourier transform of \( \psi_m|_{t=0} \) (in order to avoid an ambiguity of notation, the hat of the Fourier transform in spacetime was omitted). Obviously, this is a distribution supported on the mass shell. In particular, it is not square integrable over \( \mathbb{R}^4 \).

Integrating over \( m \), we obtain the following function

\[
(p\psi)(k) = 2\pi \chi_I(m) \frac{1}{2m} \epsilon(k^0) (\vec{k} + m) \gamma^0 \hat{\psi}_m^0(\vec{k}) \bigg|_{m=\sqrt{k^2}}, \tag{16.4.1}
\]

where \( m \) now is a function of the momentum variables. Since the function \( \psi_m|_{t=0} \) is compactly supported and smooth in the spatial variables, its Fourier transform \( \hat{\psi}_m^0(\vec{k}) \) has rapid decay. This shows that the function (16.4.1) is indeed square integrable. Using Plancherel, we see that condition (a) in Definition (15.2.2) is satisfied. Moreover, the operator \( T \) is simply the operator of multiplication by \( \sqrt{k^2} \), so that condition (b) obviously holds. This again shows the weak mass oscillation property.

In order to prove the strong mass oscillation property, we need to compute the inner product \( \langle p\psi | p\phi \rangle \). To this end, we first write this inner product in momentum space as

\[
\langle p\psi | p\phi \rangle = \int \frac{d^4k}{(2\pi)^4} 4\pi^2 \chi_I(m) \frac{1}{4m^2} \langle \gamma^0 \hat{\psi}_m^0(\vec{k}) | (\vec{k} + m) \gamma^0 \hat{\phi}_m^0(\vec{k}) \rangle \bigg|_{m=\sqrt{k^2}}
\]

\[
= \int \frac{d^4k}{4\pi^2} \chi_I(m) \frac{1}{2m} \langle \gamma^0 \hat{\psi}_m^0(\vec{k}) | (\vec{k} + m) \gamma^0 \hat{\phi}_m^0(\vec{k}) \rangle \bigg|_{m=\sqrt{k^2}}.
\]
Reparametrizing the $k^0$-integral as an integral over $m$, we obtain
\[ \langle p \psi | p \phi \rangle = \frac{1}{4\pi^2} \int_I dm \int_{\mathbb{R}^3} \frac{d^3k}{2|k^0|} \langle \gamma^0 \varphi_m^0(\vec{k}) | (\vec{k} + m) \gamma^0 \psi_m^0(\vec{k}) \rangle |_{k^0 = \pm \sqrt{|k|^2 + m^2}}. \] (16.4.2)

Estimating the inner product with the Schwarz inequality and applying Plancherel’s theorem, one finds
\[ |\langle p \psi | p \phi \rangle| \leq \frac{1}{4\pi^2} \int_I dm \int_{\mathbb{R}^3} \| \hat{\varphi}_m(\vec{k}) \| \| \hat{\psi}_m(\vec{k}) \| d^3k \leq 2\pi \int_I \| \varphi_m \| \| \psi_m \| dm. \]

Thus the inequality (15.2.8) holds.

\[ \square \]

- Explain how to read off the eigenvalues and eigenspaces of the fermionic signature operator.

**Exercises**

**Exercise 16.1.** This exercise recalls basics on the principal value in one dimension
\[ \frac{1}{2} \lim_{\varepsilon \to 0} \left( \frac{1}{x - i\varepsilon} + \frac{1}{x + i\varepsilon} \right) =: \text{PP} \ . \] (16.4.3)

(a) Repeat the method in Exercise 2.20 to show that the limit of the left side of (16.4.3) exist for any $\eta \in C^1(\mathbb{R}) \cap L^1(\mathbb{R})$. Derive a corresponding estimate which shows that PP is a well-defined tempered distribution.

(b) Show that for any $\eta \in C^1(\mathbb{R}) \cap L^1(\mathbb{R})$,
\[ \text{PP}(\eta) = \lim_{\varepsilon \to 0} \left( \int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) \frac{\eta(x)}{x} dx . \]

**Exercise 16.2.** The goal of this exercise is to justify that the one-dimensional relations
\[ \lim_{\varepsilon \to 0} \left( \frac{1}{x - i\varepsilon} - \frac{1}{x + i\varepsilon} \right) = 2\pi i \delta(x) \] (16.4.4)
\[ \frac{1}{2} \lim_{\varepsilon \to 0} \left( \frac{1}{x - i\varepsilon} + \frac{1}{x + i\varepsilon} \right) =: \text{PP} \ . \] (16.4.5)

apply four-dimensional setting to obtain the relation
\[ \lim_{\varepsilon \to 0} \frac{1}{r^2 + (\varepsilon + it)^2} = \lim_{\varepsilon \to 0} \frac{1}{r^2 - t^2 + i\varepsilon t} = -\frac{\text{PP}}{\xi^2} - i\pi \delta(\xi^2) \epsilon(\xi^0) , \] (16.4.6)

(a) Let $T$ be a distribution on $\mathbb{R}$, $\Omega \subset \mathcal{M}$ be an open subset of Minkowski space and $f : \Omega \to \mathbb{R}$ a smooth function with nowhere vanishing gradient. Show that the relation
\[ (f^*T)(\eta) := T(\phi_f(\eta)) , \quad \eta \in C^\infty_0(\Omega) \]
with
\[ \phi_f(\eta)(t) := \frac{\partial}{\partial t} \int_\Omega \Theta(t - f(x)) \eta(x) \, d^4x \]
(where $\Theta$ is the Heaviside function) defines $f^*T$ as a distribution on $\Omega$ (this is the so-called pullback of $T$ under $f$; for details see [80] Section 7.2)).
(b) Choosing $\Omega$ as the half space in the future, $\Omega = \{ x \in M, x^0 > 0 \}$, one can rewrite the expression on the left of (16.4.6) as
\[
\lim_{\varepsilon \searrow 0} \frac{1}{\sqrt{-t^2 + i\varepsilon}}. 
\]

Use (a) to conclude that this expression is a well-defined distribution for any $\varepsilon > 0$. Show that the limit $\varepsilon \searrow 0$ exist in the distributional sense.

(c) Repeating the procedure of (b) for the half space in the past, one obtains a distribution on $M \setminus \{ t = 0 \}$. Show that this distribution coincides with the limit in (16.4.6).

**Hint:** Similar as in Exercise 2.20 one can estimate the behavior at the origin with Lebesgue’s dominated convergence theorem.

**EXERCISE 16.3.** This exercise is devoted to the advanced Green’s function $s_{\nu_m}^\vee$.

(a) Assume that $m > 0$. Show that the limit $\nu \searrow 0$ in (16.1.4) exist in the distributional sense.

(b) Show that the limit $\nu \searrow 0$ in (16.1.4) also exists in the massless case $m = 0$ and that
\[
\lim_{m \searrow 0} s_{\nu_m}^\vee(k) = s_{\nu}^\vee(k) 
\]
as a distribution.

**Hint:** Proceed similar as in Exercise 16.2.

(c) Consider the Fourier integral in the $q^0$-variable
\[
\int_{-\infty}^{\infty} \frac{1}{q^2 - m^2 - i\nu q^0} e^{iq^0 t} dq^0.
\]
Show with residues that this integral vanishes for sufficiently small $\nu$ if $t < 0$.

(d) Argue with Lorentz invariance to prove the left side of (16.1.5).

**EXERCISE 16.4.** Modifying the location of the poles in (16.1.4) gives rise to the distribution
\[
s_{m}^F(k) := \lim_{\nu \searrow 0} \frac{k + m}{k^2 - m^2 + i\nu}.
\]
This is the well-known Feynman propagator, which is often described intuitively by saying that “positive frequencies move to the future and negative frequencies move to the past.” Make this sentence precise by a computation similar to that in Exercise 16.3 (c).

**EXERCISE 16.5.** Given $\omega \in \mathbb{R}$, we consider the ordinary differential operator $D = i\partial_t + \omega$.

(a) Construct the advanced and retarded Green’s functions, which satisfy in analogy to the kernels in the lecture the equation
\[
Dt s(t, t') = \delta(t - t').
\]

(b) Using the formula of the lecture, compute the resulting causal fundamental solution. How is it related to the time evolution operator $U^{t,t'}$? On which Hilbert space does the time evolution operator act as a unitary operator?

**EXERCISE 16.6.** Consider the massless Dirac equation $D\psi = 0$ in the two-dimensional spacetime cylinder $\mathbb{R} \times S^1$, i.e.
\[
D = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \partial_t + i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \partial_\varphi
\]
with $t \in \mathbb{R}$ and $\varphi \in (0, 2\pi)$. 

(a) Choose the spin inner product such that the Dirac matrices become symmetric. What is the resulting spacetime inner product \(<.|.>\)? What is the scalar product \(\langle.|.\rangle\)?

(b) Employ for \(k \in \mathbb{Z}\) the separation ansatz
\[
\psi(t, \varphi) = e^{-ik\varphi} \chi(t) \quad \text{with} \quad \chi(t) \in \mathbb{C}^2.
\]
Derive the resulting ODE for \(\chi\). Compute the time evolution operator for this ODE. *Hint: Use the result of Exercise 16.5.*

(c) Use a Fourier series decomposition in order to deduce a series representation of the time evolution operator of the Dirac operator on \(\mathbb{R} \times S^1\). Try to carry out the infinite series to obtain a closed expression for \(U^{t,t'}\). How can one see finite propagation speed?

**Exercise 16.7.** As in Exercise 16.5, we consider the two-dimensional massless Dirac equation.

(a) Adapt the formulas of the lecture for the advanced and retarded Green’s operators in momentum space to the two-dimensional massless case.

(b) Compute the Fourier transform to obtain \(s^\vee(x,y)\) and \(s^\wedge(x,y)\).

(c) Use the result of (b) to compute the causal fundamental solution and the time evolution operator.

(d) How can one see finite propagation speed? How is the obtained formula related to the formula in Exercise 16.5(c)?

**Exercise 16.8.** Verify the relations (16.3.11) by direct computation starting from the definition (16.3.10).

**Exercise 16.9.** Verify by formal computation that in the Minkowski vacuum, the fundamental solution \(k_m\) and the Green’s operator \(s_m\) defined by
\[
s_m := \frac{1}{2} \left( s_m^\vee + s_m^\wedge \right)
\]
satisfy the distributional relations in the mass parameters \(m\) and \(m'\)
\[
k_m k_m' = \delta(m - m') p_m
\]
\[
k_m s_m' = s_m k_m = \frac{\text{PP}}{m - m'} k_m,
\]
where PP denotes the principal part, and \(p_m\) is the distribution
\[
p_m(k) = (\slashed{k} + m) \delta(k^2 - m^2).
\]
*Hint: By a “formal computation” we mean that you do not need to evaluate weakly in the mass with test functions.*

**Exercise 16.10.** Proceed similar as in Exercise 16.9 to derive a relation for the operator product \(s_m^\vee s_m'^\wedge\). Derive the relation
\[
s_m s_m' = \frac{\text{PP}}{m - m'} (s_m - s_m') + \pi^2 \delta(m - m') p_m.
\]
CHAPTER 17

Methods of Scattering Theory

We return to the Cauchy problem in the presence of an external potential,
\[(D - m)\psi_m = 0, \quad \psi_m \big|_{t_0} = \psi_0 \in C^\infty(N_{t_0} \simeq \mathbb{R}^3, S.M), \quad (17.0.1)\]
with \(D\) as in (1.3.14). For notational clarity, we shall often denote the objects in the presence of the external potential by a tilde (the “interacting objects”), whereas the objects without tilde refer to the Minkowski vacuum.

17.1. The Lippmann-Schwinger Equation

The Dirac dynamics can be rewritten in terms of a symmetric operator \(\tilde{H}\). To this end, we multiply the Dirac equation (1.3.14) by \(\gamma_0\) and bring the \(t\)-derivative separately on one side of the equation,
\[i\partial_t \psi_m = \tilde{H} \psi_m, \quad \text{where} \quad \tilde{H} := -\gamma_0(i\bar{\gamma}\nabla + B - m) \quad (17.1.1)\]
(note that \(\gamma_j \partial_j = \gamma_0 \partial_t + \bar{\gamma}\nabla\)). We refer to (17.1.1) as the Dirac equation in Hamiltonian form. The fact that the scalar product (15.1.2) is time independent implies that for any two solutions \(\phi_m, \psi_m \in C^\infty_{sc}(M, S.M) \cap \mathcal{H}_m\),
\[0 = \partial_t(\phi_m \mid \psi_m)_m = i((\tilde{H} \phi_m \mid \psi_m)_m - (\phi_m \mid \tilde{H} \psi_m)_m), \]
showing that the Hamiltonian is a symmetric operator on \(\mathcal{H}_m\). The Lippmann-Schwinger equation can be used to compare the dynamics in the Minkowski vacuum with the dynamics in the presence of an external potential. We denote the time evolution operator in the Minkowski vacuum by \(U_{t_0}^{t, t_0}\).

**Proposition 17.1.1.** The Cauchy problem (17.0.1) has a solution \(\psi_m\) which satisfies the equation
\[\psi_m \mid_t = U_{t_0}^{t, t_0} \psi_0 + i \int_{t_0}^t U_{t_0}^{\tau, \tau} (\gamma_0 B \psi_m) \big|_{\tau} d\tau, \quad (17.1.2)\]
referred to as the Lippmann-Schwinger equation.

**Proof.** Obviously, the wave function \(\psi_m \mid_t\) given by (17.1.2) has the correct initial values at \(t = t_0\). Thus it remains to show that \(\psi_m \mid_t\) satisfies the Dirac equation. To this end, we rewrite the Dirac equation in the Hamiltonian form (17.1.1), and separate the vacuum Hamiltonian \(H\) from the term involving the external potential,
\[(i\partial_t - H) \psi_m = -\gamma_0 B \psi_m \quad \text{with} \quad H = -i\bar{\gamma}\nabla + \gamma_0 m. \quad (17.1.3)\]
Applying the operator \(i\partial_t - H\) to (17.1.2) and observing that the time evolution operator maps to solutions of the vacuum Dirac equation, only the derivative of the upper limit of integration contributes,
\[(i\partial_t - H) \psi_m \mid_t = -U_{t_0}^{t, \tau} (\gamma_0 B \psi_m) \big|_{\tau=t} = -\gamma_0 B \psi_m \mid_t, \]
so that (17.1.3) is indeed satisfied. \(\square\)
17.2. The Mass Oscillation Property in the Presence of an External Potential

The goal of this section is to prove the following result:

**Theorem 17.2.1.** Assume that the external potential $\mathcal{B}$ is smooth and for large times decays faster than quadratically in the sense that

$$|\mathcal{B}(t)|_{C^2} \leq \frac{c}{1 + |t|^{2 + \varepsilon}}$$

for suitable constants $\varepsilon, c > 0$. Then the strong mass oscillation property holds.

The $C^2$-norm in (17.2.1) is defined as follows. We denote spatial derivatives by $\nabla$ and use the notation with multi-indices, i.e. for a multi-index $\alpha = (\alpha_1, \ldots, \alpha_p)$ we set $\nabla^\alpha = \partial_{\alpha_1} \cdots \partial_{\alpha_p}$ and denote the length of the multi-index by $|\alpha| = p$. Then the spatial $C^k$-norms of the potential are defined by

$$|\mathcal{B}(t)|_{C^k} := \max_{|\alpha| \leq k} \sup_{\vec{x} \in \mathbb{R}^3} |\nabla^\alpha \mathcal{B}(t, \vec{x})|,$$

where $|.|$ is the sup-norm corresponding to the norm $|\phi|^2 := \langle \phi | \gamma^0 \phi \rangle$ on the spinors.

**17.2.1. Proof of the Weak Mass Oscillation Property.** In this section, we prove the following theorem.

**Theorem 17.2.2.** Assume that the time-dependent external potential $\mathcal{B}$ is smooth and decays faster than quadratically for large times in the sense that (17.2.1) holds for suitable constants $c, \varepsilon > 0$. Then the Dirac operator $D = i\partial + \mathcal{B}$ has the weak mass oscillation property.

We expect that this theorem could be improved by weakening the decay assumptions on the potential. However, this would require refinements of our methods which would go beyond the scope of this paper. Also, using that Dirac solutions dissipate, the pointwise decay in time could probably be replaced or partially compensated by suitable spatial decay assumptions. Moreover, one could probably refine the result of the above theorem by working with other norms (like weighted $C^k$- or Sobolev norms).

The main step is the following basic estimate, which is the analog of Lemma 16.3.1 in the presence of an external potential.

**Proposition 17.2.3.** Under the decay assumptions (17.2.1) on the external potential $\mathcal{B}$, there are constants $c, \varepsilon > 0$ such that for every family $\psi \in \mathcal{H}^\infty$ of solutions of the Dirac equation (1.3.14) with varying mass,

$$\left\| (p\psi) |_t \right\|_t \leq \frac{c}{1 + |t|^{1 + \varepsilon}} \sup_{m \in I} \sum_{b=0}^2 \left\| (\partial_b^m \psi_m) |_{t=0} \right\|_{W^{2,2}}.$$

(17.2.3)

We first show that this proposition implies the weak mass oscillation property.

**Proof of Theorem 17.2.2 under the assumption that Proposition 17.2.3 holds.** In order to derive the inequality (15.2.6), we begin with the estimate

$$|\langle p\psi | p\phi \rangle| \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| (p\psi |_t | p\phi |_t) \right| dt \leq \sup_{t \in \mathbb{R}} \left\| p\phi |_t \right\|_t \int_{-\infty}^{\infty} \left\| p\psi |_t \right\|_t dt.$$
The last integral is finite by Proposition [17.2.3]. The supremum can be bounded by the Hilbert space norm using the Hölder inequality,
\[ \|p\phi|_t = \left\| \int_I \phi_m|_t \, dm \right\|_t \leq \int_I \|\phi_m|_t\, dm \leq \sqrt{|I|} \left( \int_I \|\phi_m|_t\, dm \right)^{\frac{1}{2}} = \sqrt{|I|} \|\phi\|, \]
giving (15.2.6).

Using (1.3.13), the Dirac operator \(i\partial + B\) is formally self-adjoint with respect to the inner product \(\langle ., . \rangle\). Therefore, the identity (15.2.7) can be obtained just as in (16.3.7) by integrating the Dirac operator in spacetime by parts, noting that we do not get boundary terms in view of the time decay in Proposition 17.2.3. \(\square\)

The remainder of this section is devoted to the proof of Proposition 17.2.3. We make use of the Lippmann-Schwinger equation (17.1.2),
\[ \psi_m|_t = U^{t,0}_m\psi_m|_{t=0} + i \int_0^t U^{t,\tau}_m (\gamma^0 B \psi_m)|_{\tau} \, d\tau. \]  
(17.2.4)
Since the first summand of this equation is controlled by Lemma 16.3.1, it remains to estimate the second summand. Again using (16.3.17) and integrating by parts with respect to the mass, we obtain
\[ \int_I U^{t,\tau}_m (\gamma^0 B \psi_m)|_{\tau} \, dm = \frac{1}{(t-\tau)^2} \int_I (A^{t,\tau}_m \partial^2_m - B^{t,\tau}_m \partial_m + C^{t,\tau}_m) (\gamma^0 B \psi_m)|_{\tau} \, dm \]
and thus
\[ \left\| \int_I U^{t,\tau}_m (\gamma^0 B \psi_m)|_{\tau} \, dm \right\|_t \leq \frac{c|I|}{(t-\tau)^2} \sup_{m \in I} \sum_{b=0}^2 \|B(\tau) (\partial^b_m \psi_m)|_{\tau}\|_{W^{2,2}} \]
\[ \leq \frac{c|I|}{(t-\tau)^2} |B(\tau)|_{C^2} \sup_{m \in I} \sum_{b=0}^2 \|\partial^b_m \psi_m|_{\tau}\|_{W^{2,2}}. \]

We now bound \(B(\tau)\) with the help of (17.2.1) and estimate the Sobolev norm \(\|\partial^b_m \psi_m|_{\tau}\|_{W^{2,2}}\) at time \(\tau\) by means of Lemma 13.5.1. This gives rise to the inequality
\[ \left\| \int_I U^{t,\tau}_m (\gamma^0 B \psi_m)|_{\tau} \, dm \right\|_t \leq \frac{c^2 C|I|}{(t-\tau)^2} \frac{1 + |\tau|^2}{1 + |\tau|^{2+\epsilon}} \sup_{m \in I} \sum_{b=0}^2 \|\partial^b_m \psi_m|_{t=0}\|_{W^{2,2}}, \]
which yields the desired decay provided that \(\tau\) and \(t\) are not close to each other. More precisely, we shall apply this inequality in the case \(|\tau| \leq |t|/2\). Then the estimate simplifies to
\[ \left\| \int_I U^{t,\tau}_m (\gamma^0 B \psi_m)|_{\tau} \, dm \right\|_t \leq \frac{\tilde{C}}{t^2 (1 + |\tau|\epsilon)} \sup_{m \in I} \sum_{b=0}^2 \|\partial^b_m \psi_m|_{t=0}\|_{W^{2,2}} \quad \text{if } |\tau| \leq |t|/2 \]  
(17.2.5)
with a new constant \(\tilde{C} > 0\). In the remaining case \(|\tau| > |t|/2\), we use the unitarity of \(U^{t,\tau}_m\) to obtain
\[ \left\| \int_I U^{t,\tau}_m (\gamma^0 B \psi_m)|_{\tau} \, dm \right\|_t \leq |I| |B(\tau)|_{C^0} \sup_{m \in I} \|\psi_m\|. \]
Applying (17.2.1) together with the inequality $|\tau| > |t|/2$, this gives
\[
\left\| \int_I U_m^{t,\tau} (\gamma^0 B \psi_m) |\tau| d\tau \right\|_t \leq \frac{\tilde{C}}{t^{1+\varepsilon}} \sup_{m \in I} \|\psi_m\| \quad \text{if } |\tau| > |t|/2. \quad (17.2.6)
\]
This again decays for large $t$ because $\tau$ is close to $t$ and $|B(\tau)| C_0$ decays for large $\tau$.

Comparing (17.2.5) and (17.2.6), we find that the inequality in (17.2.5) even holds for all $\tau$. Thus integrating this inequality over $\tau \in [0, t]$, we obtain the following estimate for the second summand in (17.2.4),
\[
\left\| \int_I \int_0^t U_m^{t,\tau} (\gamma^0 B \psi_m) |\tau| d\tau \right\|_t \leq \frac{C'_0}{t^{1+\varepsilon}} \sum_{b=0}^2 \sum_{m \in I} \|\partial^b_m \psi|_{t=0}\|_{W^{2,2}}
\]
(where $C'_0 > 0$ is a new constant). Combining this inequality with the estimate (16.3.3) of the first summand in (17.2.4), we obtain the desired inequality (17.2.3). This concludes the proof of Proposition 17.2.3.

17.2.2. Proof of the Strong Mass Oscillation Property. In this section, we prove the following result.

**Theorem 17.2.4.** Assume that the weak mass oscillation property holds and that the external potential $B$ satisfies the condition
\[
\int_{-\infty}^{\infty} |B(\tau)|_{C^0} d\tau < \infty. \quad (17.2.7)
\]
Then the Dirac operator $D = i\partial / \partial + B$ has the strong mass oscillation property.

Combining this theorem with Theorem 17.2.2, one immediately obtains Theorem 17.2.1.

For the proof we shall derive an explicit formula for the fermionic signature operator (Proposition 17.2.5). This formula is obtained by comparing the dynamics in the presence of the external potential with that in the Minkowski vacuum using the Lippmann-Schwinger equation, and by employing distributional relations for products of fundamental solutions and Green's functions (Lemma 17.2.8).

We first return to the formula (16.4.2) in the Minkowski vacuum. Applying Plancherel's theorem and using (15.1.2), we conclude that
\[
\langle p \psi | p \phi \rangle = \int_I \langle \psi_m^0 | S_m(k) \phi_m^0 \rangle d\tau, \quad (17.2.8)
\]
where
\[
S_m(k) := \sum_{k^0 = \pm \omega(k)} \frac{k + m}{2 \omega(k)} \gamma^0 = \frac{k\gamma + m}{\omega(k)} \gamma^0. \quad (17.2.9)
\]
Comparing (17.2.8) with (15.3.1), one sees that the matrix $S_m(k)$ is indeed the fermionic signature operator, considered as a multiplication operator in momentum space. By direct computation, one verifies that the matrix $S_m(k)$ has eigenvalues $\pm 1$.

In order to compare the dynamics in the presence of the external potential with that in the Minkowski vacuum, we work with the Hamiltonian formulation. We decompose the Dirac Hamiltonian (17.1.1) into the Hamiltonian in the Minkowski vacuum (17.1.3) plus a potential,
\[
\tilde{H} = H + \mathcal{V} \quad \text{with } \mathcal{V} := -\gamma^0 B.
\]
Proposition 17.2.5. Assume that the potential $B$ satisfies the condition (17.2.7). Then for every $\psi, \phi \in \mathcal{H}^{\infty}$,

$$<p\psi|p\phi> = \int_{I} (\psi_{m} | \tilde{S}_{m} \phi_{m})_{m} \, dm,$$  

(17.2.10)

where $\tilde{S}_{m} : \mathcal{H}_{m} \to \mathcal{H}_{m}$ are bounded linear operators which act on the wave functions at time $t_{0}$ by

$$\tilde{S}_{m} = S_{m} - i \frac{1}{2} \int_{-\infty}^{\infty} \epsilon(t - t_{0}) [S_{m} U_{m}^{t_{0}, t} \mathcal{V}(t) \tilde{U}_{m}^{t_{0}, t} - \tilde{U}_{m}^{t_{0}, t} \mathcal{V}(t) S_{m} U_{m}^{t_{0}, t}] \, dt$$  

(17.2.11)

$$+ \frac{1}{2} \left( \int_{t_{0}}^{\infty} \int_{t_{0}}^{\infty} \int_{-\infty}^{t_{0}} \int_{-\infty}^{t_{0}} \tilde{U}_{m}^{t_{0}, t} \mathcal{V}(t) S_{m} U_{m}^{t_{0}, t'} \mathcal{V}(t') \tilde{U}_{m}^{t_{0}, t} \, dt \, dt' \right)$$  

(17.2.12)

(and $S_{m}$ is again the fermionic signature operator of the vacuum (17.2.3)).

Before entering the proof of this proposition, it is instructive to verify that the above formula for $\tilde{S}_{m}$ does not depend on the choice of $t_{0}$.

Remark 17.2.6. (Independence of $\tilde{S}_{m}$ on $t_{0}$) Our strategy is to differentiate the above formula for $\tilde{S}_{m}$ with respect to $t_{0}$ and to verify that we obtain zero. We first observe that taking a solution $\phi_{m} \in \mathcal{H}_{m}$ of the Dirac equation in the presence of $B$, evaluating at time $t_{0}$ and applying the time evolution operator $\tilde{U}_{m}^{t_{0}, t}$ gives $\phi_{m}$ at time $t$, i.e. $\tilde{U}_{m}^{t_{0}, t} \phi_{m}|_{t_{0}} = \phi_{m}|_{t}$. Differentiating with respect to $t_{0}$ yields

$$\partial_{t_{0}} \tilde{U}_{m}^{t_{0}, t} \phi_{m}|_{t_{0}} = 0.$$

The situation is different when one considers the time evolution operator of the vacuum. Namely, in the expression $U_{m}^{t_{0}, t} \phi_{m}|_{t_{0}}$, the wave function $\phi_{m}$ satisfies the Dirac equation $(i\partial_{t} - H)\phi_{m} = \mathcal{V}\phi_{m}$, whereas the time evolution operator solves the Dirac equation with $\mathcal{V} \equiv 0$. As a consequence,

$$\partial_{t_{0}} U_{m}^{t_{0}, t} \phi_{m}|_{t_{0}} = -iU_{m}^{t_{0}, t}(\mathcal{V}\phi_{m})|_{t_{0}}.$$

Using these formulas together with $U^{t_{0}, t_{0}} = 1 = \tilde{U}^{t_{0}, t_{0}}$, a straightforward computation gives

$$\partial_{t_{0}} \left( \psi_{m} | \mathcal{V} \phi_{m} \right)|_{t_{0}} = -i(\psi_{m} | [S_{m}, \mathcal{V}] \phi_{m})|_{t_{0}}$$

$$- \frac{i}{2} \left( \int_{-\infty}^{\infty} \epsilon(t - t_{0}) \psi_{m} \left( S_{m} \mathcal{V}(t_{0}) - \mathcal{V}(t_{0}) S_{m} \right) \phi_{m} \right)|_{t_{0}} dt$$

$$- \frac{i}{2} \left( \int_{-\infty}^{\infty} \epsilon(t - t_{0}) \psi_{m} \left( S_{m} U_{m}^{t_{0}, t} \mathcal{V}(t) \tilde{U}_{m}^{t_{0}, t} \phi_{m} \right) \right)|_{t_{0}} dt$$

$$+ \frac{i}{2} \left( \int_{-\infty}^{\infty} \epsilon(t - t_{0}) \psi_{m} \left( \tilde{U}_{m}^{t_{0}, t} \mathcal{V}(t) S_{m} U_{m}^{t_{0}, t'} \mathcal{V}(t') \tilde{U}_{m}^{t_{0}, t} \phi_{m} \right) \right)|_{t_{0}} dt'$$

$$\partial_{t_{0}} \left( \psi_{m} | \mathcal{V} \phi_{m} \right)|_{t_{0}} = - \frac{1}{2} \left( \int_{-\infty}^{\infty} \epsilon(t' - t_{0}) \left( \psi_{m} \mathcal{V}(t_{0}) S_{m} U_{m}^{t_{0}, t'} \mathcal{V}(t') \tilde{U}_{m}^{t_{0}, t} \phi_{m} \right) \right)|_{t_{0}} dt'$$

where for notational simplicity we here omitted the restrictions $|t_{0}$ for the solutions $\psi_{m}$ and $\phi_{m}$. Adding the terms gives zero. \hfill \diamond
The remainder of this section is devoted to the proof of Proposition [17.2.5]. Our strategy is to combine the Lippmann-Schwinger equation with estimates in momentum space. We begin with two technical lemmas.

Lemma 17.2.7. Assume that the external potential \( B \) satisfies condition [17.2.7]. For any \( t_0 \in \mathbb{R} \), we denote the characteristic functions in the future respectively past of this hypersurface \( t = t_0 \) by \( \chi^\pm_{t_0}(x) \) (i.e. \( \chi^\pm_{t_0}(x) = \Theta(\pm(x^0 - t_0)) \), where \( \Theta \) is the Heaviside function). Then for any \( \psi_m \in C^\infty(\mathcal{M}, \mathcal{S}\mathcal{M}) \cap \mathcal{H}_m \), the wave function \( k_m(\chi^\pm_{t_0}B\psi_m) \) is a well-defined vector in \( \mathcal{H}_{t_0} \) and

\[
\|k_m(\chi^\pm_{t_0}B\psi_m)\|_{t_0} \leq \frac{1}{2\pi} \|\psi_m\|_m \int_{-\infty}^{\infty} \chi^+_0(\tau) |B(\tau)|_{C^0} d\tau .
\]

Proof. Using the integral kernel representation [16.2.3] and [16.2.4] together with the fact that the time evolution in the vacuum is unitary, we obtain

\[
2\pi \left\| \int_{\mathbb{R}^3} k_m(t_0, \cdot, (\tau, \vec{y})) \left( \chi^\pm_{t_0}B\psi_m \right)(\tau, \vec{y}) d^3y \right\|_{t_0} = \|U^{t_0, \tau}_m \gamma^0(\chi^\pm_{t_0}B\psi_m)\|_{t_0} = \|\gamma^0(\chi^\pm_{t_0}B\psi_m)\|_{\tau} \leq |B(\tau)|_{C^0} \|\psi_m\|_m .
\]

Integrating over \( \tau \) and using [17.2.7] gives the result. \( \square \)

The following lemma is proved in [49, Eqs. (2.13)–(2.17)] (see Exercises [16.9] and [16.10]).

Lemma 17.2.8. In the Minkowski vacuum, the fundamental solution \( k_m \) and the Green’s function \( s_m \) defined by

\[
s_m := \frac{1}{2} \left( s^\vee_m + s^\wedge_m \right)
\]

satisfy the distributional relations in the mass parameters \( m \) and \( m' \)

\[
k_m k_{m'} = \delta(m - m') p_m \\
k_m s_{m'} = s_{m'} k_m = \frac{\text{PP}}{m - m'} k_m \\
s_m s_{m'} = \frac{\text{PP}}{m - m'} (s_m - s_{m'}) + \pi^2 \delta(m - m') p_m ,
\]

where \( \text{PP} \) denotes the principal part, and \( p_m \) is the distribution

\[
p_m(k) = (\not{k} + m) \delta(k^2 - m^2) .
\]

Proof of Proposition [17.2.5]. Let \( \psi \in \mathcal{H}^\infty \) be a family of solutions of the Dirac equation for varying mass. We denote the boundary values at time \( t_0 \) by \( \psi^0_m := |\psi_m|_{t_0} \). Then we can write the Lippmann-Schwinger equation [17.1.2] as

\[
\psi_m |_{k} = U^{t_0, \tau}_m \psi^0_m + i \int_{t_0}^t U^{t, \tau}_m (\gamma^0 B \psi_m) \big| \tau d\tau .
\]

We now bring this equation into a more useful form. Expressing the time evolution operator with the help of [16.2.4] in terms of the fundamental solution, we obtain

\[
\psi_m(x) = 2\pi \int_{\mathbb{R}^3} k_m(x, (t_0, \vec{y})) \gamma^0 \psi^0_m(t_0, \vec{y}) d^3y \\
+ 2\pi i \int_{t_0}^{x^0} dy^0 \int_{\mathbb{R}^3} d^3y k_m(x, y)(B \psi_m)(y) .
\]
Applying (16.2.2) and using that the advanced and retarded Green’s functions are supported in the future and past light cones, respectively, we can rewrite the last integral in terms of the advanced and retarded Green’s functions,
\[ \psi_m = 2\pi k_m (\gamma_0 \delta_{t_0} \psi_m^0) - s_m^\wedge (\chi_{t_0}^+ \mathbb{B} \psi_m) - s_m^\vee (\chi_{t_0}^- \mathbb{B} \psi_m), \]
where \( \delta_{t_0}(x) := \delta(t_0 - x^0) \) is the Dirac distribution supported on the hypersurface \( x^0 = t_0 \).

Next, we express the advanced and retarded Green’s functions in terms of the Green’s function (17.2.13): According to (16.2.2), we have the relations
\[ s_m = s_m^\vee - i\pi k_m = s_m^\wedge + i\pi k_m \]
and thus
\[ \psi_m = k_m g_m - s_m \mathbb{B} \psi_m \quad \text{with} \quad g_m := 2\pi \gamma_0 \delta_{t_0} \psi_m^0 + i\pi \epsilon_{t_0} \mathbb{B} \psi_m, \]
where \( \epsilon_{t_0} \) is the step function
\[ \epsilon_{t_0}(x) := \epsilon(x^0 - t_0) \]
(and we omitted the brackets in expressions like \( k_m g_m \equiv k_m(g_m) \)). Note that the expression \( k_m g_m \) is well-defined according to Lemma 17.2.7. We also remark that by applying the operator \((i\bar{\partial} - m)\) to the distribution \( g_m \) in (17.2.15), one immediately verifies that \( \psi_m \) indeed satisfies the Dirac equation \((i\bar{\partial} - m)\psi_m = -\mathbb{B} \psi_m \).

Now we can compute the inner product \( \langle \psi | \psi \rangle \) with the help of Lemma 17.2.8. Namely, using (17.2.15),
\[
\langle \psi | \psi \rangle = \int_{I \times I} \left( k_m g_m - s_m \mathbb{B} \psi_m \right) \frac{d m}{d m'} \left( k_m g_m + s_m \mathbb{B} \psi_m \right) \, d m d m'.
\]

Employing the explicit formula for \( g_m \) in (17.2.15), we obtain
\[
\langle \psi | \psi \rangle = \int_I \left( g_m \left| p_m g_m \right| + \pi^2 \left( \mathbb{B} \psi_m \left| p_m \mathbb{B} \psi_m \right| \right) \right) \, d m + \int_{I \times I} \frac{P P}{m - m'} \left( \left| \mathbb{B} \psi_m \left| k_m g_m \right| - \left| k_m g_m \right| \mathbb{B} \psi_m \right) \right) \, d m d m'.
\]

Note that this computation is mathematically well-defined in the distributional sense because \( \psi_m \) and \( g_m \) are smooth and compactly supported in the mass parameter \( m \).

Comparing (16.3.8) with (17.2.14) and taking into account that the operator \( S_m \) defined by (17.2.9) gives a minus sign for the states of negative frequency, we get
\[ p_m = S_m k_m. \]

Using this identity together with Proposition 13.4.4 in the vacuum yields the relations
\[ \left| g_m \right| p_m g_m \right| = (k_m g_m \left| S_m k_m g_m \right|)_{t_0} \]
\[ \left| \mathbb{B} \psi_m \right| p_m \mathbb{B} \psi_m \right| = (k_m \mathbb{B} \psi_m \left| S_m k_m \mathbb{B} \psi_m \right|)_{t_0} \]
We finally apply Proposition 13.6.4 to obtain the representation
\[ \langle \psi | \psi \rangle = \int_I \left( \left| h_m \right| S_m h_m \right|)_{t_0} + \pi^2 \left( k_m \mathbb{B} \psi_m \left| S_m k_m \mathbb{B} \psi_m \right| \right)_{t_0} d m, \]
where
\[ h_m := \psi_m + i\pi k_m(\epsilon_{t_0} \mathbb{B} \psi_m) . \]
In this exercise we collect a few elementary properties of the
ordered exponential.

Comparing (17.2.10) with (17.2.16), we get
\[(\psi_m | \hat{S}_m \psi_m)_m = (h_m | S_m h_m)|_{t_0} + \pi^2 (k_m B \psi_m | S_m k_m B \psi_m)|_{t_0} .\]
Expressing the operators $k_m$ according to (16.2.4) by the time evolution operator and writing $\psi_m$ in terms of the initial data as
\[\psi_m|_t = \tilde{U}^{t,t_0} \psi|_{t_0} ,\]
we obtain
\[
(\psi_m | \hat{S}_m \psi_m)_m = (\psi | S_m \psi)|_{t_0} - \frac{i}{2} \int_{-\infty}^{\infty} \psi(t-t_0) \left( S_m U^{t_0,t} \psi \right)|_{t_0} \, dt
+ \frac{i}{2} \int_{-\infty}^{\infty} \psi(t-t_0) (U^{t_0,t} V(t) \tilde{U}^{t,t_0} \psi)|_{t_0} \, dt
+ \frac{1}{4} \int_{\mathbb{R} \times \mathbb{R}} \psi(t-t_0) \left( U^{t_0,t} V(t) \tilde{U}^{t,t_0} \psi \right)|_{t_0} \, dt \, dt'
+ \frac{1}{4} \int_{\mathbb{R} \times \mathbb{R}} \left( U^{t_0,t} V(t) \tilde{U}^{t,t_0} \psi \right)|_{t_0} \, dt \, dt'.
\]
Rearranging the terms and polarizing gives the result.

**Proof of Theorem 17.2.4.** Since the time evolution operators are unitary and the operators $S_m$ have norm one (see (17.2.9)), the representation (17.2.11) and (17.2.12) gives rise to the following estimate for the sup-norm of $\hat{S}_m$,
\[\| \hat{S}_m \| \leq 1 + \int_{\mathbb{R}} |V(t)|_{C^0} \, dt + \int_{\mathbb{R} \times \mathbb{R}} |V(t)|_{C^0} \cdot |V(t')|_{C^0} \, dt \, dt'.\]
The decay assumption (17.2.7) implies that the sup-norm of $\hat{S}_m$ is bounded uniformly in $m$. Using this fact in (17.2.10) gives the inequality (15.2.8), thereby establishing the strong mass oscillation property.

We finally remark that the uniqueness statement in Proposition 15.3.3 implies that (17.2.11) and (17.2.12) yields an explicit representation of the fermionic signature operator in the presence of a time-dependent external potential.

**Exercises**

**Exercise 17.1.** For a smooth one-parameter family of matrices $F(\alpha), \alpha \in \mathbb{R}$, the ordered exponential $\text{Pexp}(\int A F(\alpha) \, d\alpha)$ is given by the Dyson series
\[
\text{Pexp} \left( \int_a^b F(\alpha) \, d\alpha \right) = 1 + \int_a^b F(t_0) \, dt_0 + \int_a^b dt_0 \int_{t_0}^b F(t_1) \, dt_1 + \int_a^b dt_0 \int_{t_0}^b \int_{t_1}^b dt_2 F(t_2) + \cdots .
\]
In this exercise we collect a few elementary properties of the ordered exponential.

(a) Assume that the matrix-valued function $F$ is commutative in the sense that
\[[F(\alpha), F(\beta)] = 0 \quad \text{for all } \alpha, \beta \in [a,b].\]
Show that the ordered exponential reduces to the ordinary exponential,
\[\text{Pexp} \left( \int_a^b F(\alpha) \, d\alpha \right) = \exp \left( \int_a^b F(\alpha) \, d\alpha \right) .\]
Hint: Show inductively that
\[
\int_a^b dt_0 F(t_0) \int_t_0^b dt_1 F(t_1) \cdots \int_{t_{n-1}}^b dt_n F(t_n) = \frac{1}{(n+1)!} \left( \int_a^b F(t) \, dt \right)^{n+1}.
\]

(b) Assume that \( F \) is continuous on \([a,b]\). Show that the Dyson series converges absolutely and that
\[
\left\| \text{Pexp} \left( \int_a^b F(\alpha) \, d\alpha \right) \right\| \leq \exp \left( \int_a^b \| F(\alpha) \| \, d\alpha \right).
\]

Hint: Estimate the integrals and apply (a).

(c) Show by direct computation that the ordered exponential satisfies the equations
\[
\frac{d}{da} \text{Pexp} \left( \int_a^b F(\alpha) \, d\alpha \right) = -F(a) \text{Pexp} \left( \int_a^b F(\alpha) \, d\alpha \right) \quad (17.2.17)
\]
\[
\text{Pexp} \left( \int_a^a F(\alpha) \, d\alpha \right) = 1. \quad (17.2.18)
\]
Use the uniqueness theorem for solutions of ordinary differential equations to give an alternative definition in terms of the solution of an initial-value problem. Use this reformulation to show the group property
\[
\text{Pexp} \left( \int_a^b F(\alpha) \, d\alpha \right) \text{Pexp} \left( \int_b^c F(\alpha) \, d\alpha \right) = \text{Pexp} \left( \int_a^c F(\alpha) \, d\alpha \right) \quad (17.2.19)
\]

(d) Show that
\[
\frac{d}{db} \text{Pexp} \left( \int_a^b F(\alpha) \, d\alpha \right) = \text{Pexp} \left( \int_a^b F(\alpha) \, d\alpha \right) F(b) \quad (17.2.20)
\]

Hint: Differentiate the identity (17.2.19) in the case \( c = a \) and use the group properties (17.2.18) and (17.2.19).

(e) Show that
\[
\text{Pexp} \left( \int_a^b F(\alpha) \, d\alpha \right)^* = \text{Pexp} \left( \int_b^a (-F(\alpha))^* \, d\alpha \right) \quad .
\]
Deduce that if \( F(\alpha) \) is an anti-Hermitian matrix, then the ordered exponential is a unitary matrix. Hint: There are two alternative methods. One method is to argue using the differential equations (17.2.17) and (17.2.20) or with the group property. A more computational approach is to take the adjoint of the Dyson series and re-parametrize the integrals.

Exercise 17.2. Given \( \omega \in \mathbb{R} \) and a smooth function \( V(t) \), we consider the ordinary differential equation
\[
(i\partial_t + \omega) \phi(t) = V(t) \phi(t) .
\]

(a) Write down the Lippmann-Schwinger equation, taking the right side of the equation as the perturbation. Hint: The free time evolution operator \( U^{t,t'} \) was computed in Exercise 16.5.

(b) Express the Lippmann-Schwinger equation in the case \( \omega = 0 \) explicitly as an integral equation. How is it related to the integral equation used in the Picard iteration (in the proof of the Picard-Lindelöf theorem)?
CHAPTER 18

Methods of Perturbation Theory

In Chapter 15 the unregularized kernel of the fermionic projector was constructed abstractly with functional analytic methods. In order to fill these constructions with life, one can analyze the kernel with methods of perturbation theory. The resulting explicit formulas give a detailed understanding of the structure of this kernel. We now outline the perturbative methods; more details can be found in [42] or in the original papers [34, 49, 77].

In preparation, we rewrite the definition of the fermionic signature operator in a way suitable for the perturbative treatment. Our starting point is the representation (15.3.4) of the spacetime inner product in terms of the scalar product,

\[
\langle p \psi' | p \psi \rangle = \hat{I}(\psi_m \mid S_m \psi_m') dm.
\]

(18.0.1)

Here \(\psi = (\psi_m)_{m \in I}\) and similarly \(\psi'\) are families of solutions of the Dirac equation for a varying mass parameter. Now we consider specifically families obtained by acting with the causal fundamental solution on given test wave functions, i.e.

\[
\psi_m = \tilde{k}_m \phi \quad \text{and} \quad \psi'_m = \tilde{k}_m \phi' \quad \text{with} \quad \phi, \phi' \in C^\infty_{sc}(M, \mathcal{M}).
\]

Using this ansatz in (18.0.1) and pulling the mass integrals outside, we obtain the formula

\[
\hat{I} dm \hat{I} dm' \langle \phi | \tilde{k}_m \tilde{k}_m' \psi' \rangle = \hat{I} (\tilde{k}_m \phi' \mid S_m \tilde{k}_m \phi') dm.
\]

Next, we rewrite the integrand on the left side by using that the fundamental solution is symmetric with respect to the spacetime inner product (see Corollary 13.4.5),

\[
\langle \tilde{k}_m \phi | \tilde{k}_m \phi' \rangle = \langle \phi | \tilde{k}_m \tilde{k}_m' \phi' \rangle.
\]

Moreover, the integrand on the right can be rewritten with the help of Proposition 13.4.4 as

\[
(\tilde{k}_m \phi \mid S_m \tilde{k}_m \phi')_{m} = \langle \phi \mid S_m \tilde{k}_m \phi' \rangle.
\]

Thus (18.0.2) becomes

\[
\int_I dm \int_I dm' \langle \phi | \tilde{k}_m \tilde{k}_m' \psi' \rangle = \int_I \langle \phi \mid S_m \tilde{k}_m \phi' \rangle dm.
\]

Here one should keep in mind the product \(\tilde{k}_m \tilde{k}_m'\) is an operator product in spacetime,

\[
(\tilde{k}_m \tilde{k}_m')(x, y) = \int_{\mathcal{M}} \tilde{k}_m(x, z) \tilde{k}_m'(z, y) d^4z,
\]

(18.0.3)

whereas in the product \(S_m \tilde{k}_m\) we multiply by an operator on the Hilbert space \(\mathcal{H}_m\) defined for example at time \(t\). In order to clarify the notation, we write this product as

\[
S_m \mid_t \tilde{k}_m.
\]
Then the relation (18.0.3) can be written in the short form
\[ \tilde{\Delta}_{m} \cdot \tilde{\Delta}_{m'} = \delta(m - m') S_{m} | \tilde{\Delta}_{m} \cdot \tilde{\Delta}_{m'} . \] (18.0.4)
In this way, one is led to considering products of operators in spacetime which involve the mass as a parameter. Carrying out the products gives rise to \( \delta \)-distributions in the respective mass parameters.

This computational procedure was introduced in [34]. In the Minkowski vacuum, it can be carried out most conveniently in momentum space. We begin with the formula for the causal fundamental solution in momentum space (16.3.8),
\[ k_{m}(p) = (\bar{p} + m) \delta(p_{2} - m^{2}) \epsilon(p_{0}) . \] (18.0.5)
Then, using Plancherel together as well as the anti-commutation relations of the Dirac matrices, we obtain
\[
(k_{m} k_{m'})(p) = k_{m}(p) k_{m'}(p) = (\bar{p} + m) \delta(p_{2} - m^{2}) \epsilon(p_{0}) (\bar{p} + m') \delta(p_{2} - (m')^{2}) \epsilon(p_{0}) \\
= (p^{2} + (m + m') \bar{p} + mm') \delta(m^{2} - (m')^{2}) \delta(k_{2} - m^{2}) \\
= (p^{2} + (m + m') \bar{p} + mm') \frac{1}{2m} \delta(m - m') \delta(k_{2} - m^{2}) \\
= \delta(m - m') (\bar{p} + m) \delta(p_{2} - m^{2}) = \delta(m - m') \epsilon(p_{0}) k_{m}(p) .
\]
Comparing with (18.0.4), we can read off that the fermionic signature operator simply is the operator of multiplication operator by the sign of the frequency,
\[ S_{m}(p) = \epsilon(p_{0}) . \]
This computation is an efficient way of seeing that, in the Minkowski vacuum, the fermionic signature operator gives back the frequency splitting.

We proceed by explaining how this computation can be extended to the situation when an external potential \( \mathcal{B} \) is present. We want to proceed order by order in a perturbation expansion in \( \mathcal{B} \). Before entering the details, we point out that by a “perturbation expansion” we mean a formal expansion in powers of \( \mathcal{B} \). The resulting formulas will be well-defined and finite to every order. But it is unknown whether the power series converges. This procedure is convincing because we already know from our functional analytic constructions in Chapter 15 that the fermionic signature operator and the unregularized fermionic projector are well-defined mathematical objects. With this in mind, the only purpose of the constructions in this chapter is to compute these objects more explicitly. For this purpose, a perturbative treatment order by order in perturbation theory is most suitable.

18.1. Perturbation Expansion of the Causal Green’s Operators

We already encountered the causal Green’s operators for the Dirac equation several times in this book. In Section 13.4, they were constructed with methods of hyperbolic partial differential equations (see Theorem 13.4.3). In Section 16.1, on the other hand, we used Fourier methods to derive explicit formulas for the causal Green’s operator in the Minkowski vacuum (see (16.1.4)). Taking these explicit formulas as the starting point, one can also write down closed formulas for the causal Green’s functions in the presence of an external potential. In order to state these formulas, we consider the Dirac equation (1.3.14) in the presence of an external potential \( \mathcal{B} \). We always denote the objects in the presence of the external potential with a tilde, whereas the objects without tilde
refer to the vacuum. Then the advanced and retarded Dirac Green’s functions have the perturbation expansions
\[
\tilde{s}_m^\lor = \sum_{n=0}^{\infty} (-s_m^\lor B)^n s_m^\lor, \quad \tilde{s}_m^\land = \sum_{n=0}^{\infty} (-s_m^\land B)^n s_m^\land.
\] (18.1.1)

These formulas can be understood as follows. First, one sees by direct computation using the defining equation of the Green’s operator (16.1.1) that they are formal solutions of (16.2.1). For example, for the advanced Green’s operator,
\[
\begin{align*}
(i\partial_x + B - m) \left( \sum_{n=0}^{\infty} (-s_m^\lor B)^n s_m^\lor \right)
&= (i\partial_x - m) s_m^\lor \left( \sum_{n=0}^{\infty} (-B s_m^\lor)^n \right) + B \left( \sum_{n=0}^{\infty} (-s_m^\lor B)^n s_m^\lor \right) \\
&= \sum_{n=0}^{\infty} (-B s_m^\lor)^n + B \left( \sum_{n=0}^{\infty} (-s_m^\lor B)^n s_m^\lor \right) = 1.
\end{align*}
\] (18.1.2)

Second, the fact that the Green’s operators in (18.1.1) are either all advanced or all retarded implements the causal properties of the respective Green’s operators. Let us consider for example the integral kernel of the first order contribution to the advanced Green’s operator
\[
( -s_m^\land B s_m^\land)(x,y) = -\int_{\mathcal{M}} s_m^\land(x,z) B(z) s_m^\land(z,y) d^4 z.
\] (18.1.2)

The integrand vanishes unless \(z\) lies in the causal future of \(y\) and \(x\) lies in the causal future of \(z\). Using transitivity of the causal relations, one concludes that the integral is zero unless \(x\) lies in the causal future of \(y\). In this sense, the expression (18.1.2) is again causal and retarded. The higher orders can be treated similarly by induction.

We finally explain in which sense the perturbation series (18.1.1) are mathematically well-defined. To every order in perturbation theory, the operator products are well-defined and finite, provided that the potential \(B\) is smooth and decays so fast at infinity that the functions \(B(x), x^i B(x), \) and \(x^i x^j B(x)\) are integrable (for an inductive proof see [42, Lemma 2.1.2]). Knowing that the Green’s operators are well-defined non-perturbatively (see Chapter 13), we disregard the issue of convergence of the perturbation series.

18.2. The Causal Perturbation Expansion of the Fermionic Projector

Using (13.4.8), we also have a unique perturbation expansion for the causal fundamental solution,
\[
\tilde{k}_m = \frac{1}{2\pi i} (\tilde{s}_m^\lor - \tilde{s}_m^\land).
\] (18.2.1)

Using the identities
\[
s_m^\lor = s_m + i\pi k_m, \quad s_m^\land = s_m - i\pi k_m,
\] (18.2.2)

where we introduced the symmetric Green’s operator
\[
s_m := \frac{1}{2} (s_m^\lor + s_m^\land),
\] (18.2.3)
one can write the above perturbation series as operator product expansions. More precisely,

\[ \tilde{k}_m = \sum_{\beta=0}^{\infty} (i\pi)^{2\beta} b^\prec_m k_m (b_m k_m)^{2\beta} b^\succ_m, \]  

(18.2.4)

where the factors \( b^\bullet_m \) are defined by

\[ b^\prec_m = \sum_{n=0}^{\infty} (-s_m B)^n, \quad b_m = \sum_{n=0}^{\infty} (-B s_m)^n B, \quad b^\succ_m = \sum_{n=0}^{\infty} (-B s_m)^n. \]  

(18.2.5)

In the following constructions, we need to multiply the operator products in (18.2.4). These products have a mathematical meaning as distributions in the involved mass parameters,

\[ p_m p_m' = k_m k_m' = \delta(m - m') p_m \]  

(18.2.6)

\[ p_m k_m' = k_m p_m' = \delta(m - m') k_m \]  

(18.2.7)

\[ k_m b^\succ_m b^\prec_m' k_m' = \delta(m - m') \left( p_m + \pi^2 k_m b_m p_m b_m k_m \right), \]  

(18.2.8)

where

\[ p_m(q) = (\dot{q} + m) \delta(q^2 - m^2) \]  

(18.2.9)

\[ k_m(q) = (\dot{q} + m) \delta(q^2 - m^2) \epsilon(q^0). \]  

(18.2.10)

Since all these formulas involve a common prefactors \( \delta(m - m') \), we can introduce a convenient notation by leaving out this factor and omitting the mass indices. For clarity, we denote this short notation with a dot, i.e. symbolically

\[ A \cdot B = C \quad \text{stands for} \quad A_m B_{m'} = \delta(m - m') C_m. \]  

(18.2.11)

With this short notation, the multiplication rules can be written in the compact form

\[ p \cdot p = k \cdot k = p, \quad p \cdot k = k \cdot p = k, \quad k b^\succ \cdot b^\prec k = p + \pi^2 k b p k. \]  

(18.2.12)

In all the subsequent calculations, the operator products are well-defined provided that the potential \( B \) is sufficiently smooth and has suitable decay properties at infinity (for details see again [42, Lemma 2.1.2]). But again, all infinite series are to be understood merely as formal power series in the potential \( B \).

Using this notation, we can write (18.2.4) as

\[ \tilde{k} = k + \Delta k \quad \text{with} \quad \Delta \tilde{k} = \sum_{\beta=0}^{\infty} (i\pi)^{2\beta} b^\prec k (bk)^{2\beta} b^\succ - k \]  

(18.2.13)

(note that \( \Delta \tilde{k} \) is at least linear in \( B \)). Powers of the operator \( \tilde{k} \) with the product (18.2.11) are well-defined using the multiplication rules (18.2.12). This makes it possible to develop a spectral calculus for \( \tilde{k} \), which is formulated most conveniently with contour integrals.

To this end, we introduce the resolvent by

\[ \tilde{R}_\lambda = (\tilde{k} - \lambda)^{-1}. \]  

(18.2.14)

We choose a contour \( \Gamma_+ \) which encloses the point 1 in counter-clockwise direction and does not enclose the points -1 and 0. Likewise, \( \Gamma_- \) is chosen as a contour which encloses
18.2. THE CAUSAL PERTURBATION EXPANSION OF THE FERMIONIC PROJECTOR

Given a holomorphic function \( f \) we define \( f(\tilde{k}) \) by

\[
f(\tilde{k}) := -\frac{1}{2\pi i} \oint_{\Gamma_- \cup \Gamma_+} f(\lambda) \tilde{R}_\lambda \, d\lambda.
\]

Before going on, we need to explain how the resolvent and these contour integrals are to be understood mathematically. First, the resolvent can be expressed in terms of the vacuum resolvent with a perturbation series being a formal Neumann series,

\[
\tilde{R}_\lambda = (k - \lambda + \Delta k)^{-1} = (1 + R_\lambda \cdot \Delta k)^{-1} \cdot R_\lambda = \sum_{n=0}^{\infty} (-R_\lambda \cdot \Delta k)^n \cdot R_\lambda.
\]

In order to define \( R_\lambda \), we note that, according to (18.2.12), the operator \( k \) has the eigenvalues \( \pm 1 \) and 0 with corresponding spectral projectors \( (p \pm k)/2 \) and \( 1 - p \). Hence we can write the free resolvent as

\[
R_\lambda = \frac{p + k}{2} \left( \frac{1}{1 - \lambda} \right) + \frac{p - k}{2} \left( \frac{1}{1 - \lambda} \right) - \frac{1 - p}{\lambda}.
\]

Substituting this formula in (18.2.16), to every order in perturbation theory we obtain a meromorphic function in \( \lambda \) having poles only at \( \lambda = 0 \) and \( \lambda = \pm 1 \). Therefore, the contour integral in (18.2.15) can be computed with residues, and the result is independent of the choice of the contours \( \Gamma_- \) and \( \Gamma_+ \). In this way, the operator \( f(\tilde{k}) \) is uniquely defined as a formal perturbation series which is well-defined and finite to every order.

We now establish the functional calculus.

**Theorem 18.2.1. (functional calculus)** For any functions \( f, g \) which are holomorphic in discs around \( \pm 1 \) which contain the contours \( \Gamma_\pm \),

\[
(i\partial + B - m) f(\tilde{k}) = 0
\]

\[
f(\tilde{k})^* = \overline{f(\tilde{k})}
\]

\[
f(\tilde{k}) \cdot g(\tilde{k}) = (fg)(\tilde{k}).
\]

**Proof.** Since the image of the operator \( \tilde{k} \) lies in the kernel of the Dirac operator, we know that

\[
(i\partial + B - m) \tilde{R}_\lambda = (i\partial + B - m) (\lambda^{-1}).
\]

Taking the contour integral (18.2.15) gives (18.2.18).

The operators \( p_m, k_m \) and \( s_m \) are obviously symmetric (see (18.2.9), (18.2.10) and (18.2.3)). According to (18.2.4), the operator \( k_m \) is also symmetric. Hence the resolvent \( R_\lambda \) defined by (18.2.14) has the property

\[
R_\lambda^* = R_\lambda^T.
\]

The relation (18.2.19) follows by taking the adjoint of (18.2.15) and reparametrizing the integral.

The starting point for proving (18.2.20) is the resolvent identity (see Exercise 3.3)

\[
\tilde{R}_\lambda \cdot \tilde{R}_{\lambda'} = \frac{1}{\lambda' - \lambda} \left( \tilde{R}_\lambda - \tilde{R}_{\lambda'} \right).
\]

We set \( \Gamma = \Gamma_+ \cup \Gamma_- \) and denote the corresponding contour for \( \lambda' \) by \( \Gamma' \). Since the integral (18.2.15) is independent of the precise choice of the contour, we may choose

\[
\Gamma = \partial B_\delta(1) \cup \partial B_\delta(-1) \quad \text{and} \quad \Gamma' = \partial B_\delta(1) \cup \partial B_\delta(-1)
\]
for sufficiently small $\delta < 1/2$. Then $\Gamma$ does not enclose any point of $\Gamma'$, implying that
\[ \oint_{\Gamma} \frac{f(\lambda)}{\lambda - \lambda'} d\lambda = 0 \quad \text{for all } \lambda' \in \Gamma'. \] (18.2.22)

On the other hand, $\Gamma'$ encloses every point of $\Gamma$, so that
\[ \oint_{\Gamma'} f(\lambda) g(\lambda') \frac{\tilde{R}_\lambda}{\lambda - \lambda'} d\lambda' = -2\pi i \int_{\Gamma} f(\lambda) g(\lambda) \tilde{R}_\lambda \quad \text{for all } \lambda \in \Gamma. \] (18.2.23)

Combining (18.2.21) with (18.2.22) and (18.2.23), we obtain
\[ f(\tilde{k}) \cdot \tilde{k} = \left( \frac{\tilde{S}_m}{|t\tilde{k}|} \right) \frac{1}{\lambda - \lambda'} \left( \tilde{R}_\lambda - \tilde{R}_{\lambda'} \right) \]
\[ = \frac{1}{2\pi i} \oint_{\Gamma} f(\lambda) g(\lambda) \tilde{R}_\lambda d\lambda = (fg)(\tilde{k}). \]

This concludes the proof. \hfill \Box

This functional calculus makes it possible to compute the unregularized kernel of the fermionic projector, as we now explain. Our starting point is the defining equation for the fermionic signature operator (18.0.4), which we can now write in the short form
\[ \tilde{k} \cdot \tilde{k} = \tilde{S}_m |t\tilde{k}. \]

Iterating this relation, we obtain for any $p \in \mathbb{N}$
\[ (\tilde{k} \cdot \tilde{k})^p \tilde{k} = (\tilde{S}_m |t\tilde{k})^p \tilde{k} = (\tilde{S}_m)^p |t\tilde{k} \quad \text{for all } p \in \mathbb{N}. \]

Consequently, this formula also holds for the functional calculus, i.e.
\[ f(\tilde{k}) \cdot \tilde{k} = f(\tilde{S}_m) |t\tilde{k}. \]

This formula makes it possible to express the unregularized kernel $\tilde{P}_-$ in (15.4.1) by
\[ \tilde{P}_- = -\chi(-\infty,0)(\tilde{S}_m) \tilde{k}_m = -\chi(-\infty,0)(\tilde{S}_m) |t\tilde{k} = \chi(-\infty,0)(\tilde{k}) \cdot \tilde{k} \]
\[ = \left( \frac{1}{2\pi i} \oint_{\Gamma_-} \tilde{R}_\lambda d\lambda \right) \cdot \tilde{k} = -\frac{1}{2\pi i} \oint_{\Gamma_-} (-\lambda) \tilde{R}_\lambda d\lambda \]

Substituting the perturbation expansion for $\tilde{R}_\lambda$ in (18.2.16) and writing the vacuum resolvent in the form (18.2.17), one can carry out the contour integral with residues. This gives the desired perturbation expansion for $P_-$. More details on this method and explicit formulas can be found in [77, Section 3.3 and Appendix A].

**Exercises**

**Exercise 18.1.** *(Perturbative description of gauge transformations)* We consider the perturbation expansion for the Dirac Green’s operators (18.1.1) for a perturbation by a pure gauge potential, i.e.
\[ B(x) = \varnothing \Lambda(x) \]
with a real-valued function $\Lambda$.

(a) Show that the Dirac operator with interaction can be written as
\[ i\partial + (\varnothing \Lambda) - m = e^{i\Lambda(x)} (i\partial - m) e^{-i\Lambda(x)}. \]

Conclude that the perturbation of the Dirac solutions amounts to multiplication by a phase function, i.e.
\[ \tilde{\Psi}(x) = e^{i\Lambda(x)} \Psi(x). \]
Explain why these findings are a manifestation of the local gauge freedom of electrodynamics.

(b) Show that the gauge phases also appear in the perturbation expansion in the sense that

\[ \tilde{s}^\Lambda_m(x, y) = e^{i\Lambda(x)} s^\Lambda_m(x, y) e^{-i\Lambda(y)}. \]

*Hint:* To first order, one needs to show that

\[-(s^\Lambda_m B s^\Lambda_m)(x, y) = i(\Lambda(x) - \Lambda(y)) s^\Lambda_m(x, y).\]

To this end, it is convenient to write the perturbation operator as a commutator,

\[ B = -i \left[ (i\partial - m), \Lambda \right], \]

and use the defining equation of the Green’s operator \([16.1.1]\). To higher order, one can proceed inductively.

**Exercise 18.2.** Prove the identity \([18.2.8]\). *Hint:* Use the multiplication rules derived in Exercises \([16.9]\) and \([16.10]\). Make use of the fact that one gets telescopic sums.

**Exercise 18.3.** Verify the identity \([18.2.20]\) in a perturbation expansion to first and second order. To this end, compute both sides of this equation using the perturbation expansion of \(\tilde{R}_\Lambda\) and carrying out the contour integrals. *Hint:* Similar formulas can be found in the appendices of \([49]\) and \([77]\).
CHAPTER 19

Methods of Microlocal Analysis

19.1. The Hadamard Expansion in Minkowski Space

In Chapter 15, the unregularized kernel of the fermionic projector $P(x,y) = P_-(x,y)$ was constructed abstractly. In Chapter 18, we saw how this kernel can be expanded in a perturbation series in powers of the external potential. In order to gain more explicit information on the form of the unregularized kernel, it is very useful to analyze its singularity structure on the light cone. It turns out that $P(x,y)$ has singularities on the light cone, which can be described by the so-called Hadamard expansion of the form

$$P(x,y) = \lim_{\varepsilon \to 0} i\partial_x \left( \frac{U(x,y)}{\Gamma_\varepsilon(x,y)} + V(x,y) \log \Gamma_\varepsilon(x,y) + W(x,y) \right),$$  \hspace{1cm} (19.1.1)

where

$$\Gamma_\varepsilon(x,y) := (y-x)^j (y-x)_j - i\varepsilon (y-x)^0, \hspace{1cm} (19.1.2)$$

and $U$, $V$ and $W$ are smooth functions on $\mathcal{M} \times \mathcal{M}$ taking values in the $4 \times 4$-matrices acting on the spinors (we always denote spacetime indices by latin letters running from $0, \ldots, 3$). This local expansion is based on the method of integration along characteristics which will be explained below (see after (19.1.10) or also [90, 79] or [5]). In Minkowski space, the light-cone expansion [36, 37] (see also [42, Section 2.2]) gives an efficient procedure for computing an infinite number of Hadamard coefficients in one step. The Hadamard form (19.1.1) carries over to curved spacetime. Moreover, there is an interesting connection to the so-called wave front set in microlocal analysis. These generalizations will be briefly outlined in Section 19.3 below. In all the other sections of this chapter, we restrict attention to Minkowski space.

It turns out that for an external potential in Minkowski space, the kernel of the fermionic projector is indeed of Hadamard form.

**Theorem 19.1.1.** Assume that the external potential $B$ is smooth, and that its time derivatives decay at infinity in the sense that (17.2.1) holds and in addition that

$$\int_{-\infty}^{\infty} |\partial_t^p B(t)|_{C^0} dt < \infty \hspace{1cm} \text{for all } p \in \mathbb{N}$$

(with the $C^0$-norm as defined in (17.2.2)). Moreover, assume that the potential satisfies the bound

$$\int_{-\infty}^{\infty} |B(t)|_{C^0} dt < \sqrt{2} - 1. \hspace{1cm} (19.1.3)$$

Then the fermionic projector $P(x,y)$ is of Hadamard form.

The proof of this theorem will be given in Section 19.4 below.

We conclude this section by explaining how the expansion (19.1.1) comes about and how the involved functions $U$, $V$ and $W$, at least in principle, can be computed iteratively.
using the method of integration along characteristics. We begin by computing the unregularized kernel in the Minkowski vacuum. To this end, one rewrites the factor \((k + m)\) in (5.7.1) in terms of a differential operator in position space,

\[
P(x, y) = (i\partial_x + m) T_m^2(x, y),
\]

where \(T_m^2\) is the scalar bi-distribution

\[
T_m^2(x, y) := \int \frac{d^4k}{(2\pi)^4} \delta(k^2 - m^2) \Theta(-k^0) e^{-ik(x-y)}. \tag{19.1.5}
\]

Away from the light cone (i.e. for \(\xi^2 \neq 0\)), \(T_m^2(x, y)\) is a smooth function given by

\[
T_m^2(x, y) = \left\{
\begin{array}{ll}
m \frac{Y_1(m\sqrt{\xi^2})}{16\pi^2 \sqrt{\xi^2}} + \frac{im}{16\pi^2 \sqrt{\xi^2}} J_1(m\sqrt{\xi^2}) \epsilon(\xi^0) & \text{if } \xi \text{ is timelike} \\
\frac{m}{8\pi^3} K_1(m\sqrt{-\xi^2}) \sqrt{-\xi^2} & \text{if } \xi \text{ is spacelike},
\end{array}
\right. \tag{19.1.6}
\]

where we set

\[
\xi := y - x, \tag{19.1.7}
\]

and \(J_1, Y_1\) and \(K_1\) are Bessel functions. Expanding the Bessel functions in (19.1.6) in a power series, one obtains (see [109] (10.2.2), (10.8.1) and (10.25.2), (10.31.1))

\[
T_m^2(x, y) = -\frac{1}{8\pi^3} \left( \frac{\text{PP}}{\xi^2} + i\pi \delta(\xi^2) \epsilon(\xi^0) \right) \epsilon(\xi^0) + \frac{m^2}{32\pi^3} \sum_{j=0}^{\infty} \frac{(-1)^j}{j! (j+1)!} \left( \frac{m^2 \xi^2}{4j} \right)^j \left( \log |m^2 \xi^2| + c_j + i\pi \Theta(\xi^2) \epsilon(\xi^0) \right)
\]

with real coefficients \(c_j\) (here \(\Theta\) and \(\epsilon\) are again the Heaviside and the sign function, respectively). In particular, one sees that \(T_m^2\) is a distribution which is singular on the light cone. These singularities can be written in a shorter form using residues as

\[
T_m^2(x, y) = \lim_{\varepsilon \to 0} \left( -\frac{1}{8\pi^3} \frac{1}{\Gamma_\epsilon(x, y)} + \frac{m^2}{32\pi^3} \sum_{j=0}^{\infty} \frac{(-1)^j}{j! (j+1)!} \left( \frac{m^2 \Gamma_\epsilon(x, y)}{4j} \right)^j \left( \log (m^2 \Gamma_\epsilon(x, y)) + c_j \right) \right). \tag{19.1.8}
\]

Noting that the series converge, one obtains a function of the desired form as in the brackets in (19.1.1). This shows that the term \(i\partial_x T_m^2(x, y)\) in (19.1.4) is of Hadamard form. For the term \(m T_m^2(x, y)\) this can be shown by pulling one derivative and working with matrix-valued kernels. Indeed,

\[
m T_m^2(x, y) = -\frac{1}{m} \Box_x \left( T_m^2(x, y) - T_0(x, y) \right) = \partial_x \left\{ -\frac{1}{m} \partial_x \left( T_m^2(x, y) - T_0(x, y) \right) \right\},
\]

and computing the curly brackets by differentiating (19.1.8) one obtains again an expression of the Hadamard form (19.1.1).
The summands in (19.1.8) can be understood by verifying that $T_{m^2}$ satisfies the Klein-Gordon equation. Indeed, using the abbreviation $\xi := y - x$, we obtain

$$\frac{\partial}{\partial x^j} \left( \frac{1}{\Gamma_\epsilon(x, y)} \right) = - \frac{\partial_j \Gamma_\epsilon(x, y)}{\Gamma_\epsilon(x, y)} - \frac{1}{\Gamma_\epsilon(x, y)^2} \left( 2\xi_j - i\epsilon\delta_j,0 \right)$$

$$\Box_x \left( \frac{1}{\Gamma_\epsilon(x, y)} \right) = \frac{2}{\Gamma_\epsilon(x, y)^3} \left( 2\xi_j - i\epsilon\delta_j,0 \right) \left( 2\xi_j - i\epsilon\delta_j,0 \right) - \frac{8}{\Gamma_\epsilon(x, y)^2}$$

$$= \frac{2}{\Gamma_\epsilon(x, y)^3} \left( 4\xi_j^2 - 4i\epsilon\xi_0 - \epsilon^2 \right) - \frac{8}{\Gamma_\epsilon(x, y)^2} = - \frac{2\epsilon^2}{\Gamma_\epsilon(x, y)^3},$$

and this tends to zero as $\epsilon \searrow 0$. Thus the leading term in (19.1.8) satisfies the scalar wave equation. In the Klein-Gordon equation, however, the term involving the mass remains,

$$- m^2 \frac{1}{\Gamma_\epsilon(x, y)}.$$ (19.1.9)

This term is compensated by the next term in the expansion (19.1.8), because

$$\frac{\partial}{\partial x^j} \log \left( \Gamma_\epsilon(x, y) \right) = \frac{\partial_j \Gamma_\epsilon(x, y)}{\Gamma_\epsilon(x, y)} = - \frac{1}{\Gamma_\epsilon(x, y)} \left( 2\xi_j - i\epsilon\delta_j,0 \right)$$

$$\Box_x \log \left( \Gamma_\epsilon(x, y) \right) = - \frac{1}{\Gamma_\epsilon(x, y)^2} \left( 2\xi_j - i\epsilon\delta_j,0 \right) \left( 2\xi_j - i\epsilon\delta_j,0 \right) + \frac{8}{\Gamma_\epsilon(x, y)}$$

$$= - \frac{1}{\Gamma_\epsilon(x, y)^2} \left( 4\xi_j^2 - 4i\epsilon\xi_0 - \epsilon^2 \right) + \frac{8}{\Gamma_\epsilon(x, y)}$$

$$= \frac{4}{\Gamma_\epsilon(x, y)} + \frac{\epsilon^2}{\Gamma_\epsilon(x, y)^2}.$$ (19.1.10)

Now the first summand in the last line cancels the term (19.1.9) in the Klein-Gordon equation. Proceeding order by order in powers of $\Gamma_\epsilon(x, y)$, one can verify all the coefficients in (19.1.8).

This method of applying the wave operator term by term is also useful for computing the functions $U$, $V$ and $W$ in (19.1.1) in the case that an external potential is present. In fact, these functions can be expressed in terms of line integrals along the light cone. This method of integration along characteristics goes back to Hadamard [90] and is described in the classic textbook [79] in curved spacetime. In order to explain the method in the simplest possible context, let us assume that we consider the wave equation with an external scalar potential $a(x)$, i.e.

$$\left( - \Box_x - a(x) \right) \tilde{T}(x, y) = 0$$

(the Dirac equation will be treated more systematically in Section 19.2). In modification of the series in (19.1.8) we make the ansatz

$$\tilde{T}(x, y) = \lim_{\epsilon \searrow 0} \left( \frac{1}{\Gamma_\epsilon(x, y)} + \sum_{n=1}^{\infty} f_n(x, y) \right) \Gamma_\epsilon(x, y)^n \log \left( \Gamma_\epsilon(x, y) \right) \right)$$ (19.1.10)

Compared to (19.1.9), now the error term of the first summand involves the potential $a(x)$,

$$- \frac{a(x)}{\Gamma_\epsilon(x, y)}.$$ (19.1.11)
The hope is to compensate this term by a suitable choice of \( f_1(x,y) \). Indeed,

\[
\partial_x^j \left( f_1(x,y) \log \Gamma_\varepsilon(x,y) \right) = f_1(x,y) \frac{\partial_x^j \Gamma_\varepsilon(x,y)}{\Gamma_\varepsilon(x,y)} + \partial_x^j f_1(x,y) \log \Gamma_\varepsilon(x,y)
\]

\[
\Box_x \left( f_1(x,y) \log \Gamma_\varepsilon(x,y) \right) = f_1(x,y) \left( \frac{4}{\Gamma_\varepsilon(x,y)} - 2 \partial_x^j f_1(x,y) \frac{2\xi_j}{\Gamma_\varepsilon(x,y)} \right) + \cdots,
\]

where \( \cdots \) stands for all terms which either have a lower order singularity on the light cone or tend to zero as \( \varepsilon \to 0 \). In order for this contribution to compensate (19.1.11), the function \( f_1 \) must satisfy the equation

\[
4 f_1(x,y) - 4 \xi_j \partial_x^j f_1(x,y) = a(x).
\]

Such a differential equation of first order can be solved with the method of characteristics (see for example [29 Section I.3.2]). More specifically, the solution is an integral along the straight line \( \xi \mathbb{R} \). In order to describe the singular behavior on the light cone, it suffices to consider the case that \( \xi \) is tangential to the light cone. Similarly, also to higher order in the expansion parameter \( n \), we obtain transport equations along the light cone, which can be solved iteratively order by order.

### 19.2. The Light-Cone Expansion

We first give the basic definition of the light-cone expansion and explain it afterward.

**Definition 19.2.1.** A distribution \( A(x,y) \) on \( \mathcal{M} \times \mathcal{M} \) is of the order \( \mathcal{O}((y-x)^{2p}) \) for \( p \in \mathbb{Z} \) if the product

\[
(y-x)^{-2p} A(x,y)
\]

is a regular distribution (i.e. a locally integrable function). An expansion of the form

\[
A(x,y) = \sum_{j=g}^{\infty} A^{[j]}(x,y) \tag{19.2.1}
\]

with \( g \in \mathbb{Z} \) is called light-cone expansion if the \( A^{[j]}(x,y) \) are distributions of the order \( \mathcal{O}((y-x)^{2j}) \) and if \( A \) is approximated by the partial sums in the sense that for all \( p \geq g \),

\[
A(x,y) - \sum_{j=g}^{p} A^{[j]}(x,y) \text{ is of the order } \mathcal{O}((y-x)^{2p+2}) . \tag{19.2.2}
\]

The parameter \( g \) gives the leading order of the singularity of \( A(x,y) \) on the light cone. We point out that we do not demand that the infinite series in (19.2.1) converges. Thus, similar to a formal Taylor series, the series in (19.2.1) is defined only via the approximation by the partial sums (19.2.2). The notion of the light-cone expansion is illustrated in Exercise [19.1].

As a concrete example, due to the factors \( \Gamma_\varepsilon(x,y) \), the series (19.1.8) is a light-cone expansion. The term with the leading singularity becomes integrable after multiplying by \( (y-x)^2 \), showing that \( g = -1 \).

Our task is to perform the light-cone expansion of the unregularized kernel of the fermionic projector. Schematically, this construction consists of several steps:

1. Perform the light-cone expansion of the causal Green’s operators \( \tilde{s}_m^\wedge \) and \( \tilde{s}_m^\vee \). Here one proceeds inductively for each summand of the perturbation series (18.1.1).
2. Using the relation (18.2.1), one obtains a corresponding light-cone expansion for the causal fundamental solution \( \tilde{k}_m \).
The so-called residual argument relates the sought-after light-cone expansion of $\hat{P}(x, y)$ to that of $\hat{k}_m$.

This procedure is described in detail in [42, Chapter 2]. In order to avoid an unnecessary overlap, we here focus on the light-cone expansion of the causal Green’s operators and only introduce the concepts needed for the basics on the continuum limit in Chapter 21. Before doing so, we illustrate the light-cone expansion by a simple example.

**Example 19.2.2.** Consider the massless Dirac equation in the presence of an external electromagnetic potential $A$

\[
(i\partial + A)\hat{P}(x, y) = 0.
\]

For simplicity assume that $A$ is smooth and compactly supported in spacetime. Then, to first order in perturbation theory, the light-cone expansion of the unregularized kernel $\hat{P}(x, y)$ takes the form

\[
\hat{P}(x, y) = \frac{i}{2} \exp \left( -i \int_0^1 A_j \big|_{\alpha y + (1-\alpha)x} \xi^j \, d\alpha \right) P(x, y) \tag{19.2.3}
\]

\[
- \frac{1}{2} \xi_i \int_0^1 (\alpha - \alpha^2) j_i \big|_{\alpha y + (1-\alpha)x} d\alpha \, T(0) \tag{19.2.4}
\]

\[
+ \frac{1}{4} \xi_i \int_0^1 F^{ij} \big|_{\alpha y + (1-\alpha)x} \gamma_i \gamma_j \, d\alpha \, T(0) \tag{19.2.5}
\]

\[
- \xi_i \int_0^1 (1 - \alpha) F^{ij} \big|_{\alpha y + (1-\alpha)x} \gamma_j \, d\alpha \, T(0) \tag{19.2.6}
\]

\[
- \xi_i \int_0^1 (1 - \alpha) (\alpha - \alpha^2) \partial_j \big|_{\alpha y + (1-\alpha)x} \psi^j \, d\alpha \, T(1) \tag{19.2.7}
\]

\[
+ \xi_i \big( \text{deg}<1 \big) + \big( \text{deg}<0 \big) + \mathcal{O}(A^2), \tag{19.2.8}
\]

where $F^{jk} = \partial^j A^k - \partial^k A^j$ is the field tensor and $j^k = \partial^k A^j - \Box A^k$ is the corresponding Maxwell current. Moreover, the factors $T^{(0)}$ and $T^{(1)}$ are the leading summands in (19.1.5); more precisely,

\[
T^{(0)}(x, y) = -\frac{1}{8\pi^3} \lim_{\varepsilon \searrow 0} \frac{1}{\Gamma_\varepsilon(x, y)} \tag{19.2.9}
\]

\[
T^{(1)}(x, y) = \frac{1}{32\pi^3} \lim_{\varepsilon \searrow 0} \log \Gamma_\varepsilon(x, y).
\]

Each summand has the general structure of being the product of a smooth function and a distribution which is singular on the light cone. The smooth factor is an integral along the straight line segment joining the points $x$ and $y$. The integrand involves the electromagnetic potential and its partial derivatives. We remark for clarity that the term (19.2.3) involves a gauge phase as needed for gauge invariance (as already mentioned in (5.7.5) in Section 5.7). All the other integrands are gauge invariant, as is obvious from the fact that they are expressed in terms of the electromagnetic field tensor and the Maxwell current.

To higher order on the light cone or to higher order in the mass or the external potentials, the formulas of the light-cone expansions have a similar structure. More
detailed formulas can be found in the original papers \[36, 37\], in \[38\], Appendix B] and \[42, Appendix B].

We now explain how to perform the light-cone expansion of the causal Green’s operators. In order to get a first idea for how to proceed, we begin by considering the free advanced Green’s function $s^\vee_m$ of the Dirac equation of mass $m$ in position space: Similar to (19.1.4), it is again convenient to pull the Dirac matrices out of $s^\vee_m$ by setting

$$s^\vee_m(x, y) = (i\partial_x + m) S^\vee_m(x, y) , \quad (19.2.10)$$

where $S^\vee_m(x, y)$ is the advanced Green’s function of the Klein-Gordon operator,

$$S^\vee_m(x, y) = \lim_{\nu \to 0} \frac{1}{(2\pi)^4} \int \frac{d^4 p}{p^2 - m^2 - i\nu p^0} e^{-ip(x-y)} . \quad (19.2.11)$$

Computing this Fourier integral and expanding the resulting Bessel function in a power series gives (for details see Exercise 19.2)

$$S^\vee_m(x, y) = -\frac{1}{2\pi} \delta(\xi^2) \Theta(\xi^0) + \frac{m^2}{4\pi} J_1(\sqrt{m^2 \xi^2}) \frac{1}{\sqrt{m^2 \xi^2}} \Theta(\xi^2) \Theta(\xi^0)$$

$$= -\frac{1}{2\pi} \delta(\xi^2) \Theta(\xi^0) + \frac{8\pi}{m^2} \sum_{j=0}^{\infty} (-1)^j \frac{(m^2 \xi^2)^j}{j!(j+1)!} \frac{1}{4^j} \Theta(\xi^2) \Theta(\xi^0) . \quad (19.2.12)$$

This computation shows that $S^\vee_m(x, y)$ has a $\delta(\xi^2)$-like singularity on the light cone. Furthermore, one sees that $S^\vee_m(x, y)$ is a power series in $m^2$. The important point for what follows is that the higher order contributions in $m^2$ contain more factors $\xi^2$ and are thus of higher order on the light cone. More precisely,

$$\left( \frac{d}{dm^2} \right)^n S^\vee_m(x, y) \bigg|_{m=0} \quad \text{is of the order } O(\xi^{2n-2}) . \quad (19.2.13)$$

According to (19.2.10), the Dirac Green’s function is obtained by computing the first partial derivatives of (19.2.12). Therefore, $s^\vee_m(x, y)$ has a singularity on the light cone which is even $\sim \delta'(\xi^2)$. The higher order contributions in $m$ are again of increasing order on the light cone. This means that we can view the Taylor expansion of (19.2.10) in $m$,

$$s^\vee_m(x, y) = \sum_{n=0}^{\infty} \left( i\partial + m \right) \frac{m^{2n}}{n!} \left( \frac{d}{dm^2} \right)^n S^\vee_m(x, y) \bigg|_{m=0} ,$$

as a light-cone expansion of the free Green’s function. Our idea is to generalize this formula to the case with interaction. More precisely, we want to express the perturbed Green’s function in the form

$$s^\vee(x, y) = \sum_{n=0}^{\infty} F_n(x, y) \left( \frac{d}{dm^2} \right)^n S^\vee_m(x, y) \bigg|_{m=0} \quad (19.2.15)$$

with factors $F_n$ which depend on the external potential. We will see that this method is very convenient; especially, we can in this way avoid working with the rather complicated explicit formula (19.2.13). Apart from giving a motivation for the desired form (19.2.15)
of the formulas of the light-cone expansion, the mass expansion \((19.2.13)\) leads to the conjecture that even the higher order contributions in the mass to the perturbed Green’s functions might be of higher order on the light cone. If this conjecture was true, it would be a good idea to expand the perturbation expansion of \(\tilde{s}\) with respect to the parameter \(m\). Therefore, our strategy is to first expand \((18.1.1)\) with respect to the mass and to try to express the contributions to the resulting expansion in a form similar to \((19.2.15)\).

The expansion of \((18.1.1)\) with respect to \(m\) gives a double sum over the orders in the mass parameter and in the external potential. It is convenient to combine these two expansions in a single perturbation series. To this end, we rewrite the Dirac operator as
\[
i\partial_x + B - m = i\partial_x + B\quad \text{with} \quad B := B - m.\]

(19.2.16)

For the light-cone expansion of the Green’s functions, we will always view \(B\) as the perturbation of the Dirac operator. This has the advantage that the unperturbed objects are massless. Expanding in powers of \(B\) gives the mass expansion and the perturbation expansion in one step. In order to simplify the notation, for the massless objects we usually omit the index \(m\). Thus we write the Green’s function of the massless Dirac equation in the Minkowski vacuum as
\[
s^\lor(x,y) = i\partial_x S^\lor_{m^2}(x,y)|_{m=0}, \quad s^\land(x,y) = i\partial_x S^\land_{m^2}(x,y)|_{m=0}.
\]

(19.2.17)

Then the interacting Green’s functions are given by the perturbation series
\[
\tilde{s}^\lor = \sum_{k=0}^{\infty} (-s^\lor B)^k s^\lor, \quad \tilde{s}^\land = \sum_{k=0}^{\infty} (-s^\land B)^k s^\land.
\]

(19.2.18)

The constructions of the following subsections are exactly the same for the advanced and retarded Green’s functions. In order to treat both cases at once, in the remainder of this section we will omit all superscripts \(\lor, \land\). The formulas for the advanced and retarded Green’s functions are obtained by either adding \(\lor\) or \(\land\) to all factors \(s, S\).

We now explain how the individual contributions to the perturbation expansion \((19.2.18)\) can be written similar to the right side of \((19.2.15)\) as a sum of terms of increasing order on the light cone. For the mass expansion of \(S_{m^2}\), we set \(a = m^2\) and use the notation
\[
S^{(l)} = \left(\frac{d}{da}\right)^l S_a|_{a=0}.
\]

(19.2.19)

In preparation, we derive some computation rules for the \(S^{(l)}\): \(S_a\) satisfies the defining equation of a Klein-Gordon Green’s function
\[
(-\Box_x - a) S_a(x,y) = \delta^4(x-y).
\]

Differentiating with respect to \(a\) and setting \(a = 0\) gives
\[
-\Box_x S^{(l)}(x,y) = \delta_{l,0} \delta^4(x-y) + l S^{(l-1)}(x,y), \quad l \geq 0.
\]

(19.2.20)

(For \(l = 0\), this formula does not seem to make sense because \(S^{(-1)}\) is undefined. The expression is meaningful, however, if one keeps in mind that in this case the factor \(l\) is zero, and thus the whole second summand vanishes. We will also use this convention in the following calculations.) Next, we differentiate the formulas for \(S_a\) in momentum space,
\[
S^\lor_a(p) = \frac{1}{p^2 - a - i\nu p^0}, \quad S^\land_a(p) = \frac{1}{p^2 - a + i\nu p^0}
\]

(19.2.21)
with respect to both \( p \) and \( a \). Comparing the results gives the relation
\[
\frac{\partial}{\partial p^k} S_a(p) = -2p_k \frac{d}{da} S_a(p) ,
\]
or, after expanding in the parameter \( a \),
\[
\frac{\partial}{\partial p^k} S_{(l)}(p) = -2p_k S_{(l+1)}(p), \quad l \geq 0. \tag{19.2.22}
\]
This formula also determines the derivatives of \( S_{(l)} \) in position space; namely
\[
\frac{\partial}{\partial x^k} S_{(l)}(x, y) = \int \frac{d^4p}{(2\pi)^4} S_{(l)}(p) (-i p_k) e^{-ip(x-y)}
\]
\[
= \frac{i}{2} \int \frac{d^4p}{(2\pi)^4} \frac{\partial}{\partial p^k} S_{(l-1)}(p) e^{-ip(x-y)}
\]
\[
= -\frac{i}{2} \int \frac{d^4p}{(2\pi)^4} S_{(l-1)}(p) \frac{\partial}{\partial p^k} e^{-ip(x-y)}
\]
\[
= \frac{1}{2} (y-x)_k S_{(l-1)}(x, y), \quad l \geq 1. \tag{19.2.23}
\]
We iterate this relation to calculate the Laplacian,
\[
-\Box_x S_{(l)}(x, y) = -\frac{1}{2} \frac{\partial}{\partial x^k} \left( (y-x)^k S_{(l-1)}(x, y) \right)
\]
\[
= 2 S_{(l-1)}(x, y) + \frac{1}{4} (y-x)^2 S_{(l-2)}(x, y), \quad l \geq 2.
\]
After comparing with \( \tag{19.2.20} \), we conclude that
\[
(y-x)^2 S_{(l)}(x, y) = -4l S_{(l+1)}(x, y), \quad l \geq 0. \tag{19.2.24}
\]
Finally, \( S_{(l)}(x, y) \) is only a function of \( y-x \), which implies that
\[
\frac{\partial}{\partial x^k} S_{(l)}(x, y) = -\frac{\partial}{\partial y^k} S_{(l)}(x, y), \quad l \geq 0. \tag{19.2.25}
\]

The following lemma gives the light-cone expansion of an operator product which is linear in the external potential. We will later use it for the iterative light-cone expansion of more complicated operator products; in this case, the potential will be a composite expression in \( B \) and its partial derivatives. In order to avoid confusion then, we denote the external potential by \( V \).

**Lemma 19.2.3.** (light-cone expansion to first order) For any \( l, r \geq 0 \), the operator product \( S_{(l)}(x) V S_{(r)}(y) \) has the light-cone expansion
\[
(S_{(l)}(x) V S_{(r)}(y))(x, y)
\]
\[
= \sum_{n=0}^{\infty} \frac{1}{n!} \int_0^1 \alpha^l (1 - \alpha)^r (\alpha - \alpha^2)^n (\Box^n V)_{|y+(1-\alpha)x} \, d\alpha \, S^{(n+l+r+1)}(x, y). \tag{19.2.26}
\]

**Proof.** The method of proof is to first compute the Laplacian of both sides of \( \tag{19.2.26} \). The resulting formulas will have a similar structure, making it possible to proceed inductively.

On the left side of \( \tag{19.2.26} \), we calculate the Laplacian with the help of \( \tag{19.2.20} \) to
\[
-\Box_x (S_{(l)}(x) V S_{(r)}(y))(x, y) = \delta_{l,0} V(x) S_{(r)}(x, y) + l (S_{(l-1)}(x) V S_{(r)}(x, y)). \tag{19.2.27}
\]
The Laplacian of the integral on the right side of (19.2.26) can be computed with (19.2.23) and (19.2.20),
\[
-\Box_x \int_0^1 \alpha^l (1-\alpha)^r (\alpha-\alpha^2)^n (\Box^n V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha \, S^{(n+l+r+1)}(x,y) \tag{19.2.28}
\]
\[
= -\int_0^1 \alpha^l (1-\alpha)^{r+2} (\alpha-\alpha^2)^n (\Box^n V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha \, S^{(n+l+r+1)}(x,y)
\]
\[
- \int_0^1 \alpha^l (1-\alpha)^{r+1} (\alpha-\alpha^2)^n (\partial_\alpha \Box^n V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha \, (y-x)^k \, S^{(n+l+r)}(x,y)
\]
\[
+ (n+l+r+1) \int_0^1 \alpha^l (1-\alpha)^r (\alpha-\alpha^2)^n (\Box^n V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha \, S^{(n+l+r)}(x,y).
\]
In the second summand, we rewrite the partial derivative as a derivative with respect to \(\alpha\),
\[
(y-x)^k (\partial_\alpha \Box^n V)_{\alpha y+(1-\alpha)\alpha} = \frac{d}{d\alpha} (\Box^n V)_{\alpha y+(1-\alpha)\alpha}
\]
(as is verified immediately by computing the right side with the chain rule). This makes it possible to integrate in \(\alpha\) by parts. We thus obtain
\[
\int_0^1 \alpha^l (1-\alpha)^{r+1} (\alpha-\alpha^2)^n (\partial_\alpha \Box^n V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha \, (y-x)^k
\]
\[
= -\int_0^1 \alpha^l (1-\alpha)^{r+1} (\alpha-\alpha^2)^n \frac{d}{d\alpha} (\Box^n V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha
\]
\[
= -\delta_{n,0} \delta_{l,0} V(x) - (n+l) \int_0^1 \alpha^l (1-\alpha)^{r+2} (\alpha-\alpha^2)^{n-1} (\Box^n V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha
\]
\[
+ (n+l+r+1) \int_0^1 \alpha^l (1-\alpha)^r (\alpha-\alpha^2)^n (\Box^n V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha
\]
\[
= -\delta_{n,0} \delta_{l,0} V(x)
\]
\[
- n \int_0^1 \alpha^l (1-\alpha)^{r+2} (\alpha-\alpha^2)^{n-1} (\Box^n V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha
\]
\[
+ (n+l+r+1) \int_0^1 \alpha^l (1-\alpha)^r (\alpha-\alpha^2)^n (\Box^n V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha
\]
\[
- l \int_0^1 \alpha^{l-1} (1-\alpha)^r (\alpha-\alpha^2)^n (\Box^n V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha.
\]
We substitute back into the original equation to obtain
\[
(19.2.28) = \delta_{n,0} \delta_{l,0} V(x) \, S^{(r)}(x,y)
\]
\[
+ l \int_0^1 \alpha^{l-1} (1-\alpha)^r (\alpha-\alpha^2)^n (\Box^n V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha \, S^{(n+l+r)}(x,y)
\]
\[
- \int_0^1 \alpha^l (1-\alpha)^{r+2} (\alpha-\alpha^2)^n (\Box^{n+1} V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha \, S^{(n+l+r+1)}(x,y)
\]
\[
+ n \int_0^1 \alpha^l (1-\alpha)^{r+2} (\alpha-\alpha^2)^{n-1} (\Box^n V)_{\alpha y+(1-\alpha)\alpha} \, d\alpha \, S^{(n+l+r)}(x,y).
\]
After dividing by \( n! \) and summation over \( n \), the last two summands are telescopic and cancel each other. Thus one gets
\[
- \sum_{n=0}^{\infty} \frac{1}{n!} \int_0^1 \alpha^l (1 - \alpha)^r (\alpha - \alpha^2)^n \left( \Box^n V \right)_{\alpha y + (1 - \alpha)x} \, d\alpha \, S^{(n+l+r+1)}(x, y)
\]
\[
= \delta_{l,0} V(x) \, S^{(r)}(x, y) + \sum_{n=0}^{\infty} \frac{1}{n!} \int_0^1 \alpha^{l-1} (1 - \alpha)^r (\alpha - \alpha^2)^n \left( \Box^n V \right)_{\alpha y + (1 - \alpha)x} \, d\alpha \, S^{(n+l+r)}(x, y) .
\]
(19.2.29)

We now compare the formulas (19.2.27) and (19.2.29) for the Laplacian of both sides of (19.2.26). In the special case \( l = 0 \), these formulas coincide, and we can use a uniqueness argument for the solutions of the wave equation to prove (19.2.26): We assume that we consider the advanced Green’s function (for the retarded Green’s function, the argument is analogous). For given \( y \), we denote the difference of both sides of (19.2.26) by \( F(x) \).

Since the support of \( F(x) \) is in the past light cone \( x \in L^+_0 \), \( F \) vanishes in a neighborhood of the hypersurface \( H = \{ z \in \mathbb{R}^4 | z_0 = y_0 + 1 \} \). Moreover, the Laplacian of \( F \) is identically zero according to (19.2.27) and (19.2.29). We conclude that
\[
\Box F = 0 \quad \text{and} \quad F|_H = \partial_k F|_H = 0 .
\]

Since the wave equation has a unique solution for given initial data on the Cauchy surface \( \mathcal{H} \), \( F \) vanishes identically.

The general case follows by induction in \( l \): Suppose that (19.2.26) holds for given \( \hat{l} \) (and arbitrary \( r \)). Then, according to (19.2.27), (19.2.29), and the induction hypothesis, the Laplacian of both sides of (19.2.26) coincides for \( l = \hat{l} + 1 \). The above uniqueness argument for the solutions of the wave equation again gives (19.2.26).

We recall for clarity that, according to (19.2.14), the higher \( \alpha \)-derivatives of \( S_a(x, y) \) are of higher order on the light cone. Thus the summands in (19.2.26) are of increasing order on the light cone, and the infinite sum is mathematically well-defined in the sense of Definition 19.2.1 via the approximation by the partial sums (19.2.2).

19.3. The Hadamard Form in Curved Spacetime and the Wave Front Set

The Hadamard expansion (19.1.1) can also be formulated in curved spacetime. To this end, one simply replaces the function (19.1.2) by
\[
\Gamma_\varepsilon(x, y) := \Gamma(x, y) - i \varepsilon \left( t(y) - t(x) \right) ,
\]
where \( t \) is a time function and \( \Gamma(x, y) \) is the geodesic distance squared, with the sign convention that \( \Gamma \) is positive in timelike and negative in spacelike directions. If a bi-distribution is of Hadamard form in one chart, it is also of Hadamard form in another chart. More details on the Hadamard expansion for Dirac fields can be found in [123, 89] or [50, Appendix A].

Moreover, the Hadamard form can be formulated alternatively in terms of the wave front set, as we now briefly mention. We work in an open subset \( U \subset \mathbb{R}^n \). We denote the distributions in \( U \) by \( \mathcal{D}'(U) \) (being the dual space of \( C^\infty(U, \mathbb{C}) \) with the topology induced by the \( C^k \)-norms). An open conic neighborhood of a point \( \xi \in \mathbb{R}^n \) is defined to
be an open neighborhood which is invariant under the action of $\mathbb{R}^+$ by multiplication. Thus an open conic neighborhood is of the form
\[ \{ \lambda x \mid x \in S, \lambda \in \mathbb{R}^+ \}, \]
where $S$ is an open subset of $S^{n-1} \subset \mathbb{R}^n$.

**Definition 19.3.1.** Let $\phi \in \mathcal{D}'(U)$. The wave front set $WF(\phi)$ is the complement in $U \times \mathbb{R}^n \setminus \{0\}$ of all points $(x, \xi) \in U \times \mathbb{R}^n \setminus \{0\}$ with the following property: There exists a function $f \in C^\infty(U, \mathbb{R})$ with $f(x) = 1$ and an open conic neighborhood $V$ of $\xi$ such that
\[ \sup_{\zeta \in V} (1 + |\zeta|)^N |(\hat{f}\phi)(\zeta)| < \infty \quad \text{for all } N \in \mathbb{N}. \quad (19.3.1) \]

This definition can be understood as follows. First, in view of taking the complement, the condition (19.3.1) ensures that the point $(x, \xi)$ does not lie in the wave front set. With the help of the cutoff function $f$ one can disregard the behavior of $\phi$ away from $x$. In other words, the condition (19.3.1) only depends on the behavior of $\phi$ in an arbitrarily small neighborhood of $x$. This condition states that the Fourier transform has rapid decay in a cone around $\xi$. Since decay properties of the Fourier transform correspond to smoothness properties in position space, we obtain a smoothness statement for $\phi$ at $x$, but only along the “wave front” described by $\xi$.

- Eventuell Beispiele oder Übungsaufgaben? Beispielsweise $\phi(x) = \delta^2(x)$ for $U = \mathbb{R}^2$?
  Oder auch $P(x, y)$ im Minkowski-Vakuum?

**Definition 19.3.2.** The unregularized kernel $P(x, y)$ is said to be of **Hadamard form** if its wave front set has the property
\[WF P \subset \left\{ (x_1, \xi_1, x_2, -\xi_2) \mid \text{there is a null geodesic } \gamma : I \to \mathcal{M} \text{ with } a, b \in I, \gamma(a) = x_1, \gamma(b) = x_2 \text{ and } \xi_1 = \dot{\gamma}(a), \xi_2 = \dot{\gamma}(b) \text{ past-directed} \right\}.\]

Intuitively, this definition means that there are singularities only on the light cone, and that these singularities are formed only of negative frequencies. The equivalence of this definition with the local Hadamard expansion (19.1.1) has been established in [114]. Good references on microlocal analysis and the wave front set are [95] and [3, Chapter 4].

**19.4. Proof of the Hadamard Property in an External Potential**

In this section, we give the proof of Theorem 19.1.1. We closely follow the presentation in [71]. In preparation, we derive so-called frequency splitting estimates which give control of the “mixing” of the positive and negative frequencies in the solutions of the Dirac equation as caused by the time-dependent external potential (Theorem 19.4.1).
Based on these estimates, we will complete the proof of Theorem 19.1.1 at the end of Section 19.4.2.

19.4.1. Frequency Mixing Estimates. For the following constructions, we again choose the hypersurface $N := N_{t_0}$ at some given time $t_0$. Moreover, we always fix the mass parameter $m > 0$. Since we are no longer considering families of solutions, for ease in notation we omit the index $m$ at the Dirac wave functions, the scalar products and the corresponding norms. We also identify the solution space $\mathcal{H}_m$ with the Hilbert space $\mathcal{H}_{t_0}$ of square integrable wave functions on $N$. On $\mathcal{H}_{t_0}$, we can act with the Hamiltonian $H$ of the vacuum, and using the above identification, the operator $H$ becomes an operator on $\mathcal{H}_m$ (which clearly depends on the choice of $t_0$).

We work with a so-called frequency splitting with respect to the vacuum dynamics. To this end, we decompose the Hilbert space $\mathcal{H}_m$ as

$$\mathcal{H}_m = \mathcal{H}_m^+ \oplus \mathcal{H}_m^-$$

where $\chi^\pm$ are the characteristic functions

$$\chi^+ := \chi_{[0, \infty)} \quad \text{and} \quad \chi^- := \chi_{(-\infty, 0]}.$$  \hfill (19.4.1)

For convenience, we write this decomposition in components and use a block matrix notation for operators, i.e.

$$\psi = \begin{pmatrix} \psi^+ \\ \psi^- \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} A^+ & A^+ \\ A^- & A^- \end{pmatrix},$$

where $A^{s'}_s = \chi^s(H)A\chi^{s'}(H)$ and $s, s' \in \{\pm\}$.

The representation in Proposition 17.2.5 makes it possible to let the fermionic signature operator $\tilde{S}_m$ act on the Hilbert space $\mathcal{H}_m$ (for fixed $m$). We decompose this operator with respect to the above frequency splitting,

$$\tilde{S}_m = S^D + \Delta \tilde{S}, \quad \text{where} \quad S^D := \tilde{S}_m^+ + \tilde{S}_m^- \quad \text{and} \quad \Delta \tilde{S} := \tilde{S}_m^+ + \tilde{S}_m^-.$$  

Thus the operator $S^D$ maps positive to positive and negative to negative frequencies. The operator $\Delta \tilde{S}$, on the other hand, mixes positive and negative frequencies. In the next theorem, it is shown under a suitable smallness assumption on $B$ that the operators $\chi^\pm(\tilde{S}_m)$ coincide with the projections $\chi^\pm(H)$, up to smooth contributions. The main task in the proof is to control the “frequency mixing” as described by the operator $\Delta \tilde{S}$.

**Theorem 19.4.1.** Under the assumptions of Theorem 19.1.1, the operators $\chi^\pm(\tilde{S}_m)$ have the representations

$$\chi^\pm(\tilde{S}_m) = \chi^\pm(H) + \frac{1}{2\pi i} \oint_{\partial B_{1/2}^2 (\pm1)} (\tilde{S}_m - \lambda)^{-1} \Delta \tilde{S} (S^D - \lambda)^{-1} d\lambda,$$  \hfill (19.4.2)

where the contour integral is an integral operator with a smooth integral kernel.

Here $B_{1/2}^2 (\pm1)$ denotes the open ball of radius $1/2$. The operator $(\tilde{S}_m - \lambda)^{-1}$ is also referred to as the resolvent of $\tilde{S}_m$.

This theorem will be proved in several steps. We begin with a preparatory lemma.

**Lemma 19.4.2.** Under the assumptions (17.2.1) and (19.1.3), the spectrum of $S^D$ is located in the set

$$\sigma(S^D) \subset \left[ -\frac{3}{2}, -\frac{1}{2} \right] \cup \left[ \frac{1}{2}, \frac{3}{2} \right].$$  \hfill (19.4.3)
Moreover,
\[ \chi^\pm(S^D) = \chi^\pm(H), \]  
and the operators \( \chi^{\pm}(\tilde{S}_m) \) have the representations \( [19.4.2] \).

**Proof.** Since the subspaces \( \mathcal{H}^\pm \) are invariant under the action of \( S^D \), our task is to show that the spectrum of \( S^D |_{\mathcal{H}^\pm} \) is positive and negative, respectively. This statement would certainly be true if we replaced \( S^D \) by \( S_m \), because the operator \( S_m \) has the eigenvalues \( \pm 1 \) with \( \mathcal{H}^\pm \) as the corresponding eigenspaces. Estimating the representation in Proposition \( [17.2.5] \) with the Schwarz inequality, we obtain

\[ |(\psi|S^D\phi) - (\psi|S_m\phi)| \leq \left( c + \frac{c^2}{2} \right) \|\psi\| \|\phi\| \quad \text{with} \quad c := \int_{-\infty}^{\infty}|B(\tau)|^{c_0} d\tau. \]

Using the assumption \( [19.1.3] \), we conclude that

\[ |(\psi|S^D\phi) - (\psi|S_m\phi)| < \frac{1}{2} \|\psi\| \|\phi\| \quad \text{for all} \quad \psi, \phi \in \mathcal{H}_m. \]

Standard estimates on the continuity of the spectrum (see for example \( [98, \S IV.3] \)) yield that the spectrum of \( S^D \) differs by that of the operator \( S_m \) at most by \( 1/2 \). This gives \( [19.4.3] \) and \( [19.4.4] \).

In order to prove the representation \( [19.4.2] \), we take the resolvent identity

\[ (\tilde{S}_m - \lambda)^{-1} = (S^D - \lambda)^{-1} - (\tilde{S}_m - \lambda)^{-1} \Delta \tilde{S} (S^D - \lambda)^{-1}, \]

form the contour integral and apply \( [19.4.3] \). This gives the result. \( \square \)

The next lemma relates the smoothness of an integral kernel to the boundedness of the product of the operator with powers of the vacuum Hamiltonian.

**Lemma 19.4.3.** Let \( A \in L(\mathcal{H}_m) \) be an operator which maps smooth functions to smooth functions and has the property that for all \( p, q \in \mathbb{N} \), the operator product

\[ H^q A H^p : C_0^\infty(N, S\mathcal{M}) \rightarrow C^\infty(N, S\mathcal{M}) \]  
(19.4.5)

extends to a bounded linear operator on \( \mathcal{H}_m \). Then, considering \( A \) as an operator on \( \mathcal{H}_m \), this operator can be represented as an integral operator with a smooth integral kernel, i.e.

\[ (A\psi)(x) = \int_N A(x, (t_0, \vec{y})) \gamma^0 \psi(t_0, \vec{y}) d^3y \quad \text{with} \quad A \in C^\infty(M \times \mathcal{M}) \].

**Proof.** Since in momentum space, the square of the Hamiltonian takes the form

\[ H(\vec{k})^2 = \left( \gamma^0 (\vec{k} + m) \right)^2 = ( - \vec{\gamma}k + m) (\vec{\gamma}k + m) = |\vec{k}|^2 + m^2, \]

the wave function \( \hat{\psi} \) defined by

\[ \hat{\psi}(\vec{k}) := \frac{1}{|\vec{k}|^2 + m^2} e^{i\vec{k}\vec{x}_0} \Xi \]

for a constant spinor \( \Xi \) and \( \vec{x}_0 \in \mathbb{R}^3 \), satisfies the equation

\[ H^2 \psi(\vec{x}) = \delta^3(\vec{x} - \vec{x}_0) \Xi. \]

Moreover, one verifies immediately that \( \psi \in \mathcal{H}_{t_0} \) is square-integrable. Using the last equation together with \( [19.4.5] \), we conclude that

\[ H^q A(\delta^3(\vec{x} - \vec{x}_0) \Xi) = H^q AH^2 \psi \in \mathcal{H}_{t_0}. \]
Since \( q \) is arbitrary, it follows that \( A \) has an integral representation in the spatial variables,

\[
(A\phi)(\vec{x}) = \int_N A(\vec{x},\vec{y}) \gamma^q \phi(\vec{y}) \, d^q y \quad \text{with} \quad A \in C^\infty(N \times N).
\]

We now extend this integral kernel to \( M \times M \) by solving the Cauchy problem in the variables \( x \) and \( y \). This preserves smoothness by the global existence and regularity results for linear hyperbolic equations, giving the result.

**Lemma 19.4.4.** Under the assumptions of Theorem 19.4.3, for all \( p \in \mathbb{N} \) the iterated commutator

\[
S^{(p)} := \left[ H, \left[ H, \ldots, \left[ H, \hat{S}_m \right] \ldots \right] \right]
\]

is a bounded operator on \( \mathcal{H}_m \).

**Proof.** In the vacuum, the Hamiltonian clearly commutes with the time evolution operator,

\[
[H, U_{m}^{t,t'}] = 0.
\]  

(19.4.6)

In order to derive a corresponding commutator relation in the presence of the external potential, one must take into account that \( \tilde{H} \) is time-dependent. For ease in notation, we do not write out this dependence, but instead understand that the Hamiltonian is to be evaluated at the correct time, i.e.

\[
\tilde{U}_{m}^{t,t'} \tilde{H} \equiv \tilde{U}_{m}^{t,t'} \tilde{H}(t') \quad \text{and} \quad \tilde{H} \tilde{U}_{m}^{t,t'} \equiv \tilde{H}(t) \tilde{U}_{m}^{t,t'}.
\]

Then

\[
(i \partial_t - \tilde{H})(\tilde{H} \tilde{U}_{m}^{t,t'} - \tilde{U}_{m}^{t,t'} \tilde{H}) = i \tilde{H} \tilde{U}_{m}^{t,t'} \quad \text{and} \quad \tilde{H} \tilde{U}_{m}^{t,t'} - \tilde{U}_{m}^{t,t'} \tilde{H}|_{t=t'} = 0
\]

(here and in what follows the dot denotes the partial derivative with respect to \( t \)). Solving the corresponding Cauchy problem gives

\[
[H, \hat{U}_{m}^{t,t'}] = \int_0^t \hat{U}_{m}^{t,\tau} \tilde{H} \hat{U}_{m}^{\tau,t'} d\tau.
\]  

(19.4.7)

In order to compute the commutator of \( H \) with the operator products in (17.2.11) and (17.2.12), we first differentiate the expression \( U_{m}^{t',t} \gamma \hat{U}_{m}^{t,t'} \) with respect to \( t \),

\[
i \partial_t (U_{m}^{t',t} \gamma \hat{U}_{m}^{t,t'}) = iU_{m}^{t',t} \gamma \tilde{U}_{m}^{t,t'} + U_{m}^{t',t} \gamma \tilde{H} \tilde{U}_{m}^{t,t'} - U_{m}^{t',t} \gamma \tilde{H} \gamma \tilde{U}_{m}^{t,t'}.
\]  

(19.4.8)

Moreover, using the commutation relations (19.4.6) and (19.4.7), we obtain

\[
\begin{align*}
H \left( U_{m}^{t',t} \gamma \hat{U}_{m}^{t,t'} \right) &= \left( U_{m}^{t',t} \gamma \hat{U}_{m}^{t,t'} \right) \tilde{H} \\
&= U_{m}^{t',t} \gamma \tilde{U}_{m}^{t,t'} - U_{m}^{t',t} \gamma \tilde{H} \tilde{U}_{m}^{t,t'} + U_{m}^{t',t} \gamma \hat{H} + [\hat{H}, \hat{U}_{m}^{t,t'}] \\
&= iU_{m}^{t',t} \gamma \tilde{U}_{m}^{t,t'} - i\partial_t (U_{m}^{t',t} \gamma \hat{U}_{m}^{t,t'}) + \int_0^t U_{m}^{t',t} \gamma \hat{U}_{m}^{t,\tau} \tilde{H} \hat{U}_{m}^{\tau,t'} d\tau,
\end{align*}
\]

where in the last step we applied (19.4.8). It follows that

\[
[H, U_{m}^{t',t} \gamma \hat{U}_{m}^{t,t'}] = H \left( U_{m}^{t',t} \gamma \hat{U}_{m}^{t,t'} \right) - \left( U_{m}^{t',t} \gamma \hat{U}_{m}^{t,t'} \right) \tilde{H} + \left( U_{m}^{t',t} \gamma \hat{U}_{m}^{t,t'} \right) \gamma
\]

\[
= iU_{m}^{t',t} \gamma \tilde{U}_{m}^{t,t'} + \left( U_{m}^{t',t} \gamma \hat{U}_{m}^{t,t'} \right) \gamma - i\partial_t (U_{m}^{t',t} \gamma \hat{U}_{m}^{t,t'}) + \int_0^t \gamma U_{m}^{t',t} \gamma \hat{U}_{m}^{t,\tau} \tilde{H} \hat{U}_{m}^{\tau,t'} d\tau.
\]
Proceeding in this way, one can calculate the commutator of \( H \) with all the terms in (17.2.11) and (17.2.12). We write the result symbolically as

\[
[H, \tilde{S}_m] = S^{(1)},
\]

where \( S^{(1)} \) is a bounded operator. Higher commutators can be computed inductively, giving the result. □

We point out that this lemma only makes a statement on the iterative commutators. Expressions like \([H^p, \tilde{S}_m] \) or \( H^q \tilde{S}_m H^p \) will not be bounded operators in general. However, the next lemma shows that the operator \( \Delta \tilde{S} \) has the remarkable property that multiplying by powers of \( H \) from the left and/or right again gives a bounded operator.

**Lemma 19.4.5.** Under the assumptions of Theorem 19.1.1, for all \( p, q \in \mathbb{N} \cup \{0\} \) the product \( H^q \Delta \tilde{S} H^p \) is a bounded operator on \( H^m \).

**Proof.** We only consider the products \( H^q S^- \) because the operator \( S^+ \) can be treated similarly. Multiplying (19.4.7) from the left and right by the resolvent of \( H \), we obtain

\[
[(H - \mu)^{-1}, \tilde{S}_m] = -(H - \mu)^{-1} S^{(1)} (H - \mu)^{-1}.
\]

Writing the result of Lemma 19.4.4 as

\[
[H, S^{(p)}] = S^{(p+1)} \quad \text{with} \quad S^{(p+1)} \in \mathcal{L}(\mathcal{H})
\]

yields more generally the commutation relations

\[
[(H - \mu)^{-1}, S^{(p)}] = -(H - \mu)^{-1} S^{(p+1)} (H - \mu)^{-1} \quad \text{for} \ p \in \mathbb{N}.
\] (19.4.9)

Choosing a contour \( \gamma \) which encloses the interval \((-\infty, -m] \) as shown in Figure 19.1, one finds

\[
H S^- = -\frac{1}{2\pi i} \int_{\gamma} \mu (H - \mu)^{-1} \tilde{S}_m \chi^+(H) \, d\mu
\]

\[
= \mathcal{S} H \chi^- (H) \chi^+(H) + \frac{1}{2\pi i} \int_{\gamma} \mu (H - \mu)^{-1} S^{(1)} (H - \mu)^{-1} \chi^+(H) \, d\mu
\]

\[
= \frac{1}{2\pi i} \int_{\gamma} \mu (H - \mu)^{-1} S^{(1)} (H - \mu)^{-1} \chi^+(H) \, d\mu,
\]

where in the last step we used that \( \chi^- (H) \chi^+(H) = 0 \). In order to show that this operator product is bounded, it is useful to employ the spectral theorem for \( H \), which we write as

\[
f(H) = \int_{\mathbb{R} \setminus [-m, m]} f(\lambda) \, dE_{\lambda},
\] (19.4.10)
where $dE_\lambda$ is the spectral measure of $H$. This gives

$$H S_+^- = \iint_{\mathbb{R} \times \mathbb{R}} \left( \frac{1}{2\pi i} \int_\gamma \frac{\mu}{\lambda - \mu} \frac{1}{\lambda' - \mu} \chi^+(\lambda') \, dE_\lambda \right) S^{(1)} \, dE_{\lambda'} \, d\mu$$

$$= - \iint_{\mathbb{R} \times \mathbb{R}} \frac{\lambda}{\lambda - \lambda'} \chi^-(\lambda) \chi^+(\lambda') \, dE_\lambda \, S^{(1)} \, dE_{\lambda'}.$$  \hfill (19.4.11)

Note that the term $\lambda - \lambda'$ is bounded away from zero. Thus the factor $\lambda/(\lambda - \lambda')$ is bounded, showing that the operator $H S_+^-$ is in $L(\mathcal{H}_m)$.

This method can be iterated. To this end, we first rewrite the product with commutators,

$$H^q S_+^- = \chi^-(H) \left( H^- \chi^-(H) \right)^p \tilde{S}_m \chi^+(H)$$

$$= \chi^-(H) \left[ H^+, \left[ H^+, \ldots, \left[ H^+, \tilde{S}_m \right] \ldots \right] \right] \chi^+(H),$$

where we used the abbreviation $H^- := H \chi^-(H)$. Multiplying from the right by $H^p$, we can commute factors $H^+ := H \chi^+(H)$ to the left to obtain

$$H^q S_+^+ H^p = (-1)^p \chi^-(H) \left[ H^+, \ldots, \left[ H^+, \tilde{S}_m \right] \ldots \right] \chi^+(H).$$

Representing each factor $H^\pm$ by a contour integral, one can compute the commutators inductively with the help (19.4.9). Applying the spectral theorem (19.4.10) to the left and right of the resulting factor $S^{(p+q)}$ yields a constant times the expression

$$\iint_{\mathbb{R} \times \mathbb{R}} \chi^-(\lambda) \chi^+(\lambda') \, dE_\lambda \, S^{(p+q)} \, dE_{\lambda'}$$

$$\times \prod_{j=1}^{p+q} \frac{\mu_j \, d\mu_j}{(\lambda - \mu_1)(\lambda' - \mu_1)} \cdot \prod_{j=p+q+1}^{\infty} \frac{\mu_{p+q} \, d\mu_{p+q}}{(\lambda - \mu_{p+q})(\lambda' - \mu_{p+q})}. $$

Carrying out the contour integrals with residues, we obtain similar to (19.4.11) an expression of the form

$$H^q S_+^+ H^p = \iint_{\mathbb{R} \times \mathbb{R}} f(\lambda, \lambda') \chi^-(\lambda) \chi^+(\lambda') \, dE_\lambda \, S^{(p+q)} \, dE_{\lambda'}$$

with a bounded function $f$. This concludes the proof. \hfill \Box

**Proof of Theorem 19.4.1.** It remains to be shown that the contour integral in (19.4.12) has a smooth integral kernel. To this end, we multiply the integrand from the left by $H^q$ and from the right by $H^p$ and commute the factors $H$ iteratively to the inside. More precisely, we use the formula

$$H^q (\tilde{S}_m - \lambda)^{-1} = \sum_{a=0}^q \left[ H, \ldots, \left[ H, (\tilde{S}_m - \lambda)^{-1} \right] \ldots \right] H^{q-a}$$
19.4. Proof of the Hadamard Property in an External Potential 279

(note that the sum is telescopic; here we use the convention that the summand for \(a = 0\) is simply \((\tilde{S}_m - \lambda)^{-1} H^{q}\). Hence

\[
H^q \left(\tilde{S}_m - \lambda\right)^{-1} \Delta \tilde{S} (S^D - \lambda)^{-1} H^p
= \sum_{a=0}^q \sum_{b=0}^p \left[ H, \ldots, [H, (\tilde{S}_m - \lambda)^{-1}] \ldots \right] H^{q-a} \Delta \tilde{S} H^{p-b} \left[ \ldots [(S^D - \lambda)^{-1}, H], \ldots, H \right].
\]

According to Lemma 19.4.5, the intermediate product \(H^{q-a} \Delta \tilde{S} H^{p-b}\) is a bounded operator. Moreover, the commutators can be computed inductively with the help of Lemma 19.4.4 and the formula

\[
[H, (\tilde{S}_m - \lambda)^{-1}] = -(\tilde{S}_m - \lambda^{-1}) [H, \tilde{S}_m] (\tilde{S}_m - \lambda^{-1})
\]

(and similarly for \(S^D\)). This gives operators which are all bounded for \(\lambda \in \partial B_{\frac{1}{2}}(\pm 1)\).

Since the integration contour is compact, the result follows. □

19.4.2. Proof of the Hadamard Form. Relying on the frequency mixing estimates of the previous section, we can now give the proof of Theorem 19.1.1. Recall that the fermionic projector is given by (see (15.4.1))

\[
P = -\chi^-(\tilde{S}_m) \tilde{k}_m ,
\]

(19.4.12)

where we again used the short notation (19.4.1). Here again the operator \(\chi^-(\tilde{S}_m)\) acts on the solution space \(\mathcal{H}_m\) of the Dirac equation, which can be identified with the space \(\mathcal{H}_t\) of square integrable wave functions at time \(t_0\) (see the beginning of Section 19.4.1). For the following arguments, it is important to note that this identification can be made at any time \(t_0\).

In order to prove that the bi-distribution corresponding to \(P\) is of Hadamard form, we compare the fermionic projectors for three different Dirac operators and use the theorem on the propagation of singularities in [123]. More precisely, we consider the following three fermionic projectors:

1. The fermionic projector \(P^{\text{vac}}\) in the Minkowski vacuum.
2. The fermionic projector \(\hat{P}\) in the presence of the external potential

\[
\hat{B}(x) := \eta(x^0) \, B(x) ,
\]

where \(\eta \geq 0\) is a smooth function with \(\eta|_{(-\infty, 0)} \equiv 0\) and \(\eta|_{(1, \infty)} \equiv 1\).
3. The fermionic projector \(P\) in the presence of the external potential \(B(x)\).

The potential \(\hat{B}\) vanishes for negative times, whereas for times \(x^0 > 1\) it coincides with \(B\). Thus it smoothly interpolates between the dynamics with and without external potential. The specific form of the potential \(\hat{B}\) in the transition region \(0 \leq x^0 \leq 1\) is of no relevance for our arguments.

In the Minkowski vacuum, the relation (19.4.12) gives the usual two-point function composed of all negative-frequency solutions of the Dirac equation. It is therefore obvious that the bi-distribution \(P^{\text{vac}}(x, y)\) is of Hadamard form.

We now compare \(P^{\text{vac}}\) with \(\hat{P}\). To this end, we choose an arbitrary time \(t_0 < 0\). Then, applying the result of Theorem 19.4.1 to (19.4.12), we get

\[
P^{\text{vac}} = -\chi^-(H) k_m \quad \text{and} \quad \hat{P} = -\chi^-(H) \tilde{k}_m + \text{(smooth)} ,
\]
where $\tilde{k}_m$ is the causal fundamental solution in the presence of the potential $\tilde{B}$. Since $\tilde{B}$ vanishes in a neighborhood of the Cauchy surface at time $t_0$, we conclude that $P^{\text{vac}}$ and $\tilde{P}$ coincide in this neighborhood up to a smooth contribution. It follows that also $\tilde{P}(x,y)$ is of Hadamard form in this neighborhood. Using the theorem on the propagation of singularities [123, Theorem 5.5], we conclude that $\tilde{P}(x,y)$ is of Hadamard form for all $x,y \in \mathcal{M}$.

Next, we compare $\tilde{P}$ with $P$. Thus we choose an arbitrary time $t_0 > 1$. Using again the result of Theorem 19.4.1 in (19.4.12), we obtain

$$\tilde{P} = -\chi(H) \tilde{k}_m + \text{(smooth)}$$

and

$$P = -\chi(H) k_m + \text{(smooth)}$$

(where the smooth contributions may of course be different). Since $\tilde{B}$ and $B$ coincide in a neighborhood of the Cauchy surface at time $t_0$, we infer that $\tilde{P}$ and $P$ coincide in this neighborhood up to a smooth contribution. As a consequence, $P(x,y)$ is of Hadamard form in this neighborhood. Again applying [123, Theorem 5.5], it follows that $P(x,y)$ is of Hadamard form for all $x,y \in \mathcal{M}$. This concludes the proof of Theorem 19.1.1.

**Exercises**

**Exercise 19.1.** This exercise explains the notion of the light-cone expansion in simple examples.

(a) What is the light-cone expansion of a smooth function on $\mathcal{M} \times \mathcal{M}$? In which sense is it trivial? In which sense is it non-unique?

(b) Show that $A(x,y) = \log \left( |y-x|^2 \right)$ is a well-defined distribution on $\mathcal{M} \times \mathcal{M}$. What is the order on the light cone? Write down a light-cone expansion.

(c) Now consider the distributional derivatives

$$\left( \frac{\partial}{\partial x^0} \right)^p A(x,y) \quad \text{with} \quad p \in \mathbb{N}$$

and $A(x,y)$ as in part (b). What is the order on the light cone? Write down a light-cone expansion.

(d) Consider the function

$$E(x,y) = \sin \left( (y-x)^2 \right) \log \left( |y-x|^2 \right).$$

Determine the order on the light cone and give a light-cone expansion.

(e) Consider the function

$$E(x,y) = \begin{cases} e^{-\frac{1}{(y-x)^2}} & \text{if } (y-x)^2 \geq 0 \\ 0 & \text{otherwise} \end{cases}.$$

Determine the order on the light cone and give a light-cone expansion.

(f) Show that the expression

$$\lim_{\varepsilon \searrow 0} \frac{\log \left( |y-x|^2 \right)}{(y-x)^4 + i\varepsilon}$$

is a well-defined distribution on $\mathcal{M} \times \mathcal{M}$. Derive its light-cone expansion.

**Exercise 19.2.** This exercise is devoted to computing the Fourier transform of the advanced Green’s function (19.2.11) and deriving the series expansion (19.2.13).
(a) We again set \( \xi = y - x \) and \( \xi = (t, \vec{\xi}) \) with \( t > 0 \). Moreover, we choose polar coordinates \( r = (|\vec{\xi}|, \vartheta, \varphi) \). Carry out the \( \omega \)-integration with residues and compute the angular integrals to obtain

\[
S_{m^2}^\nu(x, y) = \frac{i}{8\pi r} \int_0^\infty \frac{p}{\omega(p)} \left( e^{-i pr} - e^{i pr} \right) \left( e^{i\omega(p)t} - e^{-i\omega(p)t} \right) dp,
\]

where \( p = |\vec{p}| \) and \( \omega(p) := \sqrt{|\vec{p}|^2 + m^2} \). Justify this integral as the Fourier transform of a distribution and show that

\[
S_{m^2}^\nu(x, y) = \frac{i}{8\pi r} \lim_{\varepsilon \to 0} \int_0^\infty \frac{p}{\varepsilon + \omega(p)} \left( e^{-i pr} - e^{i pr} \right) \left( e^{i\omega(p)t} - e^{-i\omega(p)t} \right) dp
\]

with convergence as a distribution.

(b) Verify (19.2.12) in the case \( m = 0 \) by setting \( \omega(p) = p \) and using (16.4.4).

(c) In order to analyze the behavior away from the light cone, it is most convenient to take the limit \( r \to 0 \) and use Lorentz invariance. Show that in this limit,

\[
S_{m^2}^\nu(x, y) = \frac{1}{4\pi r} \lim_{\varepsilon \to 0} \int_0^\infty e^{-\varepsilon p} \frac{p^2}{\omega(p)} \left( e^{i\omega(p)t} - e^{-i\omega(p)t} \right) dp \quad \text{(19.4.13)}
\]

\[
= \frac{1}{4\pi} \lim_{\varepsilon \to 0} \int_0^\infty e^{-\varepsilon p} \sqrt{\omega^2 - m^2} \left( e^{i\omega t} - e^{-i\omega t} \right) d\omega. \quad \text{(19.4.14)}
\]

Compute this integral using [87] formula (3.961.1) (similar as in the proof of Lemma 11.1). Use the relations between Bessel functions [109] (10.27.6), (10.27.11) to obtain (19.2.12) away from the light cone.

As an alternative method for computing the Fourier integral, one can begin from the integral representation for \( J_0 \) in [109] (10.9.12], differentiate with respect to \( x \) and use [109] (10.6.3)].

(d) Combine the results of (b) and (c) to prove (19.2.12). Why is there no additional contribution at \( \xi = 0 \)?

(e) Use the series expansion [109] (10.2.2] to derive (19.2.13).

(f) The series expansion (19.2.13) can also be derived without using Bessel functions. To this end, one expands (19.4.13) in powers of \( m^2 \) and computes the Fourier transform term by term. Verify explicitly that this procedure really gives (19.2.13).

Exercise 19.3. (Understanding the light cone expansion) This exercise aims to familiarize you with some of the particularities of the light cone expansion.

(a) Let \( A(x, y) := (x - y)^{2k_0} \) with \( k_0 \in \mathbb{Z} \). Which order(s) on the light cone is this? (Prove your answer.) Construct a light-cone expansion of \( A(x, y) \) and prove that it is one.

(b) Let \( B(x, y) := (x - y)^{2k_0} + (x - y)^{2k_1} \), where \( k_0, k_1 \in \mathbb{Z} \) and \( k_0 < k_1 \). Which order(s) on the light cone is this? (Prove your answer.) Construct a light-cone expansion of \( B(x, y) \) and prove that it is one.

(c) Let \( C(x, y) := (x - y)^{2k_0} f(x, y) + (x - y)^{2k_1} g(x, y) \), where \( f \) and \( g \) are smooth functions in \( x \) and \( y \) and \( k_0, k_1 \) as above. Construct a light-cone expansion of \( C(x, y) \) and prove that it is one.

(d) Let \( D(x, y) := \sin \left( (x - y)^2 \right) (x - y)^2 \). Use your results from (ii.) and (iii.) to construct two different light-cone expansions of \( D(x, y) \). Why might this non-uniqueness not be a problem for the scope of the lecture?
(e) Finally, consider the function

\[ E(x, y) = \sin((y - x)^2) + \begin{cases} 
\frac{1}{(y-x)^2} & \text{if } (y - x)^2 \geq 0 \\
0 & \text{else}
\end{cases} \]

Determine its order(s) on the light cone and a light cone expansion. (Prove your answer.)

*Hint:* For (d) and (e): Expand the sine function.
Part 4

Applications and Outlook
A Few Explicit Examples of Causal Variational Principles

In this chapter we introduce a few examples of causal variational principles and analyze them in detail. These examples are too simple for being of direct physical interest. Instead, they are chosen in order to illustrate the different mathematical structures introduced previously. It is a specific feature of these examples that a minimizing measure can be given in closed form, making it possible to analyze the system explicitly. Similar examples were first given in [70].

When constructing simple explicit examples, it is often convenient to choose non-smooth Lagrangians, which involve for example characteristic functions or are even distributional. In order to treat this non-smooth setting in a mathematically convincing way, one needs to work with additional jet spaces, which we now introduce (for more details see for example [64, 54]).

Clearly, the fact that a jet $u$ is smooth does not imply that the functions $\ell$ or $L$ are differentiable in the direction of $u$. This must be ensured by additional conditions which are satisfied by suitable subspaces of $J$ which we now introduce. First, we let $\Gamma^{\text{diff}}$ be those vector fields for which the directional derivative of the function $\ell$ exists,

$$\Gamma^{\text{diff}} = \{ u \in C^\infty(M,T\mathcal{F}) \mid Du\ell(x) \text{ exists for all } x \in M \}.$$

This gives rise to the jet space

$$J^{\text{diff}} := C^\infty(M,\mathbb{R}) \oplus \Gamma^{\text{diff}} \subset J.$$

For the jets in $J^{\text{diff}}$, the combination of multiplication and directional derivative in (7.2.2) is well-defined. We choose a linear subspace $J^{\text{test}} \subset J^{\text{diff}}$ with the property that its scalar and vector components are both vector spaces, i.e.

$$J^{\text{test}} = C^{\text{test}}(M,\mathbb{R}) \oplus \Gamma^{\text{test}} \subseteq J^{\text{diff}}.$$

for suitable subspaces $C^{\text{test}}(M,\mathbb{R}) \subset C^\infty(M,\mathbb{R})$ and $\Gamma^{\text{test}} \subset \Gamma^{\text{diff}}$. We then write the restricted EL equations (7.2.4) in the weaker form

$$\nabla_u\ell|_M = 0 \quad \text{for all } u \in J^{\text{test}}.$$

Finally, when considering weak solutions of the linearized field equations, it is sometimes useful to restrict attention to jets in a suitably chosen subspace of $J^{\text{test}}$, which in agreement with (14.2.6) we denote by

$$J^{\text{vary}} \subset J^{\text{test}}.$$

To summarize, we have the inclusions

$$J^{\text{vary}} \subset J^{\text{test}} \subset J^{\text{diff}} \subset J.$$

The compactly supported jets are always denoted by the subscript zero.

285
20.1. A One-Dimensional Gaussian

We let $\mathcal{F} = \mathbb{R}$ and choose the Lagrangian as the Gaussian
\begin{equation}
\mathcal{L}(x,y) = \frac{1}{\sqrt{\pi}} e^{-(x-y)^2}.
\tag{20.1.1}
\end{equation}

**Lemma 20.1.1.** The Lebesgue measure
\[ d\rho = dx \]
is a minimizer of the causal action principle for the Lagrangian (20.1.1) in the class of variations of finite volume (see (6.3.2) and (6.3.1)). It is the unique minimizer within this class of variations.

**Proof.** Writing the difference of the actions as in (6.3.2), we can carry out the integrals over $\rho$ using that the Gaussian is normalized (see Exercise 20.2),
\begin{equation}
\int_{\mathcal{F}} \mathcal{L}(x,y) d\rho(y) = 1.
\tag{20.1.4}
\end{equation}
We thus obtain
\begin{align*}
S(\rho) - S(\tilde{\rho}) &= 2 \int_N d(\rho - \tilde{\rho})(x) + \int_N d(\rho - \tilde{\rho})(x) \int_N d(\rho - \tilde{\rho})(y) \mathcal{L}(x,y) \\
&= \int_N d(\rho - \tilde{\rho})(x) \int_N d(\rho - \tilde{\rho})(y) \mathcal{L}(x,y),
\end{align*}
where in the last line we used the volume constraint (6.3.1). In order to show that the last double integral is positive, we take the Fourier transform and use that the Fourier transform of a Gaussian is again a Gaussian. More precisely,
\begin{equation}
\int_N e^{ipx} \mathcal{L}(x,y) dx = e^{-\frac{p^2}{4}} =: f(p)
\tag{20.1.2}
\end{equation}
Moreover, the estimate
\[ \left| \int_N e^{ipx} d(\rho - \tilde{\rho})(x) \right| \leq |\tilde{\rho} - \rho|_{\mathcal{F}} < \infty \]
shows that the Fourier transform of the signed measure $\tilde{\rho} - \rho$ is a bounded function $g \in L^\infty(\mathbb{R})$. Approximating this function in $L^2(\mathbb{R})$, we can apply Plancherel’s theorem and use the fact that convolution in position space corresponds to multiplication in momentum space. We thus obtain
\begin{equation}
\int_N d(\rho - \tilde{\rho})(x) \int_N d(\rho - \tilde{\rho})(y) \mathcal{L}(x,y) \\
= \int_N (\mathcal{F}^{-1}(fg))(x) d(\rho - \tilde{\rho})(x) = \int_{-\infty}^{\infty} \mathcal{F}(g)(p) e^{-\frac{p^2}{4}} g(p) dp \geq 0,
\tag{20.1.3}
\end{equation}
and the inequality is strict unless $\tilde{\rho} = \rho$. This concludes the proof. \qed

The EL equations read
\begin{equation}
\int_{\mathcal{F}} \mathcal{L}(x,y) d\rho(y) = 1 \quad \text{for all } x \in \mathbb{R}.
\tag{20.1.4}
\end{equation}
We now specify the jet spaces. Since the Lagrangian is smooth, it is obvious that
\[ \mathcal{J}^{\text{diff}} = \mathcal{J} = C^\infty(\mathbb{R}) \oplus C^\infty(\mathbb{R}) \]
(where we identify a vector field \( a(x) \partial_x \) on \( \mathbb{R} \) with the function \( a(x) \)). The choice of \( \mathcal{J}^{\text{test}} \) is less obvious. For simplicity, we restrict attention to functions which are bounded together with all their derivatives, denoted by
\[
C^\infty_b := \left\{ f \in C^\infty(\mathbb{R}) \mid f^{(n)} \in L^\infty \text{ for all } n \in \mathbb{N}_0 \right\} .
\]
Now different choices are possible. Our first choice is to consider jets whose scalar components are compactly supported,
\[
\mathcal{J}^{\text{test}} = C^\infty_b(\mathbb{R}) \oplus C^\infty_b(\mathbb{R}) .
\]
The linearized field equations (8.1.6) reduce to the scalar equation
\[
\int_N (\nabla_{1,\rho} + \nabla_{2,\rho}) \mathcal{L}(x, y) \, d\rho(y) - \nabla_{\rho} 1 = 0 \quad \text{for all } x \in \mathbb{R} ,
\]
because if this equation holds, then the \( x \)-derivative of the left side is also zero. Using the EL equations (20.1.4), the linearized field simplify to
\[
\int_N \nabla_{2,\rho} \mathcal{L}(x, y) \, d\rho(y) = 0 \quad \text{for all } x \in \mathbb{R} .
\]
A specific class of solutions can be given explicitly. Indeed, choosing
\[
u = (a, A) \quad \text{with} \quad a \in C^\infty_0(\mathbb{R}) \text{ and } A(x) := \int_0^x a(t) \, dt \in C^\infty_b(\mathbb{R}) ,
\]
integration by parts yields
\[
\int_N \nabla_{2,\rho} \mathcal{L}(x, y) \, d\rho(y) = \int_N \left( A'(y) + A(y) \partial_y \right) \mathcal{L}(x, y) \, dy = 0 .
\]
These linearized solutions are referred to as \textit{inner solutions}, as introduced in a more general context in [54]. Inner solutions can be regarded as infinitesimal generators of transformations of \( M \) which leave the measure \( \rho \) unchanged. Therefore, inner solutions do not change the causal fermion system, but merely describe symmetry transformations of the measure. With this in mind, inner solutions are not of interest by themselves. But they can be used in order to simplify the form of the jet spaces. For example, by adding suitable inner solutions one can arrange that the test jets have vanishing scalar components, as can be arranged by the transformation
\[
u = (b, v) \mapsto \tilde{\nu} := \nu + u \quad \text{with} \quad u = (-b, -B) ,
\]
where \( B \) is an indefinite integral of \( b \).

In our example, we can also the inner solutions alternatively in order to eliminate the vector component of the test jets. To this end, it is preferable to choose the space of test jets as
\[
\mathcal{J}^{\text{test}} = C^\infty_0(\mathbb{R}) \oplus C^\infty_b(\mathbb{R}) .
\]
Now the vector component disappears under the transformation
\[
u = (b, v) \mapsto \tilde{\nu} := \nu + u \quad \text{with} \quad u = (-v', -v) \in \mathcal{J}^{\text{test}} .
\]
Therefore, it remains to consider the scalar components of jets. For technical simplicity, we restrict attention to compactly supported functions. Thus we choose the jet space \( \mathcal{J}^{\text{vary}} \) as
\[
\mathcal{J}^{\text{vary}} = C^\infty_0(\mathbb{R}) \oplus \{0\} .
\]
Then the Laplacian reduces to the integral operator with kernel $L(x, y)$,

$$(\Delta(b, 0))(x) = \int_{\mathcal{F}} L(x, y) b(y) \, dy.$$  

20.2. A Minimizing Measure Supported on a Hyperplane

In the previous example, the support of the minimizing measure was the whole space $\mathcal{F}$. In most examples motivated from the physical applications, however, the minimizing measure will be supported on a low-dimensional subset of $\mathcal{F}$ (see for instance the minimizers with singular support in [75, 9]). We now give a simple example where the minimizing measure is supported on a hyperplane of $\mathcal{F}$. We let $\mathcal{F} = \mathbb{R}^2$ and choose the Lagrangian as

$$L(x, y; x', y') = \frac{1}{\sqrt{\pi}} e^{-(x-x')^2}(1 + y^2)(1 + y'^2), \quad (20.2.1)$$

where $(x, y), (x', y') \in \mathcal{F}$.

**Lemma 20.2.1.** The measure

$$d\rho = dx \times \delta_y$$  

(20.2.2)

(where $\delta_y$ is the Dirac measure) is the unique minimizer of the causal action principle for the Lagrangian (20.2.1) under variations of finite volume (see (6.3.2) and (6.3.1)).

Note that this measure is supported on the $x$-axis, $M := \text{supp} \rho = \mathbb{R} \times \{0\}$.

**Proof of Lemma 20.2.1.** Let $\tilde{\rho}$ be a regular Borel measure on $\mathcal{F}$ satisfying (6.3.1). Then the difference of actions (6.3.2) is computed by

$$S(\tilde{\rho}) - S(\rho) = \frac{2}{\sqrt{\pi}} \int_{\mathcal{F}} d(\tilde{\rho} - \rho)(x, y) \int_{\mathcal{N}} dx' e^{-(x-x')^2}(1 + y'^2)$$

$$+ \frac{1}{\sqrt{\pi}} \int_{\mathcal{F}} d(\tilde{\rho} - \rho)(x, y) \int_{\mathcal{F}} d(\tilde{\rho} - \rho)(x', y') e^{-(x-x')^2}(1 + y^2)(1 + y'^2). \quad (20.2.3)$$

Using that the negative part of the measure $\tilde{\rho} - \rho$ is supported on the $x$-axis, the first term (20.2.3) can be estimated by

$$\frac{2}{\sqrt{\pi}} \int_{\mathcal{F}} d(\tilde{\rho} - \rho)(x, y) \int_{\mathcal{N}} dx' e^{-(x-x')^2}(1 + y^2)$$

$$\geq \frac{2}{\sqrt{\pi}} \int_{\mathcal{F}} d(\tilde{\rho} - \rho)(x, y) \int_{\mathcal{N}} dx' e^{-(x-x')^2} = \int_{\mathcal{F}} d(\tilde{\rho} - \rho)(x, y) = 0,$$

where in the last step we used the volume constraint. The second term (20.2.4), on the other hand, can be rewritten as

$$\frac{1}{\sqrt{\pi}} \int_{\mathcal{F}} d\mu(x, y) \int_{\mathcal{F}} d\mu(x', y') e^{-(x-x')^2}$$

with the signed measure $\mu$ defined by

$$d\mu(x, y) := (1 + y^2) d(\tilde{\rho} - \rho)(x, y).$$

Now we can proceed as in the proof of Lemma 20.1.1 and use that the Fourier transform of the integral kernel is strictly positive. For the uniqueness statement one uses that the inequality in $(\ast)$ is strict unless $\tilde{\rho}$ is supported on the $x$-axis. Then one can argue as in the proof of Lemma 20.1.1. \qed
For the minimizing measure \((20.2.2)\), the function \(\ell\) takes the form
\[
\ell(x, y) = \int_J \mathcal{L}(x, y; x', y') \, d\rho(x', y') - 1 = y^2,
\]
showing that the EL equations \((7.1.2)\) are indeed satisfied. We now specify the jet spaces. Since the Lagrangian is smooth, it is obvious that
\[
\mathcal{J}^{\text{diff}} = \mathcal{J} = C^\infty(\mathbb{R}) \oplus C^\infty(\mathbb{R}, \mathbb{R}^2), \tag{20.2.5}
\]
where \(C^\infty(\mathbb{R}, \mathbb{R}^2)\) should be regarded as the space of two-dimensional vector fields along the \(x\)-axis. Similar as explained after \((20.1.7)\), we want to use the inner solutions for simplifying the vector components of the jets. To this end, in analogy to \((20.1.7)\) we choose
\[
\mathcal{J}^{\text{test}} = C^\infty_0(\mathbb{R}) \oplus C^\infty_0(\mathbb{R}, \mathbb{R}^2). \tag{20.2.6}
\]
The linearized field equations \((8.1.6)\) read
\[
\nabla_u \left( \int_{-\infty}^{\infty} (\nabla_{1,\rho} + \nabla_{2,\rho}) e^{-(x-x')^2} (1 + y^2) (1 + y'^2) \, dx' - \nabla_\rho \sqrt{\pi} \right) \bigg|_{y=y'=0} = 0. \tag{20.2.7}
\]
Now the inner solutions are generated by the vector fields tangential to the \(x\)-axis. More precisely, in analogy to \((20.1.5)\), we consider the jet
\[
\mathbf{v} = (b, (B, 0)) \quad \text{with} \quad b \in C^\infty_0 \text{ and } B(x) := \int_0^x b(t) \, dt \in C^\infty_0(\mathbb{R}). \tag{20.2.8}
\]
Substituting this jet into \((20.2.7)\), the linearized field equations simplify to
\[
\nabla_u \left( (1 + y^2) \int_{-\infty}^{\infty} (\nabla_{1,\rho} + \nabla_{2,\rho}) e^{-(x-x')^2} \, dx' - \nabla_\rho \sqrt{\pi} \right) \bigg|_{y=y'=0} = 0.
\]
The second component of the vector field \(u\) yields a \(y\)-derivative, giving rise to a factor \(2y\), which vanishes at \(y = 0\). Therefore, it suffices to test with a vector field \(u\) which is tangential to the \(x\)-axis. Now we are back in the example of the one-dimensional Gaussian. Integrating by parts as in \((20.1.6)\) one sees that the jet \(\mathbf{v}\) indeed satisfies the linearized field equations.

By suitably subtracting inner solutions, we can compensate the tangential components of the jets. This leads us to choose
\[
\mathcal{J}^{\text{var}y} = C^\infty_0(\mathbb{R}) \oplus \{0\} \oplus C^\infty_0(\mathbb{R}). \tag{20.2.9}
\]
Then the Laplacian simplifies as follows,
\[
\langle u, \Delta \mathbf{v} \rangle(x) = \frac{1}{\sqrt{\pi}} \nabla_u \left( \int_{-\infty}^{\infty} (\nabla_{1,\rho} + \nabla_{2,\rho}) e^{-(x-x')^2} (1 + y^2) (1 + y'^2) \, dx' - \nabla_\rho \sqrt{\pi} \right) \bigg|_{y=y'=0} = 2 u(x) v(x) \int_{-\infty}^{\infty} e^{-(x-x')^2} \, dx' + \frac{1}{\sqrt{\pi}} a(x) \int_{-\infty}^{\infty} e^{-(x-x')^2} b(x') \, dx' + a(x) \left( \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} b(x') e^{-(x-x')^2} \, dx' - b(x) \right) = 2 u(x) v(x) + \frac{1}{\sqrt{\pi}} a(x) \int_{-\infty}^{\infty} e^{-(x-x')^2} b(x') \, dx',
\]
where \( u = (a, (0, u)) \) and \( v = (b, (0, v)) \). Hence the inhomogeneous linearized field equations \((8.1.7)\) with \( w = (e, w) \) give rise to separate equations for the scalar and vector components,

\[
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(x-x')^2} b(x') \, dx' = e(x) , \quad v(x) = \frac{w(x)}{2} .
\]  

(20.2.10)

### 20.3. A Non-Homogeneous Minimizing Measure

In the previous examples, the minimizing measure \( \rho \) was translation invariant in the direction of the \( x \)-axis. We now give a general procedure for constructing examples of causal variational principles where the minimizing measure has no translational symmetry. In order to work in a concrete example, our starting point is again the one-dimensional Gaussian (20.1.1). But the method can be adapted to other kernels in a straightforward way. In view of these generalizations, we begin with the following abstract result.

**Lemma 20.3.1.** Let \( \mu \) be a measure on the \( m \)-dimensional manifold \( \mathcal{F} \) whose support is the whole manifold,

\[
\text{supp} \, \mu = \mathcal{F} .
\]

Moreover, let \( \mathcal{L}(x,y) \in L^1_{\text{loc}}(\mathcal{F} \times \mathcal{F}, \mathbb{R}_0^+) \) be a symmetric, non-negative kernel on \( \mathcal{F} \times \mathcal{F} \). Next, let \( h \in C^0(\mathcal{F}, \mathbb{R}_+^+) \) be a strictly positive, continuous function on \( \mathcal{F} \). Assume that:

(i) \[
\int_{\mathcal{F}} \mathcal{L}(x,y) \, h(y) \, d\mu(y) = 1 \quad \text{for all } x \in \mathcal{F} .
\]

(ii) For all compactly supported bounded functions with zero mean,

\[
g \in L^\infty_0(\mathcal{F}, \mathbb{R}_+^+) \quad \text{and} \quad \int_{\mathcal{F}} g \, d\mu = 0 ,
\]

the following inequality holds,

\[
\int_{\mathcal{F}} d\mu(x) \int_{\mathcal{F}} d\mu(y) \, \mathcal{L}(x,y) \, g(x) \, g(y) \geq 0 .
\]  

(20.3.1)

Then the measure \( d\rho := h \, d\mu \) is a minimizer of the causal action principle under variations of finite volume (see (6.3.2) and (6.3.1)). If the inequality (20.3.1) is strict for any non-zero \( g \), then the minimizing measure is unique within the class of such variations.

**Proof.** We consider the variation

\[
\tilde{\rho}_\tau = \rho + \tau g \, d\mu = (h + \tau g) \, d\mu .
\]  

(20.3.2)

Since \( h \) is continuous and strictly positive and \( g \) is continuous and compactly supported, the function \( h + \tau g \) is non-negative for sufficiently small \( |\tau| \). Furthermore, using that \( g \) has mean zero, we conclude that (20.3.2) is an admissible variation of finite volume (6.3.1). Moreover, the difference of the actions (6.3.2) is well-defined and computed by

\[
S(\tilde{\rho}_\tau) - S(\rho)
= 2\tau \int_N d\rho(x) \int_N d\rho(y) \, h(y) \, \mathcal{L}(x,y) + \tau^2 \int_N d\rho(x) \int_N d\rho(y) \, \mathcal{L}(x,y) \, g(x) \, g(y)
\geq 2\tau \int_N g(y) \, d\rho(y) = 0 ,
\]

where in the second step we used the above assumptions (i) and (ii). The last step follows from the fact that \( g \) has mean zero.
20.3. A NON-HOMOGENEOUS MINIMIZING MEASURE 291

We conclude that the measure $\rho$ is a minimizer under variations of the form (20.3.2). In order to treat a general variation of finite volume (6.3.1), we approximate $\tilde{\rho}$ by a sequence of functions $g_n$ with the property that the measures $g_n\rho$ converge vaguely to $\tilde{\rho}$. For details see [28].

Our goal is to apply this lemma to kernels of the form

$$\mathcal{L}(x, y) = f(x) e^{-(x-y)^2} f(y)$$  \hspace{1cm} (20.3.3)

with a strictly positive function $f$, which for convenience we again choose as a Gaussian,

$$f(x) = e^{\alpha x^2} \quad \text{with} \quad \alpha \in \mathbb{R}.$$  \hspace{1cm} (20.3.4)

This kernel has the property (ii) because for all non-trivial $g \in L^\infty_0(\mathcal{F}, \mathbb{R}^+)$,

$$\int_{\mathcal{F}} d\mu(x) \int_{\mathcal{F}} d\mu(y) \mathcal{L}(x, y) g(x) g(y) = \int_{\mathcal{F}} d\mu(x) \int_{\mathcal{F}} d\mu(y) e^{-(x-y)^2} (fg)(x) (fg)(y) > 0,$$

where the last step is proved exactly as in the example of the Gaussian (see (20.1.3)). In order to arrange (i), for $h$ we make an ansatz again with a Gaussian,

$$h(x) = c e^{\beta x^2}.$$  \hspace{1cm} (20.3.5)

Then

$$\int_{\mathcal{F}} \mathcal{L}(x, y) h(y) d\mu(y) = c \int_{-\infty}^{\infty} e^{\alpha x^2} e^{-(x-y)^2} e^{(\alpha+\beta)y^2} dy$$

$$= c \exp \left( \frac{\alpha x^2 - x^2}{\alpha + \beta - 1} \right) \int_{-\infty}^{\infty} \exp \left\{ (\alpha + \beta - 1) \left( y - \frac{x}{\alpha + \beta - 1} \right)^2 \right\} dy$$

$$= c \sqrt{\frac{\pi}{1 - \alpha - \beta}} \exp \left( \frac{\alpha x^2 - x^2}{\alpha + \beta - 1} \right).$$

In order to arrange that this function is constant one, we choose

$$c = \sqrt{\frac{1 - \alpha - \beta}{\pi}} \quad \text{and} \quad \beta = -\frac{\alpha(2 - \alpha)}{1 - \alpha}.$$  \hspace{1cm} (20.3.6)

In order for the above Gaussian integral to converge, we need to ensure that $1 - \alpha - \beta > 0$. In view of the formula

$$1 - \alpha - \beta = \frac{1}{1 - \alpha},$$

this can be arranged simply by choosing $\alpha < 1$. Our finding is summarized as follows.

**Proposition 20.3.2.** For any $\alpha < 1$, we let $f$ and $h$ be the Gaussians (20.3.4) and (20.3.5) with $c$ and $\beta$ according to (20.3.6). Then the measure $d\rho = h dx$ is the unique minimizer of the causal action corresponding to the Lagrangian (20.3.3) within the class of variations of finite volume.

As a concrete example, we consider the well-known Mehler kernel (see for example [84, Section 1.5])

$$E(x, y) = \frac{1}{\sqrt{1 - \mu^2}} \exp \left( -\frac{\mu^2(x^2 + y^2) - 2\mu xy}{1 - \mu^2} \right)$$

with $\mu > 0$. Rescaling $x$ and $y$ according to

$$x, y \to \sqrt{\frac{1 - \mu^2}{\mu}} x, y,$$
the Mehler kernel becomes
\[ E(x, y) = \frac{1}{\sqrt{1 - \mu^2}} \exp\left(-\mu(x^2 + y^2) - 2xy\right). \]
This kernel is of the desired form (20.3.3) if we choose
\[ \alpha = 1 - \mu < 1, \quad \beta = \frac{\mu^2 - 1}{\mu}. \]

We finally remark that this non-homogeneous example can be used as the starting point for the construction of higher-dimensional examples with minimizing measures supported on lower-dimensional subsets, exactly as explained for the Gaussian in Section 20.2.

20.4. A Minimizing Measure in Two-Dimensional Minkowski Space

In the previous examples, the Lagrangian was strictly positive (see (20.1.1) (20.2.1), (20.3.3)). Therefore, the causal structure of the resulting spacetime was trivial, because all pairs or points were timelike separated. We now give examples where the minimizing measures gives rise to nontrivial causal relations in spacetime. We let \( F = \mathbb{R}^2 \), denote the coordinates by \((t, x)\) and choose the Lagrangian
\[ L(t, x; t', x') = e^{-(t-t')^2} \left( \delta((t - t') - (x - x')) + \delta((t - t') + (x - x')) \right). \]
(20.4.1)
The Lagrangian is non-negative, and it is strictly positive on the “light rays” \((t - t') = \pm (x - x')\).

**Lemma 20.4.1.** The Lebesgue measure
\[ d\rho = dt dx \]
is a minimizer of the causal action principle for the Lagrangian (20.4.1) in the class of variations of finite volume (see (6.3.2) and (6.3.1)). It is the unique minimizer within this class of variations.

**Proof.** Proceeding as in the proof of Lemma 20.1.1, our task is to show that the Fourier transform of the Lagrangian is strictly positive. To this end, we note that
\[ \int_{\mathbb{R}^2} \delta(t - x) e^{i\omega t - ikx} dt dx = \int_{-\infty}^{\infty} e^{i\omega x - ikx} dx = 2\pi \delta(\omega - k). \]
We thus obtain
\[ \int_{\mathbb{R}^2} \left( \delta((t - t') - (x - x')) + \delta((t - t') + (x - x')) \right) e^{i\omega t - ikx} dt dx \]
\[ = 2\pi (\delta(\omega + k) + \delta(\omega - k)). \]
Multiplying by the Gaussian in (20.4.1) corresponds to a convolution in momentum space again by a Gaussian. This convolution gives a strictly positive function, as desired. \( \square \)

The Lagrangian (20.4.1) has the shortcoming that it is supported only on the boundary of the light cone. In order to improve the situation, we next consider the example
\[ L(t, x; t', x) = e^{-(t-t')^2} \left( \delta((t - t') - (x - x')) + \delta((t - t') + (x - x')) \right) + a e^{-\frac{(t-t')^2}{2}} \Theta((t - t')^2 - (x - x')^2). \]
(20.4.2)
Lemma 20.4.2. Choosing \( |\alpha| < 1 \), the Lebesgue measure
\[
d\rho = dt \, dx
\]
is a minimizer of the causal action principle for the Lagrangian (20.4.1) in the class of variations of finite volume (see (6.3.2) and (6.3.1)). It is the unique minimizer within this class of variations.

Proof. We compute the Fourier transform of the Heavyside function.
\[
\int_{\mathbb{R}^2} \Theta(t^2 - x^2) e^{i\omega t - i\xi x} e^{-\epsilon |t|} \, dt \, dx
\]
\[
= 4 \int_0^\infty dx \int_{-\infty}^\infty dt \, \Theta(t-x) \cos(\omega t) \cos(kx) e^{-\epsilon t} \, dx
\]
\[
= 2 \int_0^\infty \left( \frac{e^{i\omega x - \epsilon x}}{i\omega - \epsilon} - \frac{e^{-i\omega x - \epsilon x}}{-i\omega - \epsilon} \right) \cos(kx) \, dx
\]
\[
= -\frac{1}{i\omega - \epsilon} \left( \frac{1}{i\omega + k - \epsilon} + \frac{1}{i\omega - k - \epsilon} \right) - \frac{1}{-i\omega - \epsilon} \left( \frac{1}{-i\omega + k - \epsilon} + \frac{1}{-i\omega - k - \epsilon} \right).
\]
In the limit \( \epsilon \searrow 0 \), this converges to a tempered distribution which is singular on the light cone. Taking the convolution with the Gaussian and choosing \( \alpha \) sufficiently small, the resulting function is dominated near the light cone by the Fourier transform computed in the proof of Lemma 20.4.1. Moreover, due to its decay properties at infinity, the same is true away from the light cone. This concludes the proof. \( \square \)

20.5. A Nonlinear Wave Equation in Two-Dimensional Minkowski Space

We choose \( \mathcal{F} = \mathbb{R}^2 \times S^1 \) and denote the coordinates by \((t, x) \in \mathbb{R}^2 \) and \( e^{i\alpha} \in S^1 \). We choose
\[
\mathcal{L}(t, x, \alpha; t', x', \alpha') = e^{-(t-t')^2} e^{-(x-x')^2} + \delta(t-t') \delta(x-x') (\sin \alpha - \sin \alpha')^2
\]
\[
+ e^{-8} g(t-t', x-x') \sin \alpha \sin \alpha',
\]
where \( g \) is the convolution \( g = h \ast h \)
\[
h(t, x) = \delta(t-1) \delta(x) + \delta(t+1) \delta(x) - \delta(t) \delta(x+1) - \delta(t) \delta(x-1)
\]
(thus \( h \) is the kernel of a discretized wave operator). The prefactor \( e^{-8} \) is chosen in order to arrange that the Lagrangian is non-negative.

Proposition 20.5.1. Every minimizing measure \( \rho \) has the form
\[
d\rho(t, x, \alpha) = dt \, dx \, d\alpha \delta(\alpha - \phi(t, x)) \, d\alpha,
\]
where \( \phi(t, x) \) solves the nonlinear discrete wave equation
\[
\sin (\phi(t+1, x)) + \sin (\phi(t-1, x)) - \sin (\phi(t, x+1)) - \sin (\phi(t, x-1)) = 0.
\]

We begin with a preparatory lemma.

Lemma 20.5.2. Every minimizing measure has the form
\[
d\rho(t, x, \alpha) = d\mu(t, x) \delta(\alpha - \phi(t, x)) \, d\alpha,
\]
(20.5.1) with \( \mu \) the push-forward to the first two variables, i.e.
\[
\mu = \pi_* \rho \quad \text{with} \quad \pi : \mathbb{R}^2 \times S^1 \to \mathbb{R}^2, \quad (t, x, \alpha) \mapsto (t, x),
\]
and \( \phi : \mathbb{R}^2 \to \mathbb{R} \) is a \( \mu \)-measurable function.
Proof. We introduce the function $\phi(t,x)$ by

$$
\sin \phi(t,x) \, d\mu(t,x) = \int_0^{2\pi} \sin \alpha \, d\rho(t,x,\alpha).
$$

In words, $\sin \phi(t,x)$ coincides with the mean of $\sin \alpha$ integrated over the circle. The function $\phi(t,x)$ exists because this means lies in the interval $[-1,1]$ and because the sine takes all values in this interval. Denoting the resulting measure of the form (20.5.1) by $\tilde{\rho}$, we obtain

$$
S(\rho) - S(\tilde{\rho}) = \int_{\mathcal{F}} d\rho(t,x,\alpha) \int_{\mathcal{F}} d\rho(t',x',\alpha) \, \delta(t-t') \delta(x-x') \left( \sin \alpha - \phi(t,x) \right)^2.
$$

Therefore, $\rho$ is a minimizer if and only if $\rho = \tilde{\rho}$. □

Proof of Proposition 20.5.1. For measures of the form (20.5.1), the action takes the form

$$
S = \int_{\mathbb{R}^2} d\mu(t,x) \int_{\mathbb{R}^2} d\mu(t',x') \, e^{-(t-t')^2} e^{-(x-x')^2}
$$

$$
+ e^{-8} \int_{\mathbb{R}^2} d\mu(t,x) \int_{\mathbb{R}^2} d\mu(t',x') \, g(t-t',x-x') \sin \phi(t,x) \sin \phi(t',x').
$$

Using that $g$ is a convolution,

$$
g(t-t',x-x') = \int_{\mathbb{R}^2} h(t-\tau,x-z) \, h(t'-\tau,x'-z) \, d\tau \, dz,
$$

the action can be rewritten as

$$
S = \int_{\mathbb{R}^2} d\mu(t,x) \int_{\mathbb{R}^2} d\mu(t',x') \, e^{-(t-t')^2} e^{-(x-x')^2}
$$

$$
+ e^{-8} \int_{\mathbb{R}^2} \left( \int_{\mathbb{R}^2} h(t-\tau,x-z) \sin \phi(t,x) \, d\mu(t,x) \right)^2 \, d\tau \, dz.
$$

Exactly as shown in Section 20.1, the minimizer of (20.5.2) is given by the Lebesgue measure. The contribution (20.5.3), on the other hand, is minimal if $\sin \phi(t,x)$ satisfies the discrete wave equation. This concludes the proof. □

Exercises

Exercise 20.1. (Functions with self-similar Fourier transform) The example of Lemma 20.1.1 was based on the fact that the Fourier transform of a Gaussian is again Gaussian (20.1.2).

(a) Prove (20.1.2) by direct computation.
(b) Another example of a function which is self-similar under Fourier transforms is the distribution in Minkowski space

$$
K_0(p) = \delta(k^2) \epsilon(k^0).
$$

Show that its Fourier transform indeed give, up to a constant, the same distribution back. Hint: The distribution $K_0(p)$ is the analog of the causal fundamental solution (13.6.3) for the scalar wave equation (see also (16.3.8)). Using this fact, one can make use of the explicit form of the causal Green’s functions for the scalar wave equation.
(c) Can you think of other functions which are self-similar under the Fourier transform in the above sense? Is there a systematic way to characterize them all?

**EXERCISE 20.2. (Non-negative Functions with non-negative Fourier transforms)** Another specific feature of the Gaussian in (20.1.1) which was used in Lemma 20.1.1 is that it is a positive function whose Fourier transform is again positive.

(a) Show that the same is true for the \( \delta \)-distribution. Can you come up with other functions with this property.

(b) The Lagrangian (20.4.1) involves a function of two variables with the properties that it is non-negative and has a non-negative Fourier transform. How can this idea be used to construct other Lagrangians with the property that the Lebesgue measure is a minimizer?
CHAPTER 21

Basics on the Continuum Limit

In the continuum limit one analyzes the EL equations of the causal action principle for systems of Dirac seas in the presence of classical bosonic fields. As worked out in detail in [42, Chapters 3-5], this limiting case yields the interactions of the standard model and gravity on the level of second-quantized fermionic fields interacting with classical bosonic fields. In this chapter we explain schematically how the analysis of the continuum limit works and give an overview of the obtained results.

21.1. The Regularized Light-Cone Expansion

In Chapters [18 and 19] it was explained how to construct and analyze the unregularized kernel of the fermionic projector \( \tilde{P}(x,y) \) in Minkowski space in the presence of an external potential \( \mathcal{B} \). Our goal is to answer the question whether the causal fermion system corresponding to this kernel satisfies the EL equations corresponding to the causal action principle. Thus we would like to evaluate the EL equations as stated abstractly in Theorem 7.1.1. The basic procedure is to form the closed chain (see (5.6.3)) and to compute its eigenvalues \( \lambda_1, \ldots, \lambda_n \in \mathbb{C} \). This, in turn, makes it possible to compute the causal action and the constraints (see (5.5.1)–(5.5.5)). Considering first variations of \( P(x,y) \), one then obtains the EL equations.

The main obstacle before one can carry out this procedure is that, in order to obtain mathematically well-defined quantities, one needs to introduce an ultraviolet regularization. As explained in detail in Chapter 5, this regularization is not merely a technical procedure, but it corresponds to implementing a specific microscopic structure of spacetime. In the vacuum, the regularization was introduced with the help of a regularization operator \( R_\varepsilon \) (see (5.4.1)). Different choices of regularization operators correspond to different microscopic structures of spacetime. Since the structure of our physical spacetime on the Planck scale is largely unknown, the strategy is to allow for a general class of regularization operators, making it possible to analyze later on how the results depend on the regularization (for more details on this so-called method of variable regularization see [42, §1.2.1]).

Having chosen a regularization operator \( R_\varepsilon \) in the vacuum, we can follow the procedure in Chapter 5 and construct the corresponding causal fermion system, which also gives rise to the kernel of the fermionic projector (5.6.2). After suitable identifications, this kernel can be represented in Minkowski space by the regularized vacuum kernel \( P^\varepsilon(x,y) \), being the integral kernel of the operator

\[
P^\varepsilon := -R_\varepsilon \pi_{\mathcal{M}} \mathcal{R}_m k_m : C^\infty_0(\mathcal{M}, \mathcal{M}) \to \mathcal{H}_m.
\]

The next question is whether \( R_\varepsilon \) also determines the regularization of the kernel \( \tilde{P}(x,y) \) in the presence of a classical potential. This question is rather subtle, because it is not clear a-priori whether the regularized objects should still satisfy the Dirac equation.
21. Basics on the Continuum Limit

In [42, Appendix F] and [38, Appendix D] a procedure is given for regularizing the light-cone expansion (see [66] for related constructions in curved spacetime). We denote the regularized kernel in the presence of the bosonic potential \( B \) by \( \tilde{P}_\varepsilon(x, y) \).

21.2. The Formalism of the Continuum Limit

Having introduced the regularized kernel of the fermionic projector \( \tilde{P}_\varepsilon(x, y) \), we can form the closed chain

\[
A_{xy}^\varepsilon := \tilde{P}_\varepsilon(x, y) \tilde{P}_\varepsilon(y, x),
\]

and compute its eigenvalues and proceed by analyzing the EL equations. In the continuum limit, one focuses on the limiting case \( \varepsilon \downarrow 0 \) when the ultraviolet regularization is removed. This limiting case is comparatively easy to analyze. This can be understood from the fact that, in the limit \( \varepsilon \downarrow 0 \), the closed chain \( A_{xy}^\varepsilon \) becomes singular on the light cone. Therefore, asymptotically for small \( \varepsilon \), it suffices to take into account the contributions to \( A_{xy}^\varepsilon \) on the light cone. These contributions, on the other hand, are captured precisely by the light-cone expansion of the unregularized kernel \( \tilde{P}(x, y) \) (see Chapter 4 or the explicit formulas in Example 19.2.2). This is the basic reason why, in the continuum limit, the EL equations can be rewritten as field equations involving fermionic wave functions as well as derivatives of the bosonic potentials.

More specifically, the asymptotics \( \varepsilon \downarrow 0 \) is captured by the formalism of the continuum limit, which we now outline (for more details see [42, Section 2.4] or the derivation of the formalism in [38, Chapter 4]). In the first step, one regularizes the light-cone expansion symbolically by leaving all smooth contributions unchanged, whereas the singular factors \( T^{(n)} \) of the factors \( T^{(n)} \), we employ the replacement rule

\[
m^p T^{(n)} \rightarrow m^p T^{(n)}_{[\varepsilon]}.
\]

Thus for the formulas of Example 19.2.2, the factors \( T^{(n)} \) get an additional index \([0]\). If the light-cone expansion involves powers of the rest mass, these powers are taken into account in the lower index. The resulting factors \( T^{(n)}_{[\varepsilon]} \) are smooth functions, making all the subsequent computations well-defined. The detailed form of these functions does not need to be specified, because we can get along with the following computation rules.

In computations one may treat the \( T^{(n)}_{[\varepsilon]} \) like complex functions. However, one must be careful when tensor indices of factors \( \xi \) are contracted with each other. Naively, this gives a factor \( \xi^2 \) which vanishes on the light cone and thus changes the singular behavior on the light cone. In order to describe this effect correctly, we first write every summand of the light cone expansion such that it involves at most one factor \( T^{(n)}_{[\varepsilon]} \) (this can always be arranged using the anti-commutation relations of the Dirac matrices). We now associate every factor \( \xi \) to the corresponding factor \( T^{(n)}_{[\varepsilon]} \). In short calculations, this can be indicated by putting brackets around the two factors, whereas in the general situation we add corresponding indices to the factor \( \xi \), giving rise to the replacement rule

\[
m^p \xi T^{(n)} \rightarrow m^p \xi^{(n)} T^{(n)}_{[\varepsilon]}.
\]

For example, we write the regularized fermionic projector of the vacuum as

\[
P^\varepsilon = \frac{i}{2} \sum_{n=0}^{\infty} \frac{m^{2n}}{n!} \xi^{(2n)} T^{(-1+n)}_{[2n]} + \sum_{n=0}^{\infty} \frac{m^{2n+1}}{n!} T^{(n)}_{[2n+1]}.
\]
The kernel \( P(y, x) \) is obtained by taking the conjugate (see \((?\,)?\)). The conjugates of the factors \( T_{[p]}^{(n)} \) and \( \xi_{[p]}^{(n)} \) are the complex conjugates,

\[
T_{[p]}^{(n)} := (T_{[p]}^{(n)})^* \quad \text{and} \quad \xi_{[p]}^{(n)} := (\xi_{[p]}^{(n)})^* .
\]

One must carefully distinguish between these factors with and without complex conjugation. In particular, the factors \( \xi_{[p]}^{(n)} \) need not be symmetric,

\[
(\xi_{[p]}^{(n)})^* \neq \xi_{[p]}^{(n)} \quad \text{in general} .
\]

When forming composite expressions, the tensor indices of the factors \( \xi \) are contracted to other tensor indices. The factors \( \xi \) which are contracted to other factors \( \xi \) are called inner factors. The contractions of the inner factors are handled with the so-called contraction rules

\[
\begin{align*}
(\xi^{(n)}_{[p]})^j & (\xi^{(n')}_{[p']})^j = \frac{1}{2} (z^{(n)}_{[p]} + z^{(n')}_{[p']}) \\
(\xi^{(n)}_{[p]})^j (\xi^{(n')}_{[p']})^j & = \frac{1}{2} (z^{(n)}_{[p]} + z^{(n')}_{[p']}) \\
z^{(n)}_{[p]} T^{(n)}_{[p]} & = -4 \left( n T^{(n+1)}_{[p]} + T^{(n+2)}_{[p]} \right),
\end{align*}
\]

which are to be complemented by the complex conjugates of these equations. Here the factors \( z^{(n)}_{[p]} \) can be regarded simply as a book-keeping device to ensure the correct application of the rule \((21.2.5)\). The factors \( T^{(n)}_{[p]} \) have the same scaling behavior as the \( T^{(n)}_{[p]} \), but their detailed form is somewhat different; we simply treat them as a new class of symbols. In cases where the lower index does not need to be specified we write \( T^{(n)}_{[p]} \). After applying the contraction rules, all inner factors \( \xi \) have disappeared. The remaining so-called outer factors \( \xi \) need no special attention and are treated like smooth functions.

Next, to any factor \( T^{(n)}_{[p]} \) we associate the degree \( \deg T^{(n)}_{[p]} \) by

\[
\deg T^{(n)}_{[p]} = 1 - n .
\]

The degree is additive in products, whereas the degree of a quotient is defined as the difference of the degrees of numerator and denominator. The degree of an expression can be thought of as describing the order of its singularity on the light cone, in the sense that a larger degree corresponds to a stronger singularity (for example, the contraction rule \((21.2.5)\) increments \( n \) and thus decrements the degree, in agreement with the naive observation that the function \( z = \xi^2 \) vanishes on the light cone). Using formal Taylor series, we can expand in the degree. In all our applications, this will give rise to terms of the form

\[
\eta(x, y) \frac{T^{(a_1)}_{(c_1)} \cdots T^{(a_n)}_{(c_n)} T^{(b_1)}_{(d_1)} \cdots T^{(b_d)}_{(d_1)}}{T^{(c_1)}_{(f_1)} \cdots T^{(c_3)}_{(f_3)} T^{(d_1)}_{(f_1)} \cdots T^{(d_3)}_{(f_3)}} \quad \text{with} \ \eta(x, y) \ \text{smooth} .
\]

The quotient of the two monomials in this equation is referred to as a simple fraction.

A simple fraction can be given a quantitative meaning by considering one-dimensional integrals along curves which cross the light cone transversely away from the origin \( \xi = 0 \). This procedure is called weak evaluation on the light cone. For our purpose, it suffices to integrate over the time coordinate \( t = \xi^0 \) for fixed \( \xi \neq 0 \). Moreover, using the symmetry under reflections \( \xi \to -\xi \), it suffices to consider the upper light cone \( t \approx |\xi| \). The resulting
integrals diverge if the regularization is removed. The leading contribution for small $\varepsilon$ can be written as

$$\int_{|\vec{\xi}|-\varepsilon}^{|\vec{\xi}|+\varepsilon} dt \eta(t, \vec{\xi}) \frac{T_0^{(a_1)} \ldots T_0^{(a_\alpha)} T_0^{(b_1)} \ldots T_0^{(b_\beta)}}{T_0^{(c_1)} \ldots T_0^{(c_\gamma)} T_0^{(d_1)} \ldots T_0^{(d_\delta)}} \approx \eta(|\vec{\xi}|, \vec{\xi}) c_{\text{reg}} \left( \frac{c}{|\vec{\xi}|} \right) L \log \varepsilon L^{-1},$$

(21.2.7)

where $L$ is the degree of the simple fraction and $c_{\text{reg}}$, the so-called regularization parameter, is a real-valued function of the spatial direction $\vec{\xi}/|\vec{\xi}|$ which also depends on the simple fraction and on the regularization details (the error of the approximation will be specified below). The integer $r$ describes a possible logarithmic divergence. Apart from this logarithmic divergence, the scalings in both $\xi$ and $\varepsilon$ are described by the degree.

When analyzing a sum of expressions of the form (21.2.6), one must know if the corresponding regularization parameters are related to each other. In this respect, the integration-by-parts rules are important, which are described symbolically as follows. On the factors $T_0^{(n)}$ we introduce a derivation $\nabla$ by

$$\nabla T_0^{(n)} = T_0^{(n-1)}.$$

Extending this derivation with the Leibniz and quotient rules to simple fractions, the integration-by-parts rules state that

$$\nabla \left( \frac{T_0^{(a_1)} \ldots T_0^{(a_\alpha)} T_0^{(b_1)} \ldots T_0^{(b_\beta)}}{T_0^{(c_1)} \ldots T_0^{(c_\gamma)} T_0^{(d_1)} \ldots T_0^{(d_\delta)}} \right) = 0.$$

(21.2.8)

These rules give relations between simple fractions. Simple fractions which are not related to each other by the integration-by-parts rules are called basic fractions. As shown in [38], Appendix E], there are no further relations between the basic fractions. Thus the corresponding basic regularization parameters are linearly independent.

The above symbolic computation rules give a convenient procedure to evaluate composite expressions in the fermionic projector, referred to as the analysis in the continuum limit: After applying the contraction rules and expanding in the degree, the EL equations can be rewritten as equations involving a finite number of terms of the form (21.2.6). By applying the integration-by-parts rules, we can arrange that all simple fractions are basic fractions. We evaluate weakly on the light cone (21.2.7) and collect the terms according to their scaling in $\xi$. Taking for every given scaling in $\xi$ only the leading pole in $\varepsilon$, we obtain equations which involve linear combinations of smooth functions and basic regularization parameters. We consider the basic regularization parameters as empirical parameters describing the unknown microscopic structure of spacetime. We thus end up with equations involving smooth functions and a finite number of free parameters.

We finally specify the error of the above expansions. By not regularizing the bosonic potentials and fermionic wave functions, we clearly disregard the higher orders in $\varepsilon/\ell_{\text{macro}}$.

(21.2.9)

Furthermore, in (21.2.7) we must stay away from the origin, meaning that we neglect the higher orders in $\varepsilon/|\vec{\xi}|$.

(21.2.10)

The higher order corrections in $\varepsilon/|\vec{\xi}|$ depend on the fine structure of the regularization and thus seem unknown for principal reasons. Neglecting the terms in (21.2.9) and (21.2.10) also justifies the formal Taylor expansion in the degree. Clearly, leaving
out the terms (21.2.10) is justified only if $|\vec{\xi}| \gg \epsilon$. Therefore, whenever using the above formalism, we must always ensure that $|\vec{\xi}|$ is much larger than $\epsilon$.

We finally remark that, when working out the Einstein equations, one must go beyond error terms of the form $|\delta^2| \approx \epsilon^2$. The reason is that the gravitational scales like $\kappa \sim \delta^2 \approx \epsilon^2$. In order not to lose the relevant terms in the error terms, one must take certain higher order contributions into account. This is done by using the so-called $\iota$-formalism. Here we do not enter the details but merely refer the interested reader to [42 §4.2.7].

21.3. Overview of Results of the Continuum Limit Analysis

We now outline the main results of the continuum limit analysis as obtained in [42, Chapters 3-5]. The main input is to specify the regularized kernel $P^\epsilon(x, y)$ of the vacuum. This involves:

- The fermion configuration in the vacuum, including the masses of the leptons and quarks. Moreover, it is built in that the neutrinos break the chiral symmetry.
- The vacuum kernel should satisfy the EL equations. This poses a few constraints on the regularization operator.

The output of the continuum limit are the following results:

- The structure of the interaction on the level of classical gauge theory.
- The gauge groups and their coupling to the fermions.
- The equations of linearized gravity.

In [42] the continuum limit is worked out in three steps for systems of increasing complexity. In Chapter 3, a system formed of a sum of three Dirac seas is considered. This configuration, referred to as a sector, can be thought of a simplified model describing the three generations of charged leptons ($e, \mu, \tau$). In the continuum limit, we obtain the following results for the interaction as described by the causal action principle:

- The fermions interact via an axial gauge field.
- This axial gauge field is massive, with the mass determined by the masses of the fermions and the regularization.
- We find that the field equations for the axial gauge field arise in the continuum limit only if the number of generations equals three. For one or two generations, the resulting equations are overdetermined, whereas for more than three generations, the equations are under-determined (which means in particular that there is no well-posed Cauchy problem).
- We obtain nonlocal corrections to the classical field equations described by integral kernels which decay on the Compton scale. It seems that these nonlocal corrections capture certain features of the underlying quantum field theory. But the detailed connection has not been worked out.
- There is no gravitational field and no Higgs field.

In Chapter 4, a system formed as a direct sum of two sectors is considered. This system is referred to as a block. The first sectors looks as in Chapter 3. In the second sector, however, the chiral symmetry is broke. This system can be regarded as a model for the leptons, including the three generations of neutrinos. In the continuum limit, we obtain the following results for the interaction as described by the causal action principle:

- The fermions interact via a SU(2) gauge field, which couples only to one chirality (say, the left-handed fermions).
The corresponding gauge field is again massive.
Moreover, the fermions interact linearly via the linearized Einstein equations, where the coupling constant is related to the regularization length.

Finally, in Chapter 5 a realistic system involving leptons and quarks is considered. To this end, one considers a direct sum of eight sectors, one of which with broken chiral symmetry (the neutrino sector). These eight sectors form pairs, referred to as blocks. The block containing the neutrino sector describes the leptons, whereas the other blocks describe the quarks. Moreover, we obtain the following results:

- The fermions interact via the gauge group $U(1) \times SU(2)_L \times SU(3)$. The corresponding gauge fields couple to the fermions as in the standard model. The $SU(2)$-field couples on to the left-handed component and is massive. The other gauge fields are massless.
- Moreover, the fermions interact linearly via the linearized Einstein equations.
- The EL equations corresponding to the causal action principle coincide with those of the standard model after spontaneous symmetry breaking, plus linearized gravity.
- There are scalar degrees of freedom which can be identified with the Higgs potential. However, the corresponding dynamical equations have not yet been worked out.

We conclude this section by discussing a few aspects of the derivation of these results. We begin with the system of one sector as considered in Chapter 3. In this case, the kernel of the fermionic projector is the sum of $g \in \mathbb{N}$ Dirac seas of masses $m_1, \ldots, m_g$, i.e.

$$P(x, y) = \sum_{\beta=1}^{g} P_{m_\beta}(x, y),$$  \hspace{1cm} (21.3.1)

where again

$$P_{m}(x, y) = \int \frac{d^4k}{(2\pi)^4} (\not{k} + m) \delta(k^2 - m^2) \Theta(-k^0) e^{-ik(x-y)}.$$

In order to perturb the system by gauge potentials, we first introduce the kernel of the auxiliary fermionic projector $P_{aux}(x, y)$, which is obtained from $P(x, y)$ if one replaces the sums by direct sums,

$$P_{aux}(x, y) = \bigoplus_{\beta=1}^{g} P_{m_\beta}(x, y)$$

(this means that $P_{aux}(x, y)$ is represented by a $(4g \times 4g)$-matrix). The auxiliary kernel satisfies the Dirac equation

$$\left( i\partial_x - \begin{pmatrix} m_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & m_g \end{pmatrix} \right) P_{aux}(x, y) = 0.$$

Therefore, it can be perturbed as usual by inserting a potential $B$ into the Dirac equation

$$\left( i\partial_x + B(x) - \begin{pmatrix} m_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & m_g \end{pmatrix} \right) \tilde{P}_{aux}(x, y) = 0 \hspace{1cm} (21.3.2)$$

(where $B(x)$ is a matrix potential acting on $\mathbb{C}^{4g}$). The perturbed kernel $\tilde{P}$ can be computed with the methods explained in Chapters 18 and 19. Finally, we obtain the perturbed
21.3. OVERVIEW OF RESULTS OF THE CONTINUUM LIMIT ANALYSIS

The kernel of the fermionic projector by summing over the generation indices in an operation referred to as the \textit{sectorial projection},

\[ \tilde{P}(x,y) := \sum_{\alpha,\beta=1}^{g} \tilde{P}^{\alpha}_{\beta}(x,y). \]

After introducing an ultraviolet regularization, this kernel can be analyzed in the EL equations of the causal action principle, exactly as outlined in Section 21.2 above.

In order to gain the largest possible freedom in perturbing the system, the operator \( \mathcal{B} \) should be chosen as general as possible. For this reason, in \[42\] Chapter 4 a general class of potential was considered, including nonlocal potentials (i.e. integral operators). A general conclusion of the analysis is that, in order to satisfy the EL equations, the potential \( \mathcal{B} \) must be local, i.e. a differential operator or a multiplication operator by a potential which may involve left- and right-handed potentials, but also bilinear, scalar or pseudo-scalar potentials,

\[ \mathcal{B}(x) = \chi_L \mathcal{A}_R(x) + \chi_R \mathcal{A}_L(x) + \sigma^{ij} \Lambda_{ij}(x) + \Phi(x) + i\gamma^5 \Xi(x) \quad (21.3.3) \]

(where each of the potentials is a \( g \times g \)-matrix acting on the generations). Analyzing the continuum limit for such multiplication operators, one gets the above-mentioned results.

One feature which at first sight might be surprising is that, despite local gauge symmetry, we get \textit{massive gauge fields}. In order to understand how this comes about, we need to consider local gauge symmetries in connection with the chiral gauge potentials in (21.3.3). On the fundamental level of the causal fermion system, local gauge transformations arise from the freedom in choosing bases of the spin spaces (see \[5.8.1\] and \[5.8.2\] in Section 5.8). In the present setting with four-component Dirac spinors, the local gauge transformations take the form

\[ \psi(x) \rightarrow U(x) \psi(x) \quad \text{with} \quad U(x) \in U(2,2), \quad (21.3.4) \]

where \( U(2,2) \) is the group of unitary transformations of the spinors at the spacetime point \( x \). The causal action principle is gauge invariant in the sense that the causal action is invariant under such gauge transformations. The group \( U(2,2) \) can be used to describe gravity as a gauge theory (for details see Section 4.2 or \[35\]). Restricting attention to flat spacetime, the main interest is that \( U(2,2) \) contains the gauge group \( U(1) \) of electrodynamics as a subgroup. In other words, the causal action principle is gauge invariant under local phase transformations

\[ \psi(x) \rightarrow e^{-i\Lambda(x)} \psi(x) \]

with a real-valued function \( \Lambda \).

The chiral potentials in (21.3.3) also give rise to generalized phase transformations. This can be seen for example by working out the leading term to the light-cone expansion (similar to \[19.2.3\] for the electromagnetic potential). One finds that the chiral gauge potentials give rise to phase transformations of the left- and right-handed components of the wave functions, i.e.

\[ \psi(x) \rightarrow U(x) \psi(x) \quad \text{with} \quad U(x) := \chi_L e^{-i\Lambda_L(x)} + \chi_R e^{-i\Lambda_R(x)} \quad (21.3.5) \]

(again with real-valued functions \( \Lambda_L \) and \( \Lambda_R \)). The point is that this transformation is \textit{not unitary} with respect to the spin inner product, because the chirality flips when taking the adjoint

\[ U^* = \chi_R e^{i\Lambda_L(x)} + \chi_L e^{-i\Lambda_R(x)} \quad \text{but} \quad U^{-1} = \chi_L e^{i\Lambda_L(x)} + \chi_R e^{-i\Lambda_R(x)} \]
(note that $\chi^*_L = (1 - \gamma^5)/2 = (1 + \gamma^5)/2 = \chi_R$ because $(\gamma^5)^* = -\gamma^5$). Therefore, as soon as $A_L \neq A_R$, the generalized phase transformation $U(x)$ in (21.3.4) is not a local transformation of the form (21.3.1). Consequently, the local transformation in (21.3.5) does not correspond to a symmetry of the causal action principle. Therefore, it is not a contradiction if these gauge potentials arise in the effective field equations as mass terms.

More specifically, the relative phases between left- and right-handed potentials do come up in the closed chain $A_{xy} = P(x,y)P(y,x)$, as one sees immediately from the fact that, if $P(x,y)$ is vectorial, then the chirality at the corresponding factor, i.e.

$$\chi_L A_{xy} = \chi_L P(x,y) \chi_R P(y,x) \rightarrow \exp \left(-i(\Lambda_L(x) - \Lambda_R(x)) \right) \exp \left(i(\Lambda_L(y) - \Lambda_R(y)) \right) A_{xy}. \quad (21.3.6)$$

Working out the corresponding contribution to the EL equations in the continuum limit, one finds that the axial current and a corresponding axial mass term come up in the effective field equations. The coupling constant and the bosonic mass depend on the detailed form of the regularization. But they can be computed for specific choices of the regularization, as is exemplified in [42, Chapter 3] by a hard cutoff in momentum space and the $\epsilon$-regularization.

We now move on to the system of two sectors as analyzed in [42, Chapter 4]. The vacuum is described by a kernel of the fermionic projector $P(x,y)$ being a direct sum of two summands, each of which is of the form (21.3.1), where we choose the number of generations as $g = 3$. Hence $P(x,y)$ is a $8 \times 8$-matrix. Replacing the sums by direct sums, one obtains the corresponding auxiliary kernel $P_{\text{aux}}(x,y)$ (being represented by a $24 \times 24$-matrix). In order to account for the observational fact that neutrinos are observed only as left-handed particles, one must break the chiral symmetry of one of the sectors (the neutrino sector). To this end, we assume that the regularization of the neutrino sectors is different from that of the other sector (the charged sector) by contributions which are not left-right invariant. The relevant length scale is denoted by $\delta \gtrsim \epsilon$. This procedure is very general and seems the right thing to do, because the regularization effects on the scale $\delta$ are also needed in order to obtain the correct form of the curvature term in the Einstein equations. In fact, the obtained linearized Einstein equations involve the coupling constant $\kappa \sim \delta^2$. As briefly mentioned at the end of Section 10.2, the derivation of the Einstein equations uses the $\iota$-formalism, which goes beyond the standard formalism of the continuum limit.

The system analyzed in [42, Chapter 5] is obtained similarly by adding direct summands to $P(x,y)$ describing the three generations of quarks. We begin with eight sectors. These eight sectors form pairs, giving rise to four blocks. We conclude by outlining how this mechanism of spontaneous block formation comes about. To this end, we return to the gauge phases as already mentioned in (21.3.4) and (21.3.5). We already saw in (21.3.6) that, if the kernel of the fermionic projector is vectorial, then the relative phases (i.e. the difference of left- and right-handed gauge phases) show up in the eigenvalues of the closed chain. Such phase factors drop out of the causal Lagrangian because of the absolute values in (5.5.1). However, the situation becomes more involved if the kernel of the fermionic projector is not vectorial. Indeed, expanding the vacuum kernel in powers of the rest mass, the zero order contribution to $P(x,y)$ is vectorial, whereas the first order contribution is scalar (more generally, one sees from (19.1.1) that the even orders in the mass are vectorial, whereas the odd orders are scalar). As a consequence, the absolute values of the eigenvalues $|\lambda_{xy}^i|$ depend on a rather complicated way on the chiral gauge...
phases. Moreover, considering a direct sum of Dirac seas, one must keep into account that the gauge phases in the above formulas must be replaced by generalized phases which can be described as ordered exponentials of the gauge potentials. Evaluating the causal Lagrangian (5.5.1), one gets conditions for chiral gauge conditions. In simple terms, these conditions can be stated by demanding that matrices formed of ordered exponentials of the gauge potentials must have degeneracies. Qualitatively speaking these degeneracies mean that the left-handed gauge potential must be the same in each block, and this condition even makes it possible to explain why such blocks form. A more detailed and more precise explanation can be found in [42] Chapter 5.

Exercises
CHAPTER 22

Connection to Quantum Field Theory

In this chapter we give an outlook on how to get a connection between the causal action principle and the dynamics of quantum fields. Since this direction of research is still work in progress, we do not enter any details but instead try to explain a few basic concepts and ideas. Our presentation is based on the recent research papers [54, 55, 58, 57]. Moreover, we also mention a few constructions from the alternative approach in [41], which is more closely tied to the analysis of the continuum limit (as outlined in Chapter 21).

22.1. General Concepts

Before beginning, we point out that in all examples of causal fermion systems considered so far in this book (maybe with the exception of the causal variational principle on the sphere in Section 6.1), the measure $\rho$ was the push-forward of the volume measure on Minkowski space or a Lorentzian manifold. Thus we first constructed a local correlation map (see (5.4.5))

$$F^\varepsilon : \mathcal{M} \to \mathcal{F},$$

and the introduced the measure $\rho$ on $\mathcal{F}$ by (see (5.4.6))

$$\rho = (F^\varepsilon)_* \mu_{\mathcal{M}},$$

(22.1.1)

where $\mu_{\mathcal{M}}$ is the four-dimensional volume measure on $\mathcal{M}$. In all these examples, the measure $\rho$ had the special property that it was supported on a smooth four-dimensional subset of $\mathcal{F}$ given by (for details see Exercise 8.1)

$$M := \text{supp } \rho = F^\varepsilon(\mathcal{M}).$$

Also when varying the measure in the derivation of the linearized field equations or in the study of interacting systems in the continuum limit, we always restricted attention to measures having this property (see 8.1.3 in Section 8.1 or Chapter 21). While this procedure seems a good starting point for the analysis of the causal action principle and gives good approximate solutions of the EL equations, we cannot expect that true minimizers are of this particular form.

With this in mind, our strategy is to allow for more general measures on $\mathcal{F}$, and to analyze the causal action principle for these general measures. As we will see, this analysis gives rise to close connections to quantum field theory. We proceed step by step and begin by explaining a construction which explains why, going beyond push-forward measures of the form (22.1.1) makes it possible to further decrease the causal action. In other words, the following argument shows that minimizers of the causal action will not have the form of a push-forward measures (22.1.1), but will have more complicated structure. This argument is given in more detail in [42, §1.5.3]. Assume that we are given $L$ measures $\rho_1, \ldots, \rho_L$ be positive measures on $\mathcal{F}$. Then the convex combination $\tilde{\rho}$

$$\tilde{\rho} = \frac{1}{L} \sum_{i=1}^{L} \rho_i$$

is a positive measure on $\mathcal{F}$ and satisfies the property

$$\text{supp } \tilde{\rho} = F^\varepsilon(\mathcal{M}).$$

This provides a way to decrease the causal action further, and leads to close connections to quantum field theory.
given by
\[ \tilde{\rho} := \frac{1}{L} \sum_{a=1}^{L} \rho_a \]  
(22.1.2)
is again a positive measure on \( \mathcal{F} \). Moreover, if the \( \rho_a \) satisfy the linear constraints (i.e. the volume constraint \((5.5.3)\) and the trace constraint \((5.5.4)\)), then these constraints are again respected by \( \tilde{\rho} \).

Next, we let \( \rho \) be a minimizing measure (describing for example the vacuum). Choosing unitary transformations \( U_1, \ldots, U_L \), we introduce the measures \( \rho_a \) in (22.1.2) as
\[ \rho_a(\Omega) := \rho(U^{-1} \Omega U) . \]

Thus, in words, the measures \( \rho_a \) are obtained from \( \rho \) by taking the unitary transformation by \( U_a \). Since the causal action and the constraints are unitarily invariant, each of the measures \( \rho_a \) is again minimizing. Let us compute the action of the convex combination (22.1.2). First, by (5.5.2),
\[ S(\tilde{\rho}) = \frac{1}{L^2} \sum_{a,b=1}^{L} \int_{\mathcal{F} \times \mathcal{F}} \mathcal{L}(x,y) \, d\rho_a(x) \, d\rho_b(y) . \]

If \( a = b \), we obtain the action of the measure \( \rho_a \) which, due to unitary invariance, is equal to the action of \( \rho \). We thus obtain
\[ S(\tilde{\rho}) = \frac{S(\rho)}{L} + \frac{1}{L^2} \sum_{a \neq b} \int_{\mathcal{F} \times \mathcal{F}} \mathcal{L}(x,y) \, d\rho_a(x) \, d\rho_b(y) . \]  
(22.1.3)

Let us consider the contributions for \( a \neq b \) in more detail. In order to simplify the explanations, it is convenient to assume that the measures \( \rho_a \) have mutually disjoint supports (this can typically be arranged by a suitable choice of the unitary transformations \( U_a \)). Then the spacetime \( \mathcal{M} := \text{supp} \, \tilde{\rho} \) can be decomposed into \( L \) “sub-spacetimes” \( M_a := \text{supp} \, \rho_a \).

\[ \mathcal{M} = M_1 \cup \cdots \cup M_L \quad \text{and} \quad M_a \cap M_b = \emptyset \quad \text{if} \ a \neq b . \]
The Lagrangian of the last summand in (22.1.3) is computed from the fermionic projector \( P_{a,b}(x,y) \) where \( x \in M_a \) and \( y \in M_b \) are in different sub-spacetimes. Similar to (5.6.8), it can be expressed in terms of the physical wave functions by (for details see \([42, \text{Lemma 1.5.2}]\))
\[ P_{a,b}(x,y) = -\sum_{i,j} \, \vert \psi^{e_i}(x) \rangle \langle \psi^{e_i}(y) \vert \left( U_{a}^{*} U_{b} \right)_j^i . \]  
(22.1.4)
The point is that this fermionic projector involves the operator product \( U_a^{*} U_{b} \). By choosing the unitary operators \( U_a \) and \( U_b \) suitably, one can arrange that this operator product involve many phase factors. Moreover, one can arrange that, carrying out the sums in (22.1.4), these phases cancel each other due to destructive interference. In this way, the kernel \( P(x,y) \) can be made small if \( x \) and \( y \) lie in different sub-spacetimes. As a consequence, taking into account the factor \( 1/N \) in the first summand in (22.1.3), also the causal action of \( \tilde{\rho} \) becomes small. Clearly, this argument works only if the number \( L \) of sub-spacetimes is not too large, because otherwise it becomes more and more difficult to arrange destructive interference for all summands of the sum in (22.1.3) (estimating the optimal number \( L \) of subsystem is a difficult problem which we do not enter here). Also, we cannot expect that the simple ansatz (22.1.2) will already give a minimizer.
But at least, the above argument explains why it is too naive to think of a minimizing measure as being the push-forward measure of a volume measure under a smooth local correlation map. Instead, a minimizing measure could be composed of a large number of sub-spacetimes.

In the above construction, the fact that kernel $P_{a,b}(x,y)$ is very small for $a \neq b$ also means that the sub-spacetimes hardly interact with each other due to decoherence effects. Therefore, one can take the point of view that, in order to describe all physical phenomena, it suffices to restrict attention to one sub-spacetime. The appearance of many sub-spacetimes is an intriguing mathematical effect which may have interesting philosophical implications, but it is of no relevance as far as physical predictions are concerned. For this reason, here we shall not discuss these decoherent sub-spacetimes further. Also, we leave the question open whether they really occur for minimizing measures. Instead, we take the point of view that, in case our minimizing measure consists of several decoherent sub-spacetimes, we restrict it to one sub-spacetime and denote the resulting measure by $\rho$.

In order to understand the dynamics of a causal fermion system, it is more interesting to consider convex combinations of measures which are not decoherent. In order to explain the idea in a simple example, suppose we choose electromagnetic potentials $A_1,\ldots,A_L$ in Minkowski space (which do not need to satisfy Maxwell’s equations). Constructing the regularized kernels $P^\varepsilon_a(x,y)$ (as explained in Chapters 18 and 21), one gets corresponding causal fermion systems described by measures $\rho_a$. Abstrackly, these measures can be written similar as explained in the context of the linearized field equations (see (8.1.8) in Section 8.1) as

$$\tilde{\rho} = \sum_{a=1}^L (F_a)_*(f_a \rho),$$

(22.1.5)

where $F_a$ is the corresponding local correlation map, and $f_a$ is a weight function. Since these measure are obtained from each other by small perturbations, it seems a good idea to depict the corresponding supports $M_a := \text{supp} \rho_a$ as being close together (see Figure 8.1(b)). The convex combination of these measures (22.1.2) is referred to as a measure with fragmentation (see [45 Sections 1 and 5] or [47 Section 5]). In the limit when $N$ gets large, the fragmented measure $\tilde{\rho}$ goes over to a measure with enlarged support (see Figure 8.1(c)). Integrating over this measure also involves an integration over the “internal degrees of freedom” corresponding to the directions which are transverse to $M := \text{supp} \rho$ (see the left of Figure 22.1). Integrating with respect to $\tilde{\rho}$ bears similarity to the path integral formulation of quantum field theory if one identifies the above “internal degrees of freedom” with field configurations.

For the mathematical description of the interacting measure $\tilde{\rho}$, working with fragmented measures does not seem to be the best method. One difficulty is that it is
a-priori not clear how large $N$ is to be chosen. Moreover, mechanisms where $N$ changes dynamically are difficult to implement, at least perturbatively. For these reasons, it seems preferable to describe $\tilde{\rho}$ with a different method, referred to as *holographic mixing*. At first sight, this method seems very different from fragmentation. However, as we will explain at the very end of this section, fragmentation also allows for the description of fragmented measures, at least if the construction is carried out in sufficiently large generality. The general idea and a few related constructions will be explained in the next section.

### 22.2. The Mechanism of Holographic Mixing

Let $(\mathcal{H}, \mathcal{F}, \rho)$ be a causal fermion system (for example describing the Minkowski vacuum). The *wave evaluation operator* $\Psi$ is a mapping which to every vector in $\mathcal{H}$ associates the corresponding physical wave function (for more details see for example [42] §1.1.4])

$$\Psi : \mathcal{H} \to C^0(M, SM), \quad u \mapsto \psi^u, \quad (22.2.1)$$

where the physical wave function $\psi^u$ is again given by (5.6.7). Evaluating at a fixed space-time point gives the mapping

$$\Psi(x) : \mathcal{H} \to S_x M, \quad u \mapsto \psi^u(x).$$

Working with the wave evaluation operator makes it possible to write the kernel of the fermionic projector (5.6.8) in the short form (for a detailed proof see [42], Lemma 1.1.3])

$$P(x, y) = -\Psi(x) \Psi(y)^* \quad (22.2.2)$$

The general procedure of holographic mixing is to replace the wave evaluation operator by a linear combination of wave evaluation operators $\Psi_a$,

$$\tilde{\Psi} := \sum_{a=1}^L \Psi_a, \quad (22.2.3)$$

which in turn are all obtained by perturbing $\Psi$ (more details see below). Now we form the corresponding local correlation map,

$$\tilde{\mathcal{F}} : M \to \mathcal{F}, \quad \tilde{\mathcal{F}}(x) := -\tilde{\Psi}(x)^* \tilde{\Psi}(x),$$

and take the corresponding push-forward measure,

$$\tilde{\rho} := \tilde{\mathcal{F}}_* \rho. \quad (22.2.4)$$

In this way, we have constructed a new measure $\rho$ which incorporates the perturbations described all the wave evaluation operators $\Psi_1, \ldots, \Psi_L$. However, in contrast to the convex combination of measures (22.1.5), the support of the measure (22.2.4) in general does not decompose into several fragments. In fact, if the mapping $\tilde{\mathcal{F}}$ is continuous, injective and closed, the support of $\tilde{\rho}$ will again be homeomorphic to $M$. In other words, the topological structure of spacetime remains unchanged by the above procedure.

More concretely, the perturbed wave evaluation operators $\Psi_a$ can be obtained as follows. Suppose that the causal fermion system $(\mathcal{H}, \mathcal{F}, \rho)$ was constructed similar as in Section 5.4 from a system of Dirac wave functions satisfying for example the Dirac equation

$$(\mathcal{D} - m)\psi = 0.$$
Then one can perturb the system by considering the Dirac equation in the presence of classical potentials $B_1, \ldots, B_L$,

$$(D + B_a - m) \psi_a = 0 . \quad (22.2.5)$$

The corresponding wave evaluation operators $\Psi_a$ are built up of all these Dirac solutions. In this way, the resulting wave evaluation operator (22.2.3) involves all the classical potentials $B_a$. Qualitatively speaking, the resulting spacetime $\tilde{M}$ can be thought of as being in a “superposition” of all these potentials. But this analogy does not carry over to a more technical level.

As already mentioned after (22.2.4), taking the push-forward with respect to a mapping $F$ does not change the topological structure of spacetime. Even more, if $F$ is smooth and varies only on macroscopic scales, then all microscopic structures of spacetime structures remain unchanged. This does not account for the picture of a measure $\tilde{\rho}$ which accounts for additional “internal degrees of freedom” as shown in Figure 8.1 (c) and the left of Figure 22.1. In order to allow the description of such measures, one needs to consider mapping $F$ which are not smooth but instead “fluctuate” on the microscopic scale (as is shown symbolically on the right of Figure 22.1). If we allow for such fluctuations even on the Planck scale, then the procedure (22.2.3) does allow for the description of all measures described previously with fragmentation (22.1.5). This considerations explains why the wave evaluation operators $\Psi_a$ should be constructed not only by introducing classical potentials (22.2.5), but in addition by introducing small-scale fluctuations. This leads us to the concept of holographic mixing, where in the first step we choose operators $A_a$ on $\mathcal{H}$ which add up to the identity,

$$\sum_{a=1}^N A_a = 1 ,$$

and then decompose the local correlation operator by multiplying from the right with $A_a$,

$$\Psi_a := \Psi A_a .$$

In the second step, the physical wave functions in $\Psi_a$ are perturbed by classical potentials $A_a$ by considering again the Dirac equation (22.2.5). In the last step, we again take the sum of the wave evaluation operators (22.2.3) and form the push-forward measure (22.2.4). This procedure is referred to as holographic mixing.

The resulting wave evaluation operator $\tilde{\Psi}$ involves both the operators $A_a$ and the potentials $B_a$. Similar as explained in (22.1.4) in the context of fragmentation, the operators $A_a$ enter the kernel of the fermionic projector,

$$P(x, y) = - \sum_{a,b=1}^N |\psi^{(a)}(x)\rangle \langle A_a A_b^*| \langle \psi^{(b)}(y)| . \quad (22.2.6)$$

In this way, one can build in phase factors into this kernel, possibly giving rise to destructive interference. In other words $\tilde{\Psi}$ is a sum of many, possibly decoherent components. The name “holographic mixing” is inspired by the similarity to a hologram in which several pictures are stored, each of which becomes visible only when looking at the hologram in the corresponding coherent light. For more details on the holographic mixing and related constructions we refer to [57].
22. CONNECTION TO QUANTUM FIELD THEORY

22.3. A Distinguished Quantum State

The constructions outlined in the previous sections make it possible to construct general measures $\tilde{\rho}$ which go beyond measures describing a classical spacetime with classical bosonic fields. Moreover, the EL equations for these measures can be understood as equations describing the dynamics in spacetime. The remaining question is how to interpret the resulting measure $\tilde{\rho}$. Can it be understood in terms of an interaction via quantum fields? Or, in more physical terms, what does the measure $\tilde{\rho}$ tell us about measurements performed in the corresponding spacetime? In order to address these questions in a systematic way, in \[55\] a distinguished quantum state is constructed. It describes how the interacting measure $\tilde{\rho}$ looks like if measurements are performed at a given time using the objects of a causal fermion describing the vacuum. This “measurement” can also be understood more generally as a “comparison” of the measures $\tilde{\rho}$ and $\rho$ at time $t$. In technical terms, the quantum state, denoted by $\omega^t$ is a positive linear functional on the algebra of fields $\mathcal{A}$ of the non-interacting spacetime,

$$\omega: \mathcal{A} \to \mathbb{C} \quad \text{with} \quad \omega(A^* A) \geq 0 \quad \text{for all} \ A \in \mathcal{A}.$$ 

Here we use the language of algebraic quantum field theory (as introduced for example in the textbooks \[3, 18, 117\]) which seems most suitable for describing quantum fields in the needed generality.

We now outline the construction of the quantum state as given in \[57\]. We are given two causal fermion systems $(\tilde{\mathcal{K}}, \tilde{\mathcal{F}}, \tilde{\rho})$ and $(\mathcal{K}, \mathcal{F}, \rho)$ describing the interacting system and the vacuum, respectively. Our goal is to “compare” these causal fermion systems at a given time. In order to specify the time, we choose sets $\tilde{\Omega} \subset \tilde{\mathcal{M}} := \text{supp } \tilde{\rho}$ and $\Omega \subset \mathcal{M} := \text{supp } \rho$ which can be thought of as the past of this time in the respective spacetimes. We want to relate the two causal fermions systems with the help of the nonlinear surface layer integral (9.6.1) introduced in Section 9.6. However, we need to take into account that the causal fermion systems are defined on two different Hilbert spaces $\tilde{\mathcal{H}}$ and $\mathcal{H}$. Therefore, in order to make sense of the nonlinear surface layer integral, we need to identify the Hilbert spaces $\mathcal{H}$ and $\tilde{\mathcal{H}}$ by a unitary transformation denoted by $V$,

$$V: \mathcal{H} \to \tilde{\mathcal{H}} \quad \text{unitary}. \quad (22.3.1)$$

Then the operators in $\tilde{\mathcal{F}}$ can be identified with operators in $\mathcal{F}$ by the unitary transformation,

$$\mathcal{F} = V^{-1} \tilde{\mathcal{F}} V. \quad (22.3.2)$$

An important point to keep in mind is that this identification is not canonical, but it leaves the freedom to transform the operator $V$ according to

$$V \to VU \quad \text{with} \quad U \in L(\mathcal{H}) \quad \text{unitary}. \quad (22.3.3)$$

The freedom in choosing $U$ must be taken into account in the nonlinear surface layer integral, which now takes the form

$$\gamma^\Omega(\tilde{\rho}, U\rho) = \int_{\tilde{\Omega}} d\tilde{\rho}(x) \int_{\mathcal{M} \setminus \tilde{\Omega}} d\rho(y) \mathcal{L}(x, UyU^{-1}) - \int_{\tilde{\Omega}} d\tilde{\rho}(x) \int_{\mathcal{M} \setminus \tilde{\Omega}} d\rho(y) \mathcal{L}(UyU^{-1}, y). \quad (22.3.4)$$

The method for dealing with the freedom in choosing $U$ is to integrate over the unitary group. Moreover, it is preferable to consider the exponential of the nonlinear surface layer
integral. This leads us to introduce the partition function $Z^{\tilde{\Omega},\Omega}$ by

$$Z^{\tilde{\Omega},\Omega}(\beta, \tilde{\rho}) = \int G \exp \left( \beta \gamma^{\tilde{\Omega},\Omega}(\tilde{\rho}, U\rho) \right) d\mu_G(U),$$

where $\mu_G$ is the normalized Haar measure on the unitary group (in order for this Haar measure to be well-defined, one needs to assume that the Hilbert space $\mathcal{H}$ is finite-dimensional, or else one must exhaust $\mathcal{H}$ by finite-dimensional subspaces).

Similar to the path integral formulation of quantum field theory, the quantum state is obtained by introducing insertions into the integrand of the partition function, i.e. symbolically,

$$\omega(\cdots) = \frac{1}{Z^{\tilde{\Omega},\Omega}(\beta, \tilde{\rho})} \int G (\cdots) \exp \left( \beta \gamma^{\tilde{\Omega},\Omega}(\tilde{\rho}, U\rho) \right) d\mu_G(U).$$

These insertions have the structure of surface layer integrals involving linearized solutions in the vacuum spacetime. Likewise, the argument of the state on the left side is formed of operators which are parametrized by the same linearized solutions which enter the insertions on the right side. More precisely, they are operators of the field algebra $\mathcal{A}$, being defined as the $\star$-algebra generated by the linearized solutions, subject to the canonical commutation and anti-commutation relations. The commutation relations involve the causal fundamental solution of the linearized solutions which can be constructed with energy methods as outlined in Section 14 (for details see [21]). Likewise, for the anti-commutation relations, we use the causal fundamental solutions of the dynamical wave equation mentioned at the end of Section 9.4 in (9.4.5) (for more details see [56]). The positivity property of the state is ensured by the specific form of the insertions. We refer the interested reader to [55].

Exercises
APPENDIX A

The Spin Coefficients

In this appendix, we verify by explicit computation that the matrices $E_j$ containing the spin coefficients as given by (4.2.24),

$$E_j = \frac{i}{2} \Gamma \partial_j \Gamma - \frac{i}{16} \text{Tr} \left( G^m \nabla_j G^m \right) G_m G_n + \frac{i}{8} \text{Tr} \left( \Gamma G_j \nabla_m G^m \right) \Gamma,$$  

(A.0.1)

have the following behavior under gauge transformations:

$$E_j \rightarrow U E_j U^{-1}$$  \hspace{1cm} \text{for } U(1) \text{ gauge transformations (A.0.2)}

$$E_j \rightarrow U E_j U^{-1} + iU(\partial_j U^{-1})$$  \hspace{1cm} \text{for } SU(2, 2) \text{ gauge transformations (A.0.3)}

Under $U(1)$ gauge transformations, all the terms in (A.0.1) remain unchanged because $U$ and its partial derivatives commute with $\Gamma$ as well as with the $G^j$. Therefore, the relation (A.0.2) is obvious. Thus it remains to consider $SU(2, 2)$ gauge transformations. Our goal is to verify (A.0.3) for a fixed spacetime point $p$.

We decompose the gauge transformation $U$ as $U = U_2 U_1$ with

$$U_1(x) = U(p)$$

$$U_2(x) = U(x) U^{-1}(p).$$

Being constant, the first transformation clearly satisfies the transformation law (A.0.3). Therefore, it suffices to consider a gauge transformation $U$ with $U(p) = 1$. Then (A.0.3) can be written as

$$\tilde{E}_j = E_j - i\partial_j U.$$  \hspace{1cm} (A.0.4)

We now compute the transformation law of each of the summands in (A.0.1) after each other:

(1) $\frac{i}{2} \Gamma \partial_j \Gamma$

(i) odd transformations:

$$\frac{i}{2} \tilde{\Gamma} \partial_j \tilde{\Gamma} = \frac{i}{2} \Gamma \left( \partial_j \Gamma + [\partial_j U, \Gamma] \right)$$

$$= \frac{i}{2} \Gamma \partial_j \Gamma + \frac{i}{2} \Gamma \left( \left( \partial_j U \right) \Gamma - \Gamma \left( \partial_j U \right) \right)$$

$$= \frac{i}{2} \Gamma \partial_j \Gamma - i\Gamma \partial_j U$$

$$= \frac{i}{2} \Gamma \partial_j \Gamma - i\partial_j U$$

(ii) even transformations:

$$\frac{i}{2} \tilde{\Gamma} \partial_j \tilde{\Gamma} = \frac{i}{2} \Gamma \left( \partial_j \Gamma + [\partial_j U, \Gamma] \right) = \frac{i}{2} \Gamma \partial_j \Gamma$$

Thus for odd transformations, we get the correct transformation law, whereas for even transformations the desired term $i\partial_j U$ is still missing.
\( (2) \quad -\frac{i}{16} \text{Tr}(G^m \nabla_j G^n) G_m G_n \)

(i) odd transformations:

\[ -\frac{i}{16} \text{Tr} \left( \tilde{G}^m \nabla_j \tilde{G}^n \right) \tilde{G}_m \tilde{G}_n = -\frac{i}{16} \text{Tr} \left( G^m \nabla_j G^n \right) G_m G_n - \frac{i}{16} \text{Tr} \left( G^m \left[ \partial_j U, G^n \right] \right) G_m G_n \quad (A.0.5) \]

\[ = -\frac{i}{16} \text{Tr} \left( G^m \nabla_j G^n \right) G_m G_n , \quad (A.0.6) \]

where we used that \( G^m, G^n \) and \( \partial_j U \) are odd, implying that the trace in the last summand in \( (A.0.5) \) vanishes.

(ii) \( \partial_j U = i\sigma_{kl} \) für für arbitrary indices \( k,l \):

\[ -\frac{i}{16} \text{Tr} \left( \tilde{G}^m \nabla_j \tilde{G}^n \right) \tilde{G}_m \tilde{G}_n = -\frac{i}{16} \text{Tr} \left( G^m \nabla_j G^n \right) G_m G_n - \frac{i}{16} \text{Tr} \left( G^m \left[ i\sigma_{kl}, G^n \right] \right) G_m G_n \]

\[ = -\frac{i}{16} \text{Tr} \left( G^m \nabla_j G^n \right) G_m G_n - \frac{i}{16} \text{Tr} \left( \Gamma \left[ G^m, G^n \right] \right) G_m G_n \]

\[ = -\frac{i}{16} \text{Tr} \left( G^m \nabla_j G^n \right) G_m G_n - \frac{i}{16} \text{Tr} \left( \sigma_{mn} \right) G_m G_n \]

\[ = -\frac{i}{16} \text{Tr} \left( G^m \nabla_j G^n \right) G_m G_n - i\partial_j U \]

(iii) \( \partial_j U = \Gamma \):

\[ -\frac{i}{16} \text{Tr} \left( \tilde{G}^m \nabla_j \tilde{G}^n \right) \tilde{G}_m \tilde{G}_n = -\frac{i}{16} \text{Tr} \left( G^m \nabla_j G^n \right) G_m G_n - \frac{i}{16} \text{Tr} \left( \Gamma \left[ G^m, G^n \right] \right) G_m G_n \]

\[ = -\frac{i}{16} \text{Tr} \left( G^m \nabla_j G^n \right) G_m G_n - \frac{i}{16} \text{Tr} \left( \Gamma \left[ G^m, G^n \right] \right) G_m G_n \]

\[ = -\frac{i}{16} \text{Tr} \left( G^m \nabla_j G^n \right) G_m G_n , \]

because \( \text{Tr} \left( \Gamma \sigma_{mn} \right) = 0 \) für all \( m,n \).

Thus we get the correct transformation law for bilinear transformations \( \partial_j U = i\sigma_{kl} \).

\( (3) \quad \frac{i}{8} \text{Tr} \left( \Gamma G_j \nabla_m G^m \right) \Gamma \)

\[ \frac{i}{8} \text{Tr} \left( \tilde{\Gamma} \tilde{G}_j \nabla_m \tilde{G}^m \right) \tilde{\Gamma} = \frac{i}{8} \text{Tr} \left( \Gamma G_j \nabla_m G^m \right) \Gamma + \frac{i}{8} \text{Tr} \left( \Gamma G_j \left[ \partial_m U, G^m \right] \right) \Gamma \]

\[ = \frac{i}{8} \text{Tr} \left( \Gamma G_j \nabla_m G^m \right) \Gamma + \frac{i}{8} \text{Tr} \left( \partial_m U \left[ G^m, \Gamma G_j \right] \right) \Gamma \]

\[ = \frac{i}{8} \text{Tr} \left( \Gamma G_j \nabla_m G^m \right) \Gamma - \frac{i}{4} \text{Tr} \left( \partial_m U \Gamma \delta_j^m \right) \Gamma \]

\[ = \frac{i}{8} \text{Tr} \left( \Gamma G_j \nabla_m G^m \right) \Gamma - \frac{i}{4} \text{Tr} \left( \left( \partial_j U \right) \Gamma \right) \Gamma , \]

where we used the relations

\[ \left[ G^j, \Gamma G^k \right] = -\Gamma \left\{ G^j, G^k \right\} \]
as well as the anti-commutation relations for Dirac matrices. We again distinguish different cases:

(i) $\partial_j U$ is odd or $\partial_j U = i\sigma_{kl}$:

$$\frac{i}{8} \text{Tr} \left( \tilde{\Gamma} \tilde{G}_j \nabla_m \tilde{G}^m \right) \tilde{\Gamma} = \frac{i}{8} \text{Tr} \left( \Gamma G_j \nabla_m G^m \right) \Gamma$$

(ii) $\partial_j U = \Gamma$:

$$\frac{i}{8} \text{Tr} \left( \tilde{\Gamma} \tilde{G}_j \nabla_m \tilde{G}^m \right) \tilde{\Gamma} = \frac{i}{8} \text{Tr} \left( \Gamma G_j \nabla_m G^m \right) \Gamma - i\partial_j U$$

Hence we get the correct transformation law if $\partial_j U = \Gamma$.

Adding all the terms gives the desired transformation law (A.0.4).


