

An Invitation to Operational Quantum Reference Frames

Leon Loveridge
Mathematical Physics Seminar, CFS Group, 2026

University of South-Eastern Norway

January 30, 2026

Why Quantum Reference Frames?

If one accepts the following three statements, QRFs emerge naturally:

- ① Quantum mechanics (QFT) is empirically precise and accurate
- ② Quantum mechanics (QFT) is universal
- ③ Observable quantities are invariant under XXX

E.g., fundamental particles are often associated with irreducible representations of the Poincare group. Tension with 3.

If you don't like these principles, I have others. E.g. Physical situations related by a symmetry, need a (Q)RF, Einstein's *operational* clocks and rods, in a quantum setting.

The reference system/frame is described by the same physical theory as the systems under consideration

Some recent uses (operational framework)⁴

- Helps us to understand better what QM 'is about'
- Frame changes - observables and states relative to frame, can move consistently between descriptions relative to different frames¹
- Uncertainty relations - QRFs in phase space, frame-relative uncertainties²
- 'Type reduction' in AQFT - incorporation of frame 'regularises' the observable algebra³

¹*Operational Quantum Reference Frame Transformations* T. Carette, J. Glowacki, LL, Quantum 2025

²*Uncertainty Relations Relative to Phase Space Quantum Reference Frames*, M. Jorquera Riera, L.L, PRA Letters 2025

³*Quantum Reference Frames, Measurement Schemes and the Type of Local Algebras in Quantum Field Theory*, C. J. Fewster, D. W. Janssen, L.L, K. Rejzner, James Waldron CMP 2025

⁴Other frameworks are available!! E.g., *Perspective-neutral*, P. Hoehn et al, *Extra particle*, Castro-Ruiz, Oreshkov...

Operational Theories I

- Most basic experiment we can do: prepare (T - 'state') and measure (E - 'observable') a system the same way many times (n)
- For each possible outcome $\omega_i \in \Omega$, write n_i for the frequency
- Assign probabilities

$$p_T^E(\omega_i) = \lim_{n \rightarrow \infty} \frac{n_i}{n} \quad (1)$$

- Call $E_i : T \mapsto p_T^E(\omega_i)$ effect
- Mixing: convex structure on states, effects are (in the) affine maps
- Linear (plus convex) structure on effects - states as affine functionals on convex set of effects through $\hat{T}(E_i) = E_i(T)$
- State space is convex subset of a vector space, total convexity gives Banach structure on dual (base norm space, order unit Banach space)
- Observable $E : \omega_i \mapsto E_i$ 'effect valued measure'
- Pure states: extremal elements of convex state space

Operational Theories II - Classical probability theory

- States are probability measures on Ω , pure states delta measures
- State space is a *simplex* (unique pure state decomposition)

Various ways to think of observables:

- Effect-valued measure, extremal effects are idempotent (projections = characteristic functions)
- Extremal effects give real-valued functions $C(\Omega)$ (Gelfand spectrum $\Sigma(C(\Omega)) \cong \Omega$)
- Algebraic point of view recovered from operational or probabilistic ideas

Operational theories III - Quantum Theory

Quantum Theory:

- (Normal) state space $\mathcal{S}(\mathcal{H}) \subset \mathcal{T}(\mathcal{H}) \cong B(\mathcal{H})_*$, pure states rank-1 projections
- Effects $\mathcal{E}(\mathcal{H})$ are operators in $[\mathbb{0}, \mathbb{1}] \subset B(\mathcal{H})$
- Suppose now outcome space Ω is topological space,
- Observables are POVMs $E : \mathcal{F}(\Omega) \rightarrow \mathcal{E}(\mathcal{H})$ ($E(X) \geq 0$, additive on disjoint sets, $E(\Omega) = \mathbb{1}$)
- Sharp observables on \mathbb{R} are PVMs = s.a. ops through spectral theorem, C^* algebras etc
- Born rule

$$p_\omega^E(X) = \text{tr}[\omega E(X)] \quad (2)$$

- POVMs exhaust the probabilistic structure of Hilbert space: any set function $E : \mathcal{F}(\Omega) \rightarrow B(\mathcal{H}^+)$ is a POVM iff $X \mapsto \langle x | E(X) x \rangle$ is a measure

POVMs in QM: overview

- Natural fit with probabilistic/operational structure
- Arise naturally in measurement (cf. Busch, Fewster/Verch)
- Can be used to model ‘classical noise’ (unsharp version of sharp observable)
- Can be used to model ‘intrinsic unsharpness’ (time, phase)
- Allow for operational definition of incompatibility: POVMs A on Ω_A and B on Ω_B if there is an M on $\Omega_A \times \Omega_B$ such that $A(X) = M(X \times \Omega_B)$ and $B(Y) = M(\Omega_A \times Y)$ (need not commute)

Our main interest will be in *Covariant POVMs* ('transform well under a representation')

Some POVMs I

- Pauli (1926): Given self-adjoint operator A with spectrum bounded below, there does not exist (s.a.) B for which $[A, B] = i\mathbb{1}$.
- (Nearly!) equivalently, no PVM E^B on $\mathcal{B}(\mathbb{R})$ for which $e^{itA}E^B(X)e^{-itA} = E^B(X + t)$

Some POVMs satisfy the covariance, e.g.,

- Ex.1: Standard number observable $N = \sum_{n \geq 0} nP_n$, ‘canonical phase’

$$E^{\text{phase}}(X) = \sum_{n,m=0}^{\infty} c_{n,m} \int_X e^{i(n-m)\theta} |n\rangle \langle m| d\theta, \quad X \in \mathcal{B}((0, 2\pi]) \quad (3)$$

is covariant (addition modulo 2π) under conjugation.

Some POVMs II

Ex.2: ‘Hamiltonian’ given by q_+ in $L^2(\mathbb{R}_+)$

- Can construct covariant time observable $E^T : \mathcal{B}(\mathbb{R}) \rightarrow B(L^2(\mathbb{R}_+))$:

$$e^{itq_+} E^T(X) e^{-itq_+} = E^T(X + t). \quad (4)$$

- Construction follows Naimark: embed $L^2(\mathbb{R}_+)$ in $L^2(\mathbb{R})$ where the sharp momentum conjugate to q lives, project back down.
- Example of a covariant Naimark dilation (always exists)

Some POVMs III

Ex. 3: Covariant smearings of (spectral measures of) Q, P give joint observable as covariant phase space POVM (covariant under phase space translations)

$$G^T(Z) := \frac{1}{2\pi} \int_Z W(q, p) T W(q, p)^* dq dp \in B(L^2(\mathbb{R}))$$

$$G^T(X \times \mathbb{R}) = (\mu_T \star Q)(X) = Q^{\mu_T}(X); \quad (5a)$$

$$G^T(\mathbb{R} \times Y) = (\nu_T \star P)(Y) = P^{\nu_T}(Y), \quad (5b)$$

where

$$\mu_T(X) = \text{tr}[\Pi T \Pi Q(X)]; \quad (6a)$$

$$\nu_T(Y) = \text{tr}[\Pi T \Pi P(Y)]. \quad (6b)$$

'Measurement Uncertainty Relation' $\Delta(Q^{\mu_T}, \rho) \Delta(P^{\nu_T}, \rho) \geq 1$

Even More POVMs

- Von Neumann algebra \mathcal{M} comes with intrinsic dynamics (1-parameter group of automorphisms, φ faithful normal state)

$$\sigma_t^\varphi(A) = \Delta^{-it} A \Delta^{it} \in \mathcal{M} \text{ for all } t \in \mathbb{R} \quad (7)$$

- Δ modular operator (depends on state, but not strongly)
- Generalises to faithful normal semifinite weight
- σ_t is the unique 1-parameter automorphism group for which
 - ▶ $\varphi \circ \sigma_t = \varphi$ for all t
 - ▶ φ satisfies the KMS condition (roughly existence of holo. F on strip s.t. $F(t) = \varphi(\sigma_t(a)b)$ and $F(t+i) = \varphi(b)\sigma_t(a)$ for a, b satisfying some finiteness conditions)
- Some work on when thermal time is unsharp (covariant POVM) [5]

Never ending POVMs

POVMs arise through measurement:

- Apparatus \mathcal{H}_A , pointer observable P^Z , initial state ϕ , unitary coupling U on $\mathcal{H}_S \otimes \mathcal{H}_A$ such that for all $\varphi \in \mathcal{H}_S$:

$$\langle U\varphi \otimes \phi | \mathbb{1} \otimes P^Z(X)(U\varphi \otimes \phi) \rangle = \langle \varphi | E(X)\varphi \rangle \quad (8)$$

or $E(X) = \Gamma_\phi(U^* \mathbb{1} \otimes P^Z(X)U)$ - probability reproducibility

- Two readings: (i) LHS is some Naimark dilation of RHS (ii) LHS is fixed and dictates measured POVM E
- $\langle \mathcal{H}_A, U, P^Z, \phi \rangle$ is called a *measurement scheme* for E , recently extended to AQFT by Fewster and Verch [4]

(Operational) Quantum reference frames: motivation

- Start from a general principle - 'true observables' are (gauge-)invariant (differs from other contemporary approaches)
- l.c.s.c. G , unitary rep U in \mathcal{H}
- Nothing left if U irreducible (cannot observe single particles?)
- We know invariance and 'relativity' intimately connected: introduce frame, stipulate invariance for system-plus-frame (c.f. relative position, etc)
- Within invariants $B(\mathcal{H})^G$, some special 'relative' (relational) observables, which we will get at next
- NB: may be no invariant states, but can identify states which agree on $B(\mathcal{H})^G$, write $S(\mathcal{H})_G$

(Operational) Quantum Reference Frames: definition, taxonomy

A quantum reference frame based $\Sigma = G/H$ is a *System of Covariance* $(U_R, E_R, \mathcal{H}_R)$.

- Sharp if E is a PVM (and unsharp otherwise)
- Principal if Σ is a principal homogeneous space
- Ideal if it is both principal and sharp
- Compactly stabilised if $\Sigma \cong G/H$ with $H \subset G$ compact
- Localisable if E satisfies the norm-1 property
- Complete if there is no (non-trivial) subgroup $H_0 \subset G$ acting trivially on all the effects of E
- Coherent state systems, informationally complete, etc
- Covariant POVMs are related to 'standard' covariant PVMs (Imprimitivity) through covariant dilation/compression (complete characterisation due to Mackey, Cattaneo, others)

Relative states and observables for principal frames

We can *relativise* observables with $\mathbb{Y}^R : B(\mathcal{H}_S) \rightarrow B(\mathcal{H}_S \otimes \mathcal{H}_R)^G$:

$$\mathbb{Y}^R(A) = \int_G U_S(g) A U_S(g)^* \otimes E^R(dg) \quad (9)$$

- Linear completely positive normal unital contraction, $*$ -preserving, injective homomorphism iff E is PVM (also works for compactly stabilised)
- Relative observables $B(\mathcal{H}_S)^R := \text{Im}(\mathbb{Y}^R)$ (u.w. closure)
- Identify trace class ops indistinguishable on $B(\mathcal{H}_S)^R$:

$$\mathcal{T}(\mathcal{H}_S)^R := \mathcal{T}(\mathcal{H}_S \otimes \mathcal{H}_R) / \sim_R; \quad \mathcal{T}(\mathcal{H}_S)^R \cong B(\mathcal{H}_S)_*^R \quad (10)$$

- Relative states:

$$\mathcal{S}(\mathcal{H}_S)^R := \mathcal{S}(\mathcal{H}_S \otimes \mathcal{H}_R) / \sim_R \cong \mathbb{Y}_*^R(\mathcal{S}(\mathcal{H}_R \otimes \mathcal{H}_S)); \quad (11)$$

Restriction and conditioning

Fix frame state ω , define $\Gamma_\omega : B(\mathcal{H}_S \otimes \mathcal{H}_R) \rightarrow B(\mathcal{H}_S)$ by

$\Gamma_\omega(A \otimes B) = A \text{tr}[\omega B]$ (extended by linearity, continuity). CP normal conditional expectation.

- Frame-conditioned relative observables $\text{Im}(\mathbb{Y}_\omega^R) := \Gamma_\omega \circ \mathbb{Y}^R$
- If A is invariant, $\mathbb{Y}_\omega^R(A) = A$ for all frame states ω (frame-independent)
- Identify states, quotient, $[B(\mathcal{H}_S)_\omega^R]_* \cong \mathcal{T}(\mathcal{H}_S)_\omega^R$
- $\rho^{(\omega)} = \mathbb{Y}_*^R(\rho \otimes \omega)$; $\rho^{(g \cdot \omega)} = (g^{-1} \cdot \rho)^{(\omega)}$ (active/passive)
- E.g. ρ invariant, then $\rho^{(\omega)} = \rho$ for any ω

Theory is most tractable when frame is localizable (norm-1 property): for any X s.t. $E(X) \neq 0$, \exists a sequence (ω_n) of states s.t.
 $\lim \omega_n(E(X)) = 1$.

Localization

'Fundamental theorem of OQRFs'?

Theorem

Let $\mathcal{R} = (U_{\mathcal{R}}, E_{\mathcal{R}}, \mathcal{H}_{\mathcal{R}})$ be a localizable principal frame and (ω_n) a localizing sequence centered at $e \in G$. Then for any $A_S \in B(\mathcal{H}_S)$ we have

$$\lim_{n \rightarrow \infty} (\Gamma_{\omega_n} \circ \mathbb{Y}^{\mathcal{R}})(A_S) = A_S, \quad (12)$$

- Ordinary QM captures relation between quantum system and 'suitably classical' reference
- Not possible for bad frames (lower bound)
- Dual result: $\lim_{n \rightarrow \infty} \mathbb{Y}_*(\rho \otimes \omega_n) = \rho$; (conditioned) relative states are dense (and converse - bad agreement for very unsharp frames)

Applications II: Frame-relative Uncertainty Relations

Can take covariant phase space observable as frame, relativise and restrict

- $\mathbb{Y}_\omega^T \equiv \Gamma_\omega \circ \mathbb{Y}^T$ breaks the incompatibility of position and momentum for any T, ω of the frame
- Novel frame-dependent uncertainty relation (several of these)

$$\Delta(\mathbb{Y}_\omega^T \circ Q_S, \rho) \Delta(\mathbb{Y}_\omega^T \circ P_S, \rho) \geq 3/2. \quad (13)$$

- cf $\Delta(Q, \rho) \Delta(P, \rho) \geq 1/2$ and $\Delta(Q^{\mu\tau}, \rho) \Delta(P^{\nu\tau}, \rho) \geq 1$
- Which is right? Experiment?
- Classical limit (very dodgy): set ω, T localised at $(0, 0)$ (Landsman framework to make rigorous?)

$$\Delta(\mathbb{Y}_{\omega_0}^{T_0'} \circ Q_S, \rho) \Delta(\mathbb{Y}_{\omega_0}^{T_0'} \circ P_S, \rho) \geq 1/2 \quad (14)$$

Applications III: ‘type reduction’

- Algebraic Quantum Field Theory: Manifold M , regions $U \subset M$, von Neumann algebras $m\mathcal{M}(U)$, axioms (isotony, Einstein Causality etc)
- Local algebras in AQFT are typically Type III von Neumann algebras (no good trace, no entropies) (hyperfinite factor of type III_1 !)

Types

Choice of algebra comes from physics

- I_n 'qubits' etc ($\mathcal{H} = \mathbb{C}^n$, $\mathcal{M} = M_n(\mathbb{C})$)
- I_∞ 'wave mechanics' ($\mathcal{M} = B(L^2(\mathbb{R}))$)
- II_1 maths: i.c.c. groups, physics: infinite spin chain (with conditions!)
- II_∞ e.g. $II_1 \otimes I_\infty$
- III quantum field theory (mathematical example: $II_\infty \rtimes \mathbb{R}$ for suitable action of \mathbb{R})

Can be characterised by **traces**:

- $\tau : \mathcal{M}_+ \rightarrow [0, \infty]$ with $\tau(u^*au) = \tau(a)$ (plus additive, homogeneous)
- Called finite if never ∞
- Semifinite if finite trace elements are dense
- If finite, extends to \mathcal{M} with cyclicity $\tau(ab) = \tau(ba)$

Characterisation

Full characterisation (factors) comes from value of trace on $\mathcal{P}(\mathcal{M})$; here we simplify:

- **I_n Finite trace**
- **I_∞ Semifinite trace** (semi-finite normal trace is the usual one)
- **II₁ Finite trace**
- **II_∞ Semifinite trace**
- **III No finite trace**

This is a problem. Want to understand, e.g., black hole or cosmological entropies. E.g., Bekenstein, Hawking (black holes), Hawking + Gibbons - areas of cosmological horizons are entropies. How should we understand this as part of (A)QFT proper? Need traces.

Chandrasekaran, Longo, Penington, and Witten

- CLPW [1]: ‘observer’ on a worldline in de Sitter ‘static patch’ (causally accessible region)
- Time translation-invariant algebra (plus details) gives II_1 - *type reduction*
- ‘FJLRW’: view the observer as a **quantum reference frame**, use and develop existing machinery to make more precise, operational, general

Big picture

- Theory based on local measurements appears to break diffeomorphism/symmetry invariance. Suppose weak gravity, fixed background, interested in isometries, true observables isometry-invariant (system + frame)
- We will analyse the type of a QFT on a background with isometry group $\mathbb{R} \times H$ (H compact) 'relative to' a QRF on G/K (K compact).
- We do this by describing the algebra of invariants of system + frame together (see also [2])
- The techniques are based on crossed products and modular theory, combined with systems of covariance (QRFs) and induced representations.

QRFs

Mackey 1949, Cattaneo 1979: our QRFs are subrepresentations of induced representations

- QRF (U, E, \mathcal{H}_R) on $\Sigma = G/H$ (assume H compact)
- $W : \mathcal{H}_R \rightarrow \mathcal{K} \otimes L^2(G)$, new QRF given by

$$(1_{\mathcal{K}} \otimes \lambda, 1_{\mathcal{K}} \otimes P, \mathcal{K} \otimes L^2(G));$$

$$E(X) = W^*(1_{\mathcal{K}} \otimes P(X))W \quad (15)$$

- Any QRF is of the form

$$(1_{\mathcal{K}} \otimes \lambda|_{\mathcal{H}_R}, p(1_{\mathcal{K}} \otimes P)|_{\mathcal{H}_R}, p(\mathcal{K} \otimes L^2(G))); \quad (16)$$

obtained by setting $p = WW^*$ Naimark projection.

Invariants and Crossed Products: General

Set-up: QFT Von Neumann algebra \mathcal{M}_S in \mathcal{H}_S with action α_S of G , compactly stabilised QRF (U_R, E, \mathcal{H}_R) . Want $(\mathcal{M}_S \otimes B(\mathcal{H}_R))^{\alpha_S \otimes \text{Ad}U_R}$.

- Well known: $(\mathcal{M} \otimes B(L^2(G)))^{\alpha \otimes \text{Ad}\lambda} = \mathcal{M} \rtimes_\alpha G$
- For us: There is a Hilbert space \mathcal{K} and projection $p \in \lambda(G)' \otimes B(\mathcal{K})$ such that

$$(\mathcal{M}_S \otimes B(\mathcal{H}_R))^{\alpha_S \otimes \text{Ad}U_R} \cong (1_{\mathcal{H}_S} \otimes p)((\mathcal{M} \rtimes_{\alpha_S} G) \otimes B(\mathcal{K}))(1_{\mathcal{H}_S} \otimes p) \quad (17)$$

- Note that the action on $B(\mathcal{K})$ is trivial and the iso above is spatial through $\mathcal{H}_R \cong p(L^2(G) \otimes \mathcal{K})$
- α_S is unitarily implementable - some simplifications can be made

Invariants and Crossed Products: $\mathbb{R} \times \text{compact}$

Theory is tractable for $G = \mathbb{R} \times H$ (H compact) plus compactly stabilised QRF

- $\mathcal{H}_R \cong p(L^2(\mathbb{R}) \otimes L^2(H) \otimes \mathcal{K})$
- Assume that \mathcal{M}_S has a faithful normal KMS state ω (inverse temp. β) and the corresponding modular action is unitarily implemented, then

$$\begin{aligned}
 & (\mathcal{M}_S \otimes B(\mathcal{H}_R))^{\text{Ad } U_S|_{\mathbb{R}} \otimes U_R|_{\mathbb{R}}} \\
 & \cong (1_{\mathcal{H}_S} \otimes p)((\mathcal{M}_S \rtimes_{\text{Ad } U_S|_{\mathbb{R}}} \mathbb{R}) \otimes B(L^2(H) \otimes \mathcal{K}))(1_{\mathcal{H}_S} \otimes p).
 \end{aligned}$$

- We will now analyse the structure of this algebra

Type reduction I

- Well known that $(\mathcal{M}_S \rtimes_{\text{Ad } U_S|_{\mathbb{R}}} \mathbb{R})$ is semifinite
- Can show that $(\mathcal{M}_S \otimes B(\mathcal{H}_R))^{\text{Ad } U_S \otimes U_R}$ is semifinite
- Proof comes from constructing a semi-finite trace τ
- **Finite** on $(1_{\mathcal{H}_S} \otimes p)((\mathcal{M}_S \rtimes_{\text{Ad } U_S|_{\mathbb{R}}} \mathbb{R}) \otimes B(L^2(H) \otimes \mathcal{K}))(1_{\mathcal{H}_S} \otimes p)$ if and only if

$$\tau(1_{\mathcal{H}_S} \otimes p) < \infty \quad (18)$$

- Finiteness of $(\mathcal{M}_S \otimes B(\mathcal{H}_R))^{\text{Ad } U_S \otimes U_R}$ follows
- Can be shown to hold if there is a KMS weight on frame at inverse temperature β (= inverse temp of KMS state on \mathcal{M}_S)
- If H is trivial and \mathcal{M}_S is a III_1 factor, then $(\mathcal{M}_S \otimes B(\mathcal{H}_R))^{\text{Ad}(U_S \otimes U_R)}$ is a type II_1 factor

As a Theorem

(See [3], Thm. 5.5)

Let \mathcal{M}_S describe a QFT, and suppose there is a (faithful, normal, G -invariant) KMS state ω , and \mathcal{M}_S is acted on unitarily by $G = \mathbb{R} \times H$ (H compact). When coupled to a compactly stabilised QRF, the algebra

$$(\mathcal{M}_S \otimes B(\mathcal{H}_R))^{\text{Ad}U_S \otimes U_R} \quad (19)$$

is semifinite. If moreover the frame admits a normal KMS weight (with finite values on a dense subalgebra of $B(\mathcal{H}_R)$) at the same inverse temperature as ω , resulting algebra is II_1 (finite!). (Missing here - explicit constraint on frame properties that gives sufficient condition for finiteness - see paper!)

CLPW revisited: $G = \mathbb{R} \times SO(n - 1)$

Consider the $SO(n - 1)$ part to act trivially on system and frame, CLPW [1] Hamiltonian q_+ .

- Hilbert space of frame is $\mathcal{H}_R = p_+ L^2(\mathbb{R})$
- Time observable is $E^T(X) = p_+ \mathcal{F} T_{\chi_X} \mathcal{F}^*$
- Dilation is canonical PVM T (self-adjoint momentum)
- (Time translation) invariant algebra is

$$(\mathcal{M}_S \otimes B(\mathcal{H}_R))^{\text{Ad } U_S|_{\mathbb{R}} \otimes U_R|_{\mathbb{R}}} = (1 \otimes p_+) (\mathcal{M}_S \rtimes_{\text{Ad } U_S|_{\mathbb{R}}} \mathbb{R}) (1 \otimes p_+) \quad (20)$$

- Crossed product takes us from III to II_∞ , then the projection p_+ takes us from II_∞ to II_1
- This final step turns the sharp time into an unsharp one

Comments

- We have shown that the inclusion of a QRF with given properties yields a II_1 algebra of observables
- Type reduction takes place in 'stages': modular crossed product plus projection
- II_1 follows from QRF admitting a normal KMS weight at inverse temp β
- Non-triviality of ρ means QRF is non-ideal (unsharp time observable)
- unsharpness regularises QFT
- Which unsharp time observables yield type reduction? Inevitable for QFT QRFs?
- New theory is 'quantum stat mech' rather than QFT. Meaning?
- Gravity?!

Summing up

- QRFs are indispensable for describing QM and QFT when there is symmetry
- Lots to do: QRF is a QFT, relational AQFT 'from scratch',...

Some more references

- [1] V. Chandrasekaran, R. Longo, G. Penington, and E. Witten. An algebra of observables for de sitter space. *Journal of High Energy Physics*, 2023(2):1–56, 2023.
- [2] J. De Vuyst, S. Eccles, P. A. Höhn, and J. Kirklin. Crossed products and quantum reference frames: on the observer-dependence of gravitational entropy. *Journal of High Energy Physics*, 2025(7):1–118, 2025.
- [3] C. J. Fewster, D. W. Janssen, L. D. Loveridge, K. Rejzner, and J. Waldron. Quantum reference frames, measurement schemes and the type of local algebras in quantum field theory. *Communications in Mathematical Physics*, 406(1):1–81, 2025.
- [4] C. J. Fewster and R. Verch. Quantum fields and local measurements. *Communications in Mathematical Physics*, 378:851–889, 2020.
- [5] J. van Neerven and P. Portal. Thermal time as an unsharp observable. *Journal of Mathematical Physics*, 65(3), 2024.

Types

von Neumann algebras are built from *factors*, and each factor has a *type*, characterised by properties of projections, or equivalently traces:

- $B(\mathcal{H})$ type I_∞ (faithful normal semifinite trace with values on projections in $\mathbb{N}_0 \cup \{\infty\}$)
- $\mathcal{R}(G) =$ type II_1 (faithful normal tracial state with values on projections in $[0, 1]$)
- \mathcal{A} type II_∞ (faithful normal semifinite trace with values on projections in $[0, \infty]$)
- $\mathcal{A} \rtimes \mathbb{R}$ type III for some given actions of \mathbb{R} (no good trace)

Semidirect products

Suppose we have a group K acting on another group H by automorphisms, i.e., $\varphi : K \rightarrow \text{Aut } H$ is a homomorphism. Question: Can we construct a group in a ‘natural’ way that ‘encodes’ the action of K on H ?

Yes! The (‘outer’) semidirect product $H \rtimes_{\varphi} K$. As a set, this is $H \times K$, but the group law is

$$(h, k).(h', k') = (h.\varphi_k(h'), k.k') \quad (21)$$

Now suppose that we have a group G acting by automorphisms on a von Neumann algebra \mathcal{M} . Question: Can we construct a von Neumann algebra in a ‘natural’ way that ‘encodes’ the action of G on \mathcal{M} ? Yes...

Crossed product

Let \mathcal{M} be a von Neumann algebra, G a (l.c.s.c.H) group, $\alpha : G \rightarrow \text{Aut}\mathcal{M}$ (covariant system (\mathcal{M}, G, α)). Construct $L^2(G, \mathcal{H})$ and fix a representation of \mathcal{M} as

$$(\pi_\alpha(x)f)(g) = \alpha_g^{-1}(x)f(g) \quad (22)$$

and of G as

$$(\lambda(g)f)(h) = f(g^{-1}h). \quad (23)$$

Then $\mathcal{M} \rtimes_\alpha G = \{\pi_\alpha(M), \lambda(G)\}''$.

[Connection to previous example: $\mathcal{G}(H \rtimes K) \cong \mathcal{G}(H) \rtimes K$]