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Why Quantum Reference Frames?

If one accepts the following three statements, QRFs emerge naturally:

@ Quantum mechanics (QFT) is empirically precise and accurate
@ Quantum mechanics (QFT) is universal
© Observable quantities are invariant under XXX

E.g., fundamental particles are often associated with irreducible
representations of the Poincare group. Tension with 3.

If you don't like these principles, | have others. E.g. Physical situations
related by a symmetry, need a (Q)RF, Einstein's operational clocks and
rods, in a quantum setting.

The reference system/frame is described by the same physical
theory as the systems under consideration
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Some recent uses (operational framework)*

@ Helps us to understand better what QM ‘is about’

@ Frame changes - observables and states relative to frame, can move
consistently between descriptions relative to different frames!

@ Uncertainty relations - QRFs in phase space, frame-relative
uncertainties?

@ 'Type reduction’ in AQFT - incorporation of frame ‘regularises’ the
observable algebra3

1Operational Quantum Reference Frame Transformations T. Carette, J. Glowacki,
LL, Quantum 2025

2Uncertainty Relations Relative to Phase Space Quantum Reference Frames, M.
Jorquera Riera, L.L, PRA Letters 2025

®Quantum Reference Frames, Measurement Schemes and the Type of Local Algebras
in Quantum Field Theory, C. J. Fewster, D. W. Janssen, L.L, K. Rejzner, James
Waldron CMP 2025

4Other frameworks are available!! E.g., Perspective-neutral, P. Hoehn et al, Extra
particle, Castro-Ruiz, Oreshkov...



Operational Backdrop

Operational Theories |

Most basic experiment we can do: prepare (T - ‘state’) and measure
(E - ‘observable)’ a system the same way many times (n)

For each possible outcome w; € Q, write n; for the frequency

Assign probabilities

pE(wr) = lim ™ (1)

n—oo n

Cal Ej: T — p'%(w,-) effect
Mixing: convex structure on states, effects are (in the) affine maps

Linear (plus convex) structure on effects - states as affine functionals
on convex set of effects through T(E;) = E;(T)

State space is convex subset of a vector space, total convexity gives
Banach structure on dual (base norm space, order unit Banach space)

Observable E : w; — E; 'effect valued measure’

Pure states: extremal elements of convex state space
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Operational Backdrop

Operational Theories Il - Classical probability theory

@ States are probability measures on €2, pure states delta measures
@ State space is a simplex (unique pure state decomposition)
Various ways to think of observables:

o Effect-valued measure, extremal effects are idempotent (projections =
characteristic functions)

e Extremal effects give real-valued functions C(Q2) (Gelfand spectrum
2(C(Q2)=9Q)

@ Algebraic point of view recovered from operational or probabilistic
ideas
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Operational theories Ill - Quantum Theory

Quantum Theory:

@ (Normal) state space S(H) C T(H) = B(H)«, pure states rank-1
projections

o Effects £(H) are operators in [0, 1] C B(H)

@ Suppose now outcome space 2 is topological space,

@ Observables are POVMs E : F(Q2) — E(H) (E(X) > 0, additive on
disjoint sets, E(Q) = 1)

@ Sharp observables on R are PVMs = s.a. ops through spectral
theorem, C* algebras etc

e Born rule

po(X) = trlwE(X)] (2)

@ POVMs exhaust the probabilistic structure of Hilbert space: any set
function E : F(Q) — B(H™) is a POVM iff X — (x|E(X)x) is a
measure
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POVMs in QM: overview

e Natural fit with probabilistic/operational structure
@ Arise naturally in measurement (cf. Busch, Fewster/Verch)

@ Can be used to model ‘classical noise’ (unsharp version of sharp
observable)

@ Can be used to model ‘intrinsic unsharpness’ (time, phase)

@ Allow for operational definition of incompatibility: POVMs A on Q4
and B on Qg if there is an M on Q4 x Qg such that
A(X) = M(X x Qg) and B(Y) = M(Q24 x Y) (need not commute)
Our main interest will be in Covariant POVMs (‘transform well under a
representation’)
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Some POVMs |

e Pauli (1926): Given self-adjoint operator A with spectrum bounded
below, there does not exist (s.a.) B for which [A, B] = i1

o (Nearly!) equivalently, no PVM EZ on B(R) for which
eitAEB(X) —itA _ EB(X+ t)
Some POVMs satisfy the covariance, e.g.,
@ Ex.1: Standard number observable N = ano nP,, ‘canonical phase’

Ephase( x Z c,,m/ =m0\ n\(m|d6 , X € B((0,27]) (3)

n,m=0

is covariant (addition modulo 27) under conjugation.
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Some POVMs Il

Ex.2: ‘Hamiltonian' given by g, in L2(R})
e Can construct covariant time observable ET : B(R) — B(L2(R4)):

" ET(X)e "t = ET(X +1). (4)

e Construction follows Naimark: embed L2(R.) in L2(R) where the
sharp momentum conjugate to g lives, project back down.

e Example of a covariant Naimark dilation (always exists)
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Some POVMs I

Ex. 3: Covariant smearings of (spectral measures of) Q, P give joint

observable as covariant phase space POVM (covariant under phase space

translations)

GT(2) = - [, W(a.p) TW(a. p)'dacp € B(L*(R)

GT(X xR) = (u7*x Q)(X) = Q"7 (X);
GT(Rx Y)= (vt xP)(Y) =P"T(Y),

where

pr(X) = r[ATNQ(X)];
vr(Y) = [T P(Y)).

‘Measurement Uncertainty Relation” A(Q*T, p)A(P*T,p) > 1
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Even More POVMs

@ Von Neumann algebra M comes with intrinsic dynamics (1-parameter
group of automorphisms, ¢ faithful normal state)

of (A) = ATTAA" € M for all t €R (7)

A modular operator (depends on state, but not strongly)

Generalises to faithful normal semifinite weight

ot is the unique 1-parameter automorphism group for which
» pooy = forall t

» ¢ satisfies the KMS condition (roughly existence of holo. F on strip
s.it. F(t) = ¢(o(a)b) and F(t + i) = ¢(b)o(a) for a, b satisfying
some finiteness conditions)

@ Some work on when thermal time is unsharp (covariant POVM) [5]
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Never ending POVMs

POVMs arise through measurement:

e Apparatus # 4, pointer observable PZ, initial state ¢, unitary coupling
U on Hs ® H 4 such that for all ¢ € Hgs:

(Up @ 6|1 @ PZ(X)(Up ® ¢)) = (#|E(X)¢) (8)

or E(X) = Iy(U*1 ® PZ(X)U) - probability reproducibility
@ Two readings: (i) LHS is some Naimark dilation of RHS (ii) LHS is
fixed and dictates measured POVM E

o (Hu,U, PZ, ¢) is called a measurement scheme for E, recently
extended to AQFT by Fewster and Verch [4]
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Quantum Reference Frames

(Operational) Quantum reference frames: motivation

Start from a general principle - ‘true observables’ are
(gauge-)invariant (differs from other contemporary approaches)

l.c.s.c. G, unitary rep U in H

Nothing left if U irreducible (cannot observe single particles?)

We know invariance and ‘relativity’ intimately connected: introduce
frame, stipulate invariance for system-plus-frame (c.f. relative
position, etc)

Within invariants B(#)®, some special ‘relative’ (relational)
observables, which we will get at next

NB: may be no invariant states, but can identify states which agree
on B(H)C, write S(H)¢
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Quantum Reference Frames

(Operational) Quantum Reference Frames: definition,
taxonomy

A quantum reference frame based ¥ = G/H is a System of Covariance
(UR7 ER7 HR)
Sharp if E is a PVM (and unsharp otherwise)

Principal if X is a principal homogeneous space

Ideal if it is both principal and sharp
Compactly stabilised if ¥ = G/H with H C G compact

Localisable if E satisfies the norm-1 property

Complete if there is no (non-trivial) subgroup Hy C G acting trivially
on all the effects of E

Coherent state systems, informationally complete, etc

@ Covariant POVMs are related to ‘standard’ covariant PVMs
(Imprimitivity) through covariant dilation/compression (complete
characterisation due to Mackey, Cattaneo, others)

CES 20726



Quantum Reference Frames

Relative states and observables for principal frames
We can relativise observables with ¥R : B(Hs) — B(Hs ® Hr)C:

¥R(4) = [ Us(e)AUs(e)" @ EX(de) ©)

Linear completely positive normal unital contraction, *-preserving,
injective homomorphism iff E is PVM (also works for compactly
stabilised)

Relative observables B(Hs)R := Im(¥R) (u.w. closure)

Identify trace class ops indistinguishable on B(Hs)R:

T(Hs)" = T(Hs @ Hr)/ ~ri  T(Hs)X = B(Hs)T  (10)

Relative states:

S(Hs)R == S(Hs ® Hr)/ ~r= ¥R (S(Hr ® Hs));  (11)
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Quantum Reference Frames

Restriction and conditioning

Fix frame state w, define I, : B(Hs ® Hr) — B(Hs) by
l'o(A® B) = Atr[wB] (extended by linearity, continuity). CP normal
conditional expectation.

o Frame-conditioned relative observables Im(¥F) := T, o ¥R

o If A is invariant, ¥¥(A) = A for all frame states w
(frame-independent)

o ldentify states, quotient, [B(Hs)R]. = T(Hs)R
o p) =¥R(pow); pl&w) = (g=1.p)«) (active/passive)
e E.g. p invariant, then p(*) = p for any w
Theory is most tractable when frame is localizable (norm-1 property): for

any X s.t. E(X) # 0, 3 a sequence (wp) of states s.t.
limw,(E(X)) = 1.
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Quantum Reference Frames

Localization

‘Fundamental theorem of OQRFs'?

Theorem

Let R = (Ur,ERr,HR) be a localizable principal frame and (w,) a
localizing sequence centered at e € G. Then for any As € B(Hs) we have

lim (T, 0 ¥™)(As) = As, (12)

@ Ordinary QM captures relation between quantum system and ‘suitably
classical’ reference

@ Not possible for bad frames (lower bound)

@ Dual result: limp_o0 ¥.(p ® wp) = p; (conditioned) relative states are
dense (and converse - bad agreement for very unsharp frames)
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Applications |I: Frame-relative Uncertainty Relations
Can take covariant phase space observable as frame, relativise and restrict

° ¥I =T, 0¥ breaks the incompatibility of position and momentum
for any T, w of the frame

@ Novel frame-dependent uncertainty relation (several of these)

o cf A(Q,p)A(P,p) > 1/2 and A(Q T, p)A(P'T, p) > 1

@ Which is right? Experiment?

e Classical limit (very dodgy): set w, T localised at (0,0) (Landsman
framework to make rigorous?)

ACEL 0 Qs, p)A(EL 0 Ps, p) > 1/2 (14)
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Applications Ill: ‘type reduction’

@ Algebraic Quantum Field Theory: Manifold M, regions U C M, von
Neumann algebras mM(U), axioms (isotony, Einstein Causality etc)

@ Local algebras in AQFT are typically Type Ill von Neumann algebras
(no good trace, no entropies) (hyperfinite factor of type Ill;!)
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Types

Choice of algebra comes from physics
e I, ‘qubits’ etc (H = C", M = M,(C))
e I, ‘wave mechanics’ (M = B(L%(R)))
e II; maths: i.c.c. groups, physics: infinite spin chain (with conditions!)
o Il eg Ih® Iy

@ IIT quantum field theory (mathematical example: 11, x R for suitable
action of R)

Can be characterised by traces:
e 7: My — [0,00] with 7(u*au) = 7(a) (plus additive, homogeneous)
o Called finite if never co
e Semifinite if finite trace elements are dense
e If finite, extends to M with cyclicity 7(ab) = 7(ba)
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Applications

Characterisation

Full characterisation (factors) comes from value of trace on P(M); here
we simplify:

I, Finite trace

I Semifinite trace (semi-finite normal trace is the usual one)

II; Finite trace

11, Semifinite trace
o III No finite trace

This is a problem. Want to understand, e.g., black hole or cosmological
entropies. E.g., Bekenstein, Hawking (black holes), Hawking + Gibbons -
areas of cosmological horizons are entropies. How should we understand
this as part of (A)QFT proper? Need traces.
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Chandrasekaran, Longo, Penington, and Witten

e CLPW [1]: ‘observer’ on a worldline in de Sitter ‘static patch’
(causally accessible region)

e Time translation-invariant algebra (plus details) gives II; - type
reduction

o '‘FJLRW': view the observer as a quantum reference frame, use and
develop existing machinery to make more precise, operational, general
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Big picture

@ Theory based on local measurements appears to break
diffeomorphism /symmetry invariance. Suppose weak gravity, fixed
background, interested in isometries, true observables
isometry-invariant (system + frame)

@ We will analyse the type of a QFT on a background with isometry
group R x H (H compact) ‘relative to’ a QRF on G/K (K compact).

@ We do this by describing the algebra of invariants of system + frame
together (see also [2])

@ The techniques are based on crossed products and modular theory,
combined with systems of covariance (QRFs) and induced
representations.
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QRFs

Mackey 1949, Cattaneo 1979: our QRFs are subrepresentations of induced

representations
e QRF (U,E,HRr) on X = G/H (assume H compact)
o W : Hr - K® L2(G), new QRF given by

(1 ® N\, 1x ® P,K @ L?(G));
E(X) = W*(1x ® P(X))W
o Any QRF is of the form
(1k ® Aar, P(1k ® P)lar, p(K ® L2(G)));

obtained by setting p = WW™ Naimark projection.
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Applications

Invariants and Crossed Products: General

Set-up: QFT Von Neumann algebra Mg in Hs with action ag of G,
compactly stabilised QRF (Ug, E, Hg). Want (Ms ® B(Hz))*s®AdUr,

o Well known: (M ® B(L?(G))*®AA = M x, G

@ For us: There is a Hilbert space K and projection p € A\(G) ® B(K)
such that

(Ms ® B(Hg))*“AUr = (13, @ p)((M Xas G) ® B(K))(Las © p)
(17)
e Note that the action on B(K) is trivial and the iso above is spatial
through Hz = p(L%(G) ® K)

@ «s is unitarily implementable - some simplifications can be made
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Applications

Invariants and Crossed Products: Rxcompact

Theory is tractable for G = R x H (H compact) plus compactly stabilised
QRF

o Hr = p(L2(R) @ L2(H) © K)

@ Assume that Mg has a faithful normal KMS state w (inverse temp.
B) and the corresponding modular action is unitarily implemented,
then

(Ms ® B(HR))Ad Uslr®UrIR
= (1us @ p)((Ms xadusie R) ® B(LA(H) @ K))(1us @ p)-

@ We will now analyse the structure of this algebra
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Type reduction |

Well known that (Ms xad usig R) is semifinite
Can show that (Ms ® B(Hg)) 4 Ys®Ur is semifinite
Proof comes from constructing a semi-finite trace 7

Finite on (1. ® p)((Ms xadusis R) ® B(L2(H) @ K)) (1, @ p) if
and only if

7(lys ® p) < o0 (18)

o Finiteness of (Ms ® B(HRg))4Ys®Ur follows

@ Can be shown to hold if there is a KMS weight on frame at inverse
temperature (= inverse temp of KMS state on M)

e If H is trivial and M is a III; factor, then (Ms ® B(Hg)) 4(Us@Ur)
is a type II; factor
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Applications

As a Theorem

(See [3], Thm. 5.5)

Let M describe a QFT, and suppose there is a (faithful, normal,
G—invariant) KMS state w, and M is acted on unitarily by G =R x H
(H compact). When coupled to a compactly stabilised QRF, the

algebra
(Ms @ B(Hg)) 4Us@Ur (19)

is semifinite. If moreover the frame admits a normal KMS weight (with
finite values on a dense subalgebra of B(Hg)) at the same inverse
temperature as w, resulting algebra is II; (finite!). (Missing here - explicit
constraint on frame properties that gives sufficient condition for finiteness
- see paper!)
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CLPW revisited: G =R x SO(n—1)

Consider the SO(n — 1) part to act trivially on system and frame, CLPW
[1] Hamiltonian q..

Hilbert space of frame is Hr = p; L?(R)
Time observable is ET(X) = p1 F T, F*
Dilation is canonical PVM T (self-adjoint momentum)

(Time translation) invariant algebra is
(Ms @ B(Hg))AVsIROURIR — (10, )(Ms X aduslr R)(1®py) (20)

@ Crossed product takes us from III to Il,, then the projection p4
takes us from 11, to II;

This final step turns the sharp time into an unsharp one
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Comments

@ We have shown that the inclusion of a QRF with given properties
yields a II; algebra of observables

@ Type reduction takes place in ‘stages’: modular crossed product plus
projection

o II; follows from QRF admitting a normal KMS weight at inverse
temp S

@ Non-triviality of p means QRF is non-ideal (unsharp time observable)
- unsharpness regularises QFT

@ Which unsharp time observables yield type reduction? Inevitable for
QFT QRFs?

@ New theory is ‘quantum stat mech’ rather than QFT. Meaning?
o Gravity?!
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Summing up

@ QRFs are indispensable for describing QM and QFT when there is
symmetry

@ Lots to do: QRF is a QFT, relational AQFT ‘from scratch’,...
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Types

von Neumann algebras are built from factors, and each factor has a type,
characterised by properties of projections, or equivalently traces:

e B(H) type I (faithful normal semifinite trace with values on
projections in No U {c0})

e R(G) = type I1; (faithful normal tracial state with values on
projections in [0, 1])

o A type I1, (faithful normal semifinite trace with values on
projections in [0, o0])

e A x R type III for some given actions of R (no good trace)
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Semidirect products

Suppose we have a group K acting on another group H by automorphisms,
i.e.,, ¢ : K — AutH is a homomorphism. Question: Can we construct a
group in a ‘natural” way that ‘encodes’ the action of K on H?

Yes! The (‘outer’) semidirect product H x, K. As a set, thisis H x K,
but the group law is

(h, k).(W,K") = (h.pk(h), k.K') (21)
Now suppose that we have a group G acting by automorphisms on a von

Neumann algebra M. Question: Can we construct a von Neumann algebra
in a ‘natural’ way that ‘encodes’ the action of G on M7 Yes...
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Crossed product

Let M be a von Neumann algebra, G a (l.c.s.c.H) group, o : G — AutM
(covariant system (M, G,a)). Construct L2(G,H) and fix a
representation of M as

(ma(x))(g) = oz (x)f(g) (22)

and of G as

(\(&)f)(h) = f(g~"h). (23)
Then M x4 G = {ma (M), \(G)}".
[Connection to previous example: G(H x K) = G(H) x K]
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