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Quantum reference frames are internal
subsystems and a universal tool for...

* dealing with symmetries in quantum systems

* describing a quantum system “from the inside”
(describing subsystems relative to one another)
* defining subsystem partitions in gauge systems

 completing the relational paradigm

applicable whenever an external reference isn’t available/desired



Relativity of simultaneity vs. subsystem relativity
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Why guantum reference frames”?

foundational interest:

— all frames in experiments physical
— no external frames (background indep.)

— quantum frame relations < quantum spacetime structure?

practical interest:

— needed for gauge-inv. description (or gauge fixing)
— act as regulator for QFT algebras and entropies

— definition of locality

— applications in Ql



Menu

* Introduction to QRFs and notions of external frame independence
*subsystem relativity

* Physical and gauge QRFs in lattice gauge theories
+ entanglement entropies (maybe)



Internal QRFs and external
frame Independence

[de la Hamette, Galley, PH, Loveridge, Muller 2110.13824; PH, Kotecha, Mele 2308.09131;
PH, Smith, Lock 1912.00033; Vanrietvelde, PH, Giacomini, Castro-Ruiz 1809.00556,....]
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RFS and symmetries

Describe S relative to internal
reference subsystem K,

Premise:
System § = R R, subject to symmetry

group G, s.t. states p and g - p are
Indistinguishable for all g € G when o
S considered in isolation

quantum information/foundations: (G-transformations = ext. frame transf.
change of ext. lab frame
= want external frame indepependence, i.e.

gravity: G-invariance

e.g. change of background coordinates (diffeo)
= change of fictituous background frame
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internal frames in SR vs. QT

t, o
R, S
> X
_ covariant POVM E(g . X) = U}g EX cG) (Ug)T
internal frame tetrad eg = SO+(3,1)
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Example: guantum ClIOCKS e s s

clock states for non-deg. continuous spectrum clock Hamiltonian H,- (gen. of R)

1 .
—_ —1f
1) = J de e™" | €) clock orientations t € R (group-valued)
V 27 Spec(H)
covariant: U-)|t) =|t+1) UAt) = e e
POVM elements E~(X) = J dr| 1){t| normalized E-(R) = I (well-defined probabilities)
XCR

fuzzy clock states (7| 1) ~ 6(t — t') (unless ideal clock with Spec(H) = R)
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Reorientations are physical

e relational time evolution [PH, Smith, Lock *19; De Vuyst, Eccles, PH, Kirklin '24]
 corner symmetries in gauge theory and gravity

[Carrozza, PH ’21; Carrozza, Eccles, PH ’22; Goncalo-Araujo, PH, Sartini, Tomova ’24]

extrinsic edge mode frames (e.g. Wilson lines or geodesics)
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internal frames in SR vs. QT
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. _ .
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External frame independent observables

minimal condition for observables: Oed,, st. [O, UgS] =0,Vge i

for simplicity assume G compact, then via incoherent group average (“G-twirl”):

G :d .. = ,Qign orthogonal projector onto G-inv. subalgebra

G(o)=| dgUS () (UL

(crossed product)

relational observables QRF reorientations

Oﬁe(fS) .— /Ug ( ‘ g)(g ‘ ®f5) (U )T (f¢ conditional on QRF in orientation g)
JG
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Examples: relational observables

1. relational dynamics in gravity: some Hamiltonian constraint with clock R = C C=H-+H
O fs) = ndteit(Hc+HS) ( |1 T){7| ® fS) g~ IHctHy) measures f when clock reads 7
e.g. for ideal clock (Spec(H-) = R) have Og( fs) = e ~HH; fs e THs
2. lattice gauge theory
"‘W Js
connected

2 Wilson lines define G-valued QRF R at green nodes

some root vertex in the lattice

= rel. obs. OfR( ) = complete Wilson loop



t, o
€
> X
internally G GH G G hb
5 ) e, e’e
distinguishable {S,5%, S,eq. eje,}
configurations

(extern frame indep.) relational/dressed observables

internal frames in SR vs. QT

R, S

—@—0@—

%observables: O € dy, st [O,U.]=0,Vgei

relational observables dgUs . (1g'Xg'| ® f5) (US)
JG

(f¢ when QRF in orientation g’)




External frame independent observables

minimal condition for observables: Oed,, st. [O, UgS] =0,Vge i

for simplicity assume G compact, then via incoherent group average (“G-twirl”):

G :d .. = ,Qign orthogonal projector onto G-inv. subalgebra

G(o)=| dgUS () (UL

(crossed product)

relational observables QRF reorientations
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Two notions of external frame independence

states can be G-invariant in two different ways:

weak: [Pinys U ] =0, Vg €G strong: Uscly) =|w),VgeG
iImage of the incoherent group average image of the coherent group average
Piny = G(p), p € S(Hin) ly) =11, lw), |y) € #yi, Hpn = J ag UI(gS
G

group irreps sectors

B \\
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N = ) =
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Two notions of external frame independence

states can be G-invariant in two different ways:

weak: [Pinys U ] =0, Vg €G strong: Uscly) =|w),VgeG

result of one equivalence relation:
) ~ y) < \l//’)=UI§Sh//> forsome g € G (*)
(“observer can't distinguish between external frame transformed states”)

group irreps sectors
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states can be G-invariant in two different ways:

weak: [Pinys U ] =0, Vg €G strong: Uscly) =|w),VgeG

result of one equivalence relation: result of two equivalence relations:

vy ~ly) < |y)=U, |ly) forsomege G (*) ") + | -Uily)~0, g€GC

(“observer can’t distinguish between external frame transformed states”) (“observer can also not distinguish their difference from zero”)

group irreps sectors
charge zero

™ )
operational consequence: operational consequence:
CAN distinguish superpositions of CAN'T distinguish superpositions
external frame transformed states of external frame transformed
from their corresp. weighted states from their corresp. weighted
mixtures mixtures
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Two notions of external frame independence

states can be G-invariant in two different ways:

weak: [Pinys U ] =0, Vg €G

result of one equivalence relation:

vy ~ ) o |y)=Uly) forsomege G (*)

(“observer can’t distinguish between external frame transformed states”)

group irreps sectors

QRF orientation data removed

: g
(conjugate to URS :

but charge/irrep. data preserved

strong:

Uscly) =y),VgeG

result of two equivalence relations:

(") +

ly) = Usily) ~0, g€G

(“observer can also not distinguish their difference from zero”)

QRF orientation data removed
and
charge/irrep. data fixed

charge zero
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Example: particles on a line

G =(R,+) translation group R S
. . '
H .. = L (R)p @ LA(R); and US. = Upg(x) = exp(—ixP), x € R, P = pp+ pg
A gn — <6]S — {qpsPg> P > = frame orientation observable ¢, eliminated

weak ext. frame indep. strong ext. frame indep.

P eigenspaces

AN
\ \\};i)\\

/'

NN

NN
DN, > -

—- ‘:.-q".fr 4,::?
s A
- W
b 1iil S
”’-' """( A -~y /ﬁ

J dxUgg(x) p URS(X)T = ) J dxUpgg(x) p J dyUgs(y) =
R RN R R

P preserved and conjugate to gy P also eliminated

= “half of the QRF subsystem” \_ e ) = “entire QRF subsystem”
eliminated eliminated = fully redundant




Physical symmetry vs. redundancy

Given: symmetry group G (“external frame transformations”)

weak ext. frame indep.: G physical / \ strong ext. frame indep.: (G param. redundancy

lab frame transformations e small gauge transformations in gauge theory and gravity
large gauge transformations in gauge theory and gravity e stabilizer symmetry in QeEC
corner symmetries in gauge theory and gravity ¢ guantum simulations

e operational restrictions
o

are the orientations of the QRF (in principle) measurable?

PN

Yes No

(but requires access to an ext. farme)



Potpourri of approaches to QRF covariance

perspectival

|[Giacomini, Castro-Ruiz, Brukner ‘17; de la Hamette, Galley ‘20;
de la Hamette, Kabel, Castro-Ruiz, Brukner '22,...]

extra-particle
[Castro-Ruiz, Oreshkov '21; Garnier, Hausmann, Castro-Ruiz "25] effective (semiclassical)

[Bojowald, PH, Tsobanjan '10; PH, Kubalova, Tsobanjan ’12]

quantum information-theoretic

[Aharonov, Susskind '67; Bartlett, Rudolph, Spekkens ’06;
Krumm, PH, Mdller '20]

algebraic |
[Bojowald, Tsobanjan ’19; '22; De Vuyst, PH, Tsobanjan to appear]

operational

[Fewster et al. '24; Carette, Glowacki, Loveridge '23;

Glowacki, Loveridge, Waldron *23] algebraic |l

Anhmad, Klinger, Leigh ‘24

PH, Loveridge, Muller ‘21; PH, Smith, Lock ‘19; PH, Kotecha, Mele '23; ...]
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\\ \ [Vanrietvelde, PH, Giacomini, Castro-Ruiz ‘18; de la Hamette, Galley,




Potpourri of approaches to QRF covariance

: perspectival equiv. to strong ext. frame
Weak ext. frame lndep' [Giacomini, Castro-Ruiz, Brukner ‘17; de la Hamette, Galley ‘20; . d f d | QRF
de la Hamette, Kabel, Castro-Ruiz, Brukner ’22,...] In ep' or iaea =

extra-particle

[Castro-Ruiz, Oreshkov '21; Garnier, Hausmann, Castro-Ruiz '25] effective (semiclassical)

[Bojowald, PH, Tsobanjan '10; PH, Kubalova, Tsobanjan ’12]

quantum information-theoretic

[Aharonov, Susskind '67; Bartlett, Rudolph, Spekkens ’06;
Krumm, PH, Mdller '20]

algebraic |
[Bojowald, Tsobanjan '19; '22; De Vuyst, PH, Tsobanjan ’25]

operational
[Fewster et al. '24; Carette, Glowacki, Loveridge '23;

Glowacki, Loveridge, Waldron 23] strong ext. frame indep. algebraic I

Ahmad, Klinger, Leigh 24

perspective-neutral
[Vanrietvelde, PH, Giacomini, Castro-Ruiz ‘18; de la Hamette, Galley,

PH, Loveridge, Muller ‘21; PH, Smith, Lock ‘19; PH, Kotecha, Mele '23; ...]
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S

internally
distinguishable

configurations
(extern frame indep.)

internal frames in SR vs. QT

{S,S", S, e, egej;}

relational/dressed observables

R,

S

—@—0—

weak or strong indep. (dep. on approach)

[Pinys Ugd =0 or

relational observables

J

G
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dgUs (1g'Xe'| ® f5) (UsY)

(f¢ when QRF in orientation g’)

“jumping into internal
frame”

a) relational observables

b) align int. & ext. frames (gauge fix)

eg. e/ =0
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0 g internal frames in SK VS, QT

A
R, 5
xel 4‘—‘—’ q
q=0
weak or strong indep. (dep. on approach)
internally (S SH S e e’“‘eb} [Piny» URS] 0 or URS lw) = |w)
distinguishable g TR dr A i T
configurations | . relational observables | dgU; (|g'Xg'| ® f5) (Ug,)
(extern frame indep.) relational/dressed observables Ja
(f¢ when QRF in orientation g’)
b) align int. & ext. frames (gauge fix)
a) relational observables
“jumping into internal e.g. Page-Wootters reduction £8 = (g = ¢| » ® I
frame” b) align int. & ext. frames (gauge fix)

can only be done unitarily charge sector wise!

B — SH :
e.g. ¢, = 0, frame perspective map of the
’ perspective-neutral approach (strong inv.)
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Internal frame changes in SR and the PN approach
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Summary: perspective-neutral QRF framework

externally distinguishable states

Hin=H g, @ Hp, QX

removing external M. = |gous
frame information phys & Y125

perspective-neutral state space
(encodes and links all possible QRFs)

internal perspective rel. to R,

internal perspective rel. to R,

QRF changes as
“‘guantum coordinate transformations”




Subsystem relativity

[Ahmad, Galley, PH, Lock, Smith ’21; Araujo-Regado, PH, Sartini '25;
Castro-Ruiz, Oreshkov '21; PH, Kotecha, Mele '23; De Vuyst, Eccles, PH, Kirklin ’24; ....]
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Relativity of subsystems

all rel. observables describing
that are inv. under both R- & R>-

reorientations = all internal S-relations

G . relational observables of
Agr N A = = {internal rel. obs.of S} S relative to R,

“frames R; and R, mean different gauge inv. DoFs when they refer to subsystem S

full algebra of
relational observables

= correlations, entropies, thermodynamic properties, ...
become QRF-dependent

[systematic investigation in relational observables of $
PH, Kotecha, Mele "23] relative to R




QRF perspectives are TPSs on the PN-space
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Araujo-Regado, PH, Sartini ‘25
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QRF perspectives are TPSs on the PN-space

: Kotecha, Mele, PH 23;
TPS relative to external frame De Vuyst, Eccles, PH, Kirklin 24

Araujo-Regado, PH, Sartini ‘25

Hiin=Hp Q@ Hp, &

removing external 1
frame information phys

perspective/TPS-neutral state space

QRF perspective is a

. . (does not inherit kin. TPS)
gauge-inv. subsystem partition

K generated by relational olbservable algebras

prn = ‘Q{S|R1 ® Q[R2|R1 = “Q[S|R2 ® Q[R1|R2

internal TPS rel. to R I ATEERZ AN A " H g =H R QK internal TPS rel. to R,

1
R o (F)

QRF transformations are

changes of TPS
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Example: particles on a line

Vanrietvelde, PH, Giacomini, Castro-Ruiz ‘19

S

H superposition and entanglement of
subsystem S QRF relative

. — 72 2
H\r, = L*(R)g, ® LAR)g " H g, = LAR),, ® LA(R)g

—1
Rs o (R]) = FIZJdQ‘ —qXqlg, ® Us(q)

(‘QI>R2 ‘QZ>R2) ® |x)s | — Q1>R1 Q |x—q)s+!| - Q2>R1 ® |x —qy)s

superposition + product entanglement



QRF perspectives are TPSs on the PN-space

: Kotecha, Mele, PH 23;
TPS relative to external frame De Vuyst, Eccles, PH, Kirklin 24

Araujo-Regado, PH, Sartini ‘25

Hiin=Hp Q@ Hp, &

removing external 1
frame information phys

perspective/TPS-neutral state space

(does not inherit kin. TPS)

. _ ' ‘ J
internal TPS rel. to R, AT @ H'p @ X g > A |R, = @ Ak, @ G ol TPS rol. 1o R,
l

1
R o (F)

QRF transformations are

changes of TPS



Relativity of simultaneity vs. subsystem relativity

space

time

tﬁne/

“other frame” observables “other frame” observables
relative to R2 R relative to R1
S .A é‘ s” -

p

/)’(‘9/,

/)Q/
®ﬁ
.
% A
O@ ]

S-observables
relative to R2

= physical consequences should be seen in similar light:

S-observables
relative to R1

/4phys

Just like the relativity of simultaneity is the root of all characteristic special relativistic phenomena,
so is subsystem relativity root of all novel QRF relative effects




Gauge and physical QRFs in
lattice gauge theory

[Aravjo-Regado, PH, Sartini 2506.23459]
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Edge modes as QRFs

small gauge transf. generated by Gauf3 law (redundancy)

Wilson lines asymptotic bdry

Cla] = J Tr(ad, * F)
3

electric corner symmetries (physical) edge mode O

[Donnelly, Freidel ’16; Gelller, Jai-akson ’19; Ball, Law, Wong ’24;...]
Olp] = [ Tr(p x Fg)

7))

— are reorientations of
extrinsic gauge QRFs!

= how do you realize them? as gauge QRFs

extrinsic edge mode QRFs: e.d. via extrinsic Wilson lines [Carrozza, PH '21; Aratjo-Regado, PH, Sartini, Tomova '24]

intrinsic edge mode QRFs: e.d. via Wilson lines anchored on the corner 0 or a Hodge decomp.

|[Araujo-Regado, PH, Sartini, Tomova ’24]
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Extrinsic and intrinsic gauge QRFs on the lattice

Extrinsic: congruence of Wilson lines in the complement

‘“ﬁ

Wilson lines

“
2y
—_

H o = L (GV)

complete ideal QRF:

Spanning tree anchored on node N of the corner

Anchor point for W lines

)3

Complement of
the tree

incomplete ideal QRF: H G = LGVl

= can’t deparametrize/dress at anchor point N



Extrinsic and intrinsic gauge QRFs on the lattice

Extrinsic: congruence of Wilson lines in the complement Spanning tree anchored on node N of the corner

Wilson lines

N,

LA S
-t o Complement of
g the tree
L
>
~

Anchor point for W lines

gz

complete ideal QRF:  #g, = L*(G ") incomplete ideal QRF: H s = LY (G~

= both can be used to build gauge-inv. description (algebras) for subregion, overall impose strong G-invariance



How do you build physical QRFs for the corner group?

Extrinsic: congruence of Wilson lines in the complement Spanning tree anchored on node N of the corner

Wilson lines
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How do you build physical QRFs for the

reorientations of extr. QRF @
Extrinsic: congruence of Wilson lines in the complement Spanning tree anchored on node N of the corner

Wilson lines

Anchor point for W lines

_. L‘

i Complement of 82
the tree

o =
-
>

—

&

complete ideal QRF: # = L*(G"x) incomplete ideal QRF: Hs = LG =)

relational observables 0|¢(&>) describing intr. relative to extr. gauge QRF
constitute a gauge-inv./phys. QRF for the corner group (Goldstone modes)



Averaging over the Goldstone mode

A, = Ay ® Ag)° contains the Goldstone mode:
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Averaging over the Goldstone mode

A, = Ay ® Ag)° contains the Goldstone mode:

- 02
- - - g
rel. obs. describing int. rel. to ext. QRF 0| o (P) \
= nonlocal gauge-inv. QRF for the electric corner group .@.
GM < > -
if no accesstoit = average over its orientations/corner group -g:-

oy = Gyl ) = j dgVe(8) Aoy V(8)

G Yoz

Corner group irreps sectors

electric corner charge superselection:

= yields standard electric center
algebra of entanglement entropy

_ Ss(p) = ch (Syn(p)+logd,)— ZPC Inpc
computations c ;

<Q[E=

[Casini, Huerta, Rosabal '13; Donnelly '12;
Buividovich, Polikarkov ’08; Ghosh et al '15; ...]




Conclusions

- Extension of SR covariance structures into quantum realm
based on internal QRFs = in terms of group structures really the same as in SR

- Systematic method for changing QRF perspectives
accommodates RFs in relative superposition

- Gauge-inv. subsystems depend on choice of QRF (subsystem relativity)
= correlations, thermal properties, dynamics, .... depend on frame

- Two distinct notions of external frame independence
= depending on whether G is a physical symmetry or redundancy

- Peaceful coexistence of physical and gauge QRFs in lattice gauge theory
= edge vs. Goldstone modes and recovery of standard entanglement entropy computations



