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Relativities
Galilean

“All the laws of mechanics the same 

in every inertial frame”

Special
“All the laws of physics (exc. Newt. gravity) 


the same in every inertial frame”

General
“All the laws of physics the same in every frame”

Quantum?
“All the … laws of … the same in every … QRF”
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Quantum reference frames are internal 
subsystems and a universal tool for…

• dealing with symmetries in quantum systems 

• describing a quantum system “from the inside” 
(describing subsystems relative to one another) 

• defining subsystem partitions in gauge systems 

• completing the relational paradigm

applicable whenever an external reference isn’t available/desired



Relativity of simultaneity vs. subsystem relativity
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Why quantum reference frames?
foundational interest: 
 
— all frames in experiments physical 
— no external frames (background indep.) 
— quantum frame relations  quantum spacetime structure? 

practical interest: 
 
— needed for gauge-inv. description (or gauge fixing) 
— act as regulator for QFT algebras and entropies 
— definition of locality 
— applications in QI 
— … 
 
 

⇔



Menu

• Introduction to QRFs and notions of external frame independence 

•subsystem relativity 

•Physical and gauge QRFs in lattice gauge theories  
+ entanglement entropies (maybe)



Internal QRFs and external 
frame independence

[de la Hamette, Galley, PH, Loveridge, Müller 2110.13824; PH, Kotecha, Mele 2308.09131; 

PH, Smith, Lock 1912.00033; Vanrietvelde, PH, Giacomini, Castro-Ruiz 1809.00556,….]
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RFs and symmetries
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RFs and symmetries
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RFs and symmetries
Describe  relative to internal  

reference subsystem 
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R1

R1
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internal frames in SR vs. QTt Se0

e1
x

q
R1 S

internal frame 
orientations

externally 
distinguishable 
configurations

external frame/gauge 
transformations 

(acts on all subsystems)

reorientations 
(acts only on the frame)

tetrad eμ
a ∈ SO+(3,1)

(because )ημν eμ
a eν

b = ηab

covariant POVM E(g . X) = Ug
R E(X ⊂ G) (Ug

R)†

in practice, coh. states ,            |g⟩ g ∈ G

{eμ
a , Sμ}

kin. Hilbert space         ℋkin = ℋR ⊗ ℋS

kin. algebras                  𝒜kin = 𝒜R ⊗ 𝒜S

Λμ
ν ∈ SO+(3,1)

Ug
R ⊗ Ug

S

unitary product rep of G

Λa
b ∈ SO+(3,1)    s.t.         Vg

R ⊗ IS Vg
R |g′￼⟩ = |g′￼g−1⟩

external Lorentz frame
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Example: quantum clocks [PH, Smith, Lock ’19]

clock states for non-deg. continuous spectrum clock Hamiltonian     (gen. of )HC ℝ

| t⟩ =
1

2π ∫Spec(HC)
dϵ e−itϵ |ϵ⟩

covariant:                                                 UC(t) | t′￼⟩ = | t + t′￼⟩ UC(t) = e−itHC

POVM elements                                    normalized    (well-defined probabilities)EC(X) = ∫X⊂ℝ
dt | t⟩⟨t | EC(ℝ) = I

clock orientations         (group-valued)t ∈ ℝ

fuzzy clock states   (unless ideal clock with )   ⟨t | t′￼⟩ ≁ δ(t − t′￼) Spec(HC) = ℝ
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Reorientations are physical
• relational time evolution  

• corner symmetries in gauge theory and gravity

[Carrozza, PH ’21; Carrozza, Eccles, PH ’22; Goncalo-Araujo, PH, Sartini, Tomova ’24]

[PH, Smith, Lock ’19; De Vuyst, Eccles, PH, Kirklin ’24]

i+

i0

ℐ+

Γ

extrinsic edge mode frames (e.g. Wilson lines or geodesics)
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e.g. Page-Wootters reduction ℛg = ⟨g = e |R ⊗ IS

external frame indep. observables and states?
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Examples: relational observables

some root vertex in the lattice

connected
2 Wilson lines define -valued QRF  at green nodesG R

fS

 rel. obs.  ⇒ Oe
|R( fS) = complete Wilson loop

1. relational dynamics in gravity: some Hamiltonian constraint with clock R = C C = HC + HS

                       measures  when clock reads Oτ
|C( fS) = ∫ dt eit(HC+HS) ( |τ⟩⟨τ | ⊗ fS) e−it(HC+HS) fS τ

e.g. for ideal clock ( ) have   Spec(HC) = ℝ O0
C( fS) = e−iTHS fS eiTHS

2. lattice gauge theory
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External frame independent observables
minimal condition for observables:    s.t.    O ∈ 𝒜kin [O, Ug
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Example: particles on a line

ℋkin = L2(ℝ)R ⊗ L2(ℝ)S and Ug
RS ≡ URS(x) = exp(−ixP), x ∈ ℝ, P = pR + pS

     translation groupG = (ℝ, + )

𝒜G
kin = ⟨qS − qR, pS, P⟩         frame orientation observable  eliminated⇒ qR

∫ℝ
dxURS(x) ρ URS(x)† =

weak ext. frame indep.  eigenspacesP

 preserved and conjugate to  
 “half of the QRF subsystem”  

eliminated

P qR
⇒

∫ℝ
dxURS(x) ρ ∫ℝ

dyURS(y) =

P = 0
strong ext. frame indep.

 also eliminated 
 “entire QRF subsystem”  

eliminated    fully redundant

P
⇒

⇒



Physical symmetry vs. redundancy
Given: symmetry group  (“external frame transformations”)         G

 param. redundancyG

•small gauge transformations in gauge theory and gravity

•stabilizer symmetry in QEC

•quantum simulations

•operational restrictions

•…

 physicalG

• lab frame transformations

• large gauge transformations in gauge theory and gravity

• corner symmetries in gauge theory and gravity

• …

are the orientations of the QRF (in principle) measurable?

NoYes

weak ext. frame indep.: strong ext. frame indep.: 

(but requires access to an ext. farme)



Potpourri of approaches to QRF covariance

perspective-neutral

[Vanrietvelde, PH, Giacomini, Castro-Ruiz ‘18; de la Hamette, Galley, 


PH, Loveridge, Müller ‘21; PH, Smith, Lock ‘19; PH, Kotecha, Mele ’23; …] 

operational

[Fewster et al. ’24; Carette, Glowacki, Loveridge ’23; 


Glowacki, Loveridge, Waldron ’23]

perspectival

[Giacomini, Castro-Ruiz, Brukner ‘17; de la Hamette, Galley ‘20; 


de la Hamette, Kabel, Castro-Ruiz, Brukner ’22,…]

algebraic I

[Bojowald, Tsobanjan ’19; ’22; De Vuyst, PH, Tsobanjan to appear]

effective (semiclassical)

[Bojowald, PH, Tsobanjan ’10; PH, Kubalova, Tsobanjan ’12]

algebraic II

Ahmad, Klinger, Leigh ‘24

quantum information-theoretic

[Aharonov, Susskind ’67; Bartlett, Rudolph, Spekkens ’06; 


Krumm, PH, Müller ’20]

extra-particle

[Castro-Ruiz, Oreshkov ’21; Garnier, Hausmann, Castro-Ruiz ’25]
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[Vanrietvelde, PH, Giacomini, Castro-Ruiz ‘18; de la Hamette, Galley, 


PH, Loveridge, Müller ‘21; PH, Smith, Lock ‘19; PH, Kotecha, Mele ’23; …] 

operational

[Fewster et al. ’24; Carette, Glowacki, Loveridge ’23; 


Glowacki, Loveridge, Waldron ’23]

perspectival

[Giacomini, Castro-Ruiz, Brukner ‘17; de la Hamette, Galley ‘20; 


de la Hamette, Kabel, Castro-Ruiz, Brukner ’22,…]

algebraic I

[Bojowald, Tsobanjan ’19; ’22; De Vuyst, PH, Tsobanjan ’25]

effective (semiclassical)

[Bojowald, PH, Tsobanjan ’10; PH, Kubalova, Tsobanjan ’12]

algebraic II

Ahmad, Klinger, Leigh ‘24

quantum information-theoretic

[Aharonov, Susskind ’67; Bartlett, Rudolph, Spekkens ’06; 


Krumm, PH, Müller ’20]

extra-particle

[Castro-Ruiz, Oreshkov ’21; Garnier, Hausmann, Castro-Ruiz ’25]
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strong ext. frame indep.

equiv. to strong ext. frame  
indep. for ideal QRFs
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Internal frame changes in SR and the PN approach
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Summary: perspective-neutral QRF framework

ℋkin = ℋR1
⊗ ℋR2
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Πphys = ∫ dg Ug
12S

removing external

 frame information

ℋpn
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=
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| R 1
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I 2S ℛ e
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QRF covariance here

ℛe
2 ∘ (ℛe

1)−1

QRF changes as 

“quantum coordinate transformations”



Subsystem relativity
[Ahmad, Galley, PH, Lock, Smith ’21; Araújo-Regado, PH, Sartini ’25; 


Castro-Ruiz, Oreshkov ’21; PH, Kotecha, Mele ’23; De Vuyst, Eccles, PH, Kirklin ’24; ….]
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Relativity of subsystems
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𝒜S|R1

all rel. observables describing 

that are inv. under both - & -


reorientations  all internal -relations 

S
R1 R2

⇒ S

“frames  and  mean different gauge inv. DoFs when they refer to subsystem ” R1 R2 S

𝒜S|R1
∩ 𝒜S|R2

= 𝒜G
S = {internal rel . obs . of S}

[systematic investigation in 

PH, Kotecha, Mele ’23]

 correlations, entropies, thermodynamic properties, …  
become QRF-dependent
⇒
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Kotecha, Mele, PH ’23; 

De Vuyst, Eccles, PH, Kirklin ’24;

Araújo-Regado, PH, Sartini ‘25 

QRF perspective is a 
gauge-inv. subsystem partition
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QRF transformations are

changes of TPS  

QRF perspectives are TPSs on the PN-space

ideal (sharp) QRFs ( )⟨g |g′￼⟩ = δ(g, g′￼)

generated by relational observable algebras

 𝒜pn ≃ 𝒜S|R1

⊗ 𝒜R2|R1
≃ 𝒜S|R2

⊗ 𝒜R1|R2

Kotecha, Mele, PH ’23; 

De Vuyst, Eccles, PH, Kirklin ’24;

Araújo-Regado, PH, Sartini ‘25 

QRF perspective is a 
gauge-inv. subsystem partition
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Vanrietvelde, PH, Giacomini, Castro-Ruiz ‘19
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Example: particles on a line
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Vanrietvelde, PH, Giacomini, Castro-Ruiz ‘19

q
R1 R2 S

Example: particles on a line

perspective-neutral space



ℋpn

ℋ|R1
= L2(ℝ)R2

⊗ L2(ℝ)S ℋ|R2
= L2(ℝ)R1

⊗ L2(ℝ)Sinternal TPS rel. to R1 internal TPS rel. to R2

ℛ
e

1
=

⟨q 1
=

0 | ⊗
I 2S

ℛ e
2 =

⟨q
2 =

0 | ⊗
I1S

ℛe
2 ∘ (ℛe

1)−1 = 𝔽12 ∫ dq | − q⟩⟨q |R2
⊗ US(q)
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Example: particles on a line

( |q1⟩R2
+ |q2⟩R2

) ⊗ |x⟩S | − q1⟩R1
⊗ |x − q1⟩S + | − q2⟩R1

⊗ |x − q2⟩S

superposition and entanglement of  
subsystem  QRF relativeS

perspective-neutral space

superposition + product entanglement
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QRF transformations are

changes of TPS  

QRF perspectives are TPSs on the PN-space

fuzzy QRFs

Kotecha, Mele, PH ’23; 

De Vuyst, Eccles, PH, Kirklin ’24;

Araújo-Regado, PH, Sartini ‘25 



Relativity of simultaneity vs. subsystem relativity
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Aphys

internal S relations

“other frame’’ observables 
relative to R1

“other frame’’ observables 
relative to R2

 physical consequences should be seen in similar light:

Just like the relativity of simultaneity is the root of all characteristic special relativistic phenomena, 


so is subsystem relativity root of all novel QRF relative effects

⇒



[Araújo-Regado, PH, Sartini 2506.23459]

Gauge and physical QRFs in 
lattice gauge theory



Edge modes and corner symmetries

Σ
electric corner symmetries (physical) 

Q[ρ] = ∫∂Σ
Tr(ρ ⋆ FΦ) [Donnelly, Freidel ’16; Geiller, Jai-akson ’19; Ball, Law, Wong ’24;…]

edge mode Φ

small gauge transf. generated by Gauß law (redundancy) 

C[α] = ∫Σ
Tr(αdA ⋆ F)



Edge modes and corner symmetries

Σ [Donnelly, Freidel ’16; Geiller, Jai-akson ’19; Ball, Law, Wong ’24;…]

 how do you realize them?⇒

edge mode Φelectric corner symmetries (physical) 

Q[ρ] = ∫∂Σ
Tr(ρ ⋆ FΦ)

small gauge transf. generated by Gauß law (redundancy) 

C[α] = ∫Σ
Tr(αdA ⋆ F)



Edge modes as QRFs

Σ

edge mode Φ

[Donnelly, Freidel ’16; Geiller, Jai-akson ’19; Ball, Law, Wong ’24;…]

 how do you realize them?⇒ as QRFs

extrinsic edge mode QRFs: 

asymptotic bdryWilson lines

e.g. via extrinsic Wilson lines [Carrozza, PH ’21; Araújo-Regado, PH, Sartini, Tomova ’24]

electric corner symmetries (physical) 

Q[ρ] = ∫∂Σ
Tr(ρ ⋆ FΦ)

small gauge transf. generated by Gauß law (redundancy) 

C[α] = ∫Σ
Tr(αdA ⋆ F)



Edge modes as QRFs

Σ

edge mode Φ

[Donnelly, Freidel ’16; Geiller, Jai-akson ’19; Ball, Law, Wong ’24;…]

 how do you realize them?⇒ as QRFs

extrinsic edge mode QRFs: 

asymptotic bdryWilson lines

e.g. via extrinsic Wilson lines [Carrozza, PH ’21; Araújo-Regado, PH, Sartini, Tomova ’24]

intrinsic edge mode QRFs: e.g. via Wilson lines anchored on the corner  or a Hodge decomp.∂Σ

[Araújo-Regado, PH, Sartini, Tomova ’24]

electric corner symmetries (physical) 

Q[ρ] = ∫∂Σ
Tr(ρ ⋆ FΦ)

small gauge transf. generated by Gauß law (redundancy) 

C[α] = ∫Σ
Tr(αdA ⋆ F)



Edge modes as QRFs

Σ

edge mode Φ

[Donnelly, Freidel ’16; Geiller, Jai-akson ’19; Ball, Law, Wong ’24;…]

 how do you realize them?⇒ as gauge QRFs

extrinsic edge mode QRFs: 

asymptotic bdryWilson lines

e.g. via extrinsic Wilson lines [Carrozza, PH ’21; Araújo-Regado, PH, Sartini, Tomova ’24]

intrinsic edge mode QRFs: e.g. via Wilson lines anchored on the corner  or a Hodge decomp.∂Σ

[Araújo-Regado, PH, Sartini, Tomova ’24]

 are reorientations of 
extrinsic gauge QRFs!
⇒

electric corner symmetries (physical) 

Q[ρ] = ∫∂Σ
Tr(ρ ⋆ FΦ)

small gauge transf. generated by Gauß law (redundancy) 

C[α] = ∫Σ
Tr(αdA ⋆ F)



Extrinsic and intrinsic gauge QRFs on the lattice

Anchor point for W lines

Complement of
the tree

Σ

Extrinsic: congruence of Wilson lines in the complement Spanning tree anchored on node N of the corner



Anchor point for W lines

Complement of
the tree

Σ

Extrinsic: congruence of Wilson lines in the complement Spanning tree anchored on node N of the corner

complete ideal QRF:     ℋΦ = L2(GV∂Σ) incomplete ideal QRF:         ℋΦ̃ = L2(GV∂Σ−1)

 can’t deparametrize/dress at anchor point N⇒

Extrinsic and intrinsic gauge QRFs on the lattice



Anchor point for W lines

Complement of
the tree

Σ

Extrinsic: congruence of Wilson lines in the complement Spanning tree anchored on node N of the corner

complete ideal QRF:     ℋΦ = L2(GV∂Σ) incomplete ideal QRF:         ℋΦ̃ = L2(GV∂Σ−1)

Extrinsic and intrinsic gauge QRFs on the lattice

 both can be used to build gauge-inv. description (algebras) for subregion, overall impose strong -invariance⇒ G



How do you build physical QRFs for the corner group?

Anchor point for W lines

Complement of
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Σ

Extrinsic: congruence of Wilson lines in the complement Spanning tree anchored on node N of the corner



How do you build physical QRFs for the corner group?

Anchor point for W lines

Complement of
the tree

Σ

Extrinsic: congruence of Wilson lines in the complement Spanning tree anchored on node N of the corner
reorientations of extr. QRF Φ

complete ideal QRF:     ℋΦ = L2(GV∂Σ) incomplete ideal QRF:         ℋΦ̃ = L2(GV∂Σ−1)



How do you build physical QRFs for the corner group?

Anchor point for W lines

Complement of
the tree

Σ

Extrinsic: congruence of Wilson lines in the complement Spanning tree anchored on node N of the corner
reorientations of extr. QRF Φ

complete ideal QRF:     ℋΦ = L2(GV∂Σ) incomplete ideal QRF:         ℋΦ̃ = L2(GV∂Σ−1)

relational observables  describing intr. relative to extr. gauge QRF  
constitute a gauge-inv./phys. QRF for the corner group (Goldstone modes) 

O|Φ(Φ̃)



Averaging over the Goldstone mode
  contains the Goldstone mode:𝒜ext = (𝒜Σ ⊗ 𝒜Φ)G

rel. obs. describing int. rel. to ext. QRF   Og
|Φ(Φ̃)

GM
Σ

∂Σ

 nonlocal gauge-inv. QRF for the electric corner group⇒



rel. obs. describing int. rel. to ext. QRF   Og
|Φ(Φ̃)

GM
Σ

∂Σ

 nonlocal gauge-inv. QRF for the electric corner group⇒
if no access to it        average over its orientations/corner group⇒

𝒜E = 𝔾∂Σ(𝒜ext) = ∫GV∂Σ

dgVΦ(g) 𝒜ext V†
Φ(g)

electric corner charge superselection:

𝒜E =

Averaging over the Goldstone mode
  contains the Goldstone mode:𝒜ext = (𝒜Σ ⊗ 𝒜Φ)G



rel. obs. describing int. rel. to ext. QRF   Og
|Φ(Φ̃)

GM
Σ

∂Σ

 nonlocal gauge-inv. QRF for the electric corner group⇒
if no access to it        average over its orientations/corner group⇒

𝒜E = 𝔾∂Σ(𝒜ext) = ∫GV∂Σ

dgVΦ(g) 𝒜ext V†
Φ(g)

electric corner charge superselection:

𝒜E =

Averaging over the Goldstone mode
  contains the Goldstone mode:𝒜ext = (𝒜Σ ⊗ 𝒜Φ)G

 yields standard electric center  
algebra of entanglement entropy  

computations

⇒
SΣ(ρ) = ∑

c

pc (SvN(ρc)+log dc)− ∑
c

pc ln pC

[Casini, Huerta, Rosabal ’13; Donnelly ’12; 

Buividovich, Polikarkov ’08; Ghosh et al ’15; …]



Conclusions

Extension of SR covariance structures into quantum realm 
based on internal QRFs  in terms of group structures really the same as in SR


Systematic method for changing QRF perspectives 
accommodates RFs in relative superposition


Gauge-inv. subsystems depend on choice of QRF (subsystem relativity) 
 correlations, thermal properties, dynamics, …. depend on frame


Two distinct notions of external frame independence 
 depending on whether  is a physical symmetry or redundancy 

Peaceful coexistence of physical and gauge QRFs in lattice gauge theory 
 edge vs. Goldstone modes and recovery of standard entanglement entropy computations


⇒

⇒

⇒ G

⇒


