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Introduction

e Guiding question: Where does the matter/antimatter asymmetry in
the Universe come from?

@ Baryogenesis: Matter creation process responsible for the observed
asymmetry.
—Can it be described in the language of global analysis?
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Introduction

e Guiding question: Where does the matter/antimatter asymmetry in
the Universe come from?

@ Baryogenesis: Matter creation process responsible for the observed
asymmetry.
—Can it be described in the language of global analysis?

@ Our assumptions (motivated from CFS):

(i) On the dynamics of the spinors: Spinors evolve according to a slight
modification of Dirac dynamics.

(ii) On the regularity of spacetime: On the very small scales, below a
minimum length € > 0, the manifold structure breaks down.
— Consequence: Start from distributional sections of SM (e.g., weak
solutions to the Dirac equation) and regularize them.
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Introduction

(iii) On the physical input: The regularization operators

R. : W2(M, SM) — C%(M, SM)

loc

have an important physical significance and depend on the spacetime
point: for any p € M, R.(p) : Wli’cz(l\/l,Sl\/l) — SpM.
Moreover, the dynamics of R.:

M — L(WE2(M, SM),SM) ,  p — R(p)

is determined by the spinor dynamics.
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Introduction

(iii) On the physical input: The regularization operators

R. : W2(M, SM) — C%(M, SM)

loc

have an important physical significance and depend on the spacetime
point: for any p € M, R.(p) : W1’2(I\/I,SI\/I) — SpM.

loc
Moreover, the dynamics of R.:

M — L(WE2(M, SM),SM) ,  p — R(p)

is determined by the spinor dynamics.
—Consequence: Shift attention from distributional spinors to
regularization operators and their dynamics.

In this talk...

Dynamics of R. — Spinor dynamics — Baryogenesis?
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The setup: how to model baryogenesis?

e In (R* n) the Dirac Hamiltonian H, is a selfadjoint operator with
absolutely continuous spectrum o(H,) = (—oo, —m] U [m, c0).
— Particles (resp. antiparticles) are eigenstates associated to positive
(resp. negative) eigenvalues of H,).
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The setup: how to model baryogenesis?

e In (R* n) the Dirac Hamiltonian H, is a selfadjoint operator with
absolutely continuous spectrum o(H,) = (—oo, —m] U [m, c0).
— Particles (resp. antiparticles) are eigenstates associated to positive
(resp. negative) eigenvalues of H,).

@ Goal: In a globally hyperbolic (M, g), describe/quantify baryogenesis
as the relative change of spectral subspaces of an operator which
generalizes H,,.
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The setup: Preliminaries

Geometric setup:

@ From now on, consider conformally flat spacetimes (R*, g), i.e.
g = %= Q%(t,r,0,p)(dt*> — dr® — r2d6? — r?sin 02d?)

with Q : M — (0, 00) smooth and the foliation (N;):cr given by the
level sets of the global time function t.

@ Moreover, we denote
Hreg = L*(Ng, SM)

with a suitable spinor scalar product (-|-)¢.

o Finally, the regularizing vector field u: M — TM is a timelike and
future directed vector field describing the regularization dynamics.
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The setup: Main concepts

Definition:
(i) The symmetrized Hamiltonian Ay with D(A;) = C5°(N¢, SM),

1 L .
At = Z{UO, Hg + Hg} + Z{uuvvz - (va) } )
is an essentially self-adjoint operator (cf. [4, Lem. 5.3], proof relies on

Chernoff's criteria, see [1]).
— From now on, denote with the same symbol the self-adjoint

extension A; : D D C°(N¢, SM) — Hy 4.
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The setup: Main concepts

Remark:

e Given the selfadjoint operator A; : D O C°(N¢, SM) — Hy g,
X1(A¢) : D — H; g is a densely defined bounded operator (/ C R).
Hence, there exists a unique extension

XI(At) . g{t,g — j'fﬁg
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The setup: Main concepts

Remark:

e Given the selfadjoint operator A; : D O C°(N¢, SM) — Hy g,
X1(A¢) : D — H; g is a densely defined bounded operator (/ C R).
Hence, there exists a unique extension

XI(At) . J'Ct,g — j'fﬁg

e If (M, g) has a bounded geometry and / is a bounded interval, x;(A¢)
is a regularization operator (cf. [5, Proposition 2.7], proof relies on
elliptic regularity):

XI(At) . j{Lg — Coo(Nt, SM)

Its dynamics is determined by the dynamics of u: M — TM.
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The setup: Main concepts

(ii) The locally rigid operator Vi : 35 — Hy g is

t—to

Vi = lim (AU aexi(Anra US A0 with Ati= =
max max

where 3 := x1(At)(Hip,g) C Hipg, | 1= (—=1/g,—m) and for

any ty < tis1, Uttkk+1 : Ht,.g — Hty,y g is the unitary Dirac evolution
operator.

Moreover, set I := V (3(3,).
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The setup: Main concepts

(iii) The rate of baryogenesis:

B, := jttr}fg( (Hy) O (Ae) = xi(Hy))

with | := (=1/e,—m) and H, := U H,U, where U: H;, — H,, is
a unitary operator. Moreover, n € C5°((—A, ), [0, 00)) is a smooth
cutoff function with m < A < é
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Quantifying the rate of baryogenesis

Goal: Quantify B; perturbatively for conformally flat spacetimes.
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Quantifying the rate of baryogenesis

Goal: Quantify B; perturbatively for conformally flat spacetimes.

Assumptions:
(i) (R*, g) has a bounded geometry.
(ii) A¢ has an absolutely continuous spectrum.

(iil) A¢ = I:I77 + AA, where AA: C*°(N¢, SM) — Cg°(N¢, SM) has smooth
compactly supported coefficients and satisfies that for any w € p(H,;)

IR, (H,)AA| < 1

These assumptions allow for a perturbative study of B;.
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Quantifying the rate of baryogenesis

Some results (cf. [2], [4], [5]):
(i) No baryogenesis if spinors follow Dirac dynamics nor if m = 0 and
u=0(= AA=0).
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Quantifying the rate of baryogenesis

Some results (cf. [2], [4], [5]):

(i) No baryogenesis if spinors follow Dirac dynamics nor if m = 0 and
u=0(= AA=0).

(ii) What about Minkowski spacetime? By =0 if u = 0.
(iii) B =B =0 but

d3k d3k' 1 1 o
5(2):_/ o (E R
' (27T)3 (27[')3 Awwyr (Wk’ + wk)Z Q,m, ( ’ ) ,

where wy := 1/ |k|]2 + m?, wi = \/|K'|? + m? and
Ga,m,u : (0,00) x (0,00) — R is a function depending on Q, m and u.
For u = at, Bt X m2.
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Quantifying the rate of baryogenesis

Final remark:

(i) How canonical is B;? Computing the rate of baryogenesis requires
choosing a time function t...
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Final remark:

(i) How canonical is B;? Computing the rate of baryogenesis requires
choosing a time function t...
— Choose the unique smooth time function t for which the
misalignment between J; and u is minimal (work in progress).
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Quantifying the rate of baryogenesis

Final remark:

(i) How canonical is B;? Computing the rate of baryogenesis requires
choosing a time function t...
— Choose the unique smooth time function t for which the
misalignment between J; and u is minimal (work in progress).

Thank you for your attention!
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Extra: The dynamics of u

Definition: Let v: Ny, = TM be a smooth future directed timelike
vector field. We construct a global u: M — TM as follows

(i) Consider the sets £8 and D,%8, where p € M is arbitrary,

(7)€ L5 s vyl =M .is a max. f.d. null geod.
£ty 3(s) =1 whenever 5(s) € M,
D28 :={4(s) | (I,7) € L& and y(s) = p} C T,M.

(ii) For any q € Ny+a+ we define the timelike vector fields

1 . .
§q = m /chjg ¥(s) qu(’Y(S))
u Lg
g2
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Extra: The important role of R in CFS

Consider (M, g) = (RY3,7). We construct a CFS (H,J, p):

(i) Let H C W,icz(Q) be the negative energy space of weak solutions to
the Dirac equation.

(ii) Let R®: 3 — H N C%(M, SM) denote a regularization operator.
— Use it to construct F*: M — F C L(H) as follows

<l FE(x)ih- := == (R @) (x)[(R*¥)(x)>-

for all ¢, € IH.
(iii) Finally the pushforward measure, p := (F®).pupm is

p(Q) = pm((F) ()

where Q C .

(iv) (3, F, p) minimizes the causal action in the continuum limit.
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Extra: The dynamics of u

Consider the initial timelike u : Ny, — TM with
up =1+ Xp)0: +AX, for pe Ny
where A >0, f € C*°(M) and X, € T,M spacelike.
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Extra: The dynamics of u

The dynamical equation of u: M — TM is (see [4, Th. 7.1])
dup
dt
The dynamics of u: M — TM is a conformal invariant (cf. [5, Prop. 3.1]),
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Extra: The misalignment functional

We introduce the functional F : 7 C HP(Q2) — (0, co] with
F(t) = Fa(t) + Fg(t) , (1)

where Fp : T — [0, 00) is the Riemannian functional

p—1
Fot) = 3 [ 109" (= V0l = o= V7l sy - (2
i=0

with h =g + 2UEY and Fg : T — (0, 00] the Lorentzian functional

lulz

+00 otherwise .

—L_d if V&t £0 a.e. in Q
Fg(t) := {fQ Vet fih 7

where g € N is arbitrary.
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Extra: Schematic derivation of B;

Step 1: Perturb the spectral projection operator.

Ru(At) = (1 + Ru(Ay) AA(1) " Ru(Fy) = Y (—Ru(Fy) AA(1))PRu(Hy)
p=0

=3 RP(A)
p=0

By absolute continuity of the spectrum of A;

1 .
X[(At) = /Fw’(At)dw/ — 2 T S—Ilm/Rwl+is(5(A )‘S 71dw
I 1

T §—0*

where F,(At) : Htg — H; g and we used Stone’s formula. Analogous for
A,
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Extra: Schematic derivation of B;

Step 2: Obtain the perturbative power expansion of B;.
We start with the following operator product

m(Fa(A) = [ do'm () / | duRL(A)

1 ~ s=1
— =5 g__lg(grl/ dw 77/\ (H )Rw+156(A )|5:_1
Thus, By is
d ~
B: = dttrg{s( (Hn)Xl(At))

d/1 . [m [ _
:dt(zmﬁ;"rm/l dw/oodw/m( )t (For(Fn) R (A0) 1)

N
; :

where the operator product is trace-class ([4, Lemma 7.4]).



Extra: Schematic derivation of B;

Step 3: Determine the strong limit § — 07 (cf. [4, Lemma 7.3]).

For p = 2 we obtain

B,_Sz) = — /O; dw /0; dw' 0, (nA(w) trg{f? (i@(w,w’)> 7g(w’) — &)

dt w —w

where Q(w,w’) := AAF,(H)AAF (A, : Heg — C§°(Ne, SM) and g is
the characteristic function of /:=(—1/e, —m). Note that

Qw=-muw =—-—m)=0.
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Extra: Example of B;

Example: Let u = 0y and m # 0. Then,
AA=(Q—1)my,0 : C(Ng, SM) — C5°(Ng, SM)

and the second order rate of baryogenesis is

B =2 [ e (@(r)aa(—r) + A5()s(—0)) Q).

where a = %, ap =(Q-1), ol = Q3a;, Q is smooth and p := %|l?+

—
/
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Extra: Example of A;

Let u = 0; and m # 0. Then,

3.0,(2
At = =i Op — f/ M§(2 ) YooYy + MYgt = H +(Q = 1)myyo ,
Let m = 0 and assume that initially
(I+Mp)v+AX, for peV
u, =
P O for pe Ny \V,
Then, A; is
~ A ~
At — H77 + E{f, Hn}

¢, + /I

19,(Q)
det(gln)] 4 @

0" [Yigas Ve }
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Extra: The Dirac Hamiltonian H,

The Dirac Hamiltonian Hg : C*°(N¢, SM) — C*°(N¢, SM) is
He = —(1g) " (V5 —m) — Eo— a0 ,

where Ej, a; are linear operators on the spinor space and V* denotes the
Levi-Civita spin connection

Vi = 0; — iEj; — ia;
Finally the Dirac operator Dy : C*°(M, SM) — C>(M, SM) is
Dg = in, V5
More concretely, in Minkowski spacetime:

H77 = _ifYnt’Ygéaoz + Ypem
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Extra: Some identities

Stone’s formula: Given a self-adjoint operator A; and an interval
(a, b) C R it holds that

1 1 .
> () (A0) + X (4) = 5 sim [ Rors(40)| 2 o

27i 5—0+ /

The operators x;(A;) and F,(H,):

X(~ 1wy (Hn)(x:¥)
d*k 0 0\ ,ik-(x—y)
e ——5 (mik + m)y0d(k* — m*)O(—k° + w)O(1 + ck®)e

d
Fu(x,y) = 90 X(~1 ) (Hn)

d3k |
:—/(2 E (77700J Y k+m)7n0@(1+€W)5(w —wk)e’k'(X*Y)
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Extra: Some identities

And moreover, for x = y we have that

Fo(x,x) = _(2717)2 <(w + om)Vw? — m2>@(1 +ew),

5O [Fu(x,¥)| < Fom(x,x) =0 = F_p(x,y) =0.
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Extra: The operator U

The operator U : H; g — Hypy with Uyp = Q324 for all ¢ € H, 4 is
unitary as the following computation shows:

W10} = [ <whs)omsmdin, = [ <0hi(@0)or ()0

- /R_,, <(23290) ()7 (8:) (32 ) (x) = ca d®x
= (93/2w‘93/2¢) _ (01#\0@

Marco van den Beld-Serrano



	Introduction
	The setup
	Preliminaries
	Main concepts

	Quantifying the rate of baryogenesis

