A baryogenesis mechanism for causal fermion systems

Marco van den Beld-Serrano

Faculty of Mathematics, University of Regensburg

October 8th 2025, Causal Fermion Systems 2025 Conference (Regensburg)

- **Guiding question:** Where does the matter/antimatter asymmetry in the Universe come from?
- Baryogenesis: Matter creation process responsible for the observed asymmetry.
 - →Can it be described in the language of global analysis?

- **Guiding question:** Where does the matter/antimatter asymmetry in the Universe come from?
- Baryogenesis: Matter creation process responsible for the observed asymmetry.
 - \rightarrow Can it be described in the language of global analysis?
- Our assumptions (motivated from CFS):

- **Guiding question:** Where does the matter/antimatter asymmetry in the Universe come from?
- Baryogenesis: Matter creation process responsible for the observed asymmetry.
 - →Can it be described in the language of global analysis?
- Our assumptions (motivated from CFS):
 - (i) On the dynamics of the spinors: Spinors evolve according to a slight modification of Dirac dynamics.

- **Guiding question:** Where does the matter/antimatter asymmetry in the Universe come from?
- Baryogenesis: Matter creation process responsible for the observed asymmetry.
 - \rightarrow Can it be described in the language of global analysis?
- Our assumptions (motivated from CFS):
 - (i) On the dynamics of the spinors: Spinors evolve according to a slight modification of Dirac dynamics.
 - (ii) On the regularity of spacetime: On the very small scales, below a minimum length $\varepsilon>0$, the manifold structure breaks down.

- **Guiding question:** Where does the matter/antimatter asymmetry in the Universe come from?
- Baryogenesis: Matter creation process responsible for the observed asymmetry.
 - →Can it be described in the language of global analysis?
- Our assumptions (motivated from CFS):
 - (i) On the dynamics of the spinors: Spinors evolve according to a slight modification of Dirac dynamics.
 - (ii) On the regularity of spacetime: On the very small scales, below a minimum length $\varepsilon > 0$, the manifold structure breaks down.
 - \rightarrow Consequence: Start from distributional sections of SM (e.g., weak solutions to the Dirac equation) and regularize them.

(iii) On the physical input: The regularization operators

$$R_{\varepsilon}:W^{1,2}_{\mathrm{loc}}(M,SM)\to C^0(M,SM)$$

have an important physical significance and depend on the spacetime point: for any $p \in M$, $R_{\varepsilon}(p) : W^{1,2}_{loc}(M,SM) \to S_pM$. Moreover, the dynamics of R_{ε} :

$$M \to \mathcal{L}(W^{1,2}_{\mathrm{loc}}(M,SM),SM) \;, \quad p \mapsto R_{\varepsilon}(p)$$

is determined by the spinor dynamics.

(iii) On the physical input: The regularization operators

$$R_{\varepsilon}:W^{1,2}_{\mathrm{loc}}(M,SM)\to C^0(M,SM)$$

have an important physical significance and depend on the spacetime point: for any $p \in M$, $R_{\varepsilon}(p) : W^{1,2}_{\mathrm{loc}}(M,SM) \to S_pM$. Moreover, the dynamics of R_{ε} :

$$M \to \mathcal{L}(W^{1,2}_{\mathrm{loc}}(M,SM),SM) \;, \quad p \mapsto R_{\varepsilon}(p)$$

is determined by the spinor dynamics.

 \rightarrow Consequence: Shift attention from distributional spinors to regularization operators and their dynamics.

(iii) On the physical input: The regularization operators

$$R_{\varepsilon}:W^{1,2}_{\mathrm{loc}}(M,SM)\to C^0(M,SM)$$

have an important physical significance and depend on the spacetime point: for any $p \in M$, $R_{\varepsilon}(p) : W^{1,2}_{\mathrm{loc}}(M,SM) \to S_pM$. Moreover, the dynamics of R_{ε} :

$$M \to \mathcal{L}(W_{\mathrm{loc}}^{1,2}(M,SM),SM) \;, \quad p \mapsto R_{\varepsilon}(p)$$

is determined by the spinor dynamics.

ightharpoonupConsequence: Shift attention from distributional spinors to regularization operators and their dynamics.

In this talk...

Dynamics of $R_{\varepsilon} \to \text{Spinor dynamics} \to \text{Baryogenesis}$?

The setup: how to model baryogenesis?

• In (\mathbb{R}^4, η) the Dirac Hamiltonian H_{η} is a selfadjoint operator with absolutely continuous spectrum $\sigma(H_{\eta}) = (-\infty, -m] \cup [m, \infty)$. \rightarrow *Particles* (resp. *antiparticles*) are eigenstates associated to positive (resp. negative) eigenvalues of H_{η} .

The setup: how to model baryogenesis?

- In (\mathbb{R}^4, η) the Dirac Hamiltonian H_{η} is a selfadjoint operator with absolutely continuous spectrum $\sigma(H_{\eta}) = (-\infty, -m] \cup [m, \infty)$. \rightarrow *Particles* (resp. *antiparticles*) are eigenstates associated to positive (resp. negative) eigenvalues of H_{η} .
- Goal: In a globally hyperbolic (M,g), describe/quantify baryogenesis as the relative change of spectral subspaces of an operator which generalizes H_{η} .

The setup: Preliminaries

Geometric setup:

• From now on, consider conformally flat spacetimes (\mathbb{R}^4, g) , i.e.

$$g = \Omega^2 \eta = \Omega^2 (t, r, \theta, \varphi) (dt^2 - dr^2 - r^2 d\theta^2 - r^2 \sin \theta^2 d\varphi^2)$$

with $\Omega: M \to (0, \infty)$ smooth and the foliation $(N_t)_{t \in \mathbb{R}}$ given by the level sets of the global time function t.

Moreover, we denote

$$\mathcal{H}_{t,g}:=L^2(N_t,SM)\;,$$

with a suitable spinor scalar product $(\cdot|\cdot)_t$.

• Finally, the regularizing vector field $u: M \to TM$ is a timelike and future directed vector field describing the regularization dynamics.

Definition:

(i) The symmetrized Hamiltonian A_t with $D(A_t) = C_0^{\infty}(N_t, SM)$,

$$A_t := \frac{1}{4} \{ u^0, H_g + H_g^* \} + \frac{i}{4} \{ u^\mu, \nabla_\mu^s - (\nabla_\mu^s)^* \} \; ,$$

is an essentially self-adjoint operator (cf. [4, Lem. 5.3], proof relies on Chernoff's criteria, see [1]).

ightarrow From now on, denote with the same symbol the self-adjoint extension $A_t: \mathcal{D} \supset C_0^\infty(N_t, SM) \to \mathfrak{H}_{t,g}$.

Remark:

• Given the selfadjoint operator $A_t: \mathcal{D} \supset C_0^\infty(N_t, SM) \to \mathcal{H}_{t,g}$, $\chi_I(A_t): \mathcal{D} \to \mathcal{H}_{t,g}$ is a densely defined bounded operator $(I \subset \mathbb{R})$. Hence, there exists a unique extension

$$\chi_I(A_t): \mathcal{H}_{t,g} \to \mathcal{H}_{t,g}$$

Remark:

• Given the selfadjoint operator $A_t: \mathcal{D} \supset C_0^\infty(N_t, SM) \to \mathcal{H}_{t,g}$, $\chi_I(A_t): \mathcal{D} \to \mathcal{H}_{t,g}$ is a densely defined bounded operator $(I \subset \mathbb{R})$. Hence, there exists a unique extension

$$\chi_I(A_t): \mathcal{H}_{t,g} \to \mathcal{H}_{t,g}$$

• If (M,g) has a bounded geometry and I is a bounded interval, $\chi_I(A_t)$ is a regularization operator (cf. [5, Proposition 2.7], proof relies on elliptic regularity):

$$\chi_I(A_t): \mathcal{H}_{t,g} \to C^{\infty}(N_t, SM)$$

Its dynamics is determined by the dynamics of $u: M \to TM$.

(ii) The locally rigid operator $V_{t_0}^t: \mathcal{H}_{t_0}^{arepsilon} o \mathcal{H}_{t,g}$ is

$$V_{t_0}^t := \lim_{k_{\mathsf{max}} o \infty} \chi_I(A_t) U_{t-\Delta t}^t \cdots \chi_I(A_{t_0+\Delta t}) U_{t_0}^{t_0+\Delta t} \quad \text{with} \quad \Delta t := \frac{t-t_0}{k_{\mathsf{max}}}.$$

where $\mathcal{H}^{\varepsilon}_{t_0} := \chi_I(A_{t_0})(\mathcal{H}_{t_0,g}) \subset \mathcal{H}_{t_0,g}$, $I := (-1/\varepsilon, -m)$ and for any $t_k < t_{k+1}$, $U^{t_{k+1}}_{t_k} : \mathcal{H}_{t_k,g} \to \mathcal{H}_{t_{k+1},g}$ is the unitary Dirac evolution operator.

Moreover, set $\mathcal{H}_t^{\varepsilon} := V_{t_0}^t(\mathcal{H}_{t_0}^{\varepsilon})$.

(iii) The rate of baryogenesis:

$$B_t := rac{d}{dt} \mathrm{tr}_{\overline{\mathcal{H}_t^{arepsilon}}} (\eta(ilde{H}_{\eta})(\chi_I(A_t) - \chi_I(ilde{H}_{\eta}))$$

with $I:=(-1/\varepsilon,-m)$ and $\tilde{H}_{\eta}:=\tilde{U}^{-1}H_{\eta}\tilde{U}$, where $\tilde{U}:\mathcal{H}_{t,g}\to\mathcal{H}_{t,\eta}$ is a unitary operator. Moreover, $\eta\in C_0^\infty((-\Lambda,\Lambda),[0,\infty))$ is a smooth cutoff function with $m\ll \Lambda\ll \frac{1}{\varepsilon}$.

Goal: Quantify B_t perturbatively for conformally flat spacetimes.

Goal: Quantify B_t perturbatively for conformally flat spacetimes.

Assumptions:

- (i) (\mathbb{R}^4, g) has a bounded geometry.
- (ii) A_t has an absolutely continuous spectrum.
- (iii) $A_t = \tilde{H}_{\eta} + \Delta A$, where $\Delta A : C^{\infty}(N_t, SM) \to C_0^{\infty}(N_t, SM)$ has smooth compactly supported coefficients and satisfies that for any $\omega \in \rho(\tilde{H}_{\eta})$

$$||R_{\omega}(\tilde{H}_{\eta})\Delta A|| < 1$$

These assumptions allow for a perturbative study of B_t .

Some results (cf. [2], [4], [5]):

(i) No baryogenesis if spinors follow Dirac dynamics nor if m=0 and $u=\partial_t(\Longrightarrow\Delta A=0)$.

Some results (cf. [2], [4], [5]):

- (i) No baryogenesis if spinors follow Dirac dynamics nor if m=0 and $u=\partial_t(\Longrightarrow \Delta A=0)$.
- (ii) What about Minkowski spacetime? $B_t^{\eta} = 0$ if $u = \partial_t$.

Some results (cf. [2], [4], [5]):

- (i) No baryogenesis if spinors follow Dirac dynamics nor if m=0 and $u=\partial_t(\Longrightarrow\Delta A=0)$.
- (ii) What about Minkowski spacetime? $B_t^{\eta} = 0$ if $u = \partial_t$.
- (iii) $B_t^{(0)} = B_t^{(1)} = 0$ but

$$B_t^{(2)} = -\int \frac{d^3k}{(2\pi)^3} \int \frac{d^3k'}{(2\pi)^3} \frac{1}{4\omega_k \omega_{k'}} \frac{1}{(\omega_{k'} + \omega_k)^2} G_{\Omega,m,u}(\vec{k}, \vec{k'}) ,$$

where $\omega_k := \sqrt{|\vec{k}|^2 + m^2}$, $\omega_{k'} := \sqrt{|\vec{k'}|^2 + m^2}$ and $G_{\Omega,m,u} : (0,\infty) \times (0,\infty) \to \mathbb{R}$ is a function depending on Ω , m and u. For $u = \partial_t$, $B_t \propto m^2$.

Final remark:

(i) How canonical is B_t ? Computing the rate of baryogenesis requires choosing a time function t...

Final remark:

- (i) How canonical is B_t ? Computing the rate of baryogenesis requires choosing a time function t...
 - \rightarrow Choose the unique smooth time function t for which the misalignment between ∂_t and u is minimal (work in progress).

Final remark:

- (i) How canonical is B_t ? Computing the rate of baryogenesis requires choosing a time function t...
 - \rightarrow Choose the unique smooth time function t for which the misalignment between ∂_t and u is minimal (work in progress).

Thank you for your attention!

Bibliography

Chernoff, P.R., Essential self-adjointness of powers of generators of hyperbolic equations, J. Funct. Anal. 12 (1973), 401–414.

Finster, F., Jokel, M., and Paganini, C.F., A mechanism of baryogenesis for causal fermion systems, arXiv:2111.05556 [gr-qc], Class. Quant. Gravity 39 (2022), no. 16, 165005, 50.

Finster, F. and Kraus, M., The regularized Hadamard expansion, arXiv:1708.04447 [math-ph], J. Math. Anal. Appl. 491 (2020), no. 2, 124340.

Finster, F., van den Beld-Serrano, M., Baryogenesis in Minkowski spacetime, arXiv:2408.01189, J. Geom. Phys. 207 (2025) 105346.

Finster, F., van den Beld-Serrano, M., *Baryogenesis in conformally flat spacetimes*, in preparation.

Extra: The dynamics of u

Definition: Let $u: N_{t_0} \to TM$ be a smooth future directed timelike vector field. We construct a global $u: M \to TM$ as follows

(i) Consider the sets \mathscr{L}^g and $D_p\mathscr{L}^g$, where $p \in M$ is arbitrary,

$$(I, \gamma) \in \mathcal{L}^{g} : \iff egin{cases} \gamma : I \to M & ext{is a max. f.d. null geod.} \\ g_{\gamma(s)}(u_{\gamma(s)}, \dot{\gamma}(s)) = 1 & ext{whenever } \gamma(s) \in N_{t_0} \end{cases}$$
 $D_p \mathcal{L}^{g} := \{\dot{\gamma}(s) \mid (I, \gamma) \in \mathcal{L}^{g} \text{ and } \gamma(s) = p\} \subset T_p M.$

(ii) For any $q \in N_{t_0 + \Delta t}$ we define the timelike vector fields

$$\xi_q := \frac{1}{\mu_q(D_q \mathcal{L}^g)} \int_{D_q \mathcal{L}^g} \dot{\gamma}(s) \, d\mu_q(\dot{\gamma}(s))$$
$$u_q := \frac{1}{|\xi_q|_g^2} \xi_q$$

Extra: The important role of R^{ε} in CFS

- Consider $(M,g)=(\mathbb{R}^{1,3},\eta)$. We construct a CFS $(\mathcal{H},\mathcal{F},\rho)$:
 - (i) Let $\mathcal{H}\subset W^{1,2}_{loc}(\Omega)$ be the negative energy space of weak solutions to the Dirac equation.
- (ii) Let $R^{\varepsilon}: \mathcal{H} \to \mathcal{H} \cap C^0(M, SM)$ denote a regularization operator. \to Use it to construct $F^{\varepsilon}: M \to \mathcal{F} \subset L(\mathcal{H})$ as follows

$$\prec \varphi | F^{\varepsilon}(x) \psi \succ := - \prec (R^{\varepsilon} \varphi)(x) | (R^{\varepsilon} \psi)(x) \succ$$

for all $\varphi, \psi \in \mathcal{H}$.

(iii) Finally the pushforward measure, $\rho:=(F^{\varepsilon})_*\mu_M$ is

$$\rho(\Omega) = \mu_M((F^{\varepsilon})^{-1}(\Omega))$$

where $\Omega \subset \mathcal{F}$.

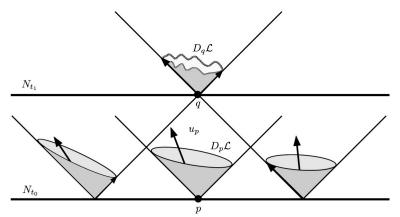
(iv) $(\mathcal{H}, \mathcal{F}, \rho)$ minimizes the causal action in the *continuum limit*.

Extra: The dynamics of u

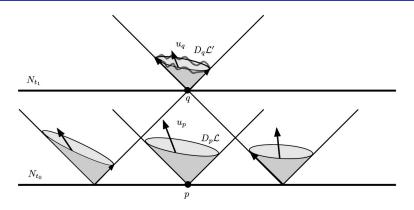
Consider the initial timelike $u: N_{t_0} \to TM$ with

$$u_p = (1 + \lambda f_p)\partial_t + \lambda X_p$$
 for $p \in N_{t_0}$

where $\lambda > 0$, $f \in C^{\infty}(M)$ and $X_p \in T_pM$ spacelike.



Extra: The dynamics of u



The dynamical equation of $u: M \to TM$ is (see [4, Th. 7.1])

$$\frac{du_{p}}{dt} = \left[-\operatorname{grad}_{\delta}(f_{p}^{-1}) + \frac{1}{3}\operatorname{div}_{\delta}(X_{p})\nu\right]\lambda + \mathcal{O}(\lambda^{2})$$

The dynamics of $u: M \to TM$ is a conformal invariant (cf. [5, Prop. 3.1]).

Extra: The misalignment functional

We introduce the functional $F: \mathcal{T} \subset H^p(\Omega) \to (0, \infty]$ with

$$F(t) = F_h(t) + F_g(t) , \qquad (1)$$

where $F_h:\mathcal{T} \to [0,\infty)$ is the Riemannian functional

$$F_h(t) = \sum_{i=0}^{p-1} \int_{\Omega} |(\nabla^h)^i (u - \nabla^h t)|_h^2 d\mu_h = \|u - \nabla^h t\|_{H^{p-1}(\Omega, d\mu_h)}^2, \qquad (2)$$

with $h:=g+2rac{u^b\otimes u^b}{|u|_g^2}$ and $F_g:\mathcal{T} o (0,\infty]$ the Lorentzian functional

$$F_{g}(t) := \begin{cases} \int_{\Omega} \frac{1}{|\nabla^{g} t|_{g}^{2q}} d\mu_{h} & \text{if } \nabla^{g} t \neq 0 \text{ a.e. in } \Omega \\ +\infty & \text{otherwise .} \end{cases}$$
(3)

where $q \in \mathbb{N}$ is arbitrary.

Extra: Schematic derivation of B_t

Step 1: Perturb the spectral projection operator.

$$egin{aligned} R_{\omega}(A_t) &= (1 + R_{\omega}(ilde{H}_{\eta})\Delta A(t))^{-1}R_{\omega}(ilde{H}_{\eta}) = \sum_{p=0}^{\infty} (-R_{\omega}(ilde{H}_{\eta})\Delta A(t))^p R_{\omega}(ilde{H}_{\eta}) \ &=: \sum_{p=0}^{\infty} R_{\omega}^{(p)}(A_t) \end{aligned}$$

By absolute continuity of the spectrum of A_t

$$\chi_I(A_t) = \int_I F_{\omega'}(A_t) d\omega' = \frac{1}{2\pi i} \operatorname{s-lim}_{\delta \to 0^+} \int_I R_{\omega' + is\delta}(A_t) \big|_{s=-1}^{s=1} d\omega' ,$$

where $F_{\omega}(A_t): \mathcal{H}_{t,g} \to \mathcal{H}_{t,g}$ and we used Stone's formula. Analogous for \tilde{H}_{η} .

Extra: Schematic derivation of B_t

Step 2: Obtain the perturbative power expansion of B_t . We start with the following operator product

$$\begin{split} \eta_{\Lambda}(\tilde{H}_{\eta})\chi_{I}(A_{t}) &= \int_{-\infty}^{\infty} d\omega' \eta_{\Lambda}(\omega') F_{\omega'}(\tilde{H}_{\eta}) \int_{-\frac{1}{\varepsilon}}^{-m} d\omega F_{\omega}(A_{t}) \\ &= \frac{1}{2\pi i} \underset{\delta \to 0^{+}}{\text{s-lim}} \int_{-\frac{1}{\varepsilon}}^{-m} d\omega \int_{-\infty}^{\infty} d\omega' \eta_{\Lambda}(\omega') F_{\omega'}(\tilde{H}_{\eta}) R_{\omega + is\delta}(A_{t}) \big|_{s=-1}^{s=1} \end{split}$$

Thus, B_t is

$$\begin{split} B_t &:= \frac{d}{dt} \mathrm{tr}_{\overline{\mathcal{H}}_t^{\varepsilon}} (\eta(\tilde{H}_{\eta}) \chi_I(A_t)) \\ &= \frac{d}{dt} \Big(\frac{1}{2\pi i} \underset{\delta \to 0^+}{\text{s-lim}} \int_{-\frac{1}{\varepsilon}}^{-m} \!\!\! d\omega \int_{-\infty}^{\infty} \!\!\! d\omega' \eta_{\Lambda}(\omega') \, \mathrm{tr}_{\overline{\mathcal{H}}_t^{\varepsilon}} \left(F_{\omega'}(\tilde{H}_{\eta}) R_{\omega + is\delta}^{(p)}(A_t) \right) \big|_{s=-1}^{s=1} \Big) \\ &=: \sum_{0}^{\infty} B_t^{(p)} \end{split}$$

where the operator product is trace-class ([4, Lemma 7,4]).

Extra: Schematic derivation of B_t

Step 3: Determine the strong limit $\delta \to 0^+$ (cf. [4, Lemma 7.3]).

For p = 2 we obtain

$$B_t^{(2)} = -\int_{-\infty}^{\infty} d\omega \int_{-\infty}^{\infty} d\omega' \, \partial_{\omega} \left(\eta_{\Lambda}(\omega) \operatorname{tr}_{\overline{\mathcal{H}_t^{arepsilon}}} \left(rac{d}{dt} ilde{Q}(\omega, \omega')
ight) rac{g(\omega') - g(\omega)}{\omega' - \omega}$$

where $\tilde{Q}(\omega,\omega'):=\Delta AF_{\omega}(\tilde{H}_{\eta})\Delta AF_{\omega'}(\tilde{H}_{\eta}):\mathcal{H}_{t,g}\to C_0^{\infty}(N_t,SM)$ and g is the characteristic function of $I:=(-1/\varepsilon,-m)$. Note that $\tilde{Q}(\omega=-m,\omega'=-m)=0$.

Extra: Example of B_t

Example: Let $u = \partial_t$ and $m \neq 0$. Then,

$$\Delta A = (\Omega - 1) m \gamma_{\eta 0} \; : \; C^{\infty}(N_t, SM)
ightarrow C^{\infty}_0(N_t, SM)$$

and the second order rate of baryogenesis is

$$B_t^{(2)} = 2m^2 \int_0^\infty \frac{d\rho}{(2\pi)^4} (\hat{\alpha}_1'(\rho)\hat{\alpha}_2(-\rho) + \hat{\alpha}_2'(\rho)\hat{\alpha}_1(-\rho)) Q(\rho) ,$$

where $\alpha_1 = \frac{d\Omega}{dt}$, $\alpha_2 = (\Omega - 1)$, $\alpha_i' = \Omega^3 \alpha_i$, Q is smooth and $\rho := \frac{1}{2} |\vec{k} + \vec{k'}|$.

Extra: Example of A_t

Let $u = \partial_t$ and $m \neq 0$. Then,

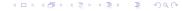
$$A_t = -i\gamma_{\eta 0}\gamma^{\mu}_{\eta}\partial_{\mu} - rac{3}{2}irac{\partial_{\mu}(\Omega)}{\Omega}\gamma_{\eta 0}\gamma^{\mu}_{\eta} + m\gamma_{gt} = ilde{H}_{\eta} + (\Omega - 1)m\gamma_{\eta 0} \; ,$$

Let m = 0 and assume that initially

$$u_p = \begin{cases} (1 + \lambda f_p)\nu + \lambda X_p & \text{for} \quad p \in V \\ \partial_t & \text{for} \quad p \in N_{t_0} \setminus V \end{cases},$$

Then, A_t is

$$\begin{split} A_t &= \tilde{H}_{\eta} + \frac{\lambda}{2} \big\{ f, \tilde{H}_{\eta} \big\} \\ &+ i \frac{\lambda}{2} \Big\{ X^{\mu}, \partial_{\mu} + \frac{\partial_{\mu} (\sqrt{|\det(\mathbf{g}|_{N_t})|})}{2\sqrt{|\det(\mathbf{g}|_{N_t})|}} + \frac{1}{4} \frac{\partial_{\nu} (\Omega)}{\Omega} \eta^{\nu\rho} [\gamma_{\eta\mu}, \gamma_{\eta\rho}] \Big\} \end{split}$$



Extra: The Dirac Hamiltonian H_g

The Dirac Hamiltonian $H_g: C^\infty(N_t, SM) o C^\infty(N_t, SM)$ is

$$\label{eq:Hg} H_g = -(\gamma_g^0)^{-1} \left(i \gamma_g^\mu \nabla_\mu^s - m \right) - E_0 - a_0 \; ,$$

where E_j , a_j are linear operators on the spinor space and ∇^s denotes the Levi-Civita spin connection

$$\nabla_j^s = \partial_j - iE_j - ia_j$$

Finally the Dirac operator $D_g: C^\infty(M,SM) o C^\infty(M,SM)$ is

$$D_{\rm g}=i\gamma_{\rm g}^{j}\nabla_{j}^{\rm s}$$

More concretely, in Minkowski spacetime:

$$H_{\eta} = -i\gamma_{\eta t}\gamma_{\eta}^{\alpha}\partial_{\alpha} + \gamma_{\eta t} m$$

Extra: Some identities

Stone's formula: Given a self-adjoint operator A_t and an interval $(a,b)\subset\mathbb{R}$ it holds that

$$\frac{1}{2}(\chi_{(a,b)}(A_t) + \chi_{[a,b]}(A_t)) = \frac{1}{2\pi i} \operatorname{s-lim}_{\delta \to 0^+} \int_I R_{\omega' + i s \delta}(A_t) \big|_{s=-1}^{s=1} d\omega'$$

The operators $\chi_I(A_t)$ and $F_{\omega}(H_{\eta})$:

$$\begin{split} &\chi_{(-\frac{1}{\varepsilon},\omega)}(H_{\eta})(x,y) \\ &= -\int \frac{d^4k}{(2\pi)^3} (\gamma_{\eta j} k^j + m) \gamma_{\eta 0} \delta(k^2 - m^2) \Theta(-k^0 + \omega) \Theta(1 + \varepsilon k^0) e^{ik \cdot (x-y)} \\ &F_{\omega}(x,y) = \frac{d}{d\omega} \chi_{(-\frac{1}{\varepsilon},\omega)}(H_{\eta}) \\ &= -\int \frac{d^3k}{(2\pi)^3} (\gamma_{\eta 0}\omega - \gamma_{\eta} \cdot k + m) \gamma_{\eta 0} \Theta(1 + \varepsilon \omega) \delta(\omega^2 - \omega_k^2) e^{ik \cdot (x-y)} \end{split}$$

Extra: Some identities

And moreover, for x = y we have that

$$F_{\omega}(x,x) = -\frac{1}{(2\pi)^2} \Big((\omega + \gamma_{\eta 0} m) \sqrt{\omega^2 - m^2} \Big) \Theta(1 + \varepsilon \omega),$$

so
$$|F_{\omega}(x,y)| \le F_{-m}(x,x) = 0 \implies F_{-m}(x,y) = 0.$$

Extra: The operator \tilde{U}

The operator $\tilde{U}: \mathcal{H}_{t,g} \to \mathcal{H}_{t,\eta}$ with $\tilde{U}\psi = \Omega^{3/2}\psi$ for all $\psi \in \mathcal{H}_{t,g}$ is unitary as the following computation shows:

$$\begin{split} (\psi|\phi)_t &:= \int_{\mathcal{N}_t} \langle \psi|\gamma_g(\nu)\phi \succ_{\mathcal{S}_\rho M} d\mu_{\mathcal{N}_t} = \int_{\mathbb{R}^3} \langle \psi|\gamma_\eta(\partial_t)\phi \succ_{\mathbb{C}^4} \Omega^3(x) d^3x \\ &= \int_{\mathbb{R}^3} \langle (\Omega^{3/2}\psi)(x)|\gamma_\eta(\partial_t)(\Omega^{3/2}\phi)(x) \succ_{\mathbb{C}^4} d^3x \\ &= (\Omega^{3/2}\psi|\Omega^{3/2}\varphi) =: (\tilde{U}\psi|\tilde{U}\varphi) \end{split}$$