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Opening statement -1-

This talk is based on the following articles:

1 A. Much, RV, Superluminal local operations in quantum field theory:
A ping-pong ball test, Universe 9, 447 (2023)

2 C.J. Fewster, RV, Quantum fields and local measurements,
Commun. Math. Phys. 378, 851-889 (2020)

3 H. Bostelmann, C.J. Fewster, M. Ruepp, Impossible measurements
require impossible apparatus, Phys. Rev. D 103, 025017, 14 (2021)

4 C.J. Fewster, RV, Measurement in quantum field theory, in: Encyclopedia
in Mathematical Physics, 2025 edition (Elsevier), arXiv:2304.13356
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Outline -2-

AQFT framework

Sorkin’s “impossible measurements (operations)” in QFT
←→ local “superluminal operations” in QFT

Local superluminal operations in classical relativistic field theory
ping-pong ball test

Absence of local superluminal operations in the FV approach
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“Ping-Pong Ball Test” -3-

When someone presents a paradox as being rooted in quantum physics,

replace the term quantum mechanical particle by ping-pong ball everywhere.

If the paradox persists, it is unrelated to quantum physics.

Due to Reinhard Werner (oral version)
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AQFT -4-

In algebraic quantum field theory (or algebraic classical field theory), there is
a local structure for the observables:

A = *-algebra of (or: generated by) observables,

formed by *-subalgebras
A(O) = algebra of observables that can be

measured in the spacetime region O

with the properties:

O1 ⊂ O2 =⇒ A(O1) ⊂ A(O2)

O2 and O1 causally disjoint =⇒ [A1,A2] = 0 for all Aj ∈ A(Oj )

For every symmetry (isometry) L : M → M of the spacetime, there is an
automorphism αL : A → A so that

αL(A(O)) = A(L(O)) and αL1 ◦ αL2 = αL1L2

The algebra A may be non-commutative (quantum case) or commutative
(classical case)
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AQFT (3) -5-

Typical situation in QFT:

A(O) are weakly closed *-subalgebras of B(H) (“von Neumann
algebras”)

Set of (physical) states ω ∈ S given by density matrices % on H:

ω(A) = 〈A〉% = Tr(%A)

αL(A) = ULAU∗L with continuous unitary group repr L 7→ UL

There is a unit vector ψ0 ∈ H with ULψ0 = ψ0

static and geodesic time-translations have positive generators: I.e. if
Ut = eitH implements time-shifts of an inertial time-coordinate, then
H ≥ 0.

This is the setting we will adopt in the following, mainly for M = Minkowski
spacetime.
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Channels/operations in QFT (1) -6-

? A channel is a CP map T : A → A, typically of the form

T (A) =
∑

j

WjAW ∗
j (A ∈ A) with Wj ∈ A ,

∑
j

WjW ∗
j ≤ 1

? nonselective channel: T (1) = 1 (
∑

j WjW ∗
j = 1)

? A channel T is localized in O ⊂ M if

T (A(O)) ⊂ A(O) and T (A′) = A′ , A′ ∈ A(O′) , O and O′ causally disjoint

? An operation is a convex map τ : S → S that arises as the dual of a
channel,

τ(ω)(A) = ω(T (A)) (A ∈ A , ω ∈ S)

? τ is nonselective/localized in O if so is the pre-dual channel T
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Channels/operations in QFT (2) -7-

The simplest example of a non-selective channel localized in O is

TU(A) = UAU∗ (A ∈ A) where U ∈ A(O) is unitary

If Oa and Ob are causally disjoint then any unitary operation τU induced by TU
with U ∈ A(Oa) has no effect on A(Ob):

τU(ω)(B) = ω(TU(B)) = ω(UBU∗) = ω(UU∗B) = ω(B) (B ∈ A(Ob))

Can all such local unitary operations be physically performed?
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Impossible measurements/operations in QFT (1) -8-

“Impossible measurements/operations scenario” [Sorkin (1993)]:

Consider 3 spacetime regions, named after experimenters carrying out
measurements/operations therein:
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Impossible measurements/operations in QFT (2) -9-

Since OAlice and OCharlie are causally disjoint, Charlie cannot know

by measuring in OCharlie if Alice has carried out a unitary operation

τUAlice with UAlice ∈ A(OAlice):

τUAlice(ω)(C) = ω(UAliceCU∗Alice) = ω(C) for all C ∈ A(OCharlie) , ω ∈ S

But if first Alice carries out a unitary operation, and then Bob:

τUBob ◦ τUAlice(ω)(C) = ω(UAliceUBobCU∗BobU∗Alice) for all C ∈ A(OCharlie)

In general, UBob ∈ A(OBob) won’t commute with all C ∈ A(OCharlie)

nor with all UAlice ∈ A(OAlice) since

OAlice causally overlaps with OBob and OBob causally overlaps with OCharlie
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Impossible measurements/operations in QFT (3) -10-

Hence, one can choose UAlice, UBob ,C and ω such that

τUBob ◦ τUAlice(ω)(C) 6= τUBob(ω)(C)

This means, Charlie can determine by measuring the observable C in OCharlie

if Alice has carried out an operation τUAlice in OAlice, if Bob carries out a
suitable operation τUBob in OBob.

This would mean a superluminal transfer of information since OAlice and
OCharlie are causally disjoint.

Examples are given in: R. Sorkin (1993); L. Bosten, I. Jubb, G. Kells, PRD
104 (2021); I. Jubb, PRD 105 (2022).

The issue: τUBob amounts to a superluminal communication channel between
OAlice and OCharlie which is unphysical.

But such superluminal communication channels arise also in classical field
theory, e.g. by local, kinematical symmetries.
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Impossible measurements/operations in FT (1) -11-

Theorem (A. Much & RV (2023))
Let A(O) be the local observable algebras of the classical or the quantized
Klein-Gordon field on Minkowski spacetime M, with field equation
(� + m2)ϕ = 0.

Then there are states ω and operations τAlice and τBob together with
observables C ∈ A(OCharlie) so that

τBob ◦ τAlice(ω)(C) 6= τBob(ω)(C)

τAlice and τBob are localized in OAlice and OBob.

Specifically, τBob can be chosen so that it corresponds to an instantaneous
rotation around the x3-axis by 180 degrees, flipping O(−) ↔ O(+) (local
kinematical symmetry).

For the quantized Klein-Gordon field, there is a unitary UBob ∈ A(OBob) so
that

τBob(ω)( . ) = ω(UBob .U∗Bob)
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Impossible measurements/operations in FT (2) -12-

τBob has the effect of flipping O(−) instantaneously to O(+) and vice versa.
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Impossible measurements/operations in FT (3) -13-

Remarks

The approach of describing classical field theory in terms of a local
algebra framework has been developed by Brunetti, Duetsch,
Fredenhagen and Rejzner (and co-authors). See:

K. Rejzner: Perturbative Algebraic Quantum Field Theory, Springer,
2016

M. Duetsch: From Classical Field Theory to Perturbative Quantum Field
Theory, Birkhäuser, 2019

In the classical case, τBob and τAlice are not implemented by unitaries in
the local algebras since the local algebras are commutative — they are
formed by (certain) functions on the phase space.

The generator of τBob can be obtained with the help of a Peierls bracket,
generalising the Poission bracket of Hamiltonian mechanics.
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FV framework (1) -14-

QFT A with local algebras A(O) system

QFT P with local algebras P(O) probe

can be combined into a new QFT Q = P ⊗A, local algebras
Q(O) = P(O)⊗A(O) (uncoupled)

Idea: Measure observables of the system by coupling the system dynamically
to the probe in a specified interaction region OI , and measuring
observables of the probe.

In case you are wondering why it might be a good idea to measure a
quantum field by coupling it to another quantum field — this is common
practice in elementary physics. The detectors that are available are basically
sensitive to electrically charged particles (like electrons) or photons. But how
do you measure neutrinos? They must first be brought into interaction with
other kinds of particles for which detectors are available.
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FV framework (2) -15-

The effect of the coupling is described by a scattering morphism
Θ : Q → Q. Under general conditions, this is given by the action of the
S-matrix:

Θ(P ⊗ A) = S(P ⊗ A)S−1

Assumption: The interaction is only active in a bounded interaction region OI
(i.e. over finite time and over a compact region in space).

Scattering morphism can be shown to exist, and localization properties
derived, if all the QFTs obey the time-slice property:

If Õ is a globally hyperbolic sub-spacetime of the ambient spacetime M, and
if O is an open neighbourhood in Õ of a Cauchy-surface for Õ, then

A(O) = A(Õ) (same for P and Q)
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FV framework (3) -16-

  

time slice property

Localization properties of scattering morphism Θ relative to OI :

If O′ and OI causally disjoint =⇒
Θ(P ⊗ A) = P ⊗ A (P ⊗ A ∈ Q(O′))

If O+ is not in the causal past of OI =⇒
Θ(Q(O+)) ⊂ Q(causal past of O+)
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FV framework (4) -17-

Consider the case

P = PAlice ⊗ PBob , OI = OI,Alice ∪OI,Bob , OI,Alice ∩ J+(OI,Bob) = ∅

Then we have the total scattering morphism Θ as before, and also the
scattering morphisms induced by ΘAlice on PAlice ⊗A and ΘBob on PBob ⊗A:

Θ̂Alice: PAlice ⊗ PBob ⊗A → PAlice ⊗ PBob ⊗A ,
Θ̂Alice = ΘAlice ⊗2 1

Θ̂Bob : PAlice ⊗ PBob ⊗A → PAlice ⊗ PBob ⊗A ,
Θ̂Bob = 1⊗1 ΘBob

The label on the tensor product indicates the position where the unit 1 is
inserted.
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FV framework (5) -18-

Assumption: Causal factorization of the coupling dynamics

Θ = Θ̂Alice ◦ Θ̂Bob

or with ω = state on A, σAlice = state on PAlice, and σBob = state on PBob:

τ(σAlice ⊗ σBob ⊗ ω)(1⊗ 1⊗ C) = τ̂Bob ◦ τ̂Alice(σAlice ⊗ σBob ⊗ ω)(1⊗ 1⊗ C)

Causal factorization of localized dynamics typically holds in QFT with
pointlike interactions. It is a variant of “Bogoliubov’s formula”.

RHS expresses the expectation value of an observable C in A on the state ω
after first Alice couples it dynamically to her probe in state σAlice and
evaluates on her probe observable 1, followed by Bob coupling his probe in
state σBob and evaluating on his probe observable 1. Evaluating on 1 means
forming the partial trace, or the corresponding partial state on A.
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FV framework (6) -19-

Theorem (H. Bostelmann, C.J. Fewster, M. Ruepp (2021))
Let the spacetime regions OAlice, OBob and OCharlie be as before.
Suppose that Alice and Bob use probe QFTs PAlice and PBob to couple to the
system QFT A.
The interaction regions are OI,Alice = OAlice and OI,Bob = OBob.
Alice and Bob have prepared the states of their probes in states σAlice and
σBob (prior to coupling)

If C ∈ A(OCharlie), then

τ̂Bob ◦ τ̂Alice(σAlice ⊗ σBob ⊗ ω)(1⊗ 1⊗ C) = τBob(σBob ⊗ ω)(1⊗ C)

This means that Charlie cannot determine by measurement in OCharlie if Alice
has done a (probe-measuring induced) measurement in the causally
separated spacetime region OAlice, even if Bob carries out a
(probe-measuring induced) measurement “in between” in the spacetime
region OBob.
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Conclusion -20-

The impossible measurements/impossible operations scenario does not only
arise in QFT, but also in classical field theory. (This is a ping-pong ball test,
and its outcome shows that the impossible measurements scenario of Sorkin
is not specific to QFT.)

There are “superluminal” local operations also in classical field theory, e.g. by
local kinematical symmetries. Not all local operations in quantum or classical
field theory can be “actively” carried out.

Elements in the local algebras should be interpreted as observables, not as
(implementers of) local operations.

Local operations induced by the local measurement scheme in the FV
framework do not feature the Sorkin scenario, i.e. no superluminal
communication effects occur.
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