Mathematical Preliminaries

Jan-Hendrik Treude University of Konstanz

Causal Fermion Systems 2025

Motivation and Outline

The definition of a causal fermion system $(\mathcal{H}, \mathcal{F}, \rho)$ of spin dimension n contains

- ightharpoonup a Hilbert space \mathcal{H}
- ▶ the space $\mathcal{F} \subset L(\mathcal{H})$ of **symmetric operators of finite rank** on \mathcal{H} with at most n positive and n negative eigenvalues
- ▶ a **positive Borel measure** ρ on \mathcal{F}

The measure ρ should be a minimizer of the **causal action**:

$$S(\rho) = \iint_{\mathcal{F} \times \mathcal{F}} \mathcal{L}(x, y) d\rho(x) d\rho(y).$$

Motivation and Outline

- 1. Metric spaces
- 2. Measures and integration
- 3. Hilbert spaces and bounded linear operators

For references:

Finster, Kindermann, T. Causal Fermion Systems: An Introduction to Fundamental Structures, Methods and Applications, https://arxiv.org/abs/2411.06450, to appear in Cambrige Mongraphs on Mathematical Physics, Cambridge University Press, 2025

1. Metric spaces

Metric spaces

Definition

A function $d: X \times X \to \mathbb{R}$ is called **metric on** X ("distance") if

(i)
$$d(x,y) \ge 0$$
 and $d(x,y) = 0 \Leftrightarrow x = y$

for all
$$x, y \in X$$

(ii)
$$d(x,y) = d(y,x)$$

for all
$$x, y \in X$$

(iii)
$$d(x,y) \le d(x,z) + d(z,y)$$

for all
$$x, y, z \in X$$

- ▶ Open ball $B_r(x) := \{ y \in X : d(x,y) < r \}$
- ▶ **Open set** $U \subset X$: $x \in U \Longrightarrow B_r(x) \subset U$ for some r > 0

Metric spaces

Definition

A function $d: X \times X \to \mathbb{R}$ is called **metric on** X ("distance") if

(i)
$$d(x,y) \ge 0$$
 and $d(x,y) = 0 \Leftrightarrow x = y$

for all
$$x, y \in X$$

(ii)
$$d(x, y) = d(y, x)$$

for all
$$x, y \in X$$

(iii)
$$d(x, y) \le d(x, z) + d(z, y)$$

for all
$$x, y, z \in X$$

- ▶ Open ball $B_r(x) := \{ y \in X : d(x,y) < r \}$
- ▶ **Open set** $U \subset X$: $x \in U \Longrightarrow B_r(x) \subset U$ for some r > 0

Open sets $\mathcal{O} \subset \mathcal{P}(X)$ satisfy properties of a **topology** on X.

→ Framework for continuity, convergence, compactness, ...

Completeness

Definition

► $(x_n)_{n\in\mathbb{N}}$ converges to x if

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n \geq N : d(x_n, x) < \varepsilon$$

▶ $(x_n)_{n \in \mathbb{N}}$ is called **Cauchy sequence** if

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m \geq N : d(x_n, x_m) < \varepsilon$$

- ► (X,d) is called **complete** if: "Cauchy \Longrightarrow convergent" The reverse implication "Convergent \Longrightarrow Cauchy" is always true.
- ► Convenient mathematical property since it gives *existence*.
- ► Any metric space can be embedded into a (larger) complete metric space ("completion")

2. Measure and integration

Basic idea of a measure

▶ A measure μ on \mathcal{F} measures the "volume" of subsets of \mathcal{F} :

certain subsets of
$$\mathcal{F} \longrightarrow [0, \infty]$$

 $A \longmapsto \mu(A)$

► Measures are closely related to **integration**:

$$\int_{\mathcal{F}} f(x) \, \mathrm{d}\mu(x) \approx \sum_{i} (\text{"value" of } f \text{ on } A_i) \times \mu(A_i)$$

Integration is accumulating / averaging values with respect to a notion of size. Measures provide that notion of size in a very general way.

Definition of a measure

Definition

A **measure space** $(\mathcal{F}, \mathfrak{M}, \mu)$ consists of a set \mathcal{F} together with

- ▶ a σ -algebra \mathfrak{M} , i.e. a collection of subsets of \mathcal{F} such that
 - (i) $\emptyset \in \mathfrak{M}$
 - (ii) $A \in \mathfrak{M} \Longrightarrow \mathcal{F} \setminus A \in \mathfrak{M}$
 - (iii) $(A_n)_{n\in\mathbb{N}}\subset\mathfrak{M}\Longrightarrow\bigcup_{n\in\mathbb{N}}A_n\in\mathfrak{M}$

Definition of a measure

Definition

A **measure space** $(\mathcal{F}, \mathfrak{M}, \mu)$ consists of a set \mathcal{F} together with

- ▶ a σ -algebra \mathfrak{M} , i.e. a collection of subsets of \mathcal{F} such that
 - (i) $\emptyset \in \mathfrak{M}$
 - (ii) $A \in \mathfrak{M} \Longrightarrow \mathcal{F} \setminus A \in \mathfrak{M}$
 - (iii) $(A_n)_{n\in\mathbb{N}}\subset\mathfrak{M}\Longrightarrow\bigcup_{n\in\mathbb{N}}A_n\in\mathfrak{M}$
- ▶ a **measure** μ , i.e. a mapping $\mu : \mathfrak{M} \to [0, \infty]$ satisfying

$$(A_n)_{n\in\mathbb{N}}\subset\mathfrak{M}$$
 pairwise disjoint $\Longrightarrow \mu(\bigcup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}\mu(A_n)$

Integration with respect to a measure (Lebesgue integral)

Suppose $(\mathcal{F}, \mathfrak{M}, \mu)$ is a measure space.

► For simple functions

$$f = \sum_{i=1}^{n} c_i \cdot \chi_{A_i} \implies \int_{\mathcal{F}} f(x) \, \mathrm{d}\mu(x) := \sum_{i=1}^{n} c_i \cdot \mu(A_i)$$

Integration with respect to a measure (Lebesgue integral)

Suppose $(\mathcal{F}, \mathfrak{M}, \mu)$ is a measure space.

► For simple functions

$$f = \sum_{i=1}^{n} c_i \cdot \chi_{A_i} \implies \int_{\mathcal{F}} f(x) \, \mathrm{d}\mu(x) := \sum_{i=1}^{n} c_i \cdot \mu(A_i)$$

- ► Nonnegative functions: approximate by simple functions.
- ▶ ℝ-valued functions: split into positive and negative part.
- ► C-valued functions: split into real and imaginary part.

Integrable and square integrable functions

For $f: \mathcal{F} \to \mathbb{C}$ write

$$f \in L^1(\mathcal{F}, d\mu)$$
 if $||f||_{L^1} := \int_{\mathcal{F}} |f(x)| d\mu(x) < \infty$

$$f \in L^2(\mathcal{F}, d\mu)$$
 if $||f||_{L^2} := \left(\int_{\mathcal{F}} |f(x)|^2 d\mu(x) \right)^{\frac{1}{2}} < \infty$

The spaces $L^1(\mathcal{F}, d\mu)$ and $L^2(\mathcal{F}, d\mu)$ with these norms are Banach spaces, i.e. complete normed spaces.

More precisely: Elements of these spaces are not functions but equivalence classes of functions which differ only on sets of measure zero.

The support of a measure

Suppose $\mu:\mathcal{B}(\mathcal{F})\to [0,\infty]$ is a Borel measure on $\mathcal{F}.$

- ► $V := \bigcup_{\substack{U \text{ open} \\ \mu(U)=0}} U$ is largest open set of measure zero.
- supp $\mu := \mathcal{F} \setminus V$ is called **support of** μ .

3. Hilbert spaces and bounded lin. operators

Hilbert spaces

 $\mathcal H$ a complex vector space with scalar product $\langle\cdot|\cdot\rangle:\mathcal H\times\mathcal H\to\mathbb C$

(i)
$$\langle u|\alpha v + \beta w\rangle = \alpha \langle u|v\rangle + \beta \langle u|w\rangle$$

(ii)
$$\overline{\langle u|v\rangle} = \langle v|u\rangle$$

(iii)
$$\langle u|u\rangle > 0$$
 for $u \neq 0$

- ▶ $||u|| := \sqrt{\langle u|u\rangle}$ defines a norm,
- ► d(u,v) := ||u-v|| a metric ("distance") on \mathcal{H}

 $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ is called **Hilbert space** if the metric *d* is complete.

Orthogonality

- ▶ $u, v \in \mathcal{H}$ are **orthogonal** if $\langle u|v\rangle = 0$.
- ▶ $(e_i)_{i \in I} \subset \mathcal{H}$ is orthonormal Hilbert basis if
 - **•** pairwise orthogonal and of unit length: $\langle e_i | e_j \rangle = \delta_{ij}$
 - lacktriangledown completeness: for any $u\in\mathcal{H}$ have $u=\sum_{i\in I}\langle e_i|u\rangle\,e_i$ $\left(\sum_{i\in I}|e_i\rangle\langle e_i|=1\right)$

Any (separable) Hilbert space has a (countable) orthonormal Hilbert basis.

- ► For a linear subspace $U \subset \mathcal{H}$
 - ▶ $U^{\perp} := \{v \in \mathcal{H} : \langle u|v \rangle = 0 \text{ for all } u \in U\}$ orth. complement
 - ▶ Then $\mathcal{H} = \overline{U} \oplus U^{\perp}$, i.e. for any $x \in \mathcal{H}$ have decomposition

$$x = u^{\parallel} + u^{\perp}$$
 with unique $u^{\parallel} \in \overline{U}, u^{\perp} \in U^{\perp}$.

Bounded linear operators

Definition

A **bounded linear operator on** \mathcal{H} is a map $A: \mathcal{H} \to \mathcal{H}$ with

- (i) *A* is linear, i.e. $A(\alpha u + \beta v) = \alpha A(u) + \beta A(v)$.
- (ii) There exists C > 0 such that $||A(u)|| \le C ||u||$ for all $u \in \mathcal{H}$.

 $L(\mathcal{H})$ denotes set of all bounded linear operators.

Bounded linear operators

Definition

A **bounded linear operator on** \mathcal{H} is a map $A : \mathcal{H} \to \mathcal{H}$ with

- (i) *A* is linear, i.e. $A(\alpha u + \beta v) = \alpha A(u) + \beta A(v)$.
- (ii) There exists C > 0 such that $||A(u)|| \le C ||u||$ for all $u \in \mathcal{H}$.

 $L(\mathcal{H})$ denotes set of all bounded linear operators.

- ► $L(\mathcal{H})$ is a vector space via pointwise linear combinations *This means:* $(\alpha A + \beta B)(u) := \alpha A(u) + \beta B(u)$
- ► On $L(\mathcal{H})$ a (complete) norm is given by the *operator norm* $\|A\| := \sup \{ \|A(u)\| : \|u\| = 1 \},$
 - \rightsquigarrow $L(\mathcal{H})$ becomes topological space

Special classes of operators

Let $A \in L(\mathcal{H})$.

- ► *A* is **symmetric** if $\langle u|Av\rangle = \langle Au|v\rangle$ for all $u, v \in \mathcal{H}$.
 - eigenvalues are real (more generally the spectrum)
 - eigenvectors for different eigenvalues are orthogonal
- ▶ *A* has **finite rank** if its image has finite dimensions, $\dim A(\mathcal{H}) < \infty$

Diagonalizing a symmetric operator of finite rank

Suppose $A \in L(\mathcal{H})$ is of finite rank and symmetric.

- ▶ $I := A(\mathcal{H}) \subset \mathcal{H}$ is a finite-dimensional subspace
- $ightharpoonup \mathcal{H} = I \oplus I^{\perp}$
- ► $A|_{I^{\perp}} = 0$, since A is symmetric For $u \in U^{\perp}$ have $||Au||^2 = \langle Au, Au \rangle = \langle A^2u, u \rangle = 0$.

Diagonalizing a symmetric operator of finite rank

Suppose $A \in L(\mathcal{H})$ is of finite rank and symmetric.

- ▶ $I := A(\mathcal{H}) \subset \mathcal{H}$ is a finite-dimensional subspace
- $ightharpoonup \mathcal{H} = I \oplus I^{\perp}$
- ► $A|_{I^{\perp}} = 0$, since A is symmetric For $u \in U^{\perp}$ have $||Au||^2 = \langle Au, Au \rangle = \langle A^2u, u \rangle = 0$.

$$\implies A = \begin{pmatrix} A|_I & 0 \\ 0 & 0 \end{pmatrix} : I \oplus I^{\perp} \longrightarrow I \oplus I^{\perp}$$

 $A|_{I}: I \rightarrow I$ is a linear map on a *finite-dimensional* vector space

Diagonalizing a symmetric operator of finite rank

Suppose $A \in L(\mathcal{H})$ is of finite rank and symmetric.

- ▶ $I := A(\mathcal{H}) \subset \mathcal{H}$ is a finite-dimensional subspace
- $ightharpoonup \mathcal{H} = I \oplus I^{\perp}$
- ► $A|_{I^{\perp}} = 0$, since A is symmetric For $u \in U^{\perp}$ have $||Au||^2 = \langle Au, Au \rangle = \langle A^2u, u \rangle = 0$.

$$\implies A = \begin{pmatrix} A|_I & 0 \\ 0 & 0 \end{pmatrix} : I \oplus I^{\perp} \longrightarrow I \oplus I^{\perp}$$

 $A|_{I}: I \rightarrow I$ is a linear map on a *finite-dimensional* vector space

 \rightsquigarrow Linear algebra: ONB $e_1, \ldots, e_n \in I$ with $Ae_i = \lambda_i e_i$

$$A = \sum_{i=1}^{n} \lambda_i \langle e_i | \cdot \rangle e_i = \sum_{i=1}^{n} \lambda_i | e_i \rangle \langle e_i |.$$