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Motivation and Outline

The definition of a causal fermion system (H,F , ρ) of spin
dimension n contains

▶ a Hilbert space H

▶ the space F ⊂ L(H) of symmetric operators of finite rank
on H with at most n positive and n negative eigenvalues

▶ a positive Borel measure ρ on F

The measure ρ should be a minimizer of the causal action:

S(ρ) =
∫∫

F×F
L(x, y)dρ(x)dρ(y) .
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1. Metric spaces



Metric spaces

Definition

A function d : X × X → R is called metric on X (“distance”) if

(i) d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y for all x, y ∈ X

(ii) d(x, y) = d(y, x) for all x, y ∈ X

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X

▶ Open ball Br(x) := {y ∈ X : d(x, y) < r}

▶ Open set U ⊂ X: x ∈ U =⇒ Br(x) ⊂ U for some r > 0

Open sets O ⊂ P(X) satisfy properties of a topology on X.

⇝ Framework for continuity, convergence, compactness, . . .
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Completeness
Definition

▶ (xn)n∈N converges to x if

∀ε > 0 : ∃N ∈ N : ∀n ≥ N : d(xn, x) < ε

▶ (xn)n∈N is called Cauchy sequence if

∀ε > 0 : ∃N ∈ N : ∀n,m ≥ N : d(xn, xm) < ε

▶ (X, d) is called complete if: “Cauchy =⇒ convergent”
The reverse implication “Convergent =⇒ Cauchy” is always true.

▶ Convenient mathematical property since it gives existence.

▶ Any metric space can be embedded into a (larger)
complete metric space (“completion”)



2. Measure and integration



Basic idea of a measure

▶ A measure µ on F measures the “volume” of subsets of F :

certain subsets of F −→ [0,∞]

A 7−→ µ(A)

▶ Measures are closely related to integration:∫
F

f (x)dµ(x) ≈
∑

i

(”value” of f on Ai)× µ(Ai)

Integration is accumulating / averaging values with respect to a notion of size.
Measures provide that notion of size in a very general way.



Definition of a measure

Definition

A measure space (F ,M, µ) consists of a set F together with

▶ a σ-algebra M, i.e. a collection of subsets of F such that

(i) ∅ ∈ M

(ii) A ∈ M =⇒ F \ A ∈ M

(iii) (An)n∈N ⊂ M =⇒
⋃

n∈N
An ∈ M

▶ a measure µ, i.e. a mapping µ : M → [0,∞] satisfying

(An)n∈N ⊂ M pairwise disjoint =⇒ µ(
⋃
n∈N

An) =
∑
n∈N

µ(An)
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Integration with respect to a measure
(Lebesgue integral)

Suppose (F ,M, µ) is a measure space.

▶ For simple functions

f =

n∑
i=1

ci · χAi =⇒
∫
F

f (x)dµ(x) :=
n∑

i=1

ci · µ(Ai)

▶ Nonnegative functions: approximate by simple functions.

▶ R-valued functions: split into positive and negative part.

▶ C-valued functions: split into real and imaginary part.
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Integrable and square integrable functions

For f : F → C write

f ∈ L1(F ,dµ) if ∥f∥L1 :=

∫
F
|f (x)|dµ(x) < ∞

f ∈ L2(F ,dµ) if ∥f∥L2 :=

(∫
F
|f (x)|2 dµ(x)

) 1
2

< ∞

The spaces L1(F ,dµ) and L2(F ,dµ) with these norms are
Banach spaces, i.e. complete normed spaces.
More precisely: Elements of these spaces are not functions but equivalence classes of functions

which differ only on sets of measure zero.



The support of a measure

Suppose µ : B(F) → [0,∞] is a Borel measure on F .

▶ V :=
⋃

U open
µ(U)=0

U is largest open set of measure zero.

▶ suppµ := F \ V is called support of µ.



3. Hilbert spaces and
bounded lin. operators



Hilbert spaces

H a complex vector space with scalar product ⟨·|·⟩ : H×H → C

(i) ⟨u|αv + βw⟩ = α ⟨u|v⟩+ β ⟨u|w⟩
(ii) ⟨u|v⟩ = ⟨v|u⟩

(iii) ⟨u|u⟩ > 0 for u ̸= 0

▶ ∥u∥ :=
√
⟨u|u⟩ defines a norm,

▶ d(u, v) := ∥u − v∥ a metric (“distance”) on H

(H, ⟨·|·⟩) is called Hilbert space if the metric d is complete.



Orthogonality

▶ u, v ∈ H are orthogonal if ⟨u|v⟩ = 0.

▶ (ei)i∈I ⊂ H is orthonormal Hilbert basis if
▶ pairwise orthogonal and of unit length:

〈
ei|ej

〉
= δij

▶ completeness: for any u ∈ H have u =
∑
i∈I

⟨ei|u⟩ ei(∑
i∈I |ei⟩⟨ei| = 11

)
Any (separable) Hilbert space has a (countable)
orthonormal Hilbert basis.

▶ For a linear subspace U ⊂ H
▶ U⊥ := {v ∈ H : ⟨u|v⟩ = 0 for all u ∈ U} orth. complement
▶ Then H = U ⊕ U⊥, i.e. for any x ∈ H have decomposition

x = u∥ + u⊥ with unique u∥ ∈ U,u⊥ ∈ U⊥ .



Bounded linear operators

Definition

A bounded linear operator on H is a map A : H → H with

(i) A is linear, i.e. A(αu + βv) = αA(u) + βA(v).

(ii) There exists C > 0 such that ∥A(u)∥ ≤ C ∥u∥ for all u ∈ H.

L(H) denotes set of all bounded linear operators.

▶ L(H) is a vector space via pointwise linear combinations
This means: (αA + βB)(u) := αA(u) + βB(u)

▶ On L(H) a (complete) norm is given by the operator norm

∥A∥ := sup
{
∥A(u)∥ : ∥u∥ = 1

}
,

⇝ L(H) becomes topological space
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Special classes of operators

Let A ∈ L(H).

▶ A is symmetric if ⟨u|Av⟩ = ⟨Au|v⟩ for all u, v ∈ H.
▶ eigenvalues are real (more generally the spectrum)
▶ eigenvectors for different eigenvalues are orthogonal

▶ A has finite rank if its image has finite dimensions,
dimA(H) < ∞



Diagonalizing a symmetric operator of finite rank
Suppose A ∈ L(H) is of finite rank and symmetric.

▶ I := A(H) ⊂ H is a finite-dimensional subspace

▶ H = I ⊕ I⊥

▶ A|I⊥ = 0, since A is symmetric
For u ∈ U⊥ have ∥Au∥2 = ⟨Au,Au⟩ =

〈
A2u, u

〉
= 0.

=⇒ A =

(
A|I 0
0 0

)
: I ⊕ I⊥ −→ I ⊕ I⊥

A|I : I → I is a linear map on a finite-dimensional vector space

⇝ Linear algebra: ONB e1, . . . , en ∈ I with Aei = λiei

A =
n∑

i=1

λi ⟨ei|·⟩ ei =
n∑

i=1

λi|ei⟩⟨ei| .
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