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Lapse, shift parametrisation of foliation
ds? = —[I dt]? + qap[dXx? + s2 df] [dx? + s df]

@ Legendre transform for constrained systems (Dirac algorithm): (g, 9) — (g, p)
(8-metric on o, conj. momentum), Poisson brackets {.,.}. Similar for matter.

Q@ plus: spatial diffeomorphism and Hamiltonian constraints Va; a=1,2,3, S
(temporal-spatial, temporal-temporal components of Einstein egns)
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Classical Hamiltonian formulation of GR

ypersurface Deformation Algebroid (HDA)

@ Let Q:= y/det(qg), smeared constraints:
VU= [, dPzu? Va; Slfl=/[ d®zfS

@ Classical HDA b (Hojman, Kuchar, Teitelboim]
{VIu], VIvl} = = VIu, V]I, {Vlu], SI[f]} = —S[ulf]],
{SIf], Slgl} = —VIg~" (M dN — N dM)]
@ Observations:

@ encodes local spacetime diffeomorphism covariance
@ hnot a Lie algebra due to g~ ': “open algebra, algebroid”

@ Anomaly-free representation of h major challenge in quantum reduction (QR)
approach to CQG
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Split geometry, matter canonical pairs into 2 sets (g, p) = ((Q, P), (X, Y)) called
“true” (observable) and “gauge” (not observable)

Solve constr. C =0 for Y = —h(X; Q, P), impose gauge cond. G:= X — k=0
Solve stability condition $G =0 <« {C(T),X} = otk for = T.
@ Reduced (true, physical,...) Hamiltonian for © = O(Q, P) [Hanson, Regge, Teitelboim]

© o

{H,0} = {C(T), Ohxeky—nr=r. = H= [ dzk-hX =k Q.P)

@ How practical depends on matter content (e.g. scalar fields)
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Non-perturbative: PT applied to QG: non-renormalisable (Goroft, Sagnotti 85]
Background independence: no metric singled out by Einstein egns.
Continuum theory: no ad hoc discrete input

Standard QFT: construct QFT of gravitational field in 3+1

Algebraic QFT (AQFT) methods: Algebras 2, exp. val. states w

Standard AQFT: Fix classical background gq, construct (g, (O)
If O, O’ causally disjoint wrt gg then [(g,(O), A, (O’)] =0

Bl violation, in QG g = gy not fixed, even operator, fluctuating causality
Algebraic QG (AQG):

Suppose 1. w(g?) — w(g)? “small” (semiclassical), 2. O, O’ causally disjoint wrt
w(g) then show w([A(O),A(O")]) small

@ Difference:
AQFT: go distinguished, used to construct g, (O)
AQG: gy A, 2(O) BI, quantum locality rel. to state only

@ How to construct 2((O) in CQG? Like in usual QFT in CST:
Solve Heisenberg picture EOM wrt physical H from “time zero” fields
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Canonical quantisation principles

guantisation principles

Qo

Select “time zero” Weyl algebra 2( gen. by Weyl elements W([f, F] for (q, p) resp.
(Q, P)inQRresp. CR
Express C(T),{C(T),C(T’)} resp. Hinterms of a € A
Study states w on 2 (e.v. functionals): (p, #, ) GNS data
Select w s.t. p(C(T)), p({C(T),C(T")}) resp. p(H) densely defined operators
on D := p(A)Q.
In addition

@ QR:Dinv. for p(C(T)) and anomaly freeness of h

[P(C(T)), p(C(T')] = i p({C(T), C(T')})

o CR: p(H) has s.a. extensions
CR Physics: #H already phys. HS, study S-matrix of H etc.
QR Physics:

o construct solutions /: D — Cs.t. [[C(T)y] =0 VT, ¢ € D

o “rigging map” | = §[CJ+, ¢ € D (if constraint Lie algebra). Phys. HS

< 5[011117 6[C]wl >phys: =< P, J[C] 1// >

@ construct rep. of gauge inv. obs. on Hppys

QR more complicated than CR, use CR for HDA, QR for other constr.
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1st state motivation: Z, H densely defined if vacuum s.t. Ej.a Q=0
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LQG realisation

d representation

O Spinorial matter requires densitised triad £7; 5k EjaE,‘j = Q g2, conj. SU(2)
connection momentum A, (canonical transf.) jashtekar,Barbero]
Additional SU(2) Gauss constraint Z(r)
Suggests Weyl elements based on holonomies, fluxes ’P(epr), els*E (c.f. YM)
Every single term in Z, H (vacuum GR, cosm. const., matter) couples to El."‘
1st state motivation: Z, H densely defined if vacuum s.t. Ej.a Q=0
Proposition: This fixes an irregular state of 2[ of (Narnhofer-Thiring] type
2nd state motivation: for suitable matter, H inv. under automorphisms ag, B,
Proposition: The GNS rep. of the LQG state defined by

w(WI[f, F]) = b0

1. is the AIL r'ep. [Ashtekar, Isham, Lewandowski], 2. has ONB by SNWF p( W[f7 0])Q [Baez,
Rovelli, smolin], 3. is unique Diff(o) inv. state on 2 (Fieischhack; Lewandowski, Okolow, Sahimann, TT]
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LQG realisation

@ QR for Gauss constraint

@ p(Z(r)) densely def., explicit normalisable soln: SU(2) inv. intertwiner subspace
(CG coeff.)

@ Measure theory H = L,(A, du) (“Schrédinger rep.”)
@ 3Jcoherent states for 20 (minimal uncertainty excitations of Q)

@ 3Fordering of p(H) s.t. 1. symm. op. on SNWF span and 2. coherent state exp. =
classical value + corr.

@ if p(H) bounded from below use Friedrichs s.a. ext.

@ surprising result: p(H) usually at best g.f. in interacting QFT, here consequence
of choice of 2, w adapted to non-pert. structure of H.

@ Jess. s.a. ops. corr to lengths, areas, volumes of any continuous 1,2,3-d
submfd. with p.p. spectrum

@ area op. = quantum bh horizons, microscopic entropy counting
@ Analogous q'ion of minisuperspace cosmology (LQC): big bounce
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while w natural, irregular for 2( (not strongly cont for both f, F)
= g'ion ambiguities, fix by renormalisation methods?
= H not separable, too many state vectors?
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H very complicated = Heisenberg evolution wrt H hard to compute, quantum
locality?

©

In general: contact to SM (QFT in CST) physics, based on stable coh. states
peaked on Minkowski metric? Decoherence?

Thomas Thiemann
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