Canonical Quantum Gravity

Thomas Thiemann¹

¹ Inst. f. Quantengravitation (IQG), FAU Erlangen – Nürnberg

Causal Fermion Systems, Regensburg, 07.10.2025

arXiv [gr-qc]: 2303.18172 [gr-qc] (review), books

TOC:

- Classical Hamiltonian formulation of GR
- Canonical quantisation principles
- Loop quantum gravity (LQG) realisation

TOC:

- Classical Hamiltonian formulation of GR
- Canonical quantisation principles
- Loop quantum gravity (LQG) realisation

TOC:

- Classical Hamiltonian formulation of GR
- Canonical quantisation principles
- Loop quantum gravity (LQG) realisation

Canonical approach to classical & quantum GR has long tradition

- Classical: Initial value formulation, numerical integration of Einstein equations. BH merger simulations ... [Arnowitt, Deser, Misner...]
- Quantum: QG as a constrained QFT [Bergmann, DeWitt, Dirac, Komar, Wheeler,...]
- Key assumption: Globally hyperbolic spacetimes (M, g)
- $\bigcirc \Rightarrow M \cong \mathbb{R} \times \sigma$ [Geroch, Sanchez & Bilal]
- *M* can be foliated by leaves $t \mapsto \Sigma_t \cong \sigma$ ("3+1" split: space+time)
- Lapse, shift parametrisation of foliation

$$ds^2 = -[I \ dt]^2 + q_{ab}[dx^a + s^a \ dt] [dx^b + s^b \ dt]$$

- Legendre transform for constrained systems (Dirac algorithm): $(g, \dot{g}) \mapsto (g, p)$ (3-metric on σ , conj. momentum), Poisson brackets $\{.,.\}$. Similar for matter.
- plus: spatial diffeomorphism and Hamiltonian constraints V_a ; a = 1, 2, 3, S (temporal-spatial, temporal-temporal components of Einstein egns)

- Canonical approach to classical & quantum GR has long tradition
- Classical: Initial value formulation, numerical integration of Einstein equations, BH merger simulations ... [Arnowitt,Deser,Misner,...]
- Quantum: QG as a constrained QFT [Bergmann, DeWitt, Dirac, Komar, Wheeler...
- Key assumption: Globally hyperbolic spacetimes (M, g)
- $\bigcirc \Rightarrow M \cong \mathbb{R} \times \sigma$ [Geroch, Sanchez & Bilal]
- *M* can be foliated by leaves $t \mapsto \Sigma_t \cong \sigma$ ("3+1" split: space+time)
- Lapse, shift parametrisation of foliation

$$ds^2 = -[I \ dt]^2 + q_{ab}[dx^a + s^a \ dt] \ [dx^b + s^b \ dt]$$

- Legendre transform for constrained systems (Dirac algorithm): $(g, \dot{g}) \mapsto (q, p)$ (3-metric on σ , conj. momentum), Poisson brackets $\{.,.\}$. Similar for matter.
- plus: spatial diffeomorphism and Hamiltonian constraints V_a ; a = 1, 2, 3, S (temporal-spatial, temporal-temporal components of Einstein egns)

- Canonical approach to classical & quantum GR has long tradition
- Classical: Initial value formulation, numerical integration of Einstein equations, BH merger simulations ... [Arnowitt,Deser,Misner,...]
- Quantum: QG as a constrained QFT [Bergmann, DeWitt, Dirac, Komar, Wheeler,...]
- Key assumption: Globally hyperbolic spacetimes (M, g)
- \bigcirc \Rightarrow $M\cong\mathbb{R}\times\sigma$ [Geroch, Sanchez & Bilal
- M can be foliated by leaves $t \mapsto \Sigma_t \cong \sigma$ ("3+1" split: space+time)
- Lapse, shift parametrisation of foliation

$$ds^2 = -[I \ dt]^2 + q_{ab}[dx^a + s^a \ dt] [dx^b + s^b \ dt]$$

- Legendre transform for constrained systems (Dirac algorithm): $(g, \dot{g}) \mapsto (g, p)$ (3-metric on σ , conj. momentum), Poisson brackets $\{.,.\}$. Similar for matter.
- plus: spatial diffeomorphism and Hamiltonian constraints V_a; a = 1,2,3, S
 (temporal-spatial, temporal-temporal components of Einstein egns)

- Canonical approach to classical & quantum GR has long tradition
- Classical: Initial value formulation, numerical integration of Einstein equations, BH merger simulations ... [Arnowitt,Deser,Misner,...]
- Quantum: QG as a constrained QFT [Bergmann, DeWitt, Dirac, Komar, Wheeler,...]
- Key assumption: Globally hyperbolic spacetimes (M, g)
- $\longrightarrow M \cong \mathbb{R} \times \sigma$ [Geroch, Sanchez & Bilal]
- M can be foliated by leaves $t \mapsto \Sigma_t \cong \sigma$ ("3+1" split: space+time)
- Lapse, shift parametrisation of foliation

$$ds^2 = -[I \ dt]^2 + q_{ab}[dx^a + s^a \ dt] [dx^b + s^b \ dt]$$

- Legendre transform for constrained systems (Dirac algorithm): $(g, \dot{g}) \mapsto (g, p)$ (3-metric on σ , conj. momentum), Poisson brackets {.,.}. Similar for matter.
- plus: spatial diffeomorphism and Hamiltonian constraints V_a; a = 1,2,3, S
 (temporal-spatial, temporal-temporal components of Einstein egns)

- Canonical approach to classical & quantum GR has long tradition
- Classical: Initial value formulation, numerical integration of Einstein equations, BH merger simulations ... [Arnowitt,Deser,Misner,...]
- Quantum: QG as a constrained QFT [Bergmann, DeWitt, Dirac, Komar, Wheeler,...]
- Key assumption: Globally hyperbolic spacetimes (M, g)
- $lacktriangledown \Rightarrow M\cong \mathbb{R} imes\sigma$ [Geroch, Sanchez & Bilal]
- *M* can be foliated by leaves $t \mapsto \Sigma_t \cong \sigma$ ("3+1" split: space+time)
- Lapse, shift parametrisation of foliation

$$ds^2 = -[I \ dt]^2 + q_{ab}[dx^a + s^a \ dt] \ [dx^b + s^b \ dt]$$

- Legendre transform for constrained systems (Dirac algorithm): $(g, \dot{g}) \mapsto (g, p)$ (3-metric on σ , conj. momentum), Poisson brackets {.,.}. Similar for matter.
- plus: spatial diffeomorphism and Hamiltonian constraints V_a ; a = 1, 2, 3, S (temporal-spatial, temporal-temporal components of Einstein egns)

- Canonical approach to classical & quantum GR has long tradition
- Classical: Initial value formulation, numerical integration of Einstein equations, BH merger simulations ... [Arnowitt,Deser,Misner,...]
- Quantum: QG as a constrained QFT [Bergmann, DeWitt, Dirac, Komar, Wheeler...]
- Key assumption: Globally hyperbolic spacetimes (M, g)
- $lacktriangledown \Rightarrow M\cong \mathbb{R} imes\sigma$ [Geroch, Sanchez & Bilal]
- *M* can be foliated by leaves $t \mapsto \Sigma_t \cong \sigma$ ("3+1" split: space+time)
- Lapse, shift parametrisation of foliation

$$ds^2 = -[I \ dt]^2 + q_{ab}[dx^a + s^a \ dt] [dx^b + s^b \ dt]$$

- Legendre transform for constrained systems (Dirac algorithm): $(g, \dot{g}) \mapsto (g, p)$ (3-metric on σ , conj. momentum), Poisson brackets {.,.}. Similar for matter.
- plus: spatial diffeomorphism and Hamiltonian constraints V_a; a = 1,2,3, S
 (temporal-spatial, temporal-temporal components of Einstein egns)

- Canonical approach to classical & quantum GR has long tradition
- Classical: Initial value formulation, numerical integration of Einstein equations, BH merger simulations ... [Arnowitt,Deser,Misner,...]
- Quantum: QG as a constrained QFT [Bergmann, DeWitt, Dirac, Komar, Wheeler...]
- Key assumption: Globally hyperbolic spacetimes (M, g)
- $lacktriangledown \Rightarrow M\cong \mathbb{R} imes \sigma$ [Geroch, Sanchez & Bilal]
- *M* can be foliated by leaves $t \mapsto \Sigma_t \cong \sigma$ ("3+1" split: space+time)
- Lapse, shift parametrisation of foliation

$$ds^2 = -[I \ dt]^2 + q_{ab}[dx^a + s^a \ dt] [dx^b + s^b \ dt]$$

- Legendre transform for constrained systems (Dirac algorithm): $(g, \dot{g}) \mapsto (g, p)$ (3-metric on σ , conj. momentum), Poisson brackets {.,.}. Similar for matter.
- plus: spatial diffeomorphism and Hamiltonian constraints V_a; a = 1,2,3, S
 (temporal-spatial, temporal-temporal components of Einstein egns)

- Canonical approach to classical & quantum GR has long tradition
- Classical: Initial value formulation, numerical integration of Einstein equations, BH merger simulations ... [Arnowitt,Deser,Misner,...]
- Quantum: QG as a constrained QFT [Bergmann, DeWitt, Dirac, Komar, Wheeler...]
- Key assumption: Globally hyperbolic spacetimes (M, g)
- $lacktriangledown \Rightarrow M\cong \mathbb{R} imes \sigma$ [Geroch, Sanchez & Bilal]
- M can be foliated by leaves $t \mapsto \Sigma_t \cong \sigma$ ("3+1" split: space+time)
- Lapse, shift parametrisation of foliation

$$ds^2 = -[I \ dt]^2 + q_{ab}[dx^a + s^a \ dt] [dx^b + s^b \ dt]$$

- Legendre transform for constrained systems (Dirac algorithm): $(g, \dot{g}) \mapsto (q, p)$ (3-metric on σ , conj. momentum), Poisson brackets $\{.,.\}$. Similar for matter.
- plus: spatial diffeomorphism and Hamiltonian constraints V_a; a = 1,2,3, S
 (temporal-spatial, temporal-temporal components of Einstein egns)

- Canonical approach to classical & quantum GR has long tradition
- Classical: Initial value formulation, numerical integration of Einstein equations, BH merger simulations ... [Arnowitt,Deser,Misner,...]
- Quantum: QG as a constrained QFT [Bergmann, DeWitt, Dirac, Komar, Wheeler,..]
- Key assumption: Globally hyperbolic spacetimes (M, g)
- $lacktriangledown \Rightarrow M\cong \mathbb{R} imes \sigma$ [Geroch, Sanchez & Bilal]
- M can be foliated by leaves $t \mapsto \Sigma_t \cong \sigma$ ("3+1" split: space+time)
- Lapse, shift parametrisation of foliation

$$ds^2 = -[I \ dt]^2 + q_{ab}[dx^a + s^a \ dt] [dx^b + s^b \ dt]$$

- Legendre transform for constrained systems (Dirac algorithm): $(g, \dot{g}) \mapsto (q, p)$ (3-metric on σ , conj. momentum), Poisson brackets $\{.,.\}$. Similar for matter.
- plus: spatial diffeomorphism and Hamiltonian constraints V_a ; a = 1, 2, 3, S (temporal-spatial, temporal-temporal components of Einstein egns)

- Let $Q := \sqrt{\det(q)}$, smeared constraints: $V[u] = \int_{\sigma} d^3z \ u^a \ V_a$; $S[f] = \int_{\sigma} d^3z \ f \ S$
- Classical HDA h [Hojman, Kuchar, Teitelboim]

$$\{V[u], V[v]\} = -V[[u, v]], \{V[u], S[f]\} = -S[u[f]],$$
$$\{S[f], S[g]\} = -V[\mathbf{q}^{-1} (M dN - N dM)]$$

Observations:

encodes local spacetime diffeomorphism covariance
 finot a Lie algebra due to g⁻¹; "open algebra, algebroid"

 Anomaly-free representation of h major challenge in quantum reduction (QR) approach to CQG

- Let $Q := \sqrt{\det(q)}$, smeared constraints: $V[u] = \int_{\mathcal{C}} d^3z \ u^a \ V_a$; $S[f] = \int_{\mathcal{C}} d^3z \ f \ S$
- Classical HDA h [Hojman, Kuchar, Teitelboim]

$$\{V[u], V[v]\} = -V[[u, v]], \ \{V[u], S[f]\} = -S[u[f]],$$

$$\{S[f], \ S[g]\} = -V[\frac{q^{-1}}{q^{-1}} (M \ dN - N \ dM)]$$

- Observations:
 - encodes local spacetime diffeomorphism covariance
 finot a Lie algebra due to q⁻¹: "open algebra, algebroid"
- Anomaly-free representation of
 η major challenge in quantum reduction (QR) approach to CQG

- Let $Q := \sqrt{\det(q)}$, smeared constraints: $V[u] = \int_{\sigma} d^3z \ u^a \ V_a$; $S[f] = \int_{\sigma} d^3z \ f \ S$
- Classical HDA h [Hojman, Kuchar, Teitelboim]

$$\{V[u], V[v]\} = -V[[u, v]], \ \{V[u], S[f]\} = -S[u[f]],$$

$$\{S[f], \ S[g]\} = -V[\frac{q^{-1}}{q^{-1}} (M \ dN - N \ dM)]$$

- Observations:
 - encodes local spacetime diffeomorphism covariance
 - h not a Lie algebra due to q^{-1} : "open algebra, algebroid"
- Anomaly-free representation of

 η major challenge in quantum reduction (QR)

 approach to CQG

- Let $Q := \sqrt{\det(q)}$, smeared constraints: $V[u] = \int_{\sigma} d^3z \ u^a \ V_a$; $S[f] = \int_{\sigma} d^3z \ f \ S$
- Classical HDA h [Hojman, Kuchar, Teitelboim]

$$\{V[u], V[v]\} = -V[[u, v]], \ \{V[u], S[f]\} = -S[u[f]],$$

$$\{S[f], \ S[g]\} = -V[\frac{q^{-1}}{q^{-1}} (M \ dN - N \ dM)]$$

- Observations:
 - encodes local spacetime diffeomorphism covariance
 - \mathfrak{h} not a Lie algebra due to q^{-1} : "open algebra, algebroid"
- Anomaly-free representation of h major challenge in quantum reduction (QR) approach to CQG

- Let $Q := \sqrt{\det(q)}$, smeared constraints: $V[u] = \int_{\sigma} d^3z \ u^a \ V_a$; $S[f] = \int_{\sigma} d^3z \ f \ S$
- Classical HDA h [Hojman, Kuchar, Teitelboim]

$$\{V[u], V[v]\} = -V[[u, v]], \ \{V[u], S[f]\} = -S[u[f]],$$

$$\{S[f], \ S[g]\} = -V[\frac{q^{-1}}{q^{-1}} (M \ dN - N \ dM)]$$

- Observations:
 - encodes local spacetime diffeomorphism covariance
 - h not a Lie algebra due to q^{-1} : "open algebra, algebroid"
- Anomaly-free representation of η major challenge in quantum reduction (QR) approach to CQG

- Totally constrained Hamiltonian C(T) := V[s] + S[I]
- V, S generator of gauge transf. rather than physical motion
- Observables, physical motion? ("problem of time"
- Relational (Dirac) observables

 Gauge fixing
- Split geometry, matter canonical pairs into 2 sets (q, p) = ((Q, P), (X, Y)) called "true" (observable) and "gauge" (not observable)
- Solve constr. C = 0 for Y = -h(X; Q, P), impose gauge cond. G := X k = 0
- Solve stability condition $\frac{d}{dt}G = 0 \Leftrightarrow \{C(T), X\} = \partial_t k \text{ for } = T$
- lacktriangledown Reduced (true, physical,...) Hamiltonian for $\mathcal{O}=\mathcal{O}(Q,P)$ [Hanson, Regge, Teitelboim]

$$\{H, \mathcal{O}\} := \{C(T), \mathcal{O}\}_{X=k, Y=-h, T=T_*} \Rightarrow H = \int d^3z \ \dot{k} \cdot h(X=k, Q, P)$$

- Totally constrained Hamiltonian C(T) := V[s] + S[I]
- V, S generator of gauge transf. rather than physical motion
- Observables, physical motion? ("problem of time")
- Relational (Dirac) observables
 ⇔ Gauge fixing
- Split geometry, matter canonical pairs into 2 sets (q, p) = ((Q, P), (X, Y)) called "true" (observable) and "gauge" (not observable)
- Solve constr. C = 0 for Y = -h(X; Q, P), impose gauge cond. G := X k = 0
- Solve stability condition $\frac{d}{dt}G = 0 \Leftrightarrow \{C(T), X\} = \partial_t k \text{ for } = T$
- lacktriangledown Reduced (true, physical,...) Hamiltonian for $\mathcal{O}=\mathcal{O}(Q,P)$ [Hanson, Regge, Teitelboim]

$$\{H, \mathcal{O}\} := \{C(T), \mathcal{O}\}_{X=k, Y=-h, T=T_*} \Rightarrow H = \int d^3z \ \dot{k} \cdot h(X=k, Q, P)$$

- Totally constrained Hamiltonian C(T) := V[s] + S[I]
- V, S generator of gauge transf. rather than physical motion
- Observables, physical motion? ("problem of time")
- Relational (Dirac) observables
 ⇔ Gauge fixing
- Split geometry, matter canonical pairs into 2 sets (q, p) = ((Q, P), (X, Y)) called "true" (observable) and "gauge" (not observable)
- Solve constr. C = 0 for Y = -h(X; Q, P), impose gauge cond. G := X k = 0
- Solve stability condition $\frac{d}{dt}G = 0 \Leftrightarrow \{C(T), X\} = \partial_t k \text{ for } = T$
- $lackbox{ }$ Reduced (true, physical,...) Hamiltonian for $\mathcal{O}=\mathcal{O}(Q,P)$ [Hanson, Regge, Teitelboim

$$\{H,\mathcal{O}\} := \{C(T),\mathcal{O}\}_{X=k,Y=-h,T=T_*} \Rightarrow H = \int d^3z \, \dot{k} \cdot h(X=k,Q,P)$$

- Totally constrained Hamiltonian C(T) := V[s] + S[I]
- V, S generator of gauge transf. rather than physical motion
- Observables, physical motion? ("problem of time")
- Relational (Dirac) observables ⇔ Gauge fixing
- Split geometry, matter canonical pairs into 2 sets (q, p) = ((Q, P), (X, Y)) called "true" (observable) and "gauge" (not observable)
- Solve constr. C = 0 for Y = -h(X; Q, P), impose gauge cond. G := X k = 0
- Solve stability condition $\frac{d}{dt}G = 0 \Leftrightarrow \{C(T), X\} = \partial_t k \text{ for } = T$
- $lackbox{ }$ Reduced (true, physical,...) Hamiltonian for $\mathcal{O}=\mathcal{O}(Q,P)$ [Hanson, Regge, Teitelboim

$$\{H,\mathcal{O}\}:=\{C(T),\mathcal{O}\}_{X=k,Y=-h,T=T_*} \Rightarrow H=\int d^3z \ \dot{k} \cdot h(X=k,Q,P)$$

- Totally constrained Hamiltonian C(T) := V[s] + S[I]
- V, S generator of gauge transf. rather than physical motion
- Observables, physical motion? ("problem of time")
- Relational (Dirac) observables ⇔ Gauge fixing
- Split geometry, matter canonical pairs into 2 sets (q, p) = ((Q, P), (X, Y)) called "true" (observable) and "gauge" (not observable)
- Solve constr. C = 0 for Y = -h(X; Q, P), impose gauge cond. G := X k = 0
- Solve stability condition $\frac{d}{dt}G = 0 \Leftrightarrow \{C(T), X\} = \partial_t k \text{ for } = T$
- $lackbox{ }$ Reduced (true, physical,...) Hamiltonian for $\mathcal{O}=\mathcal{O}(Q,P)$ [Hanson, Regge, Teitelboim

$$\{H, \mathcal{O}\} := \{C(T), \mathcal{O}\}_{X=k, Y=-h, T=T_*} \Rightarrow H = \int d^3z \ \dot{k} \cdot h(X=k, Q, P)$$

- Totally constrained Hamiltonian C(T) := V[s] + S[I]
- V, S generator of gauge transf. rather than physical motion
- Observables, physical motion? ("problem of time")
- Relational (Dirac) observables
 ⇔ Gauge fixing
- Split geometry, matter canonical pairs into 2 sets (q, p) = ((Q, P), (X, Y)) called "true" (observable) and "gauge" (not observable)
- Solve constr. C = 0 for Y = -h(X; Q, P), impose gauge cond. G := X k = 0
- Solve stability condition $\frac{d}{dt}G = 0 \Leftrightarrow \{C(T), X\} = \partial_t k \text{ for } = T$
- $lackbox{ }$ Reduced (true, physical,...) Hamiltonian for $\mathcal{O}=\mathcal{O}(Q,P)$ [Hanson, Regge, Teitelboim

$$\{H, \mathcal{O}\} := \{C(T), \mathcal{O}\}_{X=k, Y=-h, T=T_*} \Rightarrow H = \int d^3z \ \dot{k} \cdot h(X=k, Q, P)$$

- Totally constrained Hamiltonian C(T) := V[s] + S[I]
- V, S generator of gauge transf. rather than physical motion
- Observables, physical motion? ("problem of time")
- Relational (Dirac) observables
 ⇔ Gauge fixing
- Split geometry, matter canonical pairs into 2 sets (q, p) = ((Q, P), (X, Y)) called "true" (observable) and "gauge" (not observable)
- Solve constr. C = 0 for Y = -h(X; Q, P), impose gauge cond. G := X k = 0
- Solve stability condition $\frac{d}{dt}G = 0 \Leftrightarrow \{C(T), X\} = \partial_t k \text{ for } = T_*$
- lacktriangledown Reduced (true, physical,...) Hamiltonian for $\mathcal{O}=\mathcal{O}(Q,P)$ [Hanson, Regge, Teitelboim

$$\{H,\mathcal{O}\} := \{C(T),\mathcal{O}\}_{X=k,Y=-h,T=T_*} \ \Rightarrow \ H = \int \ d^3z \ \dot{k} \cdot h(X=k,Q,P)$$

- Totally constrained Hamiltonian C(T) := V[s] + S[I]
- V, S generator of gauge transf. rather than physical motion
- Observables, physical motion? ("problem of time")
- Relational (Dirac) observables

 Gauge fixing
- Split geometry, matter canonical pairs into 2 sets (q, p) = ((Q, P), (X, Y)) called "true" (observable) and "gauge" (not observable)
- Solve constr. C = 0 for Y = -h(X; Q, P), impose gauge cond. G := X k = 0
- Solve stability condition $\frac{d}{dt}G = 0 \Leftrightarrow \{C(T), X\} = \partial_t k \text{ for } = T_*$
- lacktriangledown Reduced (true, physical,...) Hamiltonian for $\mathcal{O}=\mathcal{O}(Q,P)$ [Hanson, Regge, Teitelboim]

$$\{H,\mathcal{O}\} := \{C(T),\mathcal{O}\}_{X=k,Y=-h,T=T_*} \ \Rightarrow \ H = \int \ d^3z \ \dot{k} \cdot h(X=k,Q,P)$$

- Totally constrained Hamiltonian C(T) := V[s] + S[I]
- V, S generator of gauge transf. rather than physical motion
- Observables, physical motion? ("problem of time")
- Relational (Dirac) observables

 Gauge fixing
- Split geometry, matter canonical pairs into 2 sets (q, p) = ((Q, P), (X, Y)) called "true" (observable) and "gauge" (not observable)
- Solve constr. C = 0 for Y = -h(X; Q, P), impose gauge cond. G := X k = 0
- Solve stability condition $\frac{d}{dt}G = 0 \Leftrightarrow \{C(T), X\} = \partial_t k \text{ for } = T_*$
- lacktriangledown Reduced (true, physical,...) Hamiltonian for $\mathcal{O}=\mathcal{O}(Q,P)$ [Hanson, Regge, Teitelboim]

$$\{H,\mathcal{O}\} := \{C(T),\mathcal{O}\}_{X=k,Y=-h,T=T_*} \ \Rightarrow \ H = \int \ d^3z \ \dot{k} \cdot h(X=k,Q,P)$$

- Non-perturbative: PT applied to QG: non-renormalisable [Goroff, Sagnotti 85]
- Background independence: no metric singled out by Einstein eqns.
- Continuum theory: no ad hoc discrete input
- Standard QFT: construct QFT of gravitational field in 3+1
- Algebraic QFT (AQFT) methods: Algebras \mathfrak{A} , exp. val. states ω
- Standard AQFT: Fix classical background g_0 , construct $\mathfrak{A}g_0(O)$ If O, O' causally disjoint wrt g_0 then $[\mathfrak{A}g_0(O), \mathfrak{A}g_0(O')] = 0$
- BI violation, in QG $g = g_0$ not fixed, even operator, fluctuating causality
- Algebraic QG (AQG): Suppose 1. $\omega(g^2) \omega(g)^2$ "small" (semiclassical), 2. O, O' causally disjoint wrt $\omega(g)$ then show $\omega([\mathfrak{A}(O), \mathfrak{A}(O')])$ small
- AQFT: g_0 distinguished, used to construct $\mathfrak{A}_{g_0}(O)$
- How to construct \(\O(O) \) in CQG? Like in usual QFT in CST:
 Solve Heisenberg picture EOM wrt physical H from "time zero" fields

- Non-perturbative: PT applied to QG: non-renormalisable [Goroff, Sagnotti 85]
- Background independence: no metric singled out by Einstein eqns.
- Continuum theory: no ad hoc discrete inpu
- Standard QFT: construct QFT of gravitational field in 3+1
- Algebraic QFT (AQFT) methods: Algebras \mathfrak{A} , exp. val. states ω
- Standard AQFT: Fix classical background g_0 , construct $\mathfrak{A}_{g_0}(O)$ If O, O' causally disjoint wrt g_0 then $[\mathfrak{A}_{g_0}(O), \mathfrak{A}_{g_0}(O')] = 0$
- BI violation, in QG $g = g_0$ not fixed, even operator, fluctuating causality
- Algebraic QG (AQG): Suppose 1. $\omega(g^2) \omega(g)^2$ "small" (semiclassical), 2. O, O' causally disjoint wrt $\omega(g)$ then show $\omega([\mathfrak{A}(O), \mathfrak{A}(O')])$ small
- Difference:
 - AQFT: g_0 distinguished, used to construct $\mathfrak{A}_{g_0}(O)$ AQG: $g_0 \not \equiv \mathfrak{A}, \mathfrak{A}(O)$ BI, quantum locality rel. to state only
- How to construct
 Ω(O) in CQG? Like in usual QFT in CST:
 Solve Heisenberg picture EOM wrt physical H from "time zero" fields

- Non-perturbative: PT applied to QG: non-renormalisable [Goroff, Sagnotti 85]
- Background independence: no metric singled out by Einstein eqns.
- Continuum theory: no ad hoc discrete input
- Standard QFT: construct QFT of gravitational field in 3+1
- Algebraic QFT (AQFT) methods: Algebras $\mathfrak A$, exp. val. states ω
- Standard AQFT: Fix classical background g_0 , construct $\mathfrak{A}g_0(O)$ If O, O' causally disjoint wrt g_0 then $[\mathfrak{A}g_0(O), \mathfrak{A}g_0(O')] = 0$
- BI violation, in QG $g = g_0$ not fixed, even operator, fluctuating causality
- Algebraic QG (AQG): Suppose 1. $\omega(g^2) \omega(g)^2$ "small" (semiclassical), 2. O, O' causally disjoint wrt $\omega(g)$ then show $\omega([\mathfrak{A}(O), \mathfrak{A}(O')])$ small
- Difference:
 - AQFT: g_0 distinguished, used to construct $\mathfrak{A}_{g_0}(O)$ AQG: $g_0 \not \equiv \mathfrak{A}, \mathfrak{A}(O)$ BI, quantum locality rel. to state only
- How to construct \(\mathbb{U}(O) \) in CQG? Like in usual QFT in CST:
 Solve Heisenberg picture EOM wrt physical H from "time zero" fields

- Non-perturbative: PT applied to QG: non-renormalisable [Goroff, Sagnotti 85]
- Background independence: no metric singled out by Einstein eqns.
- Continuum theory: no ad hoc discrete input
- Standard QFT: construct QFT of gravitational field in 3+1
- Algebraic QFT (AQFT) methods: Algebras \mathfrak{A} , exp. val. states ω
- Standard AQFT: Fix classical background g_0 , construct $\mathfrak{A}g_0(O)$ If O, O' causally disjoint wrt g_0 then $[\mathfrak{A}g_0(O), \mathfrak{A}g_0(O')] = 0$
- BI violation, in QG $g = g_0$ not fixed, even operator, fluctuating causality
- Algebraic QG (AQG): Suppose 1. $\omega(g^2) \omega(g)^2$ "small" (semiclassical), 2. O, O' causally disjoint wrt $\omega(g)$ then show $\omega([\mathfrak{A}(O), \mathfrak{A}(O')])$ small
- AQFT: a_0 distinguished, used
 - AQFT: g_0 distinguished, used to construct $\mathfrak{A}_{g_0}(O)$ AQG: $g_0 \not\equiv \mathfrak{A}(O)$ BI, quantum locality rel. to state only
- How to construct \(\O(O) \) in CQG? Like in usual QFT in CST:
 Solve Heisenberg picture EOM wrt physical H from "time zero" fields

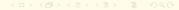
- Non-perturbative: PT applied to QG: non-renormalisable [Goroff, Sagnotti 85]
- Background independence: no metric singled out by Einstein eqns.
- Continuum theory: no ad hoc discrete input
- Standard QFT: construct QFT of gravitational field in 3+1
- Algebraic QFT (AQFT) methods: Algebras
 Ω, exp. val. states ω
- Standard AQFT: Fix classical background g_0 , construct $\mathfrak{A}g_0(O)$ If O, O' causally disjoint wrt g_0 then $[\mathfrak{A}g_0(O), \mathfrak{A}g_0(O')] = 0$
- BI violation, in QG $g = g_0$ not fixed, even operator, fluctuating causality
- Algebraic QG (AQG): Suppose 1. $\omega(g^2) \omega(g)^2$ "small" (semiclassical), 2. O, O' causally disjoint wrt $\omega(g)$ then show $\omega([\mathfrak{A}(O), \mathfrak{A}(O')])$ small
- Difference:
 AQFT: a₁ distinguished, used to contain the contain
 - AQFT: g_0 distinguished, used to construct $\mathfrak{A}_{g_0}(O)$ AQG: $g_0 \not\supseteq \mathfrak{A}(O)$ BI, quantum locality rel. to state only
- How to construct \(\O(O) \) in CQG? Like in usual QFT in CST:
 Solve Heisenberg picture EOM wrt physical H from "time zero" fields

- Non-perturbative: PT applied to QG: non-renormalisable [Goroff, Sagnotti 85]
- Background independence: no metric singled out by Einstein eqns.
- Continuum theory: no ad hoc discrete input
- Standard QFT: construct QFT of gravitational field in 3+1
- Algebraic QFT (AQFT) methods: Algebras \mathfrak{A} , exp. val. states ω
- Standard AQFT: Fix classical background g_0 , construct $\mathfrak{A}g_0(O)$ If O, O' causally disjoint wrt g_0 then $[\mathfrak{A}g_0(O), \mathfrak{A}g_0(O')] = 0$
- BI violation, in QG $g = g_0$ not fixed, even operator, fluctuating causality
- Algebraic QG (AQG): Suppose 1. $\omega(g^2) \omega(g)^2$ "small" (semiclassical), 2. O, O' causally disjoint wr $\omega(g)$ then show $\omega([\mathfrak{A}(O),\mathfrak{A}(O')])$ small
- AQFT: g_0 distinguished, used to construct $\mathfrak{A}_{g_0}(O)$ AQG: $g_0 \not\equiv \mathfrak{A}$ $\mathfrak{A}(O)$ BI, quantum locality rel. to state only
- How to construct \(\mathbb{Q}(O) \) in CQG? Like in usual QFT in CST:
 Solve Heisenberg picture EOM wrt physical H from "time zero" fields

- Non-perturbative: PT applied to QG: non-renormalisable [Goroff, Sagnotti 85]
- Background independence: no metric singled out by Einstein eqns.
- Continuum theory: no ad hoc discrete input
- Standard QFT: construct QFT of gravitational field in 3+1
- Algebraic QFT (AQFT) methods: Algebras $\mathfrak A$, exp. val. states ω
- Standard AQFT: Fix classical background g_0 , construct $\mathfrak{A}g_0(O)$ If O, O' causally disjoint wrt g_0 then $[\mathfrak{A}g_0(O), \mathfrak{A}g_0(O')] = 0$
- BI violation, in QG $g = g_0$ not fixed, even operator, fluctuating causality
- Algebraic QG (AQG): Suppose 1. $\omega(g^2) \omega(g)^2$ "small" (semiclassical), 2. O, O' causally disjoint write $\omega(g)$ then show $\omega([\mathfrak{A}(O), \mathfrak{A}(O')])$ small
- AQFT: g_0 distinguished, used to construct $\mathfrak{A}_{g_0}(O)$ AQG: $g_0 \not\supseteq \mathfrak{A}, \mathfrak{A}(O)$ BI, quantum locality rel. to state only
- How to construct \(\O(O) \) in CQG? Like in usual QFT in CST:
 Solve Heisenberg picture EOM wrt physical H from "time zero" fields

- Non-perturbative: PT applied to QG: non-renormalisable [Goroff, Sagnotti 85]
- Background independence: no metric singled out by Einstein eqns.
- Continuum theory: no ad hoc discrete input
- Standard QFT: construct QFT of gravitational field in 3+1
- Algebraic QFT (AQFT) methods: Algebras \mathfrak{A} , exp. val. states ω
- Standard AQFT: Fix classical background g_0 , construct $\mathfrak{A}g_0(O)$ If O, O' causally disjoint wrt g_0 then $[\mathfrak{A}g_0(O), \mathfrak{A}g_0(O')] = 0$
- lacktriangle BI violation, in QG $g=g_0$ not fixed, even operator, fluctuating causality
- Algebraic QG (AQG): Suppose 1. $\omega(g^2) \omega(g)^2$ "small" (semiclassical), 2. O, O' causally disjoint wrt $\omega(g)$ then show $\omega([\mathfrak{A}(O), \mathfrak{A}(O')])$ small
- AQFT: g_0 distinguished, used to construct $\mathfrak{A}_{g_0}(O)$ AQG: $g_0 \not\exists \mathfrak{A} \mathfrak{A}(O)$ BI, quantum locality rel. to state only
- How to construct \(\O(O) \) in CQG? Like in usual QFT in CST:
 Solve Heisenberg picture EOM wrt physical H from "time zero" fields

- Non-perturbative: PT applied to QG: non-renormalisable [Goroff, Sagnotti 85]
- Background independence: no metric singled out by Einstein eqns.
- Continuum theory: no ad hoc discrete input
- Standard QFT: construct QFT of gravitational field in 3+1
- Algebraic QFT (AQFT) methods: Algebras $\mathfrak A$, exp. val. states ω
- Standard AQFT: Fix classical background g_0 , construct $\mathfrak{A}g_0(O)$ If O, O' causally disjoint wrt g_0 then $[\mathfrak{A}g_0(O), \mathfrak{A}g_0(O')] = 0$
- lacktriangle BI violation, in QG $g=g_0$ not fixed, even operator, fluctuating causality
- Algebraic QG (AQG): Suppose 1. $\omega(g^2) \omega(g)^2$ "small" (semiclassical), 2. O, O' causally disjoint wrt $\omega(g)$ then show $\omega([\mathfrak{A}(O),\mathfrak{A}(O')])$ small
- Difference:
 - AQFT: g_0 distinguished, used to construct $\mathfrak{A}_{g_0}(O)$ AQG: $g_0 \not \supseteq \mathfrak{A}(O)$ BI, quantum locality rel. to state only
- How to construct \(\mathbb{A}(O) \) in CQG? Like in usual QFT in CST:
 Solve Heisenberg picture EOM wrt physical H from "time zero" fields



Generalities

- Non-perturbative: PT applied to QG: non-renormalisable [Goroff, Sagnotti 85]
- Background independence: no metric singled out by Einstein eqns.
- Continuum theory: no ad hoc discrete input
- Standard QFT: construct QFT of gravitational field in 3+1
- Algebraic QFT (AQFT) methods: Algebras $\mathfrak A$, exp. val. states ω
- Standard AQFT: Fix classical background g_0 , construct $\mathfrak{A}g_0(O)$ If O, O' causally disjoint wrt g_0 then $[\mathfrak{A}g_0(O), \mathfrak{A}g_0(O')] = 0$
- lacktriangle BI violation, in QG $g=g_0$ not fixed, even operator, fluctuating causality
- Algebraic QG (AQG): Suppose 1. $\omega(g^2) \omega(g)^2$ "small" (semiclassical), 2. O, O' causally disjoint wrt $\omega(g)$ then show $\omega([\mathfrak{A}(O),\mathfrak{A}(O')])$ small
- Difference:
 - AQFT: g_0 distinguished, used to construct $\mathfrak{A}_{g_0}(O)$ AQG: $g_0 \not\equiv \mathfrak{A}(O)$ BI, quantum locality rel. to state only
- How to construct A(O) in CQG? Like in usual QFT in CST:
 Solve Heisenberg picture EOM wrt physical H from "time zero" fields

- Select "time zero" Weyl algebra $\mathfrak A$ gen. by Weyl elements W[f,F] for (q,p) resp. (Q,P) in QR resp. CR
- Express C(T), $\{C(T), C(T')\}$ resp. H in terms of $a \in \mathfrak{A}$
- Study states ω on $\mathfrak A$ (e.v. functionals): $(\rho, \mathcal H, \Omega)$ GNS data
- Select ω s.t. $\rho(C(T))$, $\rho(\{C(T), C(T')\})$ resp. $\rho(H)$ densely defined operators on $\mathcal{D} := \rho(\mathfrak{A})\Omega$.
- In addition
 - \bullet QR: \mathcal{D} inv. for $\rho(\mathcal{C}(T))$ and anomaly freeness of \mathfrak{h}
 - $[\rho(C(T)), \rho(C(T'))] = i \rho(\{C(T), C(T')\})$
 - CR: $\rho(H)$ has s.a. extensions
- CR Physics: \mathcal{H} already phys. HS, study S-matrix of H etc.
- QR Physics:
 - construct solutions $I: \mathcal{D} \to \mathbb{C}$ s.t. $I[C(T)\psi] = 0 \ \ \forall T, \ \psi \in \mathcal{D}$ • "rigging map" $I = \delta[C]\psi, \ \psi \in \mathcal{D}$ (if constraint Lie algebra). Phys. HS
 - $<\delta[G]\psi,\delta[G]\psi'>_{phys}:=<\psi,\delta[G]|\psi'>$
 - ullet construct rep. of gauge inv. obs. on \mathcal{H}_{phys}
- QR more complicated than CR, use CR for HDA, QR for other constr.

- Select "time zero" Weyl algebra $\mathfrak A$ gen. by Weyl elements W[f,F] for (q,p) resp. (Q,P) in QR resp. CR
- Express C(T), $\{C(T), C(T')\}$ resp. H in terms of $a \in \mathfrak{A}$
- Study states ω on $\mathfrak A$ (e.v. functionals): $(\rho, \mathcal H, \Omega)$ GNS data
- Select ω s.t. $\rho(C(T))$, $\rho(\{C(T), C(T')\})$ resp. $\rho(H)$ densely defined operators on $\mathcal{D} := \rho(\mathfrak{A})\Omega$.
- In addition
 - QR: \mathcal{D} inv. for $\rho(C(T))$ and anomaly freeness of \mathfrak{h}
 - $[\rho(C(T)), \rho(C(T'))] = i \rho(\{C(T), C(T')\})$
 - CR: $\rho(H)$ has s.a. extensions
- ullet CR Physics: ${\cal H}$ already phys. HS, study S-matrix of ${\cal H}$ etc.
- QR Physics:
 - construct solutions $I: \mathcal{D} \to \mathbb{C}$ s.t. $I[C(T)\psi] = 0 \ \ \forall T, \ \psi \in \mathcal{D}$ • "rigging map" $I = \delta[C]\psi, \ \psi \in \mathcal{D}$ (if constraint Lie algebra). Phys. HS
 - $\langle o[O]\psi, o[O]\psi \rangle_{phys} = \langle \psi, o[O]\psi \rangle$
- QR more complicated than CR, use CR for HDA, QR for other const

- Select "time zero" Weyl algebra \mathfrak{A} gen. by Weyl elements W[f, F] for (q, p) resp. (Q, P) in QR resp. CR
- Express C(T), $\{C(T), C(T')\}$ resp. H in terms of $a \in \mathfrak{A}$
- Study states ω on \mathfrak{A} (e.v. functionals): $(\rho, \mathcal{H}, \Omega)$ GNS data

- Select "time zero" Weyl algebra $\mathfrak A$ gen. by Weyl elements W[f,F] for (q,p) resp. (Q,P) in QR resp. CR
- Express C(T), $\{C(T), C(T')\}$ resp. H in terms of $a \in \mathfrak{A}$
- Study states ω on $\mathfrak A$ (e.v. functionals): $(\rho, \mathcal H, \Omega)$ GNS data
- Select ω s.t. $\rho(C(T))$, $\rho(\{C(T), C(T')\})$ resp. $\rho(H)$ densely defined operators on $\mathcal{D} := \rho(\mathfrak{A})\Omega$.
- In additior

- CR: $\rho(H)$ has s.a. extensions
- CR Physics: H already phys. HS, study S-matrix of H etc.
- QR Physics:
 - "rigging map" $I = \delta[C]\psi, \ \psi \in \mathcal{D}$ (if constraint Lie algebra). Phys. HS
- o construct rep. or gauge inv. obs. on Aphys
- QR more complicated than CR, use CR for HDA, QR for other constr.

- Select "time zero" Weyl algebra $\mathfrak A$ gen. by Weyl elements W[f,F] for (q,p) resp. (Q,P) in QR resp. CR
- Express C(T), $\{C(T), C(T')\}$ resp. H in terms of $a \in \mathfrak{A}$
- Study states ω on $\mathfrak A$ (e.v. functionals): $(\rho, \mathcal H, \Omega)$ GNS data
- Select ω s.t. $\rho(C(T))$, $\rho(\{C(T), C(T')\})$ resp. $\rho(H)$ densely defined operators on $\mathcal{D} := \rho(\mathfrak{A})\Omega$.
- In addition
 - QR: \mathcal{D} inv. for $\rho(C(T))$ and anomaly freeness of \mathfrak{h}

$$[\rho(C(T)), \rho(C(T'))] = i \rho(\{C(T), C(T')\})$$

- CR: $\rho(H)$ has s.a. extensions
- CR Physics: \mathcal{H} already phys. HS, study S-matrix of H etc.
- QR Physics:
 - construct solutions $I: \mathcal{D} \to \mathbb{C}$ s.t. $I[C(T)\psi] = 0 \ \forall T, \ \psi \in \mathcal{D}$ • "rigging map" $I = \delta[C]\psi, \ \psi \in \mathcal{D}$ (if constraint Lie algebra). Phys. F
- ullet construct rep. or gauge inv. obs. on ${\cal H}_{phys}$
- QR more complicated than CR, use CR for HDA, QR for other constr.

- Select "time zero" Weyl algebra $\mathfrak A$ gen. by Weyl elements W[f,F] for (q,p) resp. (Q,P) in QR resp. CR
- Express C(T), $\{C(T), C(T')\}$ resp. H in terms of $a \in \mathfrak{A}$
- Study states ω on $\mathfrak A$ (e.v. functionals): $(\rho, \mathcal H, \Omega)$ GNS data
- Select ω s.t. $\rho(C(T))$, $\rho(\{C(T), C(T')\})$ resp. $\rho(H)$ densely defined operators on $\mathcal{D} := \rho(\mathfrak{A})\Omega$.
- In addition
 - QR: \mathcal{D} inv. for $\rho(C(T))$ and anomaly freeness of \mathfrak{h}

$$[\rho(C(T)), \rho(C(T'))] = i \rho(\{C(T), C(T')\})$$

- CR: $\rho(H)$ has s.a. extensions
- CR Physics: H already phys. HS, study S-matrix of H etc.
- QR Physics:
 - "rigging map" $I = \delta[C]\psi$, $\psi \in \mathcal{D}(I)$ (constraint Lie algebra). Phys. HS
- o donoti dot rop. or gaage inv. obo. on repnys
- QR more complicated than CR, use CR for HDA, QR for other constr.

- Select "time zero" Weyl algebra $\mathfrak A$ gen. by Weyl elements W[f,F] for (q,p) resp. (Q,P) in QR resp. CR
- Express C(T), $\{C(T), C(T')\}$ resp. H in terms of $a \in \mathfrak{A}$
- Study states ω on $\mathfrak A$ (e.v. functionals): $(\rho, \mathcal H, \Omega)$ GNS data
- Select ω s.t. $\rho(C(T))$, $\rho(\{C(T), C(T')\})$ resp. $\rho(H)$ densely defined operators on $\mathcal{D} := \rho(\mathfrak{A})\Omega$.
- In addition
 - QR: \mathcal{D} inv. for $\rho(C(T))$ and anomaly freeness of \mathfrak{h}

$$[\rho(C(T)), \rho(C(T'))] = i \ \rho(\{C(T), C(T')\})$$

- CR: $\rho(H)$ has s.a. extensions
- CR Physics: H already phys. HS, study S-matrix of H etc.
- QR Physics:

QR more complicated than CR, use CR for HDA, QR for other constr.

- Select "time zero" Weyl algebra $\mathfrak A$ gen. by Weyl elements W[f,F] for (q,p) resp. (Q,P) in QR resp. CR
- Express C(T), $\{C(T), C(T')\}$ resp. H in terms of $a \in \mathfrak{A}$
- Study states ω on $\mathfrak A$ (e.v. functionals): $(\rho, \mathcal H, \Omega)$ GNS data
- Select ω s.t. $\rho(C(T))$, $\rho(\{C(T), C(T')\})$ resp. $\rho(H)$ densely defined operators on $\mathcal{D} := \rho(\mathfrak{A})\Omega$.
- In addition
 - QR: \mathcal{D} inv. for $\rho(C(T))$ and anomaly freeness of \mathfrak{h}

$$[\rho(C(T)), \rho(C(T'))] = i \rho(\{C(T), C(T')\})$$

- CR: $\rho(H)$ has s.a. extensions
- CR Physics: H already phys. HS, study S-matrix of H etc.
- QR Physics:
 - construct solutions $I: \mathcal{D} \to \mathbb{C}$ s.t. $I[C(T)\psi] = 0 \ \forall T, \ \psi \in \mathcal{D}$
 - "rigging map" $I=\delta[C]\psi,\;\psi\in\mathcal{D}$ (if constraint Lie algebra). Phys. HS

$$<\delta[{\it C}]\psi,\delta[{\it C}]\psi'>_{\it phys}:=<\psi,\delta[{\it C}]\;\psi'>$$

- \bullet construct rep. of gauge inv. obs. on \mathcal{H}_{phys}
- QR more complicated than CR, use CR for HDA, QR for other constr.

- Select "time zero" Weyl algebra $\mathfrak A$ gen. by Weyl elements W[f, F] for (q, p) resp. (Q, P) in QR resp. CR
- Express C(T), $\{C(T), C(T')\}$ resp. H in terms of $a \in \mathfrak{A}$
- Study states ω on \mathfrak{A} (e.v. functionals): $(\rho, \mathcal{H}, \Omega)$ GNS data
- Select ω s.t. $\rho(C(T))$, $\rho(\{C(T), C(T')\})$ resp. $\rho(H)$ densely defined operators on $\mathcal{D} := \rho(\mathfrak{A})\Omega$.
- In addition
 - QR: \mathcal{D} inv. for $\rho(C(T))$ and anomaly freeness of \mathfrak{h}

$$[\rho(C(T)), \rho(C(T'))] = i \rho(\{C(T), C(T')\})$$

- CR: ρ(H) has s.a. extensions
- CR Physics: H already phys. HS, study S-matrix of H etc.
- QR Physics:
 - construct solutions $I: \mathcal{D} \to \mathbb{C}$ s.t. $I[C(T)\psi] = 0 \ \forall T, \ \psi \in \mathcal{D}$
 - "rigging map" $I = \delta[C]\psi, \ \psi \in \mathcal{D}$ (if constraint Lie algebra). Phys. HS

$$<\delta[C]\psi,\delta[C]\psi'>_{phys}:=<\psi,\delta[C]\psi'>$$

- Select "time zero" Weyl algebra $\mathfrak A$ gen. by Weyl elements W[f,F] for (q,p) resp. (Q,P) in QR resp. CR
- Express C(T), $\{C(T), C(T')\}$ resp. H in terms of $a \in \mathfrak{A}$
- Study states ω on $\mathfrak A$ (e.v. functionals): $(\rho, \mathcal H, \Omega)$ GNS data
- Select ω s.t. $\rho(C(T))$, $\rho(\{C(T), C(T')\})$ resp. $\rho(H)$ densely defined operators on $\mathcal{D} := \rho(\mathfrak{A})\Omega$.
- In addition
 - QR: \mathcal{D} inv. for $\rho(C(T))$ and anomaly freeness of \mathfrak{h}

$$[\rho(C(T)), \rho(C(T'))] = i \rho(\{C(T), C(T')\})$$

- CR: $\rho(H)$ has s.a. extensions
- CR Physics: H already phys. HS, study S-matrix of H etc.
- QR Physics:
 - construct solutions $I: \mathcal{D} \to \mathbb{C}$ s.t. $I[C(T)\psi] = 0 \ \forall T, \ \psi \in \mathcal{D}$
 - "rigging map" $I = \delta[C]\psi, \ \psi \in \mathcal{D}$ (if constraint Lie algebra). Phys. HS

$$<\delta[C]\psi,\delta[C]\psi'>_{phys}:=<\psi,\delta[C]\psi'>$$

- ullet construct rep. of gauge inv. obs. on \mathcal{H}_{phys}
- QR more complicated than CR, use CR for HDA, QR for other constr.

- Select "time zero" Weyl algebra $\mathfrak A$ gen. by Weyl elements W[f,F] for (q,p) resp. (Q,P) in QR resp. CR
- Express C(T), $\{C(T), C(T')\}$ resp. H in terms of $a \in \mathfrak{A}$
- Study states ω on $\mathfrak A$ (e.v. functionals): $(\rho, \mathcal H, \Omega)$ GNS data
- Select ω s.t. $\rho(C(T))$, $\rho(\{C(T), C(T')\})$ resp. $\rho(H)$ densely defined operators on $\mathcal{D} := \rho(\mathfrak{A})\Omega$.
- In addition
 - QR: \mathcal{D} inv. for $\rho(C(T))$ and anomaly freeness of \mathfrak{h}

$$[\rho(C(T)), \rho(C(T'))] = i \rho(\{C(T), C(T')\})$$

- CR: $\rho(H)$ has s.a. extensions
- CR Physics: H already phys. HS, study S-matrix of H etc.
- QR Physics:
 - construct solutions $I: \mathcal{D} \to \mathbb{C}$ s.t. $I[C(T)\psi] = 0 \ \forall T, \ \psi \in \mathcal{D}$
 - "rigging map" $I = \delta[C]\psi, \ \psi \in \mathcal{D}$ (if constraint Lie algebra). Phys. HS

$$<\delta[C]\psi,\delta[C]\psi'>_{phys}:=<\psi,\delta[C]\psi'>$$

- ullet construct rep. of gauge inv. obs. on \mathcal{H}_{phys}
- QR more complicated than CR, use CR for HDA, QR for other constr.

- Spinorial matter requires densitised triad E_j^a ; $\delta^{jk}E_j^aE_k^b=Q\ q^{ab}$, conj. SU(2) connection momentum A_a^j (canonical transf.) [Ashtekar,Barbero]
- Additional SU(2) Gauss constraint Z(r)
- Suggests Weyl elements based on holonomies, fluxes $\mathcal{P}(e^{\int_{\mathcal{D}} A}), \ e^{\int_{\mathcal{S}} *E}$ (c.f. YM)
- Every single term in Z, H (vacuum GR, cosm. const., matter) couples to E_i
- 1st state motivation: Z, H densely defined if vacuum s.t. $E_i^a \Omega = 0$
- Proposition: This fixes an irregular state of 𝔄 of [Narnhofer-Thirring] type
- lacktriangle 2nd state motivation: for suitable matter, H inv. under automorphisms $lpha_g,eta_{arphi}$
- Proposition: The GNS rep. of the LQG state defined by

$$\omega(W[f,F]) = \delta_{f,0}$$

1. is the AIL rep. [Ashtekar, Isham, Lewandowski], 2. has ONB by SNWF $\rho(W[f,0])\Omega$ [Baez, Rovelli, Smolin], 3. is unique $\operatorname{Diff}(\sigma)$ inv. state on $\mathfrak A$ [Fleischhack; Lewandowski, Okolow, Sahlmann, TT]

- Spinorial matter requires densitised triad E_j^a ; $\delta^{jk} E_j^a E_k^b = Q q^{ab}$, conj. SU(2) connection momentum \mathcal{A}_a^j (canonical transf.) [Ashtekar,Barbero]
- Additional SU(2) Gauss constraint Z(r)
- Suggests Weyl elements based on holonomies, fluxes $\mathcal{P}(e^{\int_{P}A}),\ e^{\int_{S}*E}$ (c.f. YM)
- Every single term in Z, H (vacuum GR, cosm. const., matter) couples to E_i
- 1st state motivation: Z, H densely defined if vacuum s.t. $E_i^a \Omega = 0$
- Proposition: This fixes an irregular state of A of [Narnhofer-Thirring] type
- 2nd state motivation: for suitable matter, H inv. under automorphisms $\alpha_g, \beta_{\varphi}$
- Proposition: The GNS rep. of the LQG state defined by

$$\omega(W[f,F]) = \delta_{f,0}$$

1. is the AIL rep. [Ashtekar, Isham, Lewandowski], 2. has ONB by SNWF $\rho(W[f,0])\Omega$ [Baez, Rovelli, Smolin], 3. is unique $\operatorname{Diff}(\sigma)$ inv. state on $\mathfrak A$ [Fleischhack; Lewandowski, Okolow, Sahlmann, TT]

- Spinorial matter requires densitised triad E_j^a ; $\delta^{jk} E_j^a E_k^b = Q q^{ab}$, conj. SU(2) connection momentum \mathcal{A}_a^j (canonical transf.) [Ashtekar,Barbero]
- Additional SU(2) Gauss constraint Z(r)
- Suggests Weyl elements based on holonomies, fluxes $\mathcal{P}(e^{\int_{\mathcal{P}} A})$, $e^{\int_{\mathcal{S}} *E}$ (c.f. YM)
- Every single term in Z, H (vacuum GR, cosm. const., matter) couples to E_i^a
- 1st state motivation: Z, H densely defined if vacuum s.t. $E_i^a \Omega = 0$
- Proposition: This fixes an irregular state of ℜ of [Narnhofer-Thirring] type
- 2nd state motivation: for suitable matter, H inv. under automorphisms $\alpha_g, \beta_{\varphi}$
- Proposition: The GNS rep. of the LQG state defined by

$$\omega(W[f,F]) = \delta_{f,0}$$

1. is the AIL rep. [Ashtekar, Isham, Lewandowski], 2. has ONB by SNWF $\rho(W[f,0])\Omega$ [Baez, Rovelli, Smolin], 3. is unique $\mathrm{Diff}(\sigma)$ inv. state on $\mathfrak A$ [Fleischhack; Lewandowski, Okolow, Sahlmann, TT]

- Spinorial matter requires densitised triad E_j^a ; $\delta^{jk} E_j^a E_k^b = Q q^{ab}$, conj. SU(2) connection momentum \mathcal{A}_a^j (canonical transf.) [Ashtekar,Barbero]
- Additional SU(2) Gauss constraint Z(r)
- Suggests Weyl elements based on holonomies, fluxes $\mathcal{P}(e^{\int_{\mathcal{P}} A})$, $e^{\int_{\mathcal{S}} *E}$ (c.f. YM)
- Every single term in Z, H (vacuum GR, cosm. const., matter) couples to E_i^a
- 1st state motivation: Z, H densely defined if vacuum s.t. $E_i^a \Omega = 0$
- Proposition: This fixes an irregular state of A of [Narnhofer-Thirring] type
- 2nd state motivation: for suitable matter, H inv. under automorphisms $\alpha_g, \beta_{\varphi}$
- Proposition: The GNS rep. of the LQG state defined by

$$\omega(W[f,F]) = \delta_{f,0}$$

1. is the AIL rep. [Ashtekar, Isham, Lewandowski], 2. has ONB by SNWF $\rho(W[f,0])\Omega$ [Baez, Rovelli, Smolin], 3. is unique $\operatorname{Diff}(\sigma)$ inv. state on $\mathfrak A$ [Fleischhack; Lewandowski, Okolow, Sahlmann, TT]

- Spinorial matter requires densitised triad E_j^a ; $\delta^{jk} E_j^a E_k^b = Q q^{ab}$, conj. SU(2) connection momentum \mathcal{A}_a^j (canonical transf.) [Ashtekar,Barbero]
- Additional SU(2) Gauss constraint Z(r)
- Suggests Weyl elements based on holonomies, fluxes $\mathcal{P}(e^{\int_{\mathcal{P}} A})$, $e^{\int_{\mathcal{S}} *E}$ (c.f. YM)
- Every single term in Z, H (vacuum GR, cosm. const., matter) couples to E_i^a
- 1st state motivation: Z, H densely defined if vacuum s.t. $E_i^a \Omega = 0$
- Proposition: This fixes an irregular state of A of [Narnhofer-Thirring] type
- 2nd state motivation: for suitable matter, H inv. under automorphisms $\alpha_g, \beta_{\varphi}$
- Proposition: The GNS rep. of the LQG state defined by

$$\omega(W[f,F]) = \delta_{f,0}$$

1. is the AIL rep. [Ashtekar, Isham, Lewandowski], 2. has ONB by SNWF $\rho(W[f,0])\Omega$ [Baez, Rovelli, Smolin], 3. is unique $\mathsf{Diff}(\sigma)$ inv. state on $\mathfrak A$ [Fleischhack; Lewandowski, Okolow, Sahlmann, TT]

- Spinorial matter requires densitised triad E_j^a ; $\delta^{jk}E_j^aE_k^b=Q\ q^{ab}$, conj. SU(2) connection momentum \mathcal{A}_a^j (canonical transf.) [Ashtekar,Barbero]
- Additional SU(2) Gauss constraint Z(r)
- Suggests Weyl elements based on holonomies, fluxes $\mathcal{P}(e^{\int_{\mathcal{P}} A})$, $e^{\int_{\mathcal{S}} *E}$ (c.f. YM)
- Every single term in Z, H (vacuum GR, cosm. const., matter) couples to E_i^a
- 1st state motivation: Z, H densely defined if vacuum s.t. $E_i^a \Omega = 0$
- Proposition: This fixes an irregular state of
 Ω of [Narnhofer-Thirring] type
- lacktriangle 2nd state motivation: for suitable matter, H inv. under automorphisms $lpha_g,eta_{arphi}$
- Proposition: The GNS rep. of the LQG state defined by

$$\omega(W[f,F]) = \delta_{f,0}$$

1. is the AIL rep. [Ashtekar, Isham, Lewandowski], 2. has ONB by SNWF $\rho(W[f,0])\Omega$ [Baez, Rovelli, Smolin], 3. is unique $\operatorname{Diff}(\sigma)$ inv. state on $\mathfrak A$ [Fleischhack; Lewandowski, Okolow, Sahlmann, TT]

- Spinorial matter requires densitised triad E_j^a ; $\delta^{jk} E_j^a E_k^b = Q q^{ab}$, conj. SU(2) connection momentum \mathcal{A}_a^j (canonical transf.) [Ashtekar,Barbero]
- Additional SU(2) Gauss constraint Z(r)
- Suggests Weyl elements based on holonomies, fluxes $\mathcal{P}(e^{\int_{P} A})$, $e^{\int_{S} *E}$ (c.f. YM)
- Every single term in Z, H (vacuum GR, cosm. const., matter) couples to E_i^a
- 1st state motivation: Z, H densely defined if vacuum s.t. $E_i^a \Omega = 0$
- Proposition: This fixes an irregular state of
 Ω of [Narnhofer-Thirring] type
- 2nd state motivation: for suitable matter, H inv. under automorphisms $\alpha_g, \beta_{\varphi}$
- Proposition: The GNS rep. of the LQG state defined by

$$\omega(W[f,F]) = \delta_{f,0}$$

1. is the AIL rep. [Ashtekar, Isham, Lewandowski], 2. has ONB by SNWF $\rho(W[f,0])\Omega$ [Baez, Rovelli, Smolin], 3. is unique $\mathsf{Diff}(\sigma)$ inv. state on $\mathfrak A$ [Fleischhack; Lewandowski, Okolow, Sahlmann, TT]

- Spinorial matter requires densitised triad E_j^a ; $\delta^{jk} E_j^a E_k^b = Q q^{ab}$, conj. SU(2) connection momentum \mathcal{A}_a^j (canonical transf.) [Ashtekar,Barbero]
- Additional SU(2) Gauss constraint Z(r)
- Suggests Weyl elements based on holonomies, fluxes $\mathcal{P}(e^{\int_{\mathcal{P}} A})$, $e^{\int_{\mathcal{S}} *E}$ (c.f. YM)
- Every single term in Z, H (vacuum GR, cosm. const., matter) couples to E_i^a
- 1st state motivation: Z, H densely defined if vacuum s.t. $E_i^a \Omega = 0$
- $\hspace{0.5cm} \textbf{Proposition: This fixes an irregular state of } \hspace{0.1cm} \mathfrak{A} \hspace{0.1cm} \text{of } {}_{[\text{Narnhofer-Thirring}]} \hspace{0.1cm} \text{type}$
- 2nd state motivation: for suitable matter, H inv. under automorphisms $\alpha_g, \beta_{\varphi}$
- Proposition: The GNS rep. of the LQG state defined by

$$\omega(W[f,F])=\delta_{f,0}$$

1. is the AIL rep. [Ashtekar, Isham, Lewandowski], 2. has ONB by SNWF $\rho(W[f,0])\Omega$ [Baez, Rovelli, Smolin], 3. is unique $\mathsf{Diff}(\sigma)$ inv. state on $\mathfrak A$ [Fleischhack; Lewandowski, Okolow, Sahlmann, TT]

QR for Gauss constraint

- ρ(Z(r)) densely def., explicit normalisable soln: SU(2) inv. intertwiner subspace (CG coeff.)
- Measure theory $\mathcal{H} = L_2(\mathcal{A}, d\mu)$ ("Schrödinger rep."
- lacktriangle \exists coherent states for \mathfrak{A} (minimal uncertainty excitations of Ω)
- ∃ ordering of ρ(H) s.t. 1. symm. op. on SNWF span and 2. coherent state exp. = classical value + corr.
- if $\rho(H)$ bounded from below use Friedrichs s.a. ext
- surprising result: $\rho(H)$ usually at best q.f. in interacting QFT, here consequence of choice of \mathfrak{A} , ω adapted to non-pert. structure of H.
- ∃ ess. s.a. ops. corr to lengths, areas, volumes of any continuous 1,2,3-d submfd. with p.p. spectrum
- area op. ⇒ quantum bh horizons, microscopic entropy counting
- Analogous q'ion of minisuperspace cosmology (LQC): big bounce

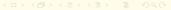
- QR for Gauss constraint
- $\rho(Z(r))$ densely def., explicit normalisable soln: SU(2) inv. intertwiner subspace (CG coeff.)
- Measure theory $\mathcal{H} = L_2(\mathcal{A}, d\mu)$ ("Schrödinger rep."
- \bullet \exists coherent states for \mathfrak{A} (minimal uncertainty excitations of Ω)
- ∃ ordering of ρ(H) s.t. 1. symm. op. on SNWF span and 2. coherent state exp. = classical value + corr.
- if $\rho(H)$ bounded from below use Friedrichs s.a. ext.
- surprising result: $\rho(H)$ usually at best q.f. in interacting QFT, here consequence of choice of \mathfrak{A} , ω adapted to non-pert. structure of H.
- ∃ ess. s.a. ops. corr to lengths, areas, volumes of any continuous 1,2,3-d submfd. with p.p. spectrum
- area op. ⇒ quantum bh horizons, microscopic entropy counting
- Analogous q'ion of minisuperspace cosmology (LQC): big bounce



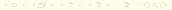
- QR for Gauss constraint
- $\rho(Z(r))$ densely def., explicit normalisable soln: SU(2) inv. intertwiner subspace (CG coeff.)
- Measure theory $\mathcal{H} = L_2(\mathcal{A}, d\mu)$ ("Schrödinger rep.")
- lacktriangle \exists coherent states for $\mathfrak A$ (minimal uncertainty excitations of Ω)
- ∃ ordering of ρ(H) s.t. 1. symm. op. on SNWF span and 2. coherent state exp. = classical value + corr.
- if $\rho(H)$ bounded from below use Friedrichs s.a. ext.
- surprising result: $\rho(H)$ usually at best q.f. in interacting QFT, here consequence of choice of \mathfrak{A} , ω adapted to non-pert. structure of H.
- ∃ ess. s.a. ops. corr to lengths, areas, volumes of any continuous 1,2,3-d submfd. with p.p. spectrum
- area op. ⇒ quantum bh horizons, microscopic entropy counting
- Analogous q'ion of minisuperspace cosmology (LQC): big bounce

- QR for Gauss constraint
- $\rho(Z(r))$ densely def., explicit normalisable soln: SU(2) inv. intertwiner subspace (CG coeff.)
- Measure theory $\mathcal{H} = L_2(\mathcal{A}, d\mu)$ ("Schrödinger rep.")
- \bullet \exists coherent states for \mathfrak{A} (minimal uncertainty excitations of Ω)
- dordering of ρ(H) s.t. 1. symm. op. on SNWF span and 2. coherent state exp. = classical value + corr.
- if $\rho(H)$ bounded from below use Friedrichs s.a. ext.
- surprising result: $\rho(H)$ usually at best q.f. in interacting QFT, here consequence of choice of \mathfrak{A}, ω adapted to non-pert. structure of H.
- ∃ ess. s.a. ops. corr to lengths, areas, volumes of any continuous 1,2,3-d submfd. with p.p. spectrum
- area op. ⇒ quantum bh horizons, microscopic entropy counting
- Analogous q'ion of minisuperspace cosmology (LQC): big bounce

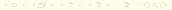
- QR for Gauss constraint
- $\rho(Z(r))$ densely def., explicit normalisable soln: SU(2) inv. intertwiner subspace (CG coeff.)
- Measure theory $\mathcal{H} = L_2(\mathcal{A}, d\mu)$ ("Schrödinger rep.")
- \bullet \exists coherent states for \mathfrak{A} (minimal uncertainty excitations of Ω)
- ∃ ordering of ρ(H) s.t. 1. symm. op. on SNWF span and 2. coherent state exp. = classical value + corr.
- if ρ(H) bounded from below use Friedrichs s.a. ext.
- surprising result: $\rho(H)$ usually at best q.f. in interacting QFT, here consequence of choice of \mathfrak{A} , ω adapted to non-pert. structure of H.
- ∃ ess. s.a. ops. corr to lengths, areas, volumes of any continuous 1,2,3-d submfd. with p.p. spectrum
- area op. ⇒ quantum bh horizons, microscopic entropy counting
- Analogous q'ion of minisuperspace cosmology (LQC): big bounce



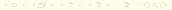
- QR for Gauss constraint
- $\rho(Z(r))$ densely def., explicit normalisable soln: SU(2) inv. intertwiner subspace (CG coeff.)
- Measure theory $\mathcal{H} = L_2(\mathcal{A}, d\mu)$ ("Schrödinger rep.")
- lacktriangle \exists coherent states for $\mathfrak A$ (minimal uncertainty excitations of Ω)
- ∃ ordering of ρ(H) s.t. 1. symm. op. on SNWF span and 2. coherent state exp. = classical value + corr.
- if $\rho(H)$ bounded from below use Friedrichs s.a. ext.
- surprising result: $\rho(H)$ usually at best q.f. in interacting QFT, here consequence of choice of \mathfrak{A} , ω adapted to non-pert. structure of H.
- ∃ ess. s.a. ops. corr to lengths, areas, volumes of any continuous 1,2,3-d submfd. with p.p. spectrum
- area op. ⇒ quantum bh horizons, microscopic entropy counting
- Analogous q'ion of minisuperspace cosmology (LQC): big bounce



- QR for Gauss constraint
- $\rho(Z(r))$ densely def., explicit normalisable soln: SU(2) inv. intertwiner subspace (CG coeff.)
- Measure theory $\mathcal{H} = L_2(\mathcal{A}, d\mu)$ ("Schrödinger rep.")
- \bullet \exists coherent states for \mathfrak{A} (minimal uncertainty excitations of Ω)
- ∃ ordering of \(\rho(H) \) s.t. 1. symm. op. on SNWF span and 2. coherent state exp. = classical value + corr.
- if $\rho(H)$ bounded from below use Friedrichs s.a. ext.
- surprising result: ρ(H) usually at best q.f. in interacting QFT, here consequence
 of choice of A, ω adapted to non-pert. structure of H.
- ∃ ess. s.a. ops. corr to lengths, areas, volumes of any continuous 1,2,3-c submfd. with p.p. spectrum
- area op. ⇒ quantum bh horizons, microscopic entropy counting
- Analogous q'ion of minisuperspace cosmology (LQC): big bounce



- QR for Gauss constraint
- $\rho(Z(r))$ densely def., explicit normalisable soln: SU(2) inv. intertwiner subspace (CG coeff.)
- Measure theory $\mathcal{H} = L_2(\mathcal{A}, d\mu)$ ("Schrödinger rep.")
- \bullet \exists coherent states for \mathfrak{A} (minimal uncertainty excitations of Ω)
- ∃ ordering of ρ(H) s.t. 1. symm. op. on SNWF span and 2. coherent state exp. = classical value + corr.
- if $\rho(H)$ bounded from below use Friedrichs s.a. ext.
- surprising result: ρ(H) usually at best q.f. in interacting QFT, here consequence
 of choice of A, ω adapted to non-pert. structure of H.
- ∃ ess. s.a. ops. corr to lengths, areas, volumes of any continuous 1,2,3-d submfd. with p.p. spectrum
- area op. ⇒ quantum bh horizons, microscopic entropy counting
- Analogous q'ion of minisuperspace cosmology (LQC): big bounce



- QR for Gauss constraint
- $\rho(Z(r))$ densely def., explicit normalisable soln: SU(2) inv. intertwiner subspace (CG coeff.)
- Measure theory $\mathcal{H} = L_2(\mathcal{A}, d\mu)$ ("Schrödinger rep.")
- \bullet \exists coherent states for \mathfrak{A} (minimal uncertainty excitations of Ω)
- ∃ ordering of \(\rho(H) \) s.t. 1. symm. op. on SNWF span and 2. coherent state exp. = classical value + corr.
- if $\rho(H)$ bounded from below use Friedrichs s.a. ext.
- surprising result: ρ(H) usually at best q.f. in interacting QFT, here consequence
 of choice of A, ω adapted to non-pert. structure of H.
- ∃ ess. s.a. ops. corr to lengths, areas, volumes of any continuous 1,2,3-d submfd. with p.p. spectrum
- area op. ⇒ quantum bh horizons, microscopic entropy counting
- Analogous q'ion of minisuperspace cosmology (LQC): big bounce

- QR for Gauss constraint
- $\rho(Z(r))$ densely def., explicit normalisable soln: SU(2) inv. intertwiner subspace (CG coeff.)
- Measure theory $\mathcal{H} = L_2(\mathcal{A}, d\mu)$ ("Schrödinger rep.")
- \exists coherent states for \mathfrak{A} (minimal uncertainty excitations of \mathfrak{A})
- ∃ ordering of ρ(H) s.t. 1. symm. op. on SNWF span and 2. coherent state exp. = classical value + corr.
- if $\rho(H)$ bounded from below use Friedrichs s.a. ext.
- surprising result: ρ(H) usually at best q.f. in interacting QFT, here consequence
 of choice of A, ω adapted to non-pert. structure of H.
- ∃ ess. s.a. ops. corr to lengths, areas, volumes of any continuous 1,2,3-d submfd. with p.p. spectrum
- area op. ⇒ quantum bh horizons, microscopic entropy counting
- Analogous q'ion of minisuperspace cosmology (LQC): big bounce

- while ω natural, irregular for \mathfrak{A} (not strongly cont for both f, F)
- a q'ion ambiguities, fix by renormalisation methods?
- \bullet \Rightarrow \mathcal{H} not separable, too many state vectors?
- H very complicated ⇒ Heisenberg evolution wrt H hard to compute, quantum locality?
- In general: contact to SM (QFT in CST) physics, based on stable coh. states peaked on Minkowski metric? Decoherence?

- while ω natural, irregular for \mathfrak{A} (not strongly cont for both f, F)
- ⇒ q'ion ambiguities, fix by renormalisation methods?
- \bullet $\Rightarrow \mathcal{H}$ not separable, too many state vectors?
- H very complicated ⇒ Heisenberg evolution wrt H hard to compute, quantum locality?
- In general: contact to SM (QFT in CST) physics, based on stable coh. states peaked on Minkowski metric? Decoherence?

- while ω natural, irregular for \mathfrak{A} (not strongly cont for both f, F)
- ⇒ q'ion ambiguities, fix by renormalisation methods?
- \bullet \Rightarrow \mathcal{H} not separable, too many state vectors?
- H very complicated ⇒ Heisenberg evolution wrt H hard to compute, quantum locality?
- In general: contact to SM (QFT in CST) physics, based on stable coh. states peaked on Minkowski metric? Decoherence?

- while ω natural, irregular for \mathfrak{A} (not strongly cont for both f, F)
- ⇒ q'ion ambiguities, fix by renormalisation methods?
- $\bullet \Rightarrow \mathcal{H}$ not separable, too many state vectors?
- → H very complicated ⇒ Heisenberg evolution wrt H hard to compute, quantum locality?
- In general: contact to SM (QFT in CST) physics, based on stable coh. states peaked on Minkowski metric? Decoherence?

- while ω natural, irregular for \mathfrak{A} (not strongly cont for both f, F)
- q'ion ambiguities, fix by renormalisation methods?
- $\bullet \Rightarrow \mathcal{H}$ not separable, too many state vectors?
- H very complicated ⇒ Heisenberg evolution wrt H hard to compute, quantum locality?
- In general: contact to SM (QFT in CST) physics, based on stable coh. states peaked on Minkowski metric? Decoherence?