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Initial value formulation

Initial value formulation

Canonical approach to classical & quantum GR has long tradition

Classical: Initial value formulation, numerical integration of Einstein equations,
BH merger simulations ... [Arnowitt,Deser,Misner,..]

Quantum: QG as a constrained QFT [Bergmann, DeWitt, Dirac, Komar, Wheeler,..]

Key assumption: Globally hyperbolic spacetimes (M, g)

⇒ M ∼= R× σ [Geroch, Sanchez & Bilal]

M can be foliated by leaves t 7→ Σt ∼= σ (“3+1” split: space+time)

Lapse, shift parametrisation of foliation

ds2 = −[l dt]2 + qab[dxa + sa dt] [dxb + sb dt]

Legendre transform for constrained systems (Dirac algorithm): (g, ġ) 7→ (q, p)
(3-metric on σ, conj. momentum), Poisson brackets {., .}. Similar for matter.

plus: spatial diffeomorphism and Hamiltonian constraints Va; a = 1, 2, 3, S
(temporal-spatial, temporal-temporal components of Einstein eqns)
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Classical Hypersurface Deformation Algebroid (HDA)

Let Q :=
√

det(q), smeared constraints:
V [u] =

∫
σ d3z ua Va; S[f ] =

∫
σ d3z f S

Classical HDA h [Hojman, Kuchar, Teitelboim]

{V [u],V [v ]} = −V [[u, v ]], {V [u],S[f ]} = −S[u[f ]],

{S[f ], S[g]} = −V [q−1 (M dN − N dM)]

Observations:

encodes local spacetime diffeomorphism covariance
h not a Lie algebra due to q−1: “open algebra, algebroid”

Anomaly-free representation of h major challenge in quantum reduction (QR)
approach to CQG
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Classical reduction approach

Totally constrained Hamiltonian C(T ) := V [s] + S[l]

V ,S generator of gauge transf. rather than physical motion

Observables, physical motion? (“problem of time”)

Relational (Dirac) observables⇔ Gauge fixing

Split geometry, matter canonical pairs into 2 sets (q, p) = ((Q,P), (X ,Y )) called
“true” (observable) and “gauge” (not observable)

Solve constr. C = 0 for Y = −h(X ; Q,P), impose gauge cond. G := X − k = 0

Solve stability condition d
dt G = 0 ⇔ {C(T ),X} = ∂t k for = T∗

Reduced (true, physical,...) Hamiltonian for O = O(Q,P) [Hanson, Regge, Teitelboim]

{H,O} := {C(T ),O}X=k,Y =−h,T =T∗ ⇒ H =

∫
d3z k̇ · h(X = k ,Q,P)

How practical depends on matter content (e.g. scalar fields)
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Generalities

Non-perturbative: PT applied to QG: non-renormalisable [Goroff, Sagnotti 85]

Background independence: no metric singled out by Einstein eqns.

Continuum theory: no ad hoc discrete input

Standard QFT: construct QFT of gravitational field in 3+1

Algebraic QFT (AQFT) methods: Algebras A, exp. val. states ω

Standard AQFT: Fix classical background g0, construct Ag0 (O)
If O,O′ causally disjoint wrt g0 then [Ag0 (O),Ag0 (O′)] = 0

BI violation, in QG g = g0 not fixed, even operator, fluctuating causality

Algebraic QG (AQG):
Suppose 1. ω(g2)− ω(g)2 “small” (semiclassical), 2. O,O′ causally disjoint wrt
ω(g) then show ω([A(O),A(O′)]) small

Difference:
AQFT: g0 distinguished, used to construct Ag0 (O)
AQG: g0 6 ∃, A(O) BI, quantum locality rel. to state only

How to construct A(O) in CQG? Like in usual QFT in CST:
Solve Heisenberg picture EOM wrt physical H from “time zero” fields
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Classical Hamiltonian formulation of GR
Canonical quantisation principles

LQG realisation
Generalities

Canonical quantisation principles

Select “time zero” Weyl algebra A gen. by Weyl elements W [f ,F ] for (q, p) resp.
(Q,P) in QR resp. CR

Express C(T ), {C(T ),C(T ′)} resp. H in terms of a ∈ A

Study states ω on A (e.v. functionals): (ρ,H,Ω) GNS data

Select ω s.t. ρ(C(T )), ρ({C(T ),C(T ′)}) resp. ρ(H) densely defined operators
on D := ρ(A)Ω.

In addition
QR: D inv. for ρ(C(T )) and anomaly freeness of h

[ρ(C(T )), ρ(C(T ′))] = i ρ({C(T ),C(T ′)})
CR: ρ(H) has s.a. extensions

CR Physics: H already phys. HS, study S-matrix of H etc.

QR Physics:
construct solutions l : D → C s.t. l[C(T )ψ] = 0 ∀T , ψ ∈ D
“rigging map” l = δ[C]ψ, ψ ∈ D (if constraint Lie algebra). Phys. HS

< δ[C]ψ, δ[C]ψ′ >phys:=< ψ, δ[C] ψ′ >

construct rep. of gauge inv. obs. on Hphys

QR more complicated than CR, use CR for HDA, QR for other constr.
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Classical Hamiltonian formulation of GR
Canonical quantisation principles

LQG realisation

Algebra and representation
LQG physics
Open problems

Algebra and representation

Spinorial matter requires densitised triad Ea
j ; δjk Ea

j Eb
k = Q qab , conj. SU(2)

connection momentum Aj
a (canonical transf.) [Ashtekar,Barbero]

Additional SU(2) Gauss constraint Z (r)

Suggests Weyl elements based on holonomies, fluxes P(e
∫

p A
), e

∫
S ∗E (c.f. YM)

Every single term in Z ,H (vacuum GR, cosm. const., matter) couples to Ea
j

1st state motivation: Z ,H densely defined if vacuum s.t. Ea
j Ω = 0

Proposition: This fixes an irregular state of A of [Narnhofer-Thirring] type

2nd state motivation: for suitable matter, H inv. under automorphisms αg , βϕ

Proposition: The GNS rep. of the LQG state defined by

ω(W [f ,F ]) = δf ,0

1. is the AIL rep. [Ashtekar, Isham, Lewandowski], 2. has ONB by SNWF ρ(W [f , 0])Ω [Baez,

Rovelli, Smolin], 3. is unique Diff(σ) inv. state on A [Fleischhack; Lewandowski, Okolow, Sahlmann, TT]
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Rovelli, Smolin], 3. is unique Diff(σ) inv. state on A [Fleischhack; Lewandowski, Okolow, Sahlmann, TT]
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LQG physics

QR for Gauss constraint

ρ(Z (r)) densely def., explicit normalisable soln: SU(2) inv. intertwiner subspace
(CG coeff.)

Measure theory H = L2(A, dµ) (“Schrödinger rep.”)

∃ coherent states for A (minimal uncertainty excitations of Ω)

∃ ordering of ρ(H) s.t. 1. symm. op. on SNWF span and 2. coherent state exp. =
classical value + corr.

if ρ(H) bounded from below use Friedrichs s.a. ext.

surprising result: ρ(H) usually at best q.f. in interacting QFT, here consequence
of choice of A, ω adapted to non-pert. structure of H.

∃ ess. s.a. ops. corr to lengths, areas, volumes of any continuous 1,2,3-d
submfd. with p.p. spectrum

area op. ⇒ quantum bh horizons, microscopic entropy counting

Analogous q’ion of minisuperspace cosmology (LQC): big bounce
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Open problems

while ω natural, irregular for A (not strongly cont for both f ,F )

⇒ q’ion ambiguities, fix by renormalisation methods?

⇒H not separable, too many state vectors?

H very complicated⇒ Heisenberg evolution wrt H hard to compute, quantum
locality?

In general: contact to SM (QFT in CST) physics, based on stable coh. states
peaked on Minkowski metric? Decoherence?
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