"How does Quantum Field Theory arise from Causal Fermion Systems?"

Moritz Reintjes

Assistant Professor
City University of Hong Kong

Causal Fermion Systems 2025

The University of Regensburg October 9, 2025

Collaborators: Claudio Dappiaggi, Felix Finster, Niky Kamran

We have two ways to connect CFS's with QED:

We have two ways to connect CFS's with QED:

(I) Construction of an algebraic quantum state, [Finster-Kamran]

$$\omega^t: \mathscr{A} \longrightarrow \mathbb{C},$$

mapping observables to expectation value, at fixed time t.

- Works for general CFS.
- ---> Entangled quantum states!

We have two ways to connect CFS's with QED:

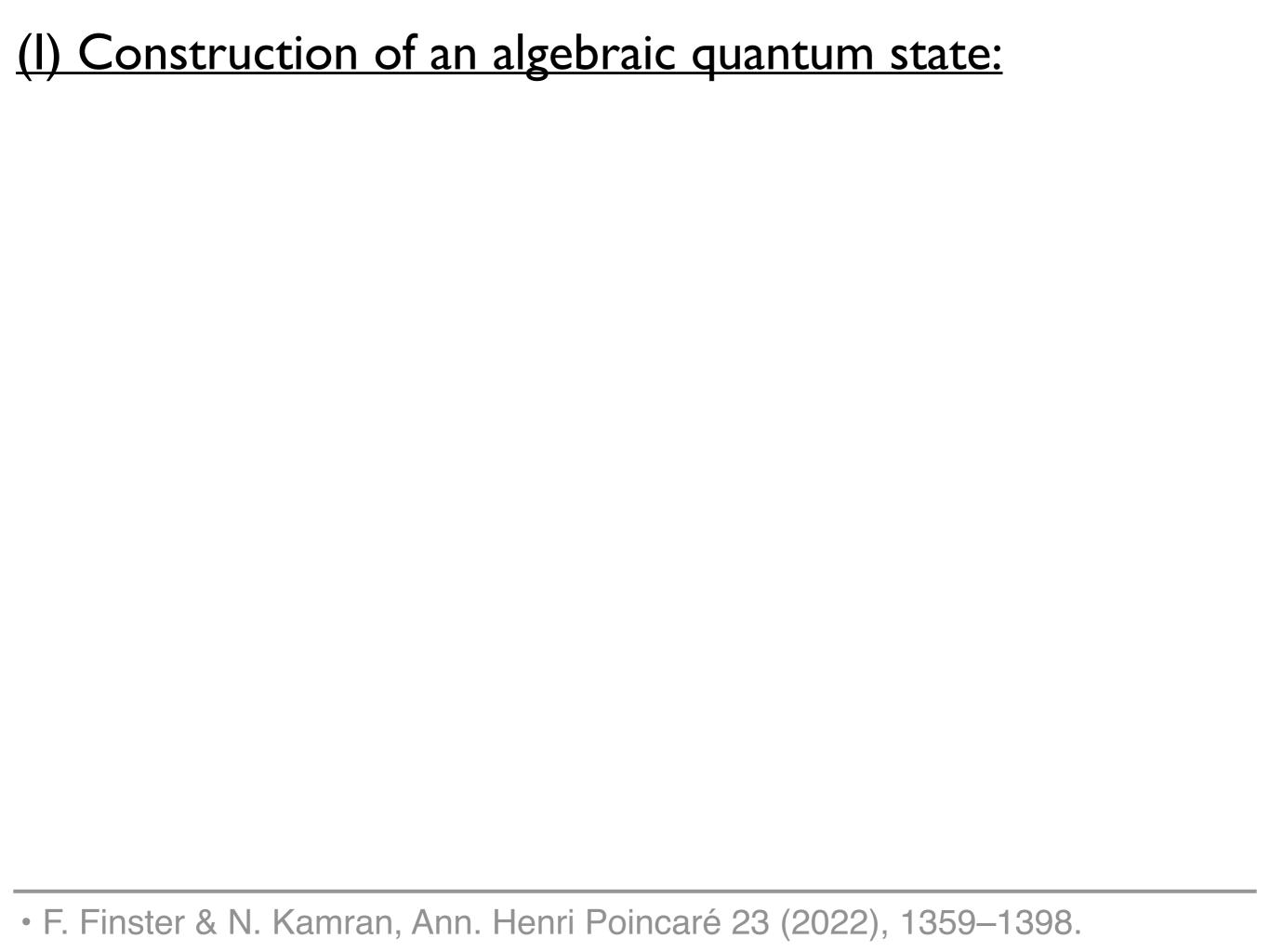
(I) Construction of an algebraic quantum state, [Finster-Kamran]

$$\omega^t: \mathscr{A} \longrightarrow \mathbb{C},$$

mapping observables to expectation value, at fixed time t.

- Works for general CFS.
- ---> Entangled quantum states!

- (II) Canonical Commutation Relations of QED are deduced from Euler-Lagrange equations of CFS's.
 - Uses stochastic averaging & non-locality.
 - Yields dynamics of quantum states & Feynman diagrams.



The quantum state, at time t, constructed from CFS's,

is the linear map

$$\omega^t: \mathscr{A} \longrightarrow \mathbb{C}$$

on algebra of observables \mathscr{A} (build from field operators), defined by path integral-like structure

$$\omega^{t}(A) := \frac{1}{Z^{t}} \int_{\mathcal{G}} (\ldots) e^{\gamma^{t}(\tilde{\rho}, \mathcal{U}\rho)} d\mu_{\mathcal{G}}(\mathcal{U})$$

• F. Finster & N. Kamran, Ann. Henri Poincaré 23 (2022), 1359–1398.

The quantum state, at time t, constructed from CFS's,

is the linear map

$$\omega^t: \mathscr{A} \longrightarrow \mathbb{C}$$

on algebra of observables \mathscr{A} (build from field operators), defined by path integral-like structure

$$\omega^{t}(A) := \frac{1}{Z^{t}} \int_{\mathscr{G}} (\dots) e^{\gamma^{t}(\tilde{\rho}, \mathcal{U}\rho)} d\mu_{\mathscr{G}}(\mathcal{U})$$

$$A \in \mathscr{A} \text{ (observable)}$$

• F. Finster & N. Kamran, Ann. Henri Poincaré 23 (2022), 1359–1398.

The quantum state, at time t, constructed from CFS's,

is the linear map

$$\omega^t: \mathscr{A} \longrightarrow \mathbb{C}$$

on algebra of observables \mathscr{A} (build from field operators), defined by path integral-like structure

$$\boldsymbol{\omega}^{t}(A) := \frac{1}{Z^{t}} \int_{\mathcal{G}} (\ldots) e^{\gamma^{t}(\tilde{\rho}, \mathcal{U}\rho)} d\mu_{\mathcal{G}}(\mathcal{U})$$

Describes excitation of $\tilde{\rho}$ over ρ , as seen (tested) by A.

- $(\rho, \mathcal{F}, \mathcal{H})$ is (non-interacting) vacuum CFS
- $(\tilde{\rho}, \tilde{\mathcal{F}}, \tilde{\mathcal{H}})$ some CFS describing interaction

[•] F. Finster & N. Kamran, Ann. Henri Poincaré 23 (2022), 1359–1398.

The quantum state, at time t, constructed from CFS's,

is the linear map

$$\omega^t: \mathscr{A} \longrightarrow \mathbb{C}$$

on algebra of observables \mathscr{A} (build from field operators), defined by path integral-like structure

$$\omega^{t}(A) := \frac{1}{Z^{t}} \int_{\mathcal{G}} (\dots) e^{\gamma^{t}(\tilde{\rho}, \mathcal{U}\rho)} d\mu_{\mathcal{G}}(\mathcal{U})$$

$$\mathcal{U} \in \mathcal{G}, \text{ unitary transfo. on } \mathcal{H};$$

Degrees of freedom in identifying Hilbert spaces, $\tilde{\mathcal{H}}$ & \mathcal{H} , of $\tilde{\rho}$ & ρ .

• F. Finster & N. Kamran, Ann. Henri Poincaré 23 (2022), 1359–1398.

The quantum state, at time t, constructed from CFS's,

is the linear map

$$\omega^t: \mathscr{A} \longrightarrow \mathbb{C}$$

on algebra of observables \mathscr{A} (build from field operators), defined by path integral-like structure

$$\omega^{t}(A) := \frac{1}{Z^{t}} \int_{\mathcal{G}} (\dots) e^{\gamma^{t}(\tilde{\rho}, \mathcal{U}\rho)} d\mu_{\mathcal{G}}(\mathcal{U})$$

Compares $\tilde{\rho}$ with ρ , by surface layer integral

$$\gamma^{t}(\tilde{\rho},\rho) = \left(\int_{\tilde{\Omega}^{t}} d\tilde{\rho}(x) \int_{M \setminus \Omega^{t}} d\rho(y) - \int_{\tilde{M} \setminus \tilde{\Omega}^{t}} d\tilde{\rho}(x) \int_{\Omega^{t}} d\rho(y)\right) \mathcal{L}(x,y)$$

$$\Omega^{t}, \, \tilde{\Omega}^{t} \sim \text{past of } t \qquad \tilde{M} = F(M)$$
Lagrangian of CFS

The quantum state, at time t, constructed from CFS's,

is the linear map

$$\omega^t: \mathscr{A} \longrightarrow \mathbb{C}$$

on algebra of observables \mathscr{A} (build from field operators), defined by path integral-like structure

$$\omega^{t}(A) := \frac{1}{Z^{t}} \int_{\mathscr{G}} (\dots) e^{\gamma^{t}(\tilde{\rho}, \mathcal{U}\rho)} d\mu_{\mathscr{G}}(\mathcal{U})$$

$$Z^{t} := \int_{\mathscr{G}} e^{\gamma^{t}(\tilde{\rho}, \mathcal{U}\rho)} d\mu_{\mathscr{G}}(\mathcal{U}) \quad \text{partition function}$$

~ all possible configurations in $\tilde{\rho}$ vs. ρ

• F. Finster & N. Kamran, Ann. Henri Poincaré 23 (2022), 1359–1398.

The quantum state, at time t, constructed from CFS's,

is the linear map

$$\omega^t: \mathscr{A} \longrightarrow \mathbb{C}$$

on algebra of observables \mathscr{A} (build from field operators), defined by path integral-like structure

$$\omega^{t}(A) := \frac{1}{Z^{t}} \int_{\mathscr{C}_{\pi}} (\dots) e^{\gamma^{t}(\tilde{\rho}, \mathcal{U}\rho)} d\mu_{\mathscr{C}}(\mathcal{U})$$

"Insertions" \longleftarrow input from CFS & observable A

The quantum state, at time t, constructed from CFS's,

is the linear map

$$\omega^t: \mathscr{A} \longrightarrow \mathbb{C}$$

on algebra of observables \mathscr{A} (build from field operators), defined by path integral-like structure

$$\omega^{t}(A) := \frac{1}{Z^{t}} \int_{\mathscr{G}_{\pi}} (\dots) e^{\gamma^{t}(\tilde{\rho}, \mathcal{U}\rho)} d\mu_{\mathscr{G}}(\mathcal{U})$$

"Insertions" \longleftarrow input from CFS & observable A

• "bosonic": $(...) \sim D_z \gamma^t(\rho, \mathcal{U}\tilde{\rho})$

differentiation w.r.t. bosonic fields z in A

The quantum state, at time t, constructed from CFS's,

is the linear map

$$\omega^t: \mathscr{A} \longrightarrow \mathbb{C}$$

on algebra of observables \mathscr{A} (build from field operators), defined by path integral-like structure

$$\omega^{t}(A) := \frac{1}{Z^{t}} \int_{\mathscr{G}_{A}} (\dots) e^{\gamma^{t}(\tilde{\rho}, \mathcal{U}\rho)} d\mu_{\mathscr{G}}(\mathcal{U})$$

"Insertions" \longleftarrow input from CFS & observable A

• "bosonic": $(...) \sim D_z \gamma^t(\rho, \mathcal{U}\tilde{\rho})$

differentiation w.r.t. bosonic fields z in A

• "fermionic": $(...) \sim \text{s.th. similar}$ in terms of fermionic fields in A

The quantum state, at time t, constructed from CFS's,

is the linear map

$$\omega^t: \mathscr{A} \longrightarrow \mathbb{C}$$

on algebra of observables \mathscr{A} (build from field operators), defined by path integral-like structure

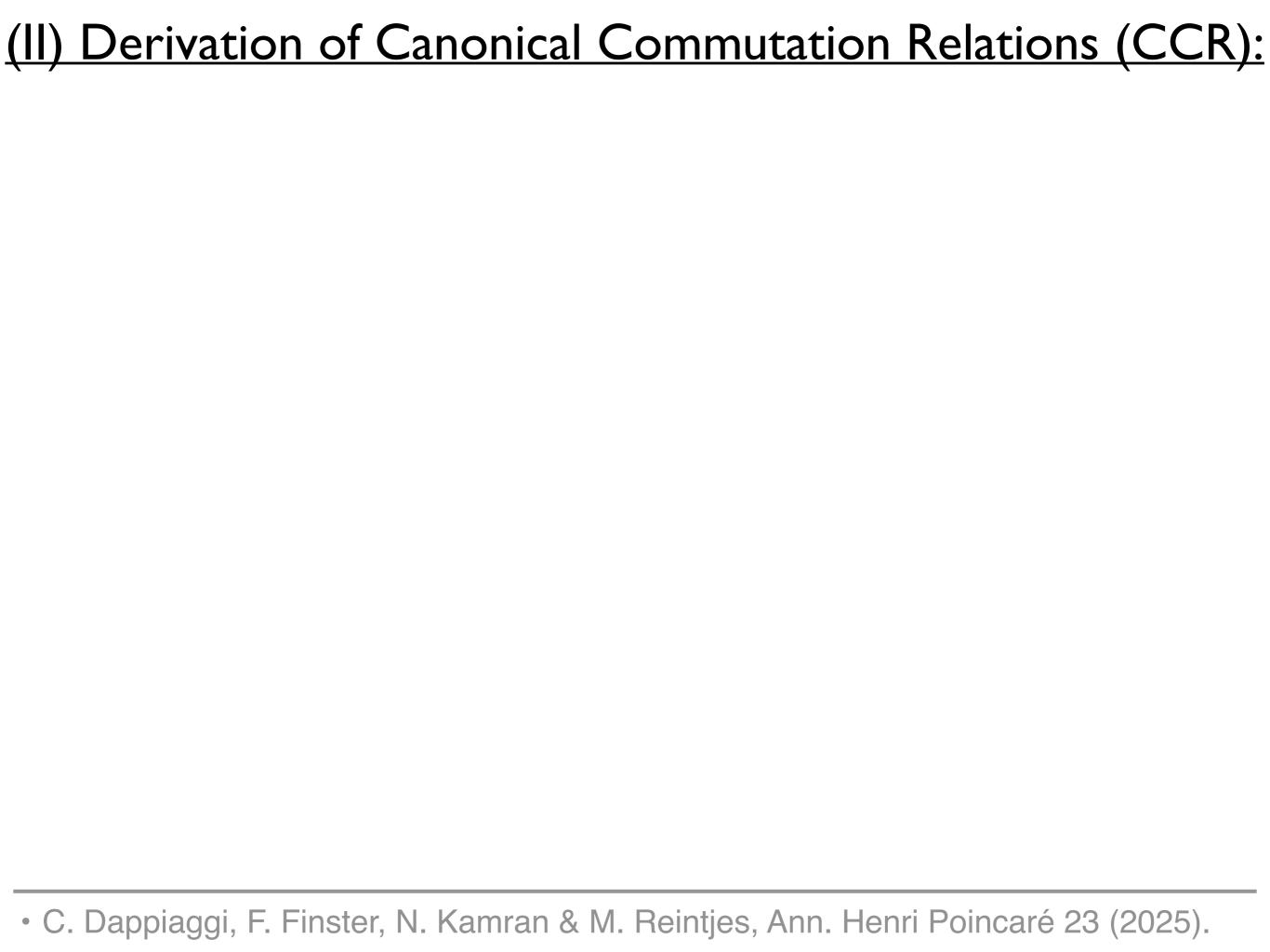
$$\omega^{t}(A) := \frac{1}{Z^{t}} \int_{\mathcal{C}} (\ldots) e^{\gamma^{t}(\tilde{\rho}, \mathcal{U}\rho)} d\mu_{\mathcal{C}}(\mathcal{U})$$

Thm: (i) $\omega^t(A*A) \ge 0$ for all $A \in \mathcal{A}$ (positivity).

(ii) There exists a density operator σ^t on a Fock space \mathcal{F}

such that $\omega^t(A) = \operatorname{tr}_{\mathscr{F}}(\sigma^t A)$ (expectation value).

- (iii) Refinement of ω^t describes entanglement.
- F. Finster & N. Kamran, Ann. Henri Poincaré 23 (2022), 1359–1398.
- F. Finster, N. Kamran & M. Reintjes, Adv. Theor. Math. Phys. 27.5, 1463-1589, (2023).



Starting point is Dirac equation

$$(i\partial + B - m)\psi = 0$$

[·] C. Dappiaggi, F. Finster, N. Kamran & M. Reintjes, Ann. Henri Poincaré 23 (2025).

Starting point is Dirac equation

$$(i\partial + B - m)\psi = 0$$

• The non-local potential B is obtained from linearized Euler-Lagrange equations of CFS,

Starting point is Dirac equation

$$(i\partial + B - m)\psi = 0$$

• The non-local potential B is obtained from linearized Euler-Lagrange equations of CFS, and is of form

$$(\mathfrak{B}\psi)(x) = \int_{M} \mathfrak{B}(x,y) \, \psi(y) \, d^{4}y$$
with kernel
$$\mathfrak{B}(x,y) = \sum_{a=1}^{N} \gamma_{j} \, A_{a}^{j} \left(\frac{x+y}{2}\right) \, L_{a}(y-x)$$

[·] C. Dappiaggi, F. Finster, N. Kamran & M. Reintjes, Ann. Henri Poincaré 23 (2025).

Starting point is Dirac equation

$$(i\partial + B - m)\psi = 0$$

• The non-local potential B is obtained from linearized Euler-Lagrange equations of CFS, and is of form

$$(\mathfrak{B}\psi)(x) = \int_{M} \mathfrak{B}(x,y) \, \psi(y) \, d^{4}y \qquad \text{non-local,}$$
 linear operator with kernel
$$\mathfrak{B}(x,y) = \sum_{a=1}^{N} \gamma_{j} \, A_{a}^{j} \left(\frac{x+y}{2}\right) \, L_{a}(y-x)$$

C. Dappiaggi, F. Finster, N. Kamran & M. Reintjes, Ann. Henri Poincaré 23 (2025).

Starting point is Dirac equation

$$(i\partial + B - m)\psi = 0$$

• The non-local potential B is obtained from linearized Euler-Lagrange equations of CFS, and is of form

$$(\mathfrak{B}\psi)(x) = \int_{M} \mathfrak{B}(x,y) \, \psi(y) \, d^4y \qquad \text{non-local,} \\ \text{linear operator} \\ \mathfrak{B}(x,y) = \sum_{a=1}^{N} \gamma_j \, A_a^j \left(\frac{x+y}{2}\right) \, L_a(y-x)$$
Scalar fields (like el.-mag.) inducing dephasing effects

C. Dappiaggi, F. Finster, N. Kamran & M. Reintjes, Ann. Henri Poincaré 23 (2025).

Starting point is Dirac equation

$$(i\partial + B - m)\psi = 0$$

• The non-local potential B is obtained from linearized Euler-Lagrange equations of CFS, and is of form

$$(\mathcal{B}\psi)(x) = \int_{M} \mathcal{B}(x,y) \, \psi(y) \, d^{4}y \qquad \text{non-local,} \\ \text{linear operator} \\ \mathcal{B}(x,y) = \sum_{a=1}^{N} \gamma_{j} \, A_{a}^{j} \left(\frac{x+y}{2}\right) \, L_{a}(y-x) \\ \text{Scalar fields (like el.-mag.)} \\ \text{Solves linearized} \qquad \text{inducing dephasing effects} \\ \text{EL-eqn's of CFS}$$

C. Dappiaggi, F. Finster, N. Kamran & M. Reintjes, Ann. Henri Poincaré 23 (2025).

Starting point is Dirac equation

$$(i\partial + B - m)\psi = 0$$

• The non-local potential B is obtained from linearized Euler-Lagrange equations of CFS, and is of form

$$(\mathfrak{B}\psi)(x) = \int_{M} \mathfrak{B}(x,y) \, \psi(y) \, d^{4}y$$
 with kernel
$$\mathfrak{B}(x,y) = \sum_{a=1}^{N} \gamma_{j} \, A_{a}^{j} \left(\frac{x+y}{2}\right) \, L_{a}(y-x)$$

A multitude of fields:

$$N \sim \frac{\text{length scale of non-locality}}{\text{Planck scale}}$$

$$(i\partial + \mathcal{B} - m)\psi = 0$$

$$(\mathcal{B}\psi)(x) = \int_{M} \mathcal{B}(x, y) \, \psi(y) \, d^{4}y$$

$$\mathcal{B}(x, y) = \sum_{a=1}^{N} \gamma_{j} A_{a}^{j} \left(\frac{x+y}{2}\right) L_{a}(y-x)$$

• Averaging, $\langle\langle \cdot \rangle\rangle$, over suitable stochastic background, for suitable choices of potentials, yields CCR, up to errors $\mathcal{O}(\frac{1}{N})$.

$$(i\partial + \mathcal{B} - m)\psi = 0$$

$$(\mathcal{B}\psi)(x) = \int_{M} \mathcal{B}(x, y) \, \psi(y) \, d^{4}y$$

$$\mathcal{B}(x, y) = \sum_{a=1}^{N} \gamma_{j} A_{a}^{j} \left(\frac{x+y}{2}\right) L_{a}(y-x)$$

• Averaging, $\langle\langle \cdot \rangle\rangle$, over suitable stochastic background, for suitable choices of potentials, yields CCR, up to errors $\mathcal{O}(\frac{1}{N})$:

$$\ll [\hat{\mathbb{B}}_{q}^{j}, \hat{\mathbb{B}}_{q'}^{k}] \otimes \hat{\mathbb{B}}_{r}^{l} \otimes \hat{\mathbb{B}}_{r'}^{l'} \gg \approx (2\pi)^{4} \delta^{4} (q+q') \hat{K}^{jk}(q) \, \mathbb{1} \otimes \ll \hat{\mathbb{B}}_{r}^{l} \otimes \hat{\mathbb{B}}_{r'}^{l'} \gg$$

• Averaging, $\langle\langle \cdot \rangle\rangle$, over suitable stochastic background, for suitable choices of potentials, yields CCR, up to errors $\mathcal{O}(\frac{1}{N})$.

One gets standard perturbative QED, up to error terms $\mathcal{O}(\frac{1}{N})$.

• Averaging, $\langle\langle \cdot \rangle\rangle$, over suitable stochastic background, for suitable choices of potentials, yields CCR, up to errors $\mathcal{O}(\frac{1}{N})$.

One gets standard perturbative QED, up to error terms $\mathcal{O}(\frac{1}{N})$.

— Quantifying error terms will yield corrections of CFS to standard QED…

Thanks for listening!

- F. Finster & N. Kamran, Ann. Henri Poincaré 23 (2022), 1359–1398.
- F. Finster, N. Kamran & M. Reintjes, Adv. Theor. Math. Phys. 27.5, 1463-1589, (2023).
- · C. Dappiaggi, F. Finster, N. Kamran & M. Reintjes, Ann. Henri Poincaré 23 (2025).