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VVe have two ways to connect CFS’s with QED:

(I) Construction of an algebraic quantum state, |Finster-Kamran]
o' o — C,
mapping observables to expectation value, at fixed time 7.
— Works for general CFS.
— Entangled quantum states!

(I) Canonical Commutation Relations of QED
are deduced from Euler-Lagrange equations of CFS’s.
— Uses stochastic averaging & non-locality.
— Yields dynamics of quantum states & Feynman diagrams.
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Describes excitation of p over p, as seen (tested) by A.

— (p, F, A) is (non-interacting) vacuum CFS
— (p, F, 77) some CFS describing interaction
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(1) Construction of an algebraic quantum state:

The quantum state, at time 7, constructed from CFS’s,

is the linear map o' of — C

on algebra of observables &/ (build from field operators), defined by

path integral-like structure
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Degrees of freedom in identifying

Hilbert spaces, % & , of p & p.
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(1) Construction of an algebraic quantum state:

The quantum state, at time 7, constructed from CFS’s,

is the linear map o' of — C

on algebra of observables &/ (build from field operators), defined by

path integral-like structure
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7' = J' e’ PPy (U) partition function
g

~ all possible configurations in p vs. p
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() Construction of an algebraic guantum state:

The quantum state, constructed from CFS’s,
is the linear map o' o — C
on algebra of observables &/ , defined by

1 o
w'(A) = TJ (...)e" P20 dy (U)
Z7
“Insertions”

e “bosonic’: (...) ~ Dzyt(p, up)

e “fermionic”: (...) ~ s.th.similar



(1) Construction of an algebraic quantum state:

The quantum state, at time 7, constructed from CFS’s,

is the linear map o' of — C

on algebra of observables &/ (build from field operators), defined by

path integral-like structure

| s
w'(A) = E,[ (...)ey(p’%p)dﬂcg(%)
¢

Thm: () @' (A*A) >0 forall Ae o (positivity).

(i) There exists a density operator ¢’ on a Fock space #

such that w'(A) = trgz(c’A)  (expectation value).

(iii) Refinement of @' describes entanglement.

 F. Finster & N. Kamran, Ann. Henri Poincaré 23 (2022), 1359-1398.
- F. Finster, N. Kamran & M. Reintjes, Adv. Theor. Math. Phys. 27.5, 1463-1589, (2023).



(11) Derivation of Canonical Commutation Relations (CCR):



(11) Derivation of Canonical Commutation Relations (CCR):

* Starting point is Dirac equation

(i +B —m)yp =0



(11) Derivation of Canonical Commutation Relations (CCR):
* Starting point is Dirac equation
(ip+B—-m)y =0

* The potential B is obtained from linearized Euler-
Lagrange equations of CFS,



(11) Derivation of Canonical Commutation Relations (CCR):

* Starting point is Dirac equation
(ip+B—-m)y =0

* The potential B is obtained from linearized Euler-
Lagrange equations of CFS,

(B6) () = /M B(x, ) 6(y) oy

B(x, Y)—Zw L(55Y) Laly =



(11) Derivation of Canonical Commutation Relations (CCR):

* Starting point is Dirac equation
(ip+B—-m)y =0

* The potential B is obtained from linearized Euler-
Lagrange equations of CFS,

(Be) (x) = /M B(x,y) ¥(y) d'y ron-local,

linear operator

B(x, y)—Z'w L(55Y) Laly = )



(1) Derivation of Canonical Commutation Relations (CCR):

* Starting point is Dirac equation
(ig+B—-m)y =0

* The non-local potential B is obtained from linearized Euler-
Lagrange equations of CFS, and is of form

(Be) (x) = /M B(x,y) ¥(y) d'y ron-local.

with kernel  B(x,y) = Z’Y/ (X%z—y) La(y — x)

Scalar fields (like el.-mag.)
inducing dephasing effects
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* Starting point is Dirac equation
(ig+B—-m)y =0

* The non-local potential B is obtained from linearized Euler-
Lagrange equations of CFS, and is of form

(Be) (x) = /M B(x,y) ¥(y) d'y ron-local.

/ linear operator

with kernel  B(x,y) = Z’Y/ (X%z—y) La(y — x)

Scalar fields (like el.-mag.)

Solves linearized inducing dephasing effects
EL-eqn’s of CFS
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(11) Derivation of Canonical Commutation Relations (CCR):
* Starting point is Dirac equation
(ip+B—-m)y =0

* The potential B is obtained from linearized Euler-
Lagrange equations of CFS,

(B6) () = /M B(x, ) 6(y) oy

B(x, Y)—Zw L(55Y) Laly =

A multitude of fields:

length scale of non-locality

N ~

Planck scale
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(1) Derivation of Canonical Commutation Relations (CCR):

* Starting point is Dirac equation

(ig+B—m)y =0
* The potential B is obtained from linearized Euler-
Lagrange equations of CFS,

(Be) (x) = /M B(x, y) $(y) dy

B(x }’)_Z% (x+y> a(y — X)

 Averaging, ({ - )), over suitable stochastic background, for suitable

choices of potentials, yields CCR, up to errors @(%):
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—> Quantifying error terms will yield
corrections of CFS to standard QED...
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— Quantifying error terms will yield
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Qﬁg Thanks for listening!
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 F. Finster, N. Kamran & M. Reintjes, Adv. Theor. Math. Phys. 27.5, 1463-1589, (2023).
- C. Dappiaggi, F. Finster, N. Kamran & M. Reintjes, Ann. Henri Poincaré 23 (2025).



