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We have two ways to connect CFS’s with QED:

(II)  Canonical Commutation Relations of QED      
      are deduced from Euler-Lagrange equations of CFS’s. 

 — Uses stochastic averaging & non-locality.
        Yields dynamics of quantum states & Feynman diagrams.  ⟶
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Describes excitation of  over , as seen (tested) by .
—  is (non-interacting) vacuum CFS
—  some CFS describing interaction 

ρ̃ ρ A
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, unitary transfo. on ;  
Degrees of freedom in identifying 
Hilbert spaces,   & ,  of   & .

𝒰 ∈ 𝒢 ℋ

ℋ̃ ℋ ρ̃ ρ

ωt(A) :=
1
Zt ∫𝒢

( . . . )eγt(ρ̃,𝒰ρ)dμ𝒢(𝒰)

• F. Finster & N. Kamran, Ann. Henri Poincaré 23 (2022), 1359–1398.

ωt : 𝒜 ⟶ ℂ

The quantum state, at time , constructed from CFS’s, 

is the linear map

t



(I) Construction of an algebraic quantum state:

on algebra of observables  (build from field operators), defined by 

path integral-like structure

𝒜

Compares  with , by surface layer integralρ̃ ρ

ωt(A) :=
1
Zt ∫𝒢

( . . . )eγt(ρ̃,𝒰ρ)dμ𝒢(𝒰)

γt(ρ̃, ρ) = (∫Ω̃t

dρ̃(x)∫M∖Ωt

dρ(y) − ∫M̃∖Ω̃t

dρ̃(x)∫Ωt

dρ(y)) ℒ(x, y)

Lagrangian of CFSM̃ = F(M) ~ past of Ωt, Ω̃t t

ωt : 𝒜 ⟶ ℂ

The quantum state, at time , constructed from CFS’s, 

is the linear map

t
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(I) Construction of an algebraic quantum state:

on algebra of observables  (build from field operators), defined by 

path integral-like structure

𝒜

Thm: (i)        for all       (positivity).

(ii)   There exists a density operator  on a Fock space       

such that              (expectation value).

(iii)  Refinement of     describes entanglement.

ωt(A*A) ≥ 0 A ∈ 𝒜

σt ℱ

ωt(A) = trℱ(σtA)

ωt

ωt(A) :=
1
Zt ∫𝒢

( . . . )eγt(ρ̃,𝒰ρ)dμ𝒢(𝒰)

• F. Finster & N. Kamran, Ann. Henri Poincaré 23 (2022), 1359–1398.
• F. Finster, N. Kamran & M. Reintjes, Adv. Theor. Math. Phys. 27.5, 1463-1589, (2023).
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linear operator

Scalar fields (like el.-mag.) 
inducing dephasing effects
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(II) Derivation of Canonical Commutation Relations (CCR):

• Starting point is Dirac equation

with kernel

A multitude of fields:  

N ∼ length scale of non-locality
Planck scale
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One gets standard perturbative QED, 

up to error terms .

  Quantifying error terms will yield 
corrections of CFS to standard QED… 
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Thanks for listening!
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