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black hole thermodynamics
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Hawking ,  Nature 248 (1974) 30;
  Commun. Math. Phys. 43 (1975) 199
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 black hole entropy
Bekenstein,  Nuovo Cim. Lett. 4(1972) 737;

  Phys. Rev. D 7 (1973) 2333;
  Phys. Rev. D 9(1974) 3292

Hawking , 1974
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matter local frame

thermodynamics
Jacobson   gr-qc/9504004 

δQ = ∫H
TabξadΣb = TδS = T ηδA = ∫H

θ dλ dA

at the centre

assuming   S = ηA
⇕

κ Tablalb =
κ

2π
ηRablalb Raychaudhuri

which amounts to
2π
η

Tablalb = Rab −
1
2

Rgab + Λgab
with Λsome const.

⇒ Einstein eqs.             & η =
1
4



(semiclassical) 
holography



covariant 
entropy 
bound

Bousso    hep-th/9905177,
hep-th/0203101

SL ≤
AB
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generalized bound

Flanagan, Marolf , Wald 
hep-th/9908070

Bousso, Flanagan, Marolf 
hep-th/0305149

Strominger ,Thompson
hep-th/0303067

SL ≤
AB − AB′￼

4



a condition for 
the bound

AP 0708.3729; 0803.2642
if E. eqs. hold



in basic 
thermod. 

AP 0903.0319

Bekenstein, Phys. Rev. D 23 (1981) 287



attaining the bound



relaxation times (1)
Hod  gr-qc/0611004

Bekenstein, Phys. Rev. Lett 46 (1981) 623 
Bremermann, 1967;



relaxation times (2)



KSS bound(1)
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= η
∂u
∂y

 defined through:  η

Kovtun, Son, Starinets hep-th/0309213;
 hep-th/0405231

hep-th/0610145
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 Ap. J. 151, 431

see also (still relying on ):ℓ*  Hod 0905.4113



KSS bound(3)

BRAHMS nucl-ex/0410020; PHENIX nucl-ex/0410003
PHOBOS nucl-ex/0410022; STAR nucl-ex/0501009;
ALICE  1105.3865



focusing

also, 
the bound builds upon
existence of a limit length:

   
1
3

sγ ≤
1
3

s̄γ =
1

4λ̄γ
   ⇒    λγ ≥ λ̄γ ≈ 0.2 lp



giving spacetime a limit length
consider spacetime endowed with existence of a minimum length 
(i.e., with quadratic intervals -> finite limit  at coincidence)

allow for this description to include null intervals 

apply it e.g. to black hole horizons

Kothawala 1307.5618; Kothawala, Padmanabhan 1405.4967; JaffinoStargen, Kothawala 1503.03793 
[minimum-length metric or quantum metric or qmetric]

AP 1812.01275

Krishnendu N V, S. Chakraborty, A. Perri, AP 2505.22877
M.J. Fahn, AP 2507.16911; 2507.18709



minimum-length metric
Kothawala 1307.5618; Kothawala, Padmanabhan 1405.4967; JaffinoStargen, Kothawala 1503.03793 

existence of a minimum length  affects geometry itself in the small scale L

modification introduced in the quadratic interval  (before ):    σ2(x, x′￼) gab

(i.e., not regarded as -blurring of sources in an ordinary spacetime) L

σ2(x, x′￼) ↦ S(σ2) with S(σ2) → ϵL2 finite in the coincidence limit x → x′￼

for it, one needs a metric singular everywhere: how to deal with this?    

(with     when , i.e., when  is far apart from )  S(σ2) ≈ σ2 |σ2 | ≫ L2 x x



we face the unavoidable nonlocality accompanying gravity in the smallest scales   

convenience of nonlocal objects to describe this: use bitensors (just like   
, which is a biscalar)  σ2(x, x′￼)

to require   
σ2(x, x′￼) ↦ S(σ2) with S(σ2) → ϵL2 finite in the coincidence limit x → x′￼

implies   
    gab(x) ↦ qab(x, x′￼) = A gab(x) + ϵ (1/α − A) ta(x) tb(x)

 tangent vector ta =
   α = α(σ2), A = A(σ2)

biscalars  

along the connecting geodesic, which such remains
(with a same character) also in the new metric   

 ϵ = gab tatb = ± 1

nonlocality



 turns out to be completely fixed if a condition is additionally posed on  qab
the 2-point function  of any field (namely, this is about causality): G(x, x′￼)

one requires that, when spacetime is maximally symmetric, 

   G(σ2) ↦ G̃ (σ2) = G(S(σ2))
where   

 and  are Green functions of    and   resp., G G̃ □ x □̃x′￼

and      x □̃x′￼
is the d’Alembertian associated to   qab(x, x′￼)

causality



one gets:   

   qab(x, x′￼) = A gab + ϵ (1/α − A) tatb

with   

 unit tangent to connect. geod.   ta
-/+ 1 for time/space sep.   ϵ =

   A =
S
σ2 ( Δ

ΔS
)

2
D − 1

  α =
S

σ2 S′￼

2

   Δ(x, x′￼) = −
1

g(x)g(x′￼)
det [− ∇(x)

a ∇(x′￼)
b

1
2

σ2(x, x′￼)] van Vleck  
determinant  

( -dim spt.)   D

 with  such that  on the connecting geodesic   ΔS = Δ(x̃, x′￼) x̃ σ2(x̃, x′￼) = S

Kothawala 1307.5618; Kothawala, Padmanabhan 1405.4967; JaffinoStargen, Kothawala 1503.03793 

 is singular everywhere in the   limit, and  for  far apart  qab x → x′￼ qab ≈ gab x, x′￼

  S′￼ ≡ dS/d(σ2)

the bi-metric



null separations
what’s the meaning of a finite distance limit in this case?  

affine     =    measure of distance by the canonical observer  λ

this observer at  will find a finite lower bound  to    x′￼ L λ − λx′￼

qmetric:  

take ,  λx′￼
= 0

 , with  when    λ ↦ λ̃(λ) λ̃ → L λ → 0
   x′￼

  x
 null  γ

key:  

(with   when ) λ̃(λ) ≈ λ λ ≫ L

AP 1812.01275, 2207.12155



we seek  of the form  q(γ)
ab

  q(γ)
ab (x, x′￼) = A(γ) gab(x) + (A(γ) − 1/α(γ)) (la(x)nb(x) + na(x)lb(x))

 null with   na lana = − 1

from  
  l̃b ∇̃ b l̃a = 0

with     ,  l̃a =
dxa

dλ̃
= la dλ

dλ̃

and   ∇̃ bṽa = ∇bṽa −
1
2

qcd( − ∇dqba + 2∇(bqa)d) ṽc

we obtain 

—————  

α(γ) =
C

dλ̃/dλ
, with  real const.C

  A(γ) = A(γ)(λ)
  α(γ) = α(γ)(λ)



 null  γ

  x′￼

  x
  ̂x   ν

  λ

  curvilinear, null   λ, ν
coordinates  

the 2-point function  diverges on   G(x, x′￼) γ

we imagine to be slightly off   γ

  f = f(σ2)

       at   □ f = (4 + 2λ∇ala)
df

dσ2
x ∈ γ   la =

dxa

dλ



we implement then the d’Alembertian condition this way:  

 is solution of  G̃ (σ2) = G̃ (S(σ2))

  (4 + 2λ̃ ∇̃ a l̃a)
dG̃
dS |λ̃

= (4 + 2λ̃ ∇̃ a l̃a) ( dG̃
dσ2 )|λ=λ̃

= 0
when  

 is solution of   G(σ2)

  (4 + 2λ∇ala)
dG
dσ2 |λ

= 0

(1)  

(2)  



using  and the expression for  we already have, eq. (1) is  ∇̃ b l̃a α(γ)

  4 + 2λ̃
dλ
dλ̃

∇ala
|λ + λ̃ (D − 2)

dλ
dλ̃

d
dλ

ln A(γ) = 0
spacetime dim.  D =

—————  
from (2) at , i.e.,   λ̃ ,  4 + 2λ̃∇ala

|λ̃ = 0

and   ∇ala
|λ =

D − 2
λ

−
d
dλ

ln Δ,

we obtain  

 ∇ala
|λ̃ =

D − 2
λ̃

−
d
dλ̃

ln Δλ̃,

  
d
dλ

ln[ λ2

λ̃2 ( Δλ̃

Δ )
2

D − 2
A(γ)] = 0



which is  

 A(γ) = C′￼

λ̃2

λ2 ( Δ
Δλ̃

)
2

D − 2
,   const. C′￼ > 0

—————  
from  

  q(γ)
ab = A(γ) gab + (A(γ) − 1/α(γ)) (lanb + nalb) ≈ gab when   , λ ≫ L

we get     C′￼ = 1 = C

then, final expression is  
—————  

  q(γ)
ab = A(γ) gab + (A(γ) − 1/α(γ)) (lanb + nalb) with  

α(γ) =
1

dλ̃/dλ
,

 A(γ) =
λ̃2

λ2 ( Δ
Δλ̃

)
2

D − 2
. singular everywhere  qab

when  x → x′￼



Ricci scalar
lim
x→x′￼

R̃(x, x′￼) = ϵ D Rabtatb + O(L)

lim
x→x′￼

R̃(γ)(x, x′￼) = (D − 1) Rablalb + O(L)

time/space sep. 

null sep. 

Kothawala, Padmanabhan 1405.4967; JaffinoStargen, Kothawala 1503.03793 

AP 1911.04135

δQ = heat flow through horizon 

δQ = lim
x→x′￼

R̃

qmetric introduces gravitational, local dofs  
(geometric) 



areas shrink to finite values
null geodesics  

  x′￼

 x

transverse metric: 

h̃ab = A(γ) hab

 = det h̃ab(x)/ det hab(x) dD−2a(x) = det h̃ab(x)/ det hab(x) λD−2dΩ(D−2) =

  = λ̃D−2 Δ
Δλ̃

dΩ(D−2) → LD−2 1
Δλ̃=L

dΩ(D−2) ≈ LD−2 dΩ(D−2)
for  x → x′￼

which is finite for a given   dΩ(D−2)
 Δλ̃=L = 1 +

1
6

L2Rablalb + . . .
Kothawala 1406.2672 ; Padmanabhan 1508.06286; AP 1812.01275 

dD−2ã(x) =



statistical field equations
gravitational dofs (quantum dofs of geometry)

matter dofs 

number of dofs   at the point      limit area in some units         Sflat = ( )flat = L2 = 𝒪(1)

 Sactual spt =
1

ΔL
Sflat = 𝒪(1) (1 −

1
6

L2 Rablalb + . . . )
 Smatter = 𝒪(1) L4 Tablalb

we want to extremize   (1 −
1
6

L2 Rablalb) + L4 Tablalb with respect to  keeping  null;  la la

this gives ; −
1
6

L2 Rablalb + L4 Tablalb = 0 we are back then to Jacobson’s result …  
… but with the addition of some statistical mechanical flavor!  

since we start from micro dofs, and get the result from an extremization of entropy  

an extremization based on a different hypothesis about the underlying quantum states 
of the geometry has been investigated in   Isidro, Paganini, P.  2407.13317 .

Padmanabhan 1508.06286; 1702.06136
AP 1511.08665



use on horizons 
(collabs. with Krishnendu N.V. (ICTS, Bengaluru), S. Chakraborty (IACS, Kolkata),

 x′￼

horizon 
event of crossing of the horizon by  x′￼ =
some chunk of energy

we describe the coincidence event 
according to the local observer at x′￼

 → x′￼ x  →

 A. Perri (Bologna), and with M.J. Fahn (Bologna))

  x = x′￼
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thresh. frequency vs   β ( = L/lp)
  f0(Hz)

 χ =
J

M2

Krishnendu, Chakraborty, Perri, AP  2505.22877

 β



quantum systems near the horizon  

the presence of a horizon can affect the coherence of a quantum system

the existence of a limit length can have significant impact on the results 

see the poster by M.J. Fahn  

M.J. Fahn, AP   2507.16911; 2507.18709

Danielson, Satishchandran, Wald 220506279; 2301.00026;         …



conclusions 
the long history (53y) of gravity-thermo.-quantum_info connection 
apparently is strictly intertwined with the notion of a limit length  

and  that 

we have seen that  

the latter provides hints/means to endow spacetime with quantum features  

some open problems:  

 why         ? − λ ≥
1
π

s
ρ + p

 should any quantum theory of gravity foresee (effectively at least) a limit length ?  −

 gravity is definitely intertwined with thermod./information: can we recast its   −
geometric description fully in the language of the latter ?  

 why  is the gen. cov. entropy bound attained (and not just satisfied by far)   ? −


