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Goals

� Provide you with a solid motivation for the structures of
the theory.

� Introduce you to the basic ideas of correlation geometry.
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Flipping the Script

Conventionally we provide the background spacetime and
matter content of a physical system and then we study the
evolution of test particles therein.

In a purely relational theory we aim instead to formulate the
entire physical system in terms of the (cor)relations between
different elementary objects.
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Structures Available In Spacetime?

For simplicity the following considerations take place in flat Rn.
� Starting point: Consider wave functions ψ in spacetime.

� Vector ψ in a Hilbert space (H, ⟨.|.⟩H).
� Phase has no significance: ψ → eiΛψ,

instead of ψ consider ray generated by ψ.
� Only probability density |ψ(t, x⃗)|2 is of physical significance
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Structures Available In Spacetime?

� Consider |ψ(t, x⃗)|2 of wave functions

� General question: Suppose we know |ψ(t, x⃗)|2 for all the
wave functions of the system, what can we say about the
spacetime structures (causality, metric, fields, …).

� Try to “probe” spacetime by looking at |ψ(t, x⃗)|2.
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Information Encoded In This Structure?

First step: Assume we know initial data ψ(t)|t=t0

� Allows for detecting aspects of the causal structure of
spacetime:
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Information Encoded In This Structure?

Second step: consider a family of wave functions ψi

� More wave functions ⇒ More information about spacetime
(spacetime resolution)
E.g. collection of all compactly supported solutions

→ complete causal structure.
Hawking-King-McCarthy and Malament

→ metric up to volume form.
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Which spacetime structures are fundamental?

Possible to detect an electromagnetic field:
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Two Point Correlation

It is known that the two point correlation function GF(x, y) of
the free massless scalar field encodes the metric 1

gµν(x) = −1
2

(
Γ
(D

2 − 1
)

4πD
2

) 2
D−2

lim
x→y

∂

∂x
∂

∂y

(
GF(x, y)

2
2−D
)

(1)

⇒ use correlations between wave functions to encode a physical
system

1M. Saravani, S. Aslanbeigi, and A.Kempf. ”Spacetime curvature in
terms of scalar field propagators.” Physical Review D 93.4 (2016): 045026.
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Some Physical Musings

Principle of equivalence states that a freely falling observer feels
no force. In mathematical terms this translates to the fact that
freely falling observers follow geodesics γ

∇γ̇ γ̇ = 0 . (2)

(Generalization of “straight lines” to curved manifolds.)
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What structures does Spacetime provide

Spacetime as a pseudo-Riemannian manifold (M, g) provides
� a notion of distance.
� a notion of parallel transport.

Geodesic = Parallel transport of tangent vector along curve.

⇒ To make sense of the equivalence principle we need a notion
of parallel transport.
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Vector Bundles

In the following we want to consider vector bundles

FM :=
∪

x∈M
FxM (3)

Here FxM is the fiber space at a point. For vector bundles
FxM is a vector space.

Heuristic idea: A vector bundle is a manifold with a “identical”
vector space attached to every point in a manifold.

Parallel transport tells you how the vector spaces at nearby
points are related.

Claudio Paganini An Introduction to Causal Fermion Systems



Basic Ideas
Correlation Geometry

Definition of a Causal Fermion System

Vector Bundles

In the following we want to consider vector bundles

FM :=
∪

x∈M
FxM (3)

Here FxM is the fiber space at a point. For vector bundles
FxM is a vector space.

Heuristic idea: A vector bundle is a manifold with a “identical”
vector space attached to every point in a manifold.

Parallel transport tells you how the vector spaces at nearby
points are related.

Claudio Paganini An Introduction to Causal Fermion Systems



Basic Ideas
Correlation Geometry

Definition of a Causal Fermion System

Sections

A section is a map that assigns to every point in M a unique
element in the vector space FxM.

ξ : M −→ FM
x −→ ξ(x) ∈ FxM

Physics parlance: A section of a vector bundle is a vector field.

We denote with Γ(FM) the set of smooth sections over the fiber
bundles.
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How to Replace Parallel Transport

Key idea: Use preferred sections in your fiber bundle to link
local structures in the fiber at points in your manifold through
sections in your fiber bundle.
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The Principles of Correlation Geometry

Global structures:
� FM vector bundle.

� Γ(FM) smooth sections on FM.
� V ⊂ Γ(FM) choice of suitable sub-vector-space. e.g. the

smooth solutions of a certain equation.
� (·|·) : Γ(FM)× Γ(FM) −→ C ( or R) scalar product on V.
� H = V Hilbert space. Closure of V under scalar product.

H separable.
Local structure:
� bx : FxM× FxM −→ C ( or R) non-degenerate hermitian

form on FxM× FxM.
For example bx = ⟨·|·⟩x the fiber-inner product at x.
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The Principles of Correlation Geometry
Encode the local hermitian form in the global Hilbert space
structure.

(ψ|F̃(x)ϕ) := bx(ψ(x), ϕ(x)) ∀ψ, ϕ ∈ V

(using Riesz representation theorem)

F(x) then is the unique extension of F̃(x) to H.

Properties of F(x)
� self-adjoint
� rank[F(x)] = dim(FxM)

� Number of positive and negative eigenvalues of F(x)
correspond to the signature (p, q) of the hermitian form.

� Local correlation map F : M → Fp,q ⊂ BL(H) with Fp,q a
manifold.
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Example

Let (M, g) be a compact Riemannian manifold.

� FM = TM the tangent bundle.
� V ⊂ Γ(TM) a finite dimensional collection of smooth vector

fields.
� (V1|V2) :=

´
M g(x)µνVµ

1 (x)Vν
2(x)

√
|g|dNx : V × V → R

� ⟨V1(x)|V2(x)⟩x := g(x)µνVµ
1 (x)Vν

2(x) TxM×TxM → R

(V1|G(x)V2) := ⟨V1(x)|V2(x)⟩x

The local correlation map G : M → FN,0 ⊂ BL(H) identifies
the metric g(x)µν with a self-adjoint operator G(x).
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The Missing Piece

Compare the scalar product and the local hermitian form:
� (V1|V2) :=

´
M g(x)µνVµ

1 (x)Vν
2(x)

√
|g|dNx

� ⟨V1(x)|V2(x)⟩x := g(x)µνVµ
1 (x)Vν

2(x)

The missing piece in the local correlation operators that allows
us to encode the geometry (M, g) in the operator manifold is
the measure.

Let Ω ⊂ FN,0 then the pushforward measure of the metric
volume form of the manifold under the local correlation map is
given by

ρ(Ω) := G∗[µM](Ω) = µM(G−1(Ω)) =

ˆ
G−1(Ω)

√
|g|dNx
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Example continued

Let (M, g) be a compact Riemannian manifold that is
parallelizable. Let V ⊂ Γ(TM) be the span of N everywhere
orthonormal vector fields V1, . . . ,VN.

In this case we have

g(x)µνVµ
i (x)V

ν
j (x) = δij ∀ x ∈ M

and hence G(x) = 1 for all x ∈ M.
As a consequence we find that

ρ(1) =
ˆ
G−1(Ω)=M

√
|g|dNx = Vol(M)
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ρ(1) =
ˆ
G−1(Ω)=M

√
|g|dNx = Vol(M)
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Some Observations
We see from the example above, that in order to retain
substantial information about our original geometry FM we
need to choose dim(V) >> dim(FxM)

Ft

x⃗

F ⊂ L(H)

� The right side contains all the information about FM
which can be retrieved from the ensemble of sections.

� If V is chosen as a subspace of the solution space of a
particular equation, the right hand side also encodes
information about that equation.
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More Observations

M := suppρ

F ⊂ L(H)

Image of F recovered as the support of the measure,

M := supp ρ =
{

F ∈ F | ρ(Ω) ̸= 0
for every open neighborhood Ω of F

}
.
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Example Continued

� Let (M1, g1) and (M2, g2) be two compact Riemannian
manifolds.

� Let V1 ⊂ Γ(TM1) and V2 ⊂ Γ(TM2) be such that there
exists an isomorphism between H1 := V1 and H2 := V2.

Then F1 and F2 give rise to measures ρ1 and ρ2 on FN,0.
� In general ρ1 ̸= ρ2.
� In particular we generically expect that

M1 := supp ρ1 ̸= supp ρ2 =: M2.
� Geometries with entirely different topologies can be

encoded in the same FN,0

The same is also true when (M1, g1) = (M2, g2) but V1 ̸= V2
such that H1 ̸= H2.
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Replacing Parallel Transport

Consider a fiber bundle FM where the hermitian form is given
by a fiber inner product ⟨·|·⟩x.

To define the generalized two-point-correlator we pick an
orthonormal basis ψi ⊂ H of the Hilbert space.

We then consider the map

P(x, y) :=
∑

i
|ψ(x)⟩x⟨ψ(y)|y ∈ FxM⊗ (FyM)∗ (4)

If you know the value of an element u in H at y, then P(x, y)
tells you what its value at x is.
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Correlation Geometry for Causal Fermion Systems

Let (M, g) be a 2n dimensional Lorentzian manifold that is spin.

� Let FM = SM the spinor bundle over the manifold.
� Let V ⊂ Γ(SM) be a suitable subset of the solution space

to the Dirac equation.
� The hermitian form is given by bx(ψ, ϕ) = ψ†ϕ is the

indefinite inner product on C2n with signature (n, n).
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Set of all Local Correlation Operators

General strategy:
� Treat objects on the left as effective description

(spacetime, matter fields, …)

� Formulate a theory entirely with the objects on the right.

M := im F

F ⊂ L(H)
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Causal Fermion Systems

Definition (Causal fermion system)
Let (H, ⟨.|.⟩H) be Hilbert space
Given parameter n ∈ N (“spin dimension”)
F :=

{
x ∈ L(H) with the properties:� x is symmetric and has finite rank

� x has at most n positive
and at most n negative eigenvalues

}
ρ a measure on F
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