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» Provide you with a solid motivation for the structures of
the theory.
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» Provide you with a solid motivation for the structures of
the theory.

» Introduce you to the basic ideas of correlation geometry.
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Basic Ideas

Flipping the Script

Conventionally we provide the background spacetime and
matter content of a physical system and then we study the
evolution of test particles therein.
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Basic Ideas

Flipping the Script

Conventionally we provide the background spacetime and
matter content of a physical system and then we study the
evolution of test particles therein.

In a purely relational theory we aim instead to formulate the
entire physical system in terms of the (cor)relations between
different elementary objects.
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Basic Ideas

Structures Available In Spacetime?

For simplicity the following considerations take place in flat R".

» Starting point: Consider wave functions v in spacetime.
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» Vector ¢ in a Hilbert space (K, (.|.)5).
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Basic Ideas

Structures Available In Spacetime?

For simplicity the following considerations take place in flat R".
» Starting point: Consider wave functions v in spacetime.
» Vector ¢ in a Hilbert space (K, (.|.)5).

» Phase has no significance: ¢ — e\,
instead of 1 consider ray generated by 1.
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Basic Ideas

Structures Available In Spacetime?

For simplicity the following considerations take place in flat R".
» Starting point: Consider wave functions v in spacetime.
» Vector ¢ in a Hilbert space (K, (.|.)5).

» Phase has no significance: ¢ — e\,
instead of 1 consider ray generated by 1.
2

» Only probability density [¢(t,X)|” is of physical significance
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Basic Ideas

Structures Available In Spacetime?

» Consider [1(t,%)[* of wave functions
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Basic Ideas

Structures Available In Spacetime?

» Consider [1(t,%)[* of wave functions

» General question: Suppose we know |1 (t,%)|? for all the
wave functions of the system, what can we say about the
spacetime structures (causality, metric, fields, ..).
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Basic Ideas

Structures Available In Spacetime?

» Consider [1(t,%)[* of wave functions

» General question: Suppose we know |1 (t,%)|? for all the
wave functions of the system, what can we say about the
spacetime structures (causality, metric, fields, ..).

» Try to “probe” spacetime by looking at [i(t, %)|%.
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Basic Ideas

Information Encoded In This Structure?

First step: Assume we know initial data ¢(t)]t=t,
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Basic Ideas

Information Encoded In This Structure?

First step: Assume we know initial data ¢(t)]t=t,

» Allows for detecting aspects of the causal structure of
spacetime:

Yo
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Basic Ideas

Information Encoded In This Structure?

Second step: consider a family of wave functions
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Basic Ideas

Information Encoded In This Structure?

Second step: consider a family of wave functions

(.P
%, AL

5

’ {

» More wave functions = More information about spacetime
(spacetime resolution)
E.g. collection of all compactly supported solutions
— complete causal structure.
Hawking-King-McCarthy and Malament
— metric up to volume form.
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Basic Ideas

Which spacetime structures are fundamental?

Possible to detect an electromagnetic field:
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Basic Ideas

Two Point Correlation

It is known that the two point correlation function Gg(x,y) of
the free massless scalar field encodes the metric

_2
1L(r-n\*>* . a9 2
g = =3 (=2 ) lm g (Green) ) ()

= use correlations between wave functions to encode a physical
System

IM. Saravani, S. Aslanbeigi, and A.Kempf. "Spacetime curvature in
terms of scalar field propagators.” Physical Review D 93.4 (2016): 045026.
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Correlation Geometry

Some Physical Musings

Principle of equivalence states that a freely falling observer feels
no force. In mathematical terms this translates to the fact that
freely falling observers follow geodesics

Vi =0. (2)

(Generalization of “straight lines” to curved manifolds.)
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Correlation Geometry

What structures does Spacetime provide

Spacetime as a pseudo-Riemannian manifold (M, g) provides
» a notion of distance.

» a notion of parallel transport.
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What structures does Spacetime provide

Spacetime as a pseudo-Riemannian manifold (M, g) provides
» a notion of distance.

» a notion of parallel transport.

Geodesic = Parallel transport of tangent vector along curve.

An Introduction to Causal Fermion Systems



Correlation Geometry

What structures does Spacetime provide

Spacetime as a pseudo-Riemannian manifold (M, g) provides
» a notion of distance.

» a notion of parallel transport.

Geodesic = Parallel transport of tangent vector along curve.

= To make sense of the equivalence principle we need a notion
of parallel transport.
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Correlation Geometry

Vector Bundles

In the following we want to consider vector bundles

FM:= | | FxM (3)
xeM

Here Fy M is the fiber space at a point. For vector bundles
FyM is a vector space.

Heuristic idea: A vector bundle is a manifold with a “identical”
vector space attached to every point in a manifold.
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Correlation Geometry

Vector Bundles

In the following we want to consider vector bundles

FM:= | | FxM (3)
xeM

Here Fy M is the fiber space at a point. For vector bundles
FyM is a vector space.

Heuristic idea: A vector bundle is a manifold with a “identical”
vector space attached to every point in a manifold.

Parallel transport tells you how the vector spaces at nearby
points are related.
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Correlation Geometry

Sections

A section is a map that assigns to every point in M a unique
element in the vector space Fy M.

£: M — FM
X — E(X) € Fx M

Physics parlance: A section of a vector bundle is a vector field.
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Correlation Geometry

Sections

A section is a map that assigns to every point in M a unique
element in the vector space Fy M.

£: M — FM
X — E(X) € Fx M

Physics parlance: A section of a vector bundle is a vector field.

We denote with I'(F.M) the set of smooth sections over the fiber
bundles.
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Correlation Geometry

How to Replace Parallel Transport

Key idea: Use preferred sections in your fiber bundle to link
local structures in the fiber at points in your manifold through
sections in your fiber bundle.
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Correlation Geometry

The Principles of Correlation Geometry

Global structures:
» FM vector bundle.
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Correlation Geometry

The Principles of Correlation Geometry

Global structures:
» FM vector bundle.
» [(FM) smooth sections on FM.

» V C I'(FM) choice of suitable sub-vector-space. e.g. the
smooth solutions of a certain equation.
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Correlation Geometry

The Principles of Correlation Geometry

Global structures:
» FM vector bundle.
» [(FM) smooth sections on FM.

» V C I'(FM) choice of suitable sub-vector-space. e.g. the
smooth solutions of a certain equation.

» () :(FM)xT(FM) — C ( or R) scalar product on V.
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Correlation Geometry

The Principles of Correlation Geometry

Global structures:

» FM vector bundle.

» [(FM) smooth sections on FM.

» V C I'(FM) choice of suitable sub-vector-space. e.g. the
smooth solutions of a certain equation.

» () :(FM)xT(FM) — C ( or R) scalar product on V.

» #H = V Hilbert space. Closure of V under scalar product.
‘H separable.
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Correlation Geometry

The Principles of Correlation Geometry

Global structures:
» FM vector bundle.
» [(FM) smooth sections on FM.

» V C I'(FM) choice of suitable sub-vector-space. e.g. the
smooth solutions of a certain equation.

> (-|): F[(FM)xT(FM) — C ( or R) scalar product on V.
» #H = V Hilbert space. Closure of V under scalar product.
‘H separable.
Local structure:

> by : FxM x FxM — C ( or R) non-degenerate hermitian
form on Fx M x Fx M.
For example by = (-|-)x the fiber-inner product at x.

Claudio Paganini An Introduction to Causal Fermion Systems



Correlation Geometry

The Principles of Correlation Geometry

Encode the local hermitian form in the global Hilbert space
structure.

(UIF()9) = be($(x),6(x)) Ve, 0 €V
(using Riesz representation theorem)

F(x) then is the unique extension of F(x) to H.
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The Principles of Correlation Geometry

Encode the local hermitian form in the global Hilbert space
structure.

(UIF()9) = be($(x),6(x)) Ve, 0 €V
(using Riesz representation theorem)
F(x) then is the unique extension of F(x) to H.

Properties of F(x)

» self-adjoint
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Correlation Geometry

The Principles of Correlation Geometry

Encode the local hermitian form in the global Hilbert space
structure.

(UIF()9) = be($(x),6(x)) Ve, 0 €V
(using Riesz representation theorem)
F(x) then is the unique extension of F(x) to H.

Properties of F(x)
» self-adjoint
» rank[F(x)] = dim(FxM)
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Correlation Geometry

The Principles of Correlation Geometry

Encode the local hermitian form in the global Hilbert space
structure.

(UIF()9) = be($(x),6(x)) Ve, 0 €V
(using Riesz representation theorem)
F(x) then is the unique extension of F(x) to H.

Properties of F(x)
» self-adjoint
» rank[F(x)] = dim(FxM)
» Number of positive and negative eigenvalues of F(x)
correspond to the signature (p, q) of the hermitian form.
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Correlation Geometry

The Principles of Correlation Geometry

Encode the local hermitian form in the global Hilbert space
structure.

(UIF()9) = be($(x),6(x)) Ve, 0 €V
(using Riesz representation theorem)
F(x) then is the unique extension of F(x) to H.

Properties of F(x)
» self-adjoint
» rank[F(x)] = dim(FxM)
» Number of positive and negative eigenvalues of F(x)
correspond to the signature (p, q) of the hermitian form.

» Local correlation map F : M — FP9 C BL(H) with FP9 a
manifold.
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Correlation Geometry

Example

Let (M, g) be a compact Riemannian manifold.
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Example
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» FM = TM the tangent bundle.
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Correlation Geometry

Example

Let (M, g) be a compact Riemannian manifold.
» FM = TM the tangent bundle.

» V C I[(TM) a finite dimensional collection of smooth vector
fields.
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Correlation Geometry

Example

Let (M, g) be a compact Riemannian manifold.
» FM = TM the tangent bundle.

» V C I[(TM) a finite dimensional collection of smooth vector
fields.

> (V1[Va) = [, 8(x)u V(%) (x)/|g]dNx VxV-oR
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Correlation Geometry

Example

Let (M, g) be a compact Riemannian manifold.
» FM = TM the tangent bundle.

» V C I[(TM) a finite dimensional collection of smooth vector
fields.

> (V1[V2): fM g(x) VI (x)VE( )\/@dNX "VxV-=R
b (ViIVa(e = g VEGIVER)  TeM x ToM = R
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Correlation Geometry

Example

Let (M, g) be a compact Riemannian manifold.
» FM = TM the tangent bundle.

» V C I[(TM) a finite dimensional collection of smooth vector
fields.

> (V1| V2) i= [y, 8(x)w Vi (x)VE(x)y/[gldNx :VxV =R
> (Vi(x)[Va(x))x = g(x), Vi (x)V5(x) TyM x TyM — R

(V1G(x)Vz2) := (V1(x)[Va(x))x

The local correlation map G : M — FN0 C BL(XK) identifies
the metric g(x),, with a self-adjoint operator G(x).
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Correlation Geometry

The Missing Piece

Compare the scalar product and the local hermitian form:

> (Vi|Va): fMg ) VY (%) \/EdN
> (V1(x)[Va(x))x = g(x )WV’f( )VZ( x)
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Correlation Geometry

The Missing Piece

Compare the scalar product and the local hermitian form:

> (Vi|Va): fMg ) VY (%) \/EdN
> (V1(x)[Va(x))x = g(x )WV’f( )VZ( x)

The missing piece in the local correlation operators that allows
us to encode the geometry (M, g) in the operator manifold is
the measure.
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Correlation Geometry

The Missing Piece

Compare the scalar product and the local hermitian form:

> (Vi|Va): fMg ) VY (%) \/EdN
> (V1(x)[Va(x))x = g(x )WV’f( )VZ( x)

The missing piece in the local correlation operators that allows
us to encode the geometry (M, g) in the operator manifold is
the measure.

Let Q ¢ FNO then the pushforward measure of the metric

volume form of the manifold under the local correlation map is
given by

) = Gulpad@) = pae @@ = [ Vel
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Correlation Geometry

Example continued

Let (M, g) be a compact Riemannian manifold that is
parallelizable. Let V C I'(TM) be the span of N everywhere
orthonormal vector fields Vi,..., V.
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Correlation Geometry

Example continued

Let (M, g) be a compact Riemannian manifold that is
parallelizable. Let V C I'(TM) be the span of N everywhere
orthonormal vector fields Vi,..., V.

In this case we have

gX)w Vi)V (x) =06 VxeM

and hence G(x) =1 for all x € M.
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Correlation Geometry

Example continued

Let (M, g) be a compact Riemannian manifold that is
parallelizable. Let V C I'(TM) be the span of N everywhere
orthonormal vector fields Vi,..., V.

In this case we have

gX)w Vi)V (x) =06 VxeM

and hence G(x) =1 for all x € M.
As a consequence we find that

o) = | VIgldNx = Vol(M)
G—1(Q)=M

Claudio Paganini An Introduction to Causal Fermion Systems



Correlation Geometry

Some Observations

We see from the example above, that in order to retain
substantial information about our original geometry FM we
need to choose dim(V) >> dim(FxM)

F C L(H)

F
— T
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Correlation Geometry

Some Observations

We see from the example above, that in order to retain
substantial information about our original geometry FM we
need to choose dim(V) >> dim(FxM)

F C L(H)

F
— T

» The right side contains all the information about FM
which can be retrieved from the ensemble of sections.
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Correlation Geometry

Some Observations

We see from the example above, that in order to retain
substantial information about our original geometry FM we
need to choose dim(V) >> dim(FxM)

F C L(H)

F
— T

» The right side contains all the information about FM
which can be retrieved from the ensemble of sections.

» If V is chosen as a subspace of the solution space of a
particular equation, the right hand side also encodes
information about that equation.
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Correlation Geometry

More Observations

F C L(H)

M := suppp

Image of F recovered as the support of the measure,

M :=supp p={F € F| p(Q) #0
for every open neighborhood € of F}
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Correlation Geometry

Example Continued

> Let (My,g1) and (M2, g2) be two compact Riemannian
manifolds.
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Correlation Geometry

Example Continued

> Let (My,g1) and (M2, g2) be two compact Riemannian
manifolds.

» Let Vi C I(TM;) and Vg C (T My3) be such that there
exists an isomorphism between H; := Vi and Hy := V.
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Correlation Geometry

Example Continued

> Let (My,g1) and (M2, g2) be two compact Riemannian
manifolds.

» Let Vi C I(TM;) and Vg C (T My3) be such that there
exists an isomorphism between H; := Vi and Hy := V.

Then F; and Fy give rise to measures p; and p2 on FNO,
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Correlation Geometry

Example Continued

> Let (My,g1) and (M2, g2) be two compact Riemannian
manifolds.

» Let Vi C I(TM;) and Vg C (T My3) be such that there
exists an isomorphism between H; := Vi and Hy := V.

Then F; and Fy give rise to measures p; and p2 on FNO,

» In general p1 # po.
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Correlation Geometry

Example Continued

> Let (My,g1) and (M2, g2) be two compact Riemannian
manifolds.

» Let Vi C I(TM;) and Vg C (T My3) be such that there
exists an isomorphism between H; := Vi and Hy := V.

Then F; and Fy give rise to measures p; and p2 on FNO,
» In general p1 # po.

» In particular we generically expect that
Mj := supp p1 # supp p2 =: Ma.
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Correlation Geometry

Example Continued

> Let (My,g1) and (M2, g2) be two compact Riemannian
manifolds.

» Let Vi C I(TM;) and Vy C I'(TMyz) be such that there

exists an isomorphism between H; := V7 and Hs := V.
Then F; and Fy give rise to measures p; and p2 on FNO,

» In general p1 # po.

» In particular we generically expect that
Mj := supp p1 # supp p2 =: Ma.

> Geometries with entirely different topologies can be
encoded in the same FN-0
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Correlation Geometry

Example Continued

> Let (My,g1) and (M2, g2) be two compact Riemannian
manifolds.

» Let Vi C I(TM;) and Vy C I'(TMyz) be such that there

exists an isomorphism between H; := V7 and Hs := V.
Then F; and Fy give rise to measures p; and p2 on FNO,

» In general p1 # po.

» In particular we generically expect that
Mj := supp p1 # supp p2 =: Ma.

> Geometries with entirely different topologies can be
encoded in the same FN-0

The same is also true when (M, g1) = (Ma, g2) but Vi # Vy
such that H; # Ho.
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Replacing Parallel Transport

Consider a fiber bundle FM where the hermitian form is given
by a fiber inner product (-|-)x.
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Consider a fiber bundle FM where the hermitian form is given
by a fiber inner product (-|-)x.

To define the generalized two-point-correlator we pick an
orthonormal basis ¢; C H of the Hilbert space.
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Correlation Geometry

Replacing Parallel Transport

Consider a fiber bundle FM where the hermitian form is given
by a fiber inner product (-|-)x.

To define the generalized two-point-correlator we pick an
orthonormal basis ¢; C H of the Hilbert space.

We then consider the map

Z [Py e FMe (FyM)T (4)
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Correlation Geometry

Replacing Parallel Transport

Consider a fiber bundle FM where the hermitian form is given
by a fiber inner product (-|-)x.

To define the generalized two-point-correlator we pick an
orthonormal basis ¢; C H of the Hilbert space.

We then consider the map

Z [Py e FMe (FyM)T (4)

If you know the value of an element u in H at y, then P(x,y)
tells you what its value at x is.
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Correlation Geometry

Correlation Geometry for Causal Fermion Systems

Let (M, g) be a 2n dimensional Lorentzian manifold that is spin.
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Correlation Geometry for Causal Fermion Systems

Let (M, g) be a 2n dimensional Lorentzian manifold that is spin.

» Let FAM = SM the spinor bundle over the manifold.
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Correlation Geometry

Correlation Geometry for Causal Fermion Systems

Let (M, g) be a 2n dimensional Lorentzian manifold that is spin.

» Let FAM = SM the spinor bundle over the manifold.

» Let V C I'(SM) be a suitable subset of the solution space
to the Dirac equation.
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Correlation Geometry

Correlation Geometry for Causal Fermion Systems

Let (M, g) be a 2n dimensional Lorentzian manifold that is spin.

» Let FAM = SM the spinor bundle over the manifold.

» Let V C I'(SM) be a suitable subset of the solution space
to the Dirac equation.

» The hermitian form is given by by (¢, ¢) = ¥T¢ is the
indefinite inner product on C?* with signature (n,n).
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Correlation Geometry

Set of all Local Correlation Operators

General strategy:

» Treat objects on the left as effective description
(spacetime, matter fields, ...)
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Correlation Geometry

Set of all Local Correlation Operators

General strategy:

» Treat objects on the left as effective description
(spacetime, matter fields, ...)

» Formulate a theory entirely with the objects on the right.
F C L(H)
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Definition of a Causal Fermion System

Causal Fermion Systems

Definition (Causal fermion system)
Let (3, (.|.)s¢) be Hilbert space
Given parameter n € N (“spin dimension”)
S {x € L(%) with the properties:
» x is symmetric and has finite rank
» x has at most n positive
and at most n negative eigenvalues }

p a measure on JF
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