Motivation in Examples

Dr. Claudio Paganini

Regensburg, October 2025

Goals

▶ Provide you with a solid motivation for the structures of the theory.

Goals

- ▶ Provide you with a solid motivation for the structures of the theory.
- ▶ Introduce you to the basic ideas of correlation geometry.

Flipping the Script

Conventionally we provide the background spacetime and matter content of a physical system and then we study the evolution of test particles therein.

Flipping the Script

Conventionally we provide the background spacetime and matter content of a physical system and then we study the evolution of test particles therein.

In a purely relational theory we aim instead to formulate the entire physical system in terms of the (cor)relations between different elementary objects.

For simplicity the following considerations take place in flat \mathbb{R}^n .

Starting point: Consider wave functions ψ in spacetime.

For simplicity the following considerations take place in flat \mathbb{R}^n .

- **Starting point:** Consider wave functions ψ in spacetime.
- ▶ Vector ψ in a Hilbert space $(\mathcal{H}, \langle .|.\rangle_{\mathcal{H}})$.

For simplicity the following considerations take place in flat \mathbb{R}^n .

- **Starting point:** Consider wave functions ψ in spacetime.
- ▶ Vector ψ in a Hilbert space $(\mathcal{H}, \langle .|.\rangle_{\mathcal{H}})$.
- ▶ Phase has no significance: $\psi \to e^{i\Lambda}\psi$, instead of ψ consider ray generated by ψ .

For simplicity the following considerations take place in flat \mathbb{R}^n .

- **Starting point:** Consider wave functions ψ in spacetime.
- ▶ Vector ψ in a Hilbert space $(\mathcal{H}, \langle .|.\rangle_{\mathcal{H}})$.
- ▶ Phase has no significance: $\psi \to e^{i\Lambda}\psi$, instead of ψ consider ray generated by ψ .
- ▶ Only probability density $|\psi(t,\vec{x})|^2$ is of physical significance

► Consider $|\psi(t, \vec{x})|^2$ of wave functions

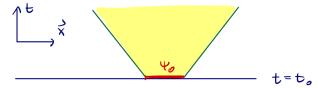
- ► Consider $|\psi(t, \vec{x})|^2$ of wave functions
- ▶ General question: Suppose we know $|\psi(t, \vec{x})|^2$ for all the wave functions of the system, what can we say about the spacetime structures (causality, metric, fields, ...).

- ► Consider $|\psi(t,\vec{x})|^2$ of wave functions
- ▶ General question: Suppose we know $|\psi(t, \vec{x})|^2$ for all the wave functions of the system, what can we say about the spacetime structures (causality, metric, fields, ...).
- ▶ Try to "probe" spacetime by looking at $|\psi(t, \vec{x})|^2$.

First step: Assume we know initial data $\psi(t)|_{t=t_0}$

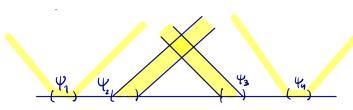
First step: Assume we know initial data $\psi(t)|_{t=t_0}$

► Allows for detecting aspects of the causal structure of spacetime:



Second step: consider a family of wave functions ψ_i

Second step: consider a family of wave functions ψ_i



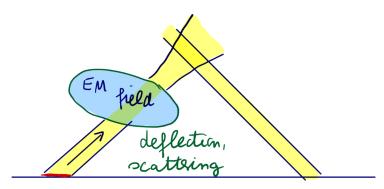
- ► More wave functions ⇒ More information about spacetime (spacetime resolution)
 - E.g. collection of all compactly supported solutions
 - \rightarrow complete causal structure.

Hawking-King-McCarthy and Malament

 \rightarrow metric up to volume form.

Which spacetime structures are fundamental?

Possible to detect an electromagnetic field:



Two Point Correlation

It is known that the two point correlation function $G_F(x, y)$ of the free massless scalar field encodes the metric ¹

$$g_{\mu\nu}(x) = -\frac{1}{2} \left(\frac{\Gamma\left(\frac{D}{2} - 1\right)}{4\pi^{\frac{D}{2}}} \right)^{\frac{2}{D-2}} \lim_{x \to y} \frac{\partial}{\partial x} \frac{\partial}{\partial y} \left(G_F(x, y)^{\frac{2}{2-D}} \right) \quad (1)$$

 \Rightarrow use correlations between wave functions to encode a physical system

¹M. Saravani, S. Aslanbeigi, and A.Kempf. "Spacetime curvature in terms of scalar field propagators." Physical Review D 93.4 (2016): 045026.

Some Physical Musings

Principle of equivalence states that a freely falling observer feels no force. In mathematical terms this translates to the fact that freely falling observers follow geodesics γ

$$\nabla_{\dot{\gamma}}\dot{\gamma} = 0. \tag{2}$$

(Generalization of "straight lines" to curved manifolds.)

What structures does Spacetime provide

Spacetime as a pseudo-Riemannian manifold (\mathcal{M}, g) provides

- ▶ a notion of distance.
- ▶ a notion of parallel transport.

What structures does Spacetime provide

Spacetime as a pseudo-Riemannian manifold (\mathcal{M}, g) provides

- ▶ a notion of distance.
- ▶ a notion of parallel transport.

Geodesic = Parallel transport of tangent vector along curve.

What structures does Spacetime provide

Spacetime as a pseudo-Riemannian manifold (\mathcal{M}, g) provides

- ▶ a notion of distance.
- ▶ a notion of parallel transport.

Geodesic = Parallel transport of tangent vector along curve.

 \Rightarrow To make sense of the equivalence principle we need a notion of parallel transport.

Vector Bundles

In the following we want to consider vector bundles

$$F\mathcal{M} := \bigcup_{x \in \mathcal{M}} F_x \mathcal{M} \tag{3}$$

Here $F_x \mathcal{M}$ is the fiber space at a point. For vector bundles $F_x \mathcal{M}$ is a vector space.

Heuristic idea: A vector bundle is a manifold with a "identical" vector space attached to every point in a manifold.

Vector Bundles

In the following we want to consider vector bundles

$$F\mathcal{M} := \bigcup_{x \in \mathcal{M}} F_x \mathcal{M} \tag{3}$$

Here $F_x \mathcal{M}$ is the fiber space at a point. For vector bundles $F_x \mathcal{M}$ is a vector space.

Heuristic idea: A vector bundle is a manifold with a "identical" vector space attached to every point in a manifold.

Parallel transport tells you how the vector spaces at nearby points are related.

Sections

A section is a map that assigns to every point in \mathcal{M} a unique element in the vector space $F_x \mathcal{M}$.

Physics parlance: A section of a vector bundle is a vector field.

Sections

A section is a map that assigns to every point in \mathcal{M} a unique element in the vector space $F_x \mathcal{M}$.

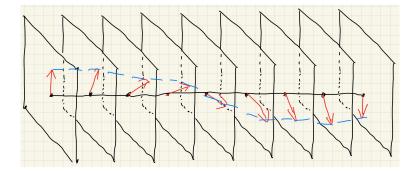
$$\xi: \qquad \mathcal{M} \qquad \longrightarrow \qquad \mathrm{F}\mathcal{M} \\ \mathrm{x} \qquad \longrightarrow \qquad \xi(\mathrm{x}) \qquad \in \mathrm{F}_{\mathrm{x}}\mathcal{M}$$

Physics parlance: A section of a vector bundle is a vector field.

We denote with $\Gamma(F\mathcal{M})$ the set of smooth sections over the fiber bundles.

How to Replace Parallel Transport

Key idea: Use preferred sections in your fiber bundle to link local structures in the fiber at points in your manifold through sections in your fiber bundle.



Global structures:

 \triangleright FM vector bundle.

- \triangleright FM vector bundle.
- $ightharpoonup \Gamma(F\mathcal{M})$ smooth sections on $F\mathcal{M}$.

- \triangleright FM vector bundle.
- $ightharpoonup \Gamma(F\mathcal{M})$ smooth sections on $F\mathcal{M}$.
- ▶ $V \subset \Gamma(FM)$ choice of suitable sub-vector-space. e.g. the smooth solutions of a certain equation.

- \triangleright FM vector bundle.
- $ightharpoonup \Gamma(F\mathcal{M})$ smooth sections on $F\mathcal{M}$.
- ▶ $V \subset \Gamma(FM)$ choice of suitable sub-vector-space. e.g. the smooth solutions of a certain equation.
- \blacktriangleright $(\cdot|\cdot): \Gamma(F\mathcal{M}) \times \Gamma(F\mathcal{M}) \longrightarrow \mathbb{C}$ (or \mathbb{R}) scalar product on V.

- \triangleright FM vector bundle.
- $ightharpoonup \Gamma(F\mathcal{M})$ smooth sections on $F\mathcal{M}$.
- ▶ $V \subset \Gamma(FM)$ choice of suitable sub-vector-space. e.g. the smooth solutions of a certain equation.
- \blacktriangleright $(\cdot|\cdot): \Gamma(F\mathcal{M}) \times \Gamma(F\mathcal{M}) \longrightarrow \mathbb{C}$ (or \mathbb{R}) scalar product on V.
- ▶ $\mathcal{H} = \overline{V}$ Hilbert space. Closure of V under scalar product. \mathcal{H} separable.

Global structures:

- \triangleright FM vector bundle.
- $ightharpoonup \Gamma(F\mathcal{M})$ smooth sections on $F\mathcal{M}$.
- ▶ $V \subset \Gamma(FM)$ choice of suitable sub-vector-space. e.g. the smooth solutions of a certain equation.
- \blacktriangleright $(\cdot|\cdot): \Gamma(F\mathcal{M}) \times \Gamma(F\mathcal{M}) \longrightarrow \mathbb{C}$ (or \mathbb{R}) scalar product on V.
- ▶ $\mathcal{H} = \overline{V}$ Hilbert space. Closure of V under scalar product. \mathcal{H} separable.

Local structure:

 \blacktriangleright $b_x: F_x \mathcal{M} \times F_x \mathcal{M} \longrightarrow \mathbb{C}$ (or \mathbb{R}) non-degenerate hermitian form on $F_x \mathcal{M} \times F_x \mathcal{M}$.

For example $b_x = \langle \cdot | \cdot \rangle_x$ the fiber-inner product at x.

Encode the local hermitian form in the global Hilbert space structure.

$$(\psi | \tilde{\mathbb{F}}(\mathbf{x}) \phi) := b_{\mathbf{x}}(\psi(\mathbf{x}), \phi(\mathbf{x})) \qquad \forall \psi, \phi \in V$$

(using Riesz representation theorem)

 $\mathbb{F}(x)$ then is the unique extension of $\tilde{\mathbb{F}}(x)$ to \mathcal{H} .

Encode the local hermitian form in the global Hilbert space structure.

$$(\psi | \tilde{\mathbb{F}}(\mathbf{x}) \phi) := \mathbf{b}_{\mathbf{x}}(\psi(\mathbf{x}), \phi(\mathbf{x})) \qquad \forall \psi, \phi \in \mathbf{V}$$

(using Riesz representation theorem)

 $\mathbb{F}(x)$ then is the unique extension of $\tilde{\mathbb{F}}(x)$ to \mathcal{H} .

Properties of $\mathbb{F}(x)$

► self-adjoint

Encode the local hermitian form in the global Hilbert space structure.

$$(\psi | \tilde{\mathbb{F}}(\mathbf{x}) \phi) := \mathbf{b}_{\mathbf{x}}(\psi(\mathbf{x}), \phi(\mathbf{x})) \qquad \forall \psi, \phi \in \mathbf{V}$$

(using Riesz representation theorem)

 $\mathbb{F}(x)$ then is the unique extension of $\tilde{\mathbb{F}}(x)$ to \mathcal{H} .

Properties of $\mathbb{F}(x)$

- ▶ self-adjoint
- $ightharpoonup \operatorname{rank}[\mathbb{F}(\mathbf{x})] = \operatorname{dim}(\mathbf{F}_{\mathbf{x}}\mathcal{M})$

The Principles of Correlation Geometry

Encode the local hermitian form in the global Hilbert space structure.

$$(\psi | \tilde{\mathbb{F}}(\mathbf{x}) \phi) := \mathbf{b}_{\mathbf{x}}(\psi(\mathbf{x}), \phi(\mathbf{x})) \qquad \forall \psi, \phi \in \mathbf{V}$$

(using Riesz representation theorem)

 $\mathbb{F}(x)$ then is the unique extension of $\tilde{\mathbb{F}}(x)$ to \mathcal{H} .

Properties of $\mathbb{F}(x)$

- ▶ self-adjoint
- $ightharpoonup \operatorname{rank}[\mathbb{F}(\mathbf{x})] = \operatorname{dim}(\mathbf{F}_{\mathbf{x}}\mathcal{M})$
- Number of positive and negative eigenvalues of $\mathbb{F}(x)$ correspond to the signature (p,q) of the hermitian form.

The Principles of Correlation Geometry

Encode the local hermitian form in the global Hilbert space structure.

$$(\psi | \tilde{\mathbb{F}}(\mathbf{x}) \phi) := b_{\mathbf{x}}(\psi(\mathbf{x}), \phi(\mathbf{x})) \qquad \forall \psi, \phi \in V$$

(using Riesz representation theorem)

 $\mathbb{F}(x)$ then is the unique extension of $\tilde{\mathbb{F}}(x)$ to \mathcal{H} .

Properties of $\mathbb{F}(x)$

- ▶ self-adjoint
- $ightharpoonup \operatorname{rank}[\mathbb{F}(\mathbf{x})] = \operatorname{dim}(\mathbf{F}_{\mathbf{x}}\mathcal{M})$
- Number of positive and negative eigenvalues of $\mathbb{F}(x)$ correspond to the signature (p,q) of the hermitian form.
- ▶ Local correlation map $F : \mathcal{M} \to \mathcal{F}^{p,q} \subset BL(\mathcal{H})$ with $\mathcal{F}^{p,q}$ a manifold.

Let (M, g) be a compact Riemannian manifold.

ightharpoonup F $\mathcal{M} = T\mathcal{M}$ the tangent bundle.

- ightharpoonup F $\mathcal{M} = T\mathcal{M}$ the tangent bundle.
- ▶ $V \subset \Gamma(TM)$ a finite dimensional collection of smooth vector fields.

- ightharpoonup F $\mathcal{M} = T\mathcal{M}$ the tangent bundle.
- ▶ $V \subset \Gamma(TM)$ a finite dimensional collection of smooth vector fields.
- $\qquad \qquad \bullet \quad (V_1|V_2) := \int_{\mathcal{M}} g(x)_{\mu\nu} V_1^{\mu}(x) V_2^{\nu}(x) \sqrt{|g|} d^N x \qquad : V \times V \to \mathbb{R}$

- ightharpoonup F $\mathcal{M} = T\mathcal{M}$ the tangent bundle.
- ▶ $V \subset \Gamma(TM)$ a finite dimensional collection of smooth vector fields.
- $(V_1|V_2) := \int_{\mathcal{M}} g(x)_{\mu\nu} V_1^{\mu}(x) V_2^{\nu}(x) \sqrt{|g|} d^N x \qquad : V \times V \to \mathbb{R}$

Let (M, g) be a compact Riemannian manifold.

- ightharpoonup F $\mathcal{M} = T\mathcal{M}$ the tangent bundle.
- $ightharpoonup V \subset \Gamma(TM)$ a finite dimensional collection of smooth vector fields.
- $(V_1|V_2) := \int_{\mathcal{M}} g(x)_{\mu\nu} V_1^{\mu}(x) V_2^{\nu}(x) \sqrt{|g|} d^N x \qquad : V \times V \to \mathbb{R}$

$$(V_1|\mathbb{G}(x)V_2) := \langle V_1(x)|V_2(x)\rangle_x$$

The local correlation map $G: \mathcal{M} \to \mathcal{F}^{N,0} \subset BL(\mathcal{H})$ identifies the metric $g(x)_{\mu\nu}$ with a self-adjoint operator $\mathbb{G}(x)$.

The Missing Piece

Compare the scalar product and the local hermitian form:

- $ightharpoonup (V_1|V_2) := \int_{\mathcal{M}} g(x)_{\mu\nu} V_1^{\mu}(x) V_2^{\nu}(x) \sqrt{|g|} d^N x$
- $V_1(x)|V_2(x)\rangle_x := g(x)_{\mu\nu}V_1^{\mu}(x)V_2^{\nu}(x)$

The Missing Piece

Compare the scalar product and the local hermitian form:

$$ightharpoonup (V_1|V_2) := \int_{\mathcal{M}} g(x)_{\mu\nu} V_1^{\mu}(x) V_2^{\nu}(x) \sqrt{|g|} d^N x$$

$$V_1(x)|V_2(x)\rangle_x := g(x)_{\mu\nu} V_1^{\mu}(x) V_2^{\nu}(x)$$

The missing piece in the local correlation operators that allows us to encode the geometry (M, g) in the operator manifold is the measure.

The Missing Piece

Compare the scalar product and the local hermitian form:

•
$$(V_1|V_2) := \int_{\mathcal{M}} g(x)_{\mu\nu} V_1^{\mu}(x) V_2^{\nu}(x) \sqrt{|g|} d^N x$$

$$\vee$$
 $\langle V_1(x)|V_2(x)\rangle_x := g(x)_{\mu\nu}V_1^{\mu}(x)V_2^{\nu}(x)$

The missing piece in the local correlation operators that allows us to encode the geometry (M, g) in the operator manifold is the measure.

Let $\Omega \subset \mathcal{F}^{N,0}$ then the pushforward measure of the metric volume form of the manifold under the local correlation map is given by

$$\rho(\Omega) := G_*[\mu_{\mathcal{M}}](\Omega) = \mu_{\mathcal{M}}(G^{-1}(\Omega)) = \int_{G^{-1}(\Omega)} \sqrt{|g|} d^N x$$

Let (M,g) be a compact Riemannian manifold that is parallelizable. Let $V \subset \Gamma(TM)$ be the span of N everywhere orthonormal vector fields V_1, \ldots, V_N .

Let (M,g) be a compact Riemannian manifold that is parallelizable. Let $V \subset \Gamma(TM)$ be the span of N everywhere orthonormal vector fields V_1, \ldots, V_N . In this case we have

$$g(x)_{\mu\nu}V_i^{\mu}(x)V_j^{\nu}(x) = \delta_{ij} \quad \forall x \in \mathcal{M}$$

and hence $\mathbb{G}(x) = 1$ for all $x \in \mathcal{M}$.

Let (M,g) be a compact Riemannian manifold that is parallelizable. Let $V \subset \Gamma(TM)$ be the span of N everywhere orthonormal vector fields V_1, \ldots, V_N . In this case we have

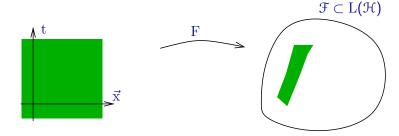
$$g(x)_{\mu\nu}V_i^{\mu}(x)V_j^{\nu}(x) = \delta_{ij} \quad \forall x \in \mathcal{M}$$

and hence $\mathbb{G}(x) = 1$ for all $x \in \mathcal{M}$. As a consequence we find that

$$\rho(1) = \int_{\mathbb{G}^{-1}(\Omega) = \mathcal{M}} \sqrt{|g|} d^N x = Vol(\mathcal{M})$$

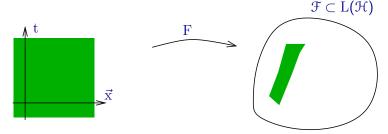
Some Observations

We see from the example above, that in order to retain substantial information about our original geometry $F\mathcal{M}$ we need to choose $dim(V) >> dim(F_x\mathcal{M})$



Some Observations

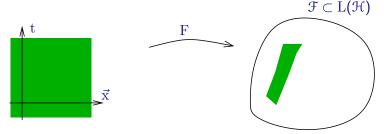
We see from the example above, that in order to retain substantial information about our original geometry $F\mathcal{M}$ we need to choose $dim(V) >> dim(F_x\mathcal{M})$



 \triangleright The right side contains all the information about F \mathcal{M} which can be retrieved from the ensemble of sections.

Some Observations

We see from the example above, that in order to retain substantial information about our original geometry $F\mathcal{M}$ we need to choose $dim(V) >> dim(F_x\mathcal{M})$



- \triangleright The right side contains all the information about F \mathcal{M} which can be retrieved from the ensemble of sections.
- ▶ If V is chosen as a subspace of the solution space of a particular equation, the right hand side also encodes information about that equation.

More Observations

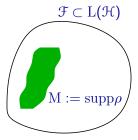


Image of F recovered as the support of the measure,

M := supp
$$\rho = \{ F \in \mathcal{F} \mid \rho(\Omega) \neq 0 \}$$
 for every open neighborhood Ω of F.

▶ Let (\mathcal{M}_1, g_1) and (\mathcal{M}_2, g_2) be two compact Riemannian manifolds.

- Let (\mathcal{M}_1, g_1) and (\mathcal{M}_2, g_2) be two compact Riemannian manifolds.
- ▶ Let $V_1 \subset \Gamma(T\mathcal{M}_1)$ and $V_2 \subset \Gamma(T\mathcal{M}_2)$ be such that there exists an isomorphism between $\mathcal{H}_1 := \overline{V}_1$ and $\mathcal{H}_2 := \overline{V}_2$.

- Let (\mathcal{M}_1, g_1) and (\mathcal{M}_2, g_2) be two compact Riemannian manifolds.
- ▶ Let $V_1 \subset \Gamma(T\mathcal{M}_1)$ and $V_2 \subset \Gamma(T\mathcal{M}_2)$ be such that there exists an isomorphism between $\mathcal{H}_1 := \overline{V}_1$ and $\mathcal{H}_2 := \overline{V}_2$.

Then F_1 and F_2 give rise to measures ρ_1 and ρ_2 on $\mathcal{F}^{N,0}$.

- Let (\mathcal{M}_1, g_1) and (\mathcal{M}_2, g_2) be two compact Riemannian manifolds.
- ▶ Let $V_1 \subset \Gamma(T\mathcal{M}_1)$ and $V_2 \subset \Gamma(T\mathcal{M}_2)$ be such that there exists an isomorphism between $\mathcal{H}_1 := \overline{V}_1$ and $\mathcal{H}_2 := \overline{V}_2$.

Then F_1 and F_2 give rise to measures ρ_1 and ρ_2 on $\mathcal{F}^{N,0}$.

▶ In general $\rho_1 \neq \rho_2$.

- Let (\mathcal{M}_1, g_1) and (\mathcal{M}_2, g_2) be two compact Riemannian manifolds.
- ▶ Let $V_1 \subset \Gamma(T\mathcal{M}_1)$ and $V_2 \subset \Gamma(T\mathcal{M}_2)$ be such that there exists an isomorphism between $\mathcal{H}_1 := \overline{V}_1$ and $\mathcal{H}_2 := \overline{V}_2$.

Then F_1 and F_2 give rise to measures ρ_1 and ρ_2 on $\mathcal{F}^{N,0}$.

- ▶ In general $\rho_1 \neq \rho_2$.
- ▶ In particular we generically expect that $M_1 := \text{supp } \rho_1 \neq \text{supp } \rho_2 =: M_2.$

- ▶ Let (\mathcal{M}_1, g_1) and (\mathcal{M}_2, g_2) be two compact Riemannian manifolds.
- ▶ Let $V_1 \subset \Gamma(T\mathcal{M}_1)$ and $V_2 \subset \Gamma(T\mathcal{M}_2)$ be such that there exists an isomorphism between $\mathcal{H}_1 := \overline{V}_1$ and $\mathcal{H}_2 := \overline{V}_2$.

Then F_1 and F_2 give rise to measures ρ_1 and ρ_2 on $\mathcal{F}^{N,0}$.

- ▶ In general $\rho_1 \neq \rho_2$.
- ▶ In particular we generically expect that $M_1 := \text{supp } \rho_1 \neq \text{supp } \rho_2 =: M_2$.
- ▶ Geometries with entirely different topologies can be encoded in the same $\mathcal{F}^{N,0}$

- Let (\mathcal{M}_1, g_1) and (\mathcal{M}_2, g_2) be two compact Riemannian manifolds.
- ▶ Let $V_1 \subset \Gamma(T\mathcal{M}_1)$ and $V_2 \subset \Gamma(T\mathcal{M}_2)$ be such that there exists an isomorphism between $\mathcal{H}_1 := \overline{V}_1$ and $\mathcal{H}_2 := \overline{V}_2$.

Then F_1 and F_2 give rise to measures ρ_1 and ρ_2 on $\mathcal{F}^{N,0}$.

- ▶ In general $\rho_1 \neq \rho_2$.
- ▶ In particular we generically expect that $M_1 := \text{supp } \rho_1 \neq \text{supp } \rho_2 =: M_2$.
- ▶ Geometries with entirely different topologies can be encoded in the same $\mathcal{F}^{N,0}$

The same is also true when $(\mathcal{M}_1, g_1) = (\mathcal{M}_2, g_2)$ but $V_1 \neq V_2$ such that $\mathcal{H}_1 \neq \mathcal{H}_2$.

Consider a fiber bundle $F\mathcal{M}$ where the hermitian form is given by a fiber inner product $\langle \cdot | \cdot \rangle_{\mathbf{x}}$.

Consider a fiber bundle $F\mathcal{M}$ where the hermitian form is given by a fiber inner product $\langle \cdot | \cdot \rangle_{x}$.

To define the generalized two-point-correlator we pick an orthonormal basis $\psi_i \subset \mathcal{H}$ of the Hilbert space.

Consider a fiber bundle $F\mathcal{M}$ where the hermitian form is given by a fiber inner product $\langle \cdot | \cdot \rangle_{x}$.

To define the generalized two-point-correlator we pick an orthonormal basis $\psi_i \subset \mathcal{H}$ of the Hilbert space.

We then consider the map

$$P(x,y) := \sum_{i} |\psi(x)\rangle_{x} \langle \psi(y)|_{y} \qquad \in F_{x} \mathcal{M} \otimes (F_{y} \mathcal{M})^{*}$$
 (4)

Consider a fiber bundle $F\mathcal{M}$ where the hermitian form is given by a fiber inner product $\langle \cdot | \cdot \rangle_{x}$.

To define the generalized two-point-correlator we pick an orthonormal basis $\psi_i \subset \mathcal{H}$ of the Hilbert space.

We then consider the map

$$P(x,y) := \sum_{i} |\psi(x)\rangle_{x} \langle \psi(y)|_{y} \qquad \in F_{x} \mathcal{M} \otimes (F_{y} \mathcal{M})^{*}$$
 (4)

If you know the value of an element u in \mathcal{H} at y, then P(x, y) tells you what its value at x is.

Let (M, g) be a 2n dimensional Lorentzian manifold that is spin.

Let (M, g) be a 2n dimensional Lorentzian manifold that is spin.

▶ Let $F\mathcal{M} = S\mathcal{M}$ the spinor bundle over the manifold.

Let (M, g) be a 2n dimensional Lorentzian manifold that is spin.

- ▶ Let $F\mathcal{M} = S\mathcal{M}$ the spinor bundle over the manifold.
- ▶ Let $V \subset \Gamma(SM)$ be a suitable subset of the solution space to the Dirac equation.

Let (M, g) be a 2n dimensional Lorentzian manifold that is spin.

- ▶ Let $F\mathcal{M} = S\mathcal{M}$ the spinor bundle over the manifold.
- ▶ Let $V \subset \Gamma(SM)$ be a suitable subset of the solution space to the Dirac equation.
- ► The hermitian form is given by $b_x(\psi, \phi) = \psi^{\dagger} \phi$ is the indefinite inner product on \mathbb{C}^{2n} with signature (n, n).

Set of all Local Correlation Operators

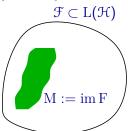
General strategy:

➤ Treat objects on the left as effective description (spacetime, matter fields, ...)

Set of all Local Correlation Operators

General strategy:

- ➤ Treat objects on the left as effective description (spacetime, matter fields, ...)
- ▶ Formulate a theory entirely with the objects on the right.



Causal Fermion Systems

Definition (Causal fermion system)

```
Let (\mathcal{H}, \langle .|. \rangle_{\mathcal{H}}) be Hilbert space
Given parameter n \in \mathbb{N} ("spin dimension")
\mathcal{F} := \left\{ x \in L(\mathcal{H}) \text{ with the properties:} \right.
```

- ▶ x is symmetric and has finite rank
- ➤ x has at most n positive and at most n negative eigenvalues }

 ρ a measure on \mathcal{F}