CFS as a Web of Correlations

Dr. Claudio Paganini

Joint work with Patrick Fischer

Causal Fermion Systems 2025, Regensburg

Goals

▶ Provide an impressionistic rapid fire sketch of a complete physical interpretation of the theory

Causal Fermion Systems

Definition (Causal fermion system)

```
Let (\mathcal{H}, \langle .|. \rangle_{\mathcal{H}}) be Hilbert space
Given parameter n \in \mathbb{N} ("spin dimension")
\mathcal{F} := \left\{ x \in L(\mathcal{H}) \text{ with the properties:} \right.
```

- ▶ x is symmetric and has finite rank
- ➤ x has at most n positive and at most n negative eigenvalues }

 ρ a measure on \mathcal{F}

Causal structure

Let $x, y \in \mathcal{F}$. Then

 $x \cdot y \in L(H)$ has non-trivial complex eigenvalues $\lambda_1^{xy}, \dots, \lambda_{2n}^{xy}$

Definition (causal structure)

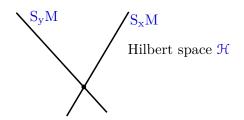
The points $x, y \in \mathcal{F}$ are called

spacelike separated if $|\lambda_{j}^{xy}| = |\lambda_{k}^{xy}|$ for all j, k = 1, ..., 2ntimelike separated if $\lambda_{j}^{xy}, ..., \lambda_{2n}^{xy}$ are all real and $|\lambda_{j}^{xy}| \neq |\lambda_{k}^{xy}|$ for some j, klightlike separated otherwise

Inherent Structures

For $x \in M$, the eigenspace of x is the vector space S_xM . \rightarrow Spinors

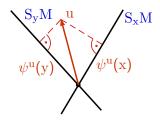
$$S_xM:=x(\mathcal{H})\subset\mathcal{H}$$
 "spin space", $\text{dim}\,S_xM\leq 2n$



Inherent Structures

▶ Physical wave functions:

$$\psi^{\mathrm{u}}(\mathrm{x}) = \pi_{\mathrm{x}} \,\mathrm{u}$$
 with $\mathrm{u} \in \mathcal{H}$ physical wave function
$$\pi_{\mathrm{x}} : \mathcal{H} \to \mathcal{H}$$
 orthogonal projection on $\mathrm{x}(\mathcal{H})$



Subsystems

 $\tilde{\mathcal{H}}\supset\mathcal{H}$ an auxiliary Hilbertspace $\Omega=\sum_{i=1}^N|u_i\rangle\left\langle u_i|:\tilde{\mathcal{H}}\to\mathcal{H}$ a projection with $\left(|u_i\rangle\right)_i$ orthonormal basis.

$$\mathsf{tr}_{\tilde{\mathcal{H}}}\left[\Omega\right] = \mathsf{tr}_{\mathcal{H}}\left[\mathsf{id}_{\mathcal{H}}\right] = \mathsf{dim}\,\mathcal{H} = N$$

Total physical system: (\mathcal{H}, Ω)

Subsystems

 $\tilde{\mathcal{H}}\supset\mathcal{H}$ an auxiliary Hilbertspace $\Omega=\sum_{i=1}^N|u_i\rangle\left\langle u_i|:\tilde{\mathcal{H}}\to\mathcal{H}$ a projection with $\left(|u_i\rangle\right)_i$ orthonormal basis.

$$\mathsf{tr}_{\tilde{\mathcal{H}}}\left[\Omega\right] = \mathsf{tr}_{\mathcal{H}}\left[\mathsf{id}_{\mathcal{H}}\right] = \mathsf{dim}\,\mathcal{H} = N$$

Total physical system: (\mathcal{H}, Ω)

Definition ((Sub-)System)

Let $(\mathcal{H}, \mathcal{F}_n, \rho)$ be a CFS, $\tilde{\mathcal{H}}$ an auxiliary Hilbert space and $\mathcal{H}_A \subseteq \mathcal{H}$ a sub Hilbert space of \mathcal{H} . Then a subsystem is the tuple $(\mathcal{H}_A, \omega_A)$, where $\omega_A : \tilde{\mathcal{H}} \to \mathcal{H}_A$ is the projection onto \mathcal{H}_A . Further, the particle number of a subsystem $(\mathcal{H}_A, \omega_A)$ is defined as $\text{tr}_{\tilde{\mathcal{H}}} \omega_A$. We call (\mathcal{H}, Ω) the total system.

One-particle subsystem: (span $\{|u\rangle\}, |u\rangle\langle u|$)

Pauli Exclusion Principle

Definition (Occupation number)

Let $|u\rangle \in \mathcal{H}$ be a state and $(\mathcal{H}_A, \omega_A)$ a (sub-)system, then the occupation number of $|u\rangle$ in $(\mathcal{H}_A, \omega_A)$ is defined as $\langle u|\omega_A u\rangle$.

Pauli Exclusion Principle

Definition (Occupation number)

Let $|u\rangle \in \mathcal{H}$ be a state and $(\mathcal{H}_A, \omega_A)$ a (sub-)system, then the occupation number of $|u\rangle$ in $(\mathcal{H}_A, \omega_A)$ is defined as $\langle u|\omega_A u\rangle$.

Proposition (Pauli Exclusion Principle)

Let $|u\rangle \in \mathcal{H}$ be a state and $(\mathcal{H}_A, \omega_A)$ a (sub-)system, then the occupation number satisfies

$$0 \le \langle \mathbf{u} | \omega_{\mathbf{A}} \mathbf{u} \rangle \le 1. \tag{1}$$

Fundamental Observables in CFS

Goal: work only with structures inherent to CFS.

Fundamental Observables in CFS

Goal: work only with structures inherent to CFS.

Definition (Position Observables)

Let $(\mathcal{H}, \mathcal{F}_n, \rho)$ be a CFS and $\mathcal{U} \subseteq \mathcal{F}_n$, then the observable of the region \mathcal{U} is the operator

$$\mathcal{O}(\mathcal{U}) := \int_{\mathcal{U}} \pi_{\mathbf{x}} d\rho(\mathbf{x}). \tag{2}$$

The expectation value of an operator $\mathcal{O}: \mathcal{H} \to \mathcal{H}$ for a (sub-) system (A, ω_A) is defined as

$$\langle \mathcal{O} \rangle_{\omega_{\mathcal{A}}} := \frac{1}{2n} \operatorname{tr}_{\mathcal{H}} \left[\omega_{\mathcal{A}} \mathcal{O}(\mathcal{U}) \right].$$
 (3)

Properties of the Observables

Proposition

Let $\mathcal{U} \subseteq \mathcal{F}_n$, then the observable of \mathcal{U} satisfies

- \bullet $\langle \mathcal{O}(\mathcal{U}) \rangle_{\omega_{\Lambda}} \geq 0$ for every subsystem $(\mathcal{H}_{A}, \omega_{A})$,

Properties of the Observables

Proposition

For a subset of the regular correlation operators $\mathcal{U} \subset \mathcal{F}_n^{\mathrm{reg}}$, the expectation value of the position observable $\mathcal{O}(\mathcal{U})$ for the total system (\mathcal{H}, Ω) is the volume of the spacetime region $\mathcal{U} \cap M$

$$\langle \mathcal{O}(\mathcal{U}) \rangle_{\Omega} = \rho(\mathcal{U}).$$

Spacetime Superposition

Definition

Let $(\mathcal{H}_A, \omega_A)$ be a (sub-) system, then the measure assigned to this (sub-) system is defined by

$$\rho_{\omega_A}(\mathcal{U}) := \langle \mathcal{O}(\mathcal{U}) \rangle_{\omega_A} \ \text{for measureable } \mathcal{U} \subseteq \mathfrak{F}$$

and the corresponding spacetime is defined by

$$M_{\omega_A} := \text{supp } \rho_{\omega_A}.$$

Spacetime Superposition

Proposition

Let $(|u_i\rangle)_i$ be a basis of \mathcal{H} , then the following statements hold

- $\bullet \sum_{i=1}^{N} \rho_{i}(\mathcal{U}) = \rho(\mathcal{U}) \text{ for every measurable subset } \mathcal{U} \subseteq \mathcal{F}^{reg},$
 - N

Spacetime Superposition

Proposition

Let $(|u_i\rangle)_i$ be a basis of \mathcal{H} , then the following statements hold

$$\ \ \, \bigcup_{i=1}^N M_i = M.$$

Corollary

Let M_1 and M_2 , $M_1 \cap M_2 \neq \emptyset$, be two one-particle spacetimes. The causal relation between $x, y \subset M_1 \cap M_2$ is independent of whether we consider them as points in M_1 or as points in M_2 .

(De)localization of States

Definition (Localization of States)

A state u_i is localized in a spacetime region $\mathcal{U} \subset M$ if

 $\{x \in M_i | \exists y \in \mathcal{U} \text{ such that } x \text{ and } y \text{ are causally separated }\} = M_i$

Definition (Delocalized States)

A state u_i is said to be delocalized if

$$M_i = M$$

The Fermionic Projector

Working with the fermionic projector is more convenient

$$P(x,y) := \pi_x y|_{S_y} = \sum_{i=1}^{N} |\psi^{u_i}(x) \succ \prec \psi^{u_i}(y)| : S_y \to S_x.$$

The closed chain

$$A_{xy} := P(x, y) P(y, x) = \pi_x y \pi_y x : S_x \to S_x$$

has the same Eigenvalues as the operator product xy.

Causal Correlations

Definition (Causal Correlation Operator)

Let $x, y \in M$, A_{xy} the closed chain between x and y as defined above, then the causal correlation operator is defined as

$$\tilde{A}_{xy}: S_x \to S_x = \begin{cases} 0 & \text{if x and y spacelike separated} \\ A_{xy} & \text{otherwise.} \end{cases}$$
 (4)

Correlation Strength

Definition (One-Particle-Two-Point-Correlation-Strength)

Let $|u\rangle\in\mathcal{H}$ and $x,y\in M$, then the one-particle-two-point-correlation-strength $b_u(x,y)$ is defined as

$$b_{u}(x,y) := \frac{1}{2n} \operatorname{tr}_{S_{x}} \left[|u\rangle \langle u| \tilde{A}_{xy} \right]. \tag{5}$$

Correlation Strength

Definition (One-Particle-Two-Point-Correlation-Strength)

Let $|u\rangle\in\mathcal{H}$ and $x,y\in M$, then the one-particle-two-point-correlation-strength $b_u(x,y)$ is defined as

$$b_{u}(x,y) := \frac{1}{2n} \operatorname{tr}_{S_{x}} \left[|u\rangle \langle u| \tilde{A}_{xy} \right]. \tag{5}$$

Definition (Two-Point-Correlation-Strength)

Let $(|u_i\rangle)_i$ be a basis of \mathcal{H} , $x,y\in M$, then the two-point-correlation-strength is defined as

$$b(x,y) := \sum_{i=1}^{N} b_{u_i}(x,y) = \left\langle \tilde{A}_{xy} \pi_x \right\rangle_{\Omega} = \frac{1}{2n} \operatorname{tr}_{S_x} \tilde{A}_{xy}.$$
 (6)

The Principle of Minimal Fluctuations

Proposition

Let P(x, y) be the kernel of the fermionic projector of the scalar-vector-form, then the Lagrangian is given by

$$\mathcal{L}(x,y) = 4 \operatorname{Var}_{\Omega} \left[\tilde{A}_{xy} \right] := 4 \left\langle \left(\tilde{A}_{xy} - \left\langle \tilde{A}_{xy} \right\rangle_{\Omega} \right)^{2} \right\rangle_{\Omega}$$
 (7)

The Principle of Minimal Fluctuations

Proposition

Let P(x, y) be the kernel of the fermionic projector of the scalar-vector-form, then the Lagrangian is given by

$$\mathcal{L}(x,y) = 4 \operatorname{Var}_{\Omega} \left[\tilde{A}_{xy} \right] := 4 \left\langle \left(\tilde{A}_{xy} - \left\langle \tilde{A}_{xy} \right\rangle_{\Omega} \right)^{2} \right\rangle_{\Omega} \tag{7}$$

If we consider the correlation strength to be a proxy for causal distance then this amounts to a principle of minimal flucuation for the causal structure of the one-particle spacetimes.

Description of Experiments

- How do you test a system that comprises the entire universe from within itself?
- ② How does a purely relational theory give rise to our conventional experience of time and space?

Split the total physical system (\mathcal{H}, Ω) into a probe $(\mathcal{H}_p, \omega_p)$ and the background $(\mathcal{H}_b, \omega_b)$ such that

$$\mathcal{H} = \mathcal{H}_{\rm p} \oplus \mathcal{H}_{\rm b}$$
 and $\Omega = \omega_{\rm p} + \omega_{\rm b}$ (8)

with $dim(\mathcal{H}_p) \ll dim(\mathcal{H}_b)$.

Split the total physical system (\mathcal{H}, Ω) into a probe $(\mathcal{H}_p, \omega_p)$ and the background $(\mathcal{H}_b, \omega_b)$ such that

$$\mathcal{H} = \mathcal{H}_{p} \oplus \mathcal{H}_{b}$$
 and $\Omega = \omega_{p} + \omega_{b}$ (8)

with $dim(\mathcal{H}_p) \ll dim(\mathcal{H}_b)$.

Find a macroscopic continuum limit description of $(\mathcal{H}_b, \omega_b)$ in terms of emergent variables $g_{\mu\nu}, A_{\mu}, \dots$ via the local correlation map $F[g_{\mu\nu}, A_{\mu}, \dots] : \mathcal{M} \to \mathcal{F}_n$.

Split the total physical system (\mathcal{H}, Ω) into a probe $(\mathcal{H}_p, \omega_p)$ and the background $(\mathcal{H}_b, \omega_b)$ such that

$$\mathcal{H} = \mathcal{H}_{p} \oplus \mathcal{H}_{b}$$
 and $\Omega = \omega_{p} + \omega_{b}$ (8)

with $dim(\mathcal{H}_p) \ll dim(\mathcal{H}_b)$.

Find a macroscopic continuum limit description of $(\mathcal{H}_b, \omega_b)$ in terms of emergent variables $g_{\mu\nu}, A_{\mu}, \ldots$ via the local correlation map $F[g_{\mu\nu}, A_{\mu}, \ldots] : \mathcal{M} \to \mathcal{F}_n$.

In experiments, we study the evolution of a probe with respect to the web of correlations spanned by the background.

Two caveats:

- The web of correlation spanned by the background subsystem $(\mathcal{H}_b, \omega_b)$ has to admit an approximate effective description in terms of a continuum limit.
- ② To be able to study the evolution of a system in a laboratory, we have to be able to meaningfully localize the probe $(\mathcal{H}_p, \omega_p)$ on the scale of the experiment.

Summary and Conclusion

Summary and Conclusion

There is nowhere where there is nothing!

But there are many places where nothing can be localized.