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Goals

� Provide an impressionistic rapid fire sketch of a complete
physical interpretation of the theory
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Causal Fermion Systems

Definition (Causal fermion system)
Let (H, ⟨.|.⟩H) be Hilbert space
Given parameter n ∈ N (“spin dimension”)
F :=

{
x ∈ L(H) with the properties:� x is symmetric and has finite rank

� x has at most n positive
and at most n negative eigenvalues

}
ρ a measure on F
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Causal structure

Let x, y ∈ F. Then
x·y ∈ L(H) has non-trivial complex eigenvalues λxy

1 , . . . , λxy
2n

Definition (causal structure)
The points x, y ∈ F are called

spacelike separated if |λxy
j | = |λxy

k | for all j, k = 1, . . . , 2n
timelike separated if λxy

1 , . . . , λxy
2n are all real

and |λxy
j | ̸= |λxy

k | for some j, k
lightlike separated otherwise
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Inherent Structures

� For x ∈ M, the eigenspace of x is the vector space SxM.
→ Spinors

SxM := x(H) ⊂ H “spin space”, dim SxM ≤ 2n

Hilbert space H

SxMSyM
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Inherent Structures

� Physical wave functions:

ψu(x) = πx u with u ∈ H physical wave function
πx : H → H orthogonal projection on x(H)

SxMSyM u

ψu(x)ψu(y)
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Subsystems
H̃ ⊃ H an auxiliary Hilbertspace Ω =

∑N
i=1 |ui⟩ ⟨ui| : H̃ → H a

projection with (|ui⟩)i orthonormal basis.

tr
H̃
[Ω] = trH [idH] = dimH = N

Total physical system: (H,Ω)

Definition ((Sub-)System)

Let (H,Fn, ρ) be a CFS, H̃ an auxiliary Hilbert space and
HA ⊆ H a sub Hilbert space of H. Then a subsystem is the
tuple (HA, ωA), where ωA : H̃ → HA is the projection onto HA.
Further, the particle number of a subsystem (HA, ωA) is defined
as tr

H̃
ωA. We call (H,Ω) the total system.

One-particle subsystem: (span {|u⟩} , |u⟩ ⟨u|)
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Pauli Exclusion Principle

Definition (Occupation number)

Let |u⟩ ∈ H̃ be a state and (HA, ωA) a (sub-)system, then the
occupation number of |u⟩ in (HA, ωA) is defined as ⟨u|ωAu⟩.

Proposition (Pauli Exclusion Principle)

Let |u⟩ ∈ H̃ be a state and (HA, ωA) a (sub-)system, then the
occupation number satisfies

0 ≤ ⟨u|ωAu⟩ ≤ 1. (1)
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Fundamental Observables in CFS
Goal: work only with structures inherent to CFS.

Definition (Position Observables)

Let (H,Fn, ρ) be a CFS and U ⊆ Fn, then the observable of the
region U is the operator

O(U) :=
ˆ
U
πxdρ(x). (2)

The expectation value of an operator O : H → H for a (sub-)
system (A, ωA) is defined as

⟨O⟩ωA
:=

1
2n trH [ωAO(U)] . (3)
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Properties of the Observables

Proposition

Let U ⊆ Fn, then the observable of U satisfies
1 ⟨O(U)⟩ωA

≥ 0 for every subsystem (HA, ωA),
2 O(U) = 0 ⇔ M ∩ U = 0.
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Properties of the Observables

Proposition
For a subset of the regular correlation operators U ⊂ Fn

reg, the
expectation value of the position observable O(U) for the total
system (H,Ω) is the volume of the spacetime region U ∩ M

⟨O(U)⟩Ω = ρ(U).
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Spacetime Superposition

Definition

Let (HA, ωA) be a (sub-) system, then the measure assigned to
this (sub-) system is defined by

ρωA(U) := ⟨O(U)⟩ωA
for measureable U ⊆ F

and the corresponding spacetime is defined by

MωA := supp ρωA .
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Spacetime Superposition
Proposition

Let (|ui⟩)i be a basis of H, then the following statements hold

1

N∑
i=1

ρi(U) = ρ(U) for every measurable subset U ⊆ Freg,

2

N∪
i=1

Mi = M.

Corollary

Let M1 and M2, M1 ∩ M2 ̸= ∅, be two one-particle spacetimes.
The causal relation between x, y ⊂ M1 ∩ M2 is independent of
whether we consider them as points in M1 or as points in M2.

Claudio Paganini An Introduction to Causal Fermion Systems



Definition of a Causal Fermion System
Physical Interpretation of CFS

Summary and Conclusion

Subsystems
Observables
Spacetime Superposition
CFS as a Relational Theory
Description of Experiments

Spacetime Superposition
Proposition

Let (|ui⟩)i be a basis of H, then the following statements hold

1

N∑
i=1

ρi(U) = ρ(U) for every measurable subset U ⊆ Freg,

2

N∪
i=1

Mi = M.

Corollary

Let M1 and M2, M1 ∩ M2 ̸= ∅, be two one-particle spacetimes.
The causal relation between x, y ⊂ M1 ∩ M2 is independent of
whether we consider them as points in M1 or as points in M2.

Claudio Paganini An Introduction to Causal Fermion Systems



Definition of a Causal Fermion System
Physical Interpretation of CFS

Summary and Conclusion

Subsystems
Observables
Spacetime Superposition
CFS as a Relational Theory
Description of Experiments

(De)localization of States

Definition (Localization of States)
A state ui is localized in a spacetime region U ⊂ M if

{x ∈ Mi|∃y ∈ U such that x and y are causally separated } = Mi .

Definition (Delocalized States)
A state ui is said to be delocalized if

Mi = M
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The Fermionic Projector

Working with the fermionic projector is more convenient

P(x, y) := πxy|Sy =
N∑

i=1
|ψui(x) ≻ ≺ ψui(y)| : Sy → Sx .

The closed chain

Axy := P(x, y)P(y, x) = πx yπy x : Sx → Sx

has the same Eigenvalues as the operator product xy.
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Causal Correlations

Definition (Causal Correlation Operator)

Let x, y ∈ M, Axy the closed chain between x and y as defined
above, then the causal correlation operator is defined as

Ãxy : Sx → Sx =

{
0 if x and y spacelike separated
Axy otherwise.

(4)
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Correlation Strength
Definition (One-Particle-Two-Point-Correlation-Strength)

Let |u⟩ ∈ H and x, y ∈ M, then the
one-particle-two-point-correlation-strength bu(x, y) is defined as

bu(x, y) :=
1
2n trSx

[
|u⟩ ⟨u| Ãxy

]
. (5)

Definition (Two-Point-Correlation-Strength)
Let (|ui⟩)i be a basis of H, x, y ∈ M, then the
two-point-correlation-strength is defined as

b(x, y) :=
N∑

i=1
bui(x, y) =

⟨
Ãxyπx

⟩
Ω
=

1
2n trSx Ãxy. (6)
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The Principle of Minimal Fluctuations

Proposition
Let P(x, y) be the kernel of the fermionic projector of the
scalar-vector-form, then the Lagrangian is given by

L(x, y) = 4VarΩ
[
Ãxy

]
:= 4

⟨(
Ãxy −

⟨
Ãxy

⟩
Ω

)2
⟩

Ω

(7)

If we consider the correlation strength to be a proxy for causal
distance then this amounts to a principle of minimal flucuation
for the causal structure of the one-particle spacetimes.
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Ãxy

]
:= 4

⟨(
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Description of Experiments

1 How do you test a system that comprises the entire
universe from within itself?

2 How does a purely relational theory give rise to our
conventional experience of time and space?
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The Probe-Background Split

Split the total physical system (H,Ω) into a probe (Hp, ωp) and
the background (Hb, ωb) such that

H = Hp ⊕Hb and Ω = ωp + ωb (8)

with dim(Hp) ≪ dim(Hb).

Find a macroscopic continuum limit description of (Hb, ωb) in
terms of emergent variables gµν ,Aµ, . . . via the local correlation
map F[gµν ,Aµ, . . . ] : M → Fn .

In experiments, we study the evolution of a probe with respect
to the web of correlations spanned by the background.
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The Probe-Background Split

Two caveats:
1 The web of correlation spanned by the background

subsystem (Hb, ωb) has to admit an approximate effective
description in terms of a continuum limit.

2 To be able to study the evolution of a system in a
laboratory, we have to be able to meaningfully localize the
probe (Hp, ωp) on the scale of the experiment.
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Summary and Conclusion

There is nowhere where there is nothing!

But there are many places where nothing can be
localized.

Claudio Paganini An Introduction to Causal Fermion Systems



Definition of a Causal Fermion System
Physical Interpretation of CFS

Summary and Conclusion

Summary and Conclusion

There is nowhere where there is nothing!

But there are many places where nothing can be
localized.

Claudio Paganini An Introduction to Causal Fermion Systems


	Definition of a Causal Fermion System
	Inherent Structures

	Physical Interpretation of CFS
	Subsystems
	Observables
	Spacetime Superposition
	CFS as a Relational Theory
	Description of Experiments

	 Summary and Conclusion

