2% UNIVERSIDAD 7
' COMPLUTENSE %
¢ MADRID IPARCOS

An outline of tensorial group field theories

and

of challenges toward an emergent spacetime

Daniele Oiriti

Depto. de Fisica Teorica and |.P.A.R.C.O.S.,
Universidad Complutense de Madrid, Spain, EU

"Causal Fermion Systems" conference -
Dept Mathematics, Univ Regensburg - 7.10.2025




Quantum Gravity

the quantum theory behind the physical system
we call spacetime



Main lessons from General Relativity (and modern gravitational physics):

1st Lesson: spacetime is a physical system

* gravity = spacetime geometry

Guv () ds® = 9w (z)dxdz”
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* ingredients of the world: 4d smooth manifold and Lorentzian metric, ( ¢ ./\/l)
plus several other (scalar, vector, ..) matter fields g, Pyeees
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Main lessons from General Relativity (and modern gravitational physics):

2nd Lesson: D. Giulini, '06

diffeomorphism invariance (gauge symmetry of GR) + background independence

general covariance

« no absolute notion of temporal or spatial direction/location/distance
+ not physical: local manifold structures (points, paths, coordinates, ...)
« not physical: "field components at a manifold point"

- physical: values of dynamical fields (incl. metric) and their relations passive diffeos
(pseudo-group) in space

orbit of Diff(./) (group) of matrix reps of metric
in space of Lorentzian metrics
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diffeomorphism invariance (gauge symmetry of GR) + background independence

general covariance

« no absolute notion of temporal or spatial direction/location/distance
+ not physical: local manifold structures (points, paths, coordinates, ...)
« not physical: "field components at a manifold point"

- physical: values of dynamical fields (incl. metric) and their relations passive diffeos
(pseudo-group) in space

orbit of Diff(./) (group) of matrix reps of metric
in space of Lorentzian metrics

so what are local spacetime observables?

relational strategy: Rovelli ‘90s+  [related ideas DeWitt ‘60s; Bargmann & Komar 90’s] Dittrich, Hoehn,.... '00s

- identify internal appropriate d.o.f.s, e.g. matter fields, use them as (approximate)
clocks and rods to parametrize evolution and location of other dofs

N R(1) H(®) spacetime example: R(g(aj)), Dq (aj) — R(g(gpa))
— R(®)

spacetime physics should only be expressed in terms of such relational quantities - correlations among field values

points, coordinates, trajectories on manifold are “useful fictions” representing physical frames (clocks and rods) in the
limit in which their physical properties (energy, interactions, ...) are negligible (so they behave like test fields/coordinates)

do not expect to find manifold etc neither at fundamental QG level, nor in its effective description (before reconstruction)



Two perspectives on quantum gravity

A

- QG = quantum GR Juv (t, aj) — Juv (t, :z:)

quantum metric (connection, tetrad) and

quantum matter fields as fundamental _
already radical: quantum geometry, quantum causal structure, ...

« QG = quantum theory of "spacetime constituents”
= "quantum spacetime microphysics”

spacetime fields, including metric,
as effective, collective entities

Emergent spacetime!

quantum spacetime as a (background-independent) quantum many-body system

extraction of spacetime and cosmology similar to typical problem in condensed matter theory
(from atoms to macroscopic effective continuum physics)

- all GR structures and dynamics have to be approximately obtained (in relational language) at effective level

- not just emergent gravity; flat spacetime itself would be emergent, highly excited, collective state of "QG atoms"



The universe as a quantum condensate
(in the TGF'T formalism)



TGFT as an example of spacetime emergence (and convergence of QG formalisms)

goal: give an example of spacetime emergence, in a specific QG formalism

note: TGFT is very general framework, with many different applications:
here quantum geometric models for QG

limitation: will not motivate/justify most aspects of formalism, nor give details of specific models or results

important: convergence of QG formalisms, particularly suited for quantum many-body techniques

Simplicial gravity path integrals [Matrix models}
LQG (e.g. quantum Regge calculus) l
\, \
Tensorial Group Field
Theories

Spln foam models 4/ - \ l o

QG scenario Triangulations

[ Asymptotic safety ] —>[ (causal) Dynamical ]




Basic intuitions

3d-lattice building blocks = fundamental atomic constituents of quantum 3-space

lattice = specific configuration of atomic constituents of quantum space

microscopic ("atomic") dynamics related to lattice quantum gravity

QG = QFT of atomic constituents of quantum space » Tensorial Group Field Theory
atoms of quantum space = 3-simplices = TGFT field quanta

data associated to single QG atom = geometric data of single 3-simplex

a QFT of spacetime and geometry, not on spacetime and geometry

continuum spacetime (and geometry) to be extracted from collective physics

cosmology (most coarse grained dynamics) from QG hydrodynamic regime



The universe as a quantum condensate
(in the TGEF'T formalism)

a quantum condensate of what?

Hilbert space and observables









Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06;

The TGFT “atom of quce" Bianchi, Dona, Speziale, '10; ...... N

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron
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4 vectors normal to triangles that close (lying in hypersurface with normal N)




Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06;

The TGFT “atom of quce" Bianchi, Dona, Speziale, '10; ...... N

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

thus vectors are effectively b, € R? «— note that: s1(2) ~ R* as vector spaces
« conjugate variables (extrinsic geometric information): group elements {gz} — discrete connection

- thus one can associate to a triangle the phase space: |7 SU(2)] x4




Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06;

The TGFT “atom of quce" Bianchi, Dona, Speziale, '10; ...... N

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

Ain! = bl e R CbN ](Zb ]

thus vectors are effectively b, € R3 «—— note that: 5u ~ R as vector spaces

« conjugate variables (extrinsic geometric information): group elements {gz} — discrete connection

- thus one can associate to a triangle the phase space: |7 SU(2)] *4 t constraints




Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06;

The TGFT “atom of quce" Bianchi, Dona, Speziale, '10; ...... N

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

thus vectors are effectively b, € R? «— note that: s1(2) ~ R* as vector spaces

« conjugate variables (extrinsic geometric information): group elements {gz} — discrete connection

- thus one can associate to a triangle the phase space: |7 SU(2)] *4 t constraints

« equivalent formulation in terms of Lorentzian data + constraints
phase space:

(T*SO(3,1))* ~ (s0(3,1) x SO(3,1))* D (s0(3) x SO3))* ~ (T*SO(3))*




Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06;

The TGFT “atom of quce" Bianchi, Dona, Speziale, '10; ...... N

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

thus vectors are effectively b, € R? «— note that: s1(2) ~ R* as vector spaces

« conjugate variables (extrinsic geometric information): group elements {gz} — discrete connection

- thus one can associate to a triangle the phase space: |7 SU(2)] *4 t constraints

« equivalent formulation in terms of Lorentzian data + constraints
phase space:

(T*SO(3,1))* ~ (s0(3,1) x SO(3,1))* D (s0(3) x SO3))* ~ (T*SO(3))*

Quantum geometry in group-theoretic variables

< ™
Hilbert space

Hy = L? (Gd§d,uHaar)

LT constraints on states y

wavefunction is thus tensor over product of d group manifolds
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The TGFT “atom of quce" Bianchi, Dona, Speziale, '10; ...... N

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

(

thus vectors are effectively b, € R? «— note that: s1(2) ~ R* as vector spaces

« conjugate variables (extrinsic geometric information): group elements {gz} — discrete connection

- thus one can associate to a triangle the phase space: |7 SU(2)] *4 + constraints

« equivalent formulation in terms of Lorentzian data + constraints
phase space:

(T*SO(3,1))* ~ (s0(3,1) x SO(3,1))* D (s0(3) x SO3))* ~ (T*SO(3))*

Quantum geometry in group-theoretic variables

< ™
Hilbert space

712 (. o | |
Hy = L (G ’d'uHaa"“) V(91,92,93,94) = Z mimn e mang Dimyng (91)+-Dig i, (94

mMmi1mnq...MmM4gMN4y m111
LT constraints on states y Gi i, T

equivalent formulation in terms of irreps of G

spin network vertex
wavefunction is thus tensor over product of d group manifolds



« € 4,4
Atoms of space y <« . 4 v
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from quantizing the classical geometry of a single tetrahedron in 4d flat spacetime: v " a LA
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Hilbert space of spin network vertex ~ quantum tetrahedron

quantum tetrahedron

d
. . 7‘[.0 — V];r ® Ijv
(in terms of SU(2) irreps) @ ® —~— =~
Jo i=1 repr. space intertwiner space

quantum geometric operators (triangle areas, volume,...) act on this Hilbert space

+ additional "geometricity" constraints that can be imposed at dynamical level

Hilbert space of quantum tetrahedron can be given different concrete representations:

) ) ) ) ) ) X 4
Vlan e gs) = Voo gih) = 30 WIELDI 00D () Ol — = 22 (S
{ji,mi;I}

Peter-Weyl decomposition

extension to "matter" dofs - example: scalar matter

« domain of wavefunctions extended to include values of scalar fields @(glaxa) = @(glaxl, e 7Xn)

with consequent extension of field operators, quantum states and operators on Fock space




Quantum states of many quantum tetrahedra

« full Hilbert space (arbitrary number of (connected or disconnected) tetrahedra):
1 2 |%4
GFT Fockspace  F (Hy) = Py—g sym { (7‘[5} ) X Hé ) & & /HQ(J ))} D H vy
- GFT field operators (creating/annihilating spinnet vertices/tetrahedra):

2@, '] = Le(3.9) [0, o)) = |¢'@). ¢'(3)] =0

- gluing quantum tetrahedra with entanglement

quantum states for extended simplicial 3-complexes (spin network graphs) =
entangled many-body states of many quantum tetrahedra (spin network vertices)

gluing

(entangling edge dof)
¥) > [iy) = <®<6> [¥)

| | ecl
— TN

many- body wave-function maximal entanglement]

for V open vertices

link state

% S Jin) @ [jn)
] n

internal links

of combinatorial pattern y maximally entangled state
of edge degrees of freedom

« spin network states for arbitrary graphs
~ arbitrary quantum simplicial lattices




Observables

geometric quantities (areas, volume, curvature, ...) and observables for
(scalar) matter become operators acting on the single-tetrahedron Hilbert
space and then on the many-tetrahedra Fock space

examples:
- number operator N = /an/dg] @T(gIaXa)Sb(gIaXa)
* universe volume V= / d"x [ dgrdgr @' (91, x*)V (91, 97) (97, X*)
- value of scalar fields Xt = an/dg]X &M (g1, x) (g1, x%)
- momentum of scalar fields I, = -

many-body operators are more complicated, like curvature
(eg holonomies along paths across several tetrahedra)




The universe as a quantum condensate
(in the TGF'T formalism)

which fundamental quantum
dynamics?



TGFT dynamiCS Boulatov, Ooguri, Barrett, Crane, De Pietri, Freidel,

Krasnov, Rovelli, Reisenberger, Perez, DO, Livine, Baratin,

- main guideline for model building Chirco, Girelli, Ryan, Gurau, Girelli, Rivasseau, ......

define models that produce, in perturbative expansion (i.e. where lattice structures are relevant),

* interaction processes (Feynman diagrams) of quantum simplices corresponding to 4d lattices,

- quantum (Feynman) amplitudes given by lattice gravity path integrals (coupled to scalar fields)

 general structure of action

* interaction: gluing of 3-simplices to form 4-dimensional cells 2

* kinetic term: gluing conditions for 4-cells across 3-simplices

L2 ¢

12 3 4
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- quantum (Feynman) amplitudes given by lattice gravity path integrals (coupled to scalar fields)

 general structure of action

* interaction: gluing of 3-simplices to form 4-dimensional cells a

* kinetic term: gluing conditions for 4-cells across 3-simplices

12 3 4
L2 ¢

. —jv L1 jfv L2 jv jv L1tL2
- example: | EPRL model S= ) @milem” (Ha)mlhe Vv
G
V=2, [sommmm Pritmamans Primmamama P Poamemsm X V571 0501, 13)
S 2 2 i : . . : .
Vs (Jab, ta) = Z/dpa(na + 02) <® NaPa (Jab)> 15]5L(2,C) ((2]ab7 2]abf}/)7 (naa pa))
7 e Mm1i...MMyg INP _ _ .
np - ¢ O(jl,ml)---(j4,m4) p=an n=2j
SL(2,C) data (and further geometricity conditions) in interaction term (encode covariant info)




TGFT dynamics: dynamics of quantum atomic geometry

1 A _ _
S(p,9) = 5/[dgi]¢(gi)ﬁ(gi)so(gi) + ﬁ/[dgm]sa(gu)----sO(gm)V(gm,gm) + cc
S (.7) AT
Z = [ DpDp 9P = A
/ #Dg XF: (D) AT
Feynman diagrams = stranded diagrams dual to cellular complexes of De Pietri, Petronio, '00: R. Gurau, '10: ...

arbitrary topology

random tensor models literature
labelled by group-theoretic data (group elements, group irreps, ...)

Feynman amplitudes (model-dependent) = sum over group-theoretic data
associated to complex dual to Feynman diagram

Reisenberger,Rovelli, ’00
- GFT Feynman amplitudes = lattice gravity path integrals (in group/algebra variables) on
lattice dual to GFT Feynman diagram = spin foam models (in irreps variables)

A. Baratin, DO, ‘11
M. Finocchiaro, DO, '18

connection to lattice gravity in GFT perturbative expansion; non-perturbative GFT = continuum limit of lattice gravity

NF . .
— /DQODE RPN C22) - Z Sy)?‘n(r) Ap = Zw(A) /DQA etoalga) — /Dg 0 5(9)
r A




TGFTs: example Boulatov model - topological 3d euclidean QG (no matter)

:SU2)*° = C ~ quantum triangles

1 A
S(p) = 5/[d9]|¢f(gl,gz,gs) + —/[dg]w(gl,gz,g:s)90(93,94,95)90(95,92796)90(96,94,91)+cc

4!
for fields satisfying: (g1, 92, 93) = ©(hg1, hga, hgs) Vh € SU(2)
partition function & perturbative expansion R NN) )\NF
Z= | DpDpeHe? = - Ar
sym(I")

Feynman diagrams dual to 3d simplicial lattices
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spin foam formulation of 3d gravity

l.e. quantum covariant dynamics
of spin networks (LQG)
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TGFTs: example Boulatov model - topological 3d euclidean QG (no matter)

:SU2)*° = C ~ quantum triangles

1 A
S(p) = 5/[d9]|90i2(91,92,93) + _/[dg]@(glag%!h)90(93794795)90(95792796)90(96794791)+CC

4)
for fields satisfying: (g1, 92, 93) = ©(hg1, hga, hgs) Vh € SU(2)
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Z= | DpDpeHe? = - Ar
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Feynman diagrams dual to 3d simplicial lattices

Feynman amplitudes in different representations:

Ar = /Hdhl 1;[ § (He(h)) = /Hdh, H 5<Hl€8f l) —

lattice gauge theory formulation
— 7 gaug y

o of 3d gravity/BF theory
i B i, Trx.H,
_ o140 2 & / am] TJ
STally ;% p= ) T Tl

{]e € \
spin foam formulation of 3d gravity discrete 1st order path integral for 3d gravity on

simplicial complex dual to GFT Feynman diagram

l.e. quantum covariant dynamics
of spin networks (LQG) discretization of
Palatini gravity: ~ S(e,w) = [ Tr(e A F(w))



The universe as a quantum condensate
(in the TGF'T formalism)

continuum approximation and
collective physics



Continuum approximation and collective physics

TGFTs: field theories of quantized simplices with non-local interactions (describing how simplices form higher-cells)

S(p, ) = %/[dgi]w(gi)ﬁ(gi)w(gi) + —3! /[dgm]w(gu)--~90(§w)V(gm,gm) + cc
. o )\NF
R A 'I/S)\( 9 ) R
Z = /D@Dgp et PP = EF sym(D) Ar

give definition of non-perturbative lattice gravity path integrals in their perturbative expansion

TGFTs can be well defined, controllable QFTs (renormalization, continuum limit, ...)

Ben Geloun, Carrozza, Tanasa, Toriumi, Krajewski, Martini, DO, Rivasseau,
Gurau, Lahoche, Ousmane-Samary, Benedetti, Marchetti, Pithis, Thiirigen, ....

see S. Carrozza, 2404.07834 [math-ph]

key task is to control collective physics (in continuum approximation, upon coarse-graining)

y <

4« * 4 ‘4 ¥
"'A A >
v'V"AAA
AN N


https://arxiv.org/abs/2404.07834
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TGFTs: field theories of quantized simplices with non-local interactions (describing how simplices form higher-cells)

S(p, ) = %/[dgilw(gi)ﬁ(gi)w(gi) + —3! /[dgm]w(gu)---w(gw)v(gm,gw) + cc.
. o )\NF
R A ZS)\( 9 ) R
Z = /D@Dgp et PP = EF sym(D) Ar

key task is to control collective physics (in continuum approximation, upon coarse-graining)



Continuum approximation and collective physics

TGFTs: field theories of quantized simplices with non-local interactions (describing how simplices form higher-cells)

S(p, ) = %/[dgi]w(gi)ﬁ(gi)w(gi) + —3! /[dgm]@(gu)----@(gm)V(gm,gw) + cc.
. o )\NF
_ A ZS)\( ’ ) _
Z = /D@Dgp e PAPP) = gr —sym(F) Ar

key task is to control collective physics (in continuum approximation, upon coarse-graining)

hypothesis: relevant regime is QG hydrodynamics hypothesis: geometric phase is QG condensate phase

TGFT condensate hydrodynamics (universe as QG fluid)

TGFT mean field hydrodynamics
Ex(J) = InZy\[J]  Tl¢] = sups (J-¢—F(J)) (¥)

* simplest approximation: mean field . .
hydrodynamics - infinite resummation I [¢] ~ S)\ (¢) mean field ~ condensate wavefunction
of lattice gravity path integrals

¢

« corresponding quantum states:

(simplest): GFT condensate, GFT field coherent state

- infinite superposition of discrete dofs
A Universe as BEC (TGFT condensate
o) == exp (6) |0) ‘ )

&= /d4g o(gr)¢' (gr) o(grk) = o(gr)



The universe as a quantum condensate
(in the TGF'T formalism)

TGFT condensate cosmology

reconstruction of effective
gravitational dynamics for
(diffeo-invariant, relational)
observables



TGFT condensate cosmology - general features



TGFT condensate cosmology - general features

 In quantum geometric TGFT models, cosmological interpretation of hydrodynamics is immediate:

isomorphism between domain of TGFT condensate wavefunction and minisuperpsace

o (D) D ~ {geometries of tetrahedron} =~

) ) . S. Gielen, DO, L. Sindoni, '13
~ {continuum spatial geometries at a point} ~
.. X S. Gielen, '15
~ minisuperspace of homogeneous geometries
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 In quantum geometric TGFT models, cosmological interpretation of hydrodynamics is immediate:

isomorphism between domain of TGFT condensate wavefunction and minisuperpsace
o (D) D ~ {geometries of tetrahedron} =~
) ) ) . S. Gielen, DO, L. Sindoni, '13
~ {continuum spatial geometries at a point} ~
.. ) S. Gielen, '15
~ minisuperspace of homogeneous geometries

- general form of resulting (Gross-Pitaevskii-like) equations of motion for condensate wavefunction (mean field):

6 Gielen, DO, Sindoni, '13; DO,

[dg/]dX//C(g, X g/7 X/)U(g/, X/) 4 A_V(SO)‘QOEJ — 0 Sindoni, Wilson-Ewing, '16
)
14 ——  _____ polynomial functional of

condensate wavefunction

cosmology as QG hydrodynamics ~ non-linear extension of (loop) quantum cosmology

that is, in isotropic restriction and with just one matter field, using standard variables on minisuperspace,
i.e. scale factor and matter scalar field:

o (a, ¢) "wavefunction” on minisuperspace

/C(a, Ou,s @, (%5)0 (CL, ¢) +V [(7 (CL, ¢)] = 0 hydrodynamic (non-linear, possibly non-local) eqn on minisuperspace
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we have (many) operators acting on TGFT Fock space - need to turn them into "local" spacetime quantities

apply relational strategy! can be done in different ways S. Gielen, A. Calcinari, '22, '23

operators defined in full QG theory

used to define collective relational (spacetime localized) observables
as expectation values in "good clock+rods" condensate states

(i.e. TGFT coherent states peaking on specific values of clock&rods scalars)

N(x07xz) — <O-€,5,7TO,7T;13,33’U”’N’0€7577T077T337mu> V(x(),x?’) = <O-€75,7T0,7Tm,$“"/\/’0-6,5,71'0,71'1:,%“>
X“(xo’xz) = <O-€,5,7T0,7T:1:7$M‘V‘O-€7577T077Tx7x“> = xlu H(x()?ajz) = <O-€75777077Tx733M’HV|O-€7577TO77T:1:7$'UJ>
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TGFT condensate cosmology - cosmological observables
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operators defined in full QG theory

used to define collective relational (spacetime localized) observables
as expectation values in "good clock+rods" condensate states

(i.e. TGFT coherent states peaking on specific values of clock&rods scalars)

N(x07xz) — <O-€,5,7TO,7T;B,CU’UJ’N’0-€7577T077T337mu> V('CBO?xz) = <O-€75,7T0,7T:E,$“"7’0-6,5,71'0,71'1;,%“>
X“(xo’xz) = <O-€,5,7T0,7T:1:7$M‘V‘U€7577T077Tx7x“> = xlu H(aj()?:ljz) = <O-€75777077Tx733N’HV|O-€7577TO77T:1:7$M>

qb(xovaji) — <O-€757W0,7Tx,33““|(i)|0-€757770,77x,33“> qu(ajoaxi) = <O-e,5,7ro,7rw,:1:“"ﬁ¢|0-e,5,7r0,7rw,a:“>

- egn for condensate wavefunction ------ > egn for geometric/cosmological observables

(differential equations wrt to "clock-time"and "rod-space")

spatiotemporal dynamics for cosmological observables can be then compared with GR
(and models from theoretical cosmology)
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- cosmological perturbations (inhomogeneities) R. Dekhil, F. Gerhardt, S. Gielen, A. Jercher, S. Liberati,
L. Marchetti, DO, A. Pithis, E. Wilson-Ewing, ....



Some lessons



1.Cosmology as hydrodynamic approximation of QG system: collective, coarse grained QG dynamics

- focus on cosmological dynamics = focus on few global observables = (from point of view of QG theory as well as
local effective theory (GR)) focus on collective variables and collective states = result of coarse graining

- symmetry reduction = drastic coarse graining (sharp removal of (infinite) dofs) + restriction to few observables

- cosmological wavefunction on minisuperspace = order parameter labelling collective state, not quantum state
no corresponding Hilbert space of "quantum cosmology" within larger Hilbert space of QG states

(Q[3]Q) = ¥(a, ¢) U(a,d) = pla, §)e®@)
 relevant observables are matched with continuum gravitational physics as averages, not eigenvalues / 2( ¢)
ap(a,

ayg —

« important role, in observables and dynamics, of "number of QG dofs": modulus of cosmological wavefunction =
average number operator (literally, in GFT), new observable wrt standard quantum cosmology
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- focus on cosmological dynamics = focus on few global observables = (from point of view of QG theory as well as
local effective theory (GR)) focus on collective variables and collective states = result of coarse graining

- symmetry reduction = drastic coarse graining (sharp removal of (infinite) dofs) + restriction to few observables

- cosmological wavefunction on minisuperspace = order parameter labelling collective state, not quantum state
no corresponding Hilbert space of "quantum cosmology" within larger Hilbert space of QG states

(Qp|Q) = ¥(a, @) U(a,d) = pla, p)e?@®)

 relevant observables are matched with continuum gravitational physics as averages, not eigenvalues 5
ay = ap (CL, ¢)

« important role, in observables and dynamics, of "number of QG dofs": modulus of cosmological wavefunction =
average number operator (literally, in GFT), new observable wrt standard quantum cosmology

2.Cosmology is emergent dynamics, taking form of non-linear extension of (loop) quantum cosmology

- dynamics of cosmological wavefunction = non-linear extension of LQGC, i.e. QG hydrodynamics on minisuperspace
IC(CI,, Qb) \I/(CL, ¢) + )‘Z /V(ala ¢17 ceey gy ¢i>\P(a17 ¢1) T \Ij*(a’ia ¢Z) =0

- gravitational couplings (in emergent cosmological dynamics) are functions of underlying QG ones (not directly gravitational)

-« "standard" quantum cosmology setting obtained when neglecting non-linear corrections, i.e. underlying QG interactions,
or linearizing the full dynamics - here, in GFT, FRW is reproduced at large volumes

« non-linear contributions important; example: in GFT can produce cosmic acceleration (phantom-like dark energy, inflation,
asymptotic deSitter universe) without additional dofs

- large-scale effects of direct QG origin and linked to small-scale effects (failure of EFT intuition and principles)



3. Cosmological evolution is relational evolution with respect to physical clock

- relational evolution requires conditions of (good) clock, implemented as conditions on relevant quantum states

- which clock? possible mismatch between "fundamental” and "effective" clock dofs
eg: "massless free scalar field" at fundamental level =/= massless free scalar field at effective (hydrodynamic) level

- how does the cosmological physics (e.g. bounce, cosmological perturbations, etc) depend on the choice of clock?

- what is invariant under change of physical clock? what is general covariance with respect to transformations between
(realistic) physical frames? what is invariant?
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- cosmological perturbations: spatial localization to be defined also via relational strategy, i.e. by additional rod fields
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6. Effective cosmological dynamics is affected by RG flow (and critical behaviour of underlying QG dynamics

- effective cosmological dynamics takes place within one particular phase of underlying QG system, thus need to
check values of couplings, their running and what happens close to criticality

« bounce (when reproduced) happens in hydrodynamic approximation of full QG

* assuming universe volume is an extensive quantity, this happens at small values of (average) number operator,
thus in the "danger zone" for validity of hydrodynamic approximation

* bounce scenario may not be viable and one may need to resort to more fundamental QG dynamics with no fully
"geometric/spatiotemporal description

- cosmological interpretation of underlying QG phase transitions? if early universe is close to QG phase transition,
what is impact on cosmological observables, e.g. CMB spectrum?



Thank you for your attention!



