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An outline of tensorial group field theories 
and  

of challenges toward an emergent spacetime



Quantum Gravity

the quantum theory behind the physical system 
we call spacetime



• gravity = spacetime geometry

thus, 


spacetime itself is a 
dynamical, physical system

spacetime is a physical system

Main lessons from General Relativity (and modern gravitational physics):

1st Lesson:
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gµω(x) ds2 = gµω(x)dx
µdxω

(spatial distances, temporal duration, 
causal structure, curvature, .... )

interacting with other physical 
systems, via Einstein's eqns: Rµ⌫ [g(x)]� 1

2
R[g(x)] + ⇤gµ⌫(x) = 8⇡GNTµ⌫ [�(x), ...]



• gravity = spacetime geometry

thus, 


spacetime itself is a 
dynamical, physical system

spacetime is a physical system

Main lessons from General Relativity (and modern gravitational physics):

1st Lesson:

• ingredients of the world: 4d smooth manifold and Lorentzian metric, 
plus several other (scalar, vector, ..) matter fields
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(g , � , ..., M)
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gµω(x) ds2 = gµω(x)dx
µdxω

(spatial distances, temporal duration, 
causal structure, curvature, .... )

interacting with other physical 
systems, via Einstein's eqns: Rµ⌫ [g(x)]� 1
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R[g(x)] + ⇤gµ⌫(x) = 8⇡GNTµ⌫ [�(x), ...]
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Diffeomorphism-invariance of GR and observables

Observables should be invariant under symmetries

Action  invariant under  
(i) active and  
(ii) passive diffeos

SEH + Smatter + Sboundary

orbit of  (group) 
in space of Lorentzian metrics

Diff(ℳ)

passive diffeos  
(pseudo-group) in space  
of matrix reps of metric  

general covariance

2nd Lesson:

• no absolute notion of temporal or spatial direction/location/distance

• not physical: local manifold structures (points, paths, coordinates, ...)

• not physical: "field components at a manifold point"

• physical: values of dynamical fields (incl. metric) and their relations

diffeomorphism invariance (gauge symmetry of GR) + background independence

D. Giulini, '06

Main lessons from General Relativity (and modern gravitational physics):
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• no absolute notion of temporal or spatial direction/location/distance

• not physical: local manifold structures (points, paths, coordinates, ...)

• not physical: "field components at a manifold point"

• physical: values of dynamical fields (incl. metric) and their relations

diffeomorphism invariance (gauge symmetry of GR) + background independence
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• identify internal appropriate d.o.f.s, e.g. matter fields, use them as (approximate) 
clocks and rods to parametrize evolution and location of other dofs

R(t) �(t)

=) R(t) t(�)

=) R(�)

R(t)

1

relational strategy:

Relational observables: “functions on reference fields”
Rovelli ‘90s+     [related ideas DeWitt ‘60s; Bargmann & Komar 90’s]

All measurements in real world relational: 

Premise: no external reference, all reference systems/frames are internal and physical

How do we describe physics relative to dynamical reference systems?

)

what is a reference system?  
As non-invariant/asymmetric under gauge symmetries as possible  
(invariants worst possible reference systems)

As many DoFs as there are indep. gauge directions  
(want to parametrize orbits with dynamical reference DoFs)

 reference DoFs are gauge DoFs⇒

Dittrich, Hoehn,.... '00s

so what are local spacetime observables? 

points, coordinates, trajectories on manifold are “useful fictions” representing physical frames (clocks and rods) in the 
limit in which their physical properties (energy, interactions, …) are negligible (so they behave like test fields/coordinates)

spacetime physics should only be expressed in terms of such relational quantities - correlations among field values
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R(g(x)),'a(x) ! R(g('a))spacetime example:

do not expect to find manifold etc neither at fundamental QG level, nor in its effective description (before reconstruction)

Main lessons from General Relativity (and modern gravitational physics):



Two perspectives on quantum gravity

• QG = quantum GR

quantum metric (connection, tetrad) and 
quantum matter fields as fundamental

• QG = quantum theory of "spacetime constituents" 
= "quantum spacetime microphysics"

spacetime fields, including metric, 
as effective, collective entities
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already radical: quantum geometry, quantum causal structure, ...

Emergent spacetime!

• all GR structures and dynamics have to be approximately obtained (in relational language) at effective level

• not just emergent gravity; flat spacetime itself would be emergent, highly excited, collective state of "QG atoms"

quantum spacetime as a (background-independent) quantum many-body system

extraction of spacetime and cosmology similar to typical problem in condensed matter theory 
(from atoms to macroscopic effective continuum physics)



The universe as a quantum condensate 
(in the TGFT formalism)



TGFT as an example of spacetime emergence (and convergence of QG formalisms)

goal: give an example of spacetime emergence, in a specific QG formalism

limitation: will not motivate/justify most aspects of formalism, nor give details of specific models or results

note: TGFT is very general framework, with many different applications: 
here quantum geometric models for QG

important: convergence of QG formalisms, particularly suited for quantum many-body techniques

Matrix models
LQG

Spin foam models

Simplicial gravity path integrals 

(e.g. quantum Regge calculus)

(causal) Dynamical 
Triangulations

Tensorial Group Field 
Theories

Asymptotic safety 
QG scenario



lattice = specific configuration of atomic constituents of quantum space

3d-lattice building blocks = fundamental atomic constituents of quantum 3-spaceLattice Quantum Gravity

Quantum Regge calculus

(Causal) Dynamical Triangulations

Path integral of discrete geometries: 
fixed simplicial lattice, sum over edge length variables
continuum limit via lattice refinement

Path integral of discrete geometries: 
sum over all possible (causal) simplicial lattices 
(fixed topology), fixed edge lengths
continuum limit via sum over finer and finer lattices

Z = lim�!1

Z
dµ({Le}) e�S�

R ({Le})

Z = lima!0

X

�

µ(a,�) e�S�
R ({Le=a})

Basic idea: covariant quantisation of 
gravity as sum over “discrete geometries”

Continuum spacetime manifold replaced 
by simplicial lattice; metric data encoded in 
edge lengths 

Gravitational action is discretised version 
of Einstein-Hilbert action (Regge action)

T. Regge, R. Williams, H. Hamber, B. Dittrich, B. Bahr, ….

J. Ambjorn, J. Jurkiewicz, R. Loll, D. Benedetti, A. Goerlich, T. Budd, …
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Lattice Quantum Gravity

Quantum Regge calculus

(Causal) Dynamical Triangulations

Path integral of discrete geometries: 
fixed simplicial lattice, sum over edge length variables

continuum limit via lattice refinement
Path integral of discrete geometries: 
sum over all possible (causal) simplicial lattices 

(fixed topology), fixed edge lengths
continuum limit via sum over finer and finer lattices
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Basic idea: covariant quantisation of 
gravity as sum over “discrete geometries”

Continuum spacetime manifold replaced 

by simplicial lattice; metric data encoded in 

edge lengths 
Gravitational action is discretised version 

of Einstein-Hilbert action (Regge action)

T. Regge, R. Williams, H. Hamber, B. Dittrich, B. Bahr, ….

J. Ambjorn, J. Jurkiewicz, R. Loll, D. Benedetti, A. Goerlich, T. Budd, …

a QFT of spacetime and geometry, not on spacetime and geometry

QG = QFT of atomic constituents of quantum space

atoms of quantum space = 3-simplices = TGFT field quanta

Tensorial Group Field Theory

data associated to single QG atom = geometric data of single 3-simplex

Basic intuitions

microscopic ("atomic") dynamics related to lattice quantum gravity

continuum spacetime (and geometry) to be extracted from collective physics

cosmology (most coarse grained dynamics) from QG hydrodynamic regime



The universe as a quantum condensate 
(in the TGFT formalism) 

• a quantum condensate of what? 

• Hilbert space and observables
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Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06; 
Bianchi, Dona, Speziale, ’10; ……The TGFT “atom of space”
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4 vectors normal to triangles that close (lying in hypersurface with normal N)
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Bianchi, Dona, Speziale, ’10; ……The TGFT “atom of space”



b b

b

b

1

2

3

4

N

g

g

g

g

1

2

3

4

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

Ai nI
i = bI

i 2 R3,1 bi · N = 0
X

i

bi = 0

Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06; 
Bianchi, Dona, Speziale, ’10; ……The TGFT “atom of space”

thus vectors are effectively
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bi 2 R3 note that: su(2) ' R3 as vector spaces

• thus one can associate to a triangle the phase space:
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[T ⇤SU(2)]⇥4

• conjugate variables (extrinsic geometric information): group elements {gi} = discrete connection
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Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

Ai nI
i = bI

i 2 R3,1 bi · N = 0
X

i

bi = 0

+ constraints

Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06; 
Bianchi, Dona, Speziale, ’10; ……The TGFT “atom of space”

thus vectors are effectively
<latexit sha1_base64="ZCICMqyLkjnF3oBf4DkZbUjGsmU=">AAAB/XicbVC7TsMwFHXKq5RXeGwsFhUSU5UAAsYKFsaC6ENqQmS7TmvVcSLbQSpRxa+wMIAQK//Bxt/gtBmg5UiWjs65V/f44IQzpR3n2yotLC4tr5RXK2vrG5tb9vZOS8WpJLRJYh7LDkaKciZoUzPNaSeRFEWY0zYeXuV++4FKxWJxp0cJ9SPUFyxkBGkjBfYeDhj0mIBehPQA4+x2fH8S2FWn5kwA54lbkCoo0AjsL68XkzSiQhOOlOq6TqL9DEnNCKfjipcqmiAyRH3aNVSgiCo/m6Qfw0Oj9GAYS/OEhhP190aGIqVGETaTeUY16+Xif1431eGFnzGRpJoKMj0UphzqGOZVwB6TlGg+MgQRyUxWSAZIIqJNYRVTgjv75XnSOq65ZzXn5rRavyzqKIN9cACOgAvOQR1cgwZoAgIewTN4BW/Wk/VivVsf09GSVezsgj+wPn8ArReUug==</latexit>

bi 2 R3 note that: su(2) ' R3 as vector spaces

• thus one can associate to a triangle the phase space:
<latexit sha1_base64="dTXU1M/CynKsJiZRsIiK7tlNYFw=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahuihJKeqy6MZlxaYtJGmZTCft0MmDmYlQQpZu/BU3LhRx6ye482+ctF1o64ELh3Pu5d57vJhRIQ3jWyusrK6tbxQ3S1vbO7t7+v5BW0QJx8TCEYt410OCMBoSS1LJSDfmBAUeIx1vfJP7nQfCBY3ClpzExA3QMKQ+xUgqqa8f206A5Agjlray3vm9Vamdub3UkTQgAtazvl42qsYUcJmYc1IGczT7+pcziHASkFBihoSwTSOWboq4pJiRrOQkgsQIj9GQ2IqGSO1x0+kjGTxVygD6EVcVSjhVf0+kKBBiEniqM79aLHq5+J9nJ9K/clMaxokkIZ4t8hMGZQTzVOCAcoIlmyiCMKfqVohHiCMsVXYlFYK5+PIyadeq5kXVuKuXG9fzOIrgCJyACjDBJWiAW9AEFsDgETyDV/CmPWkv2rv2MWstaPOZQ/AH2ucPeXuY+w==</latexit>

[T ⇤SU(2)]⇥4

• conjugate variables (extrinsic geometric information): group elements {gi} = discrete connection
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Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

Ai nI
i = bI

i 2 R3,1 bi · N = 0
X

i

bi = 0

+ constraints

Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06; 
Bianchi, Dona, Speziale, ’10; ……The TGFT “atom of space”

phase space:

(T ⇤
SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4

• equivalent formulation in terms of Lorentzian data + constraints

thus vectors are effectively
<latexit sha1_base64="ZCICMqyLkjnF3oBf4DkZbUjGsmU=">AAAB/XicbVC7TsMwFHXKq5RXeGwsFhUSU5UAAsYKFsaC6ENqQmS7TmvVcSLbQSpRxa+wMIAQK//Bxt/gtBmg5UiWjs65V/f44IQzpR3n2yotLC4tr5RXK2vrG5tb9vZOS8WpJLRJYh7LDkaKciZoUzPNaSeRFEWY0zYeXuV++4FKxWJxp0cJ9SPUFyxkBGkjBfYeDhj0mIBehPQA4+x2fH8S2FWn5kwA54lbkCoo0AjsL68XkzSiQhOOlOq6TqL9DEnNCKfjipcqmiAyRH3aNVSgiCo/m6Qfw0Oj9GAYS/OEhhP190aGIqVGETaTeUY16+Xif1431eGFnzGRpJoKMj0UphzqGOZVwB6TlGg+MgQRyUxWSAZIIqJNYRVTgjv75XnSOq65ZzXn5rRavyzqKIN9cACOgAvOQR1cgwZoAgIewTN4BW/Wk/VivVsf09GSVezsgj+wPn8ArReUug==</latexit>

bi 2 R3 note that: su(2) ' R3 as vector spaces

• thus one can associate to a triangle the phase space:
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[T ⇤SU(2)]⇥4

• conjugate variables (extrinsic geometric information): group elements {gi} = discrete connection
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Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

Ai nI
i = bI

i 2 R3,1 bi · N = 0
X

i

bi = 0

+ constraints

Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06; 
Bianchi, Dona, Speziale, ’10; ……The TGFT “atom of space”

phase space:

(T ⇤
SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4

• equivalent formulation in terms of Lorentzian data + constraints

Hilbert space

Quantum geometry in group-theoretic variables

Hv = L2
�
Gd; dµHaar

�

+ constraints on states

wavefunction is thus tensor over product of d group manifolds

thus vectors are effectively
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bi 2 R3 note that: su(2) ' R3 as vector spaces

• thus one can associate to a triangle the phase space:
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[T ⇤SU(2)]⇥4

• conjugate variables (extrinsic geometric information): group elements {gi} = discrete connection
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Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

Ai nI
i = bI

i 2 R3,1 bi · N = 0
X

i

bi = 0

+ constraints

Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06; 
Bianchi, Dona, Speziale, ’10; ……The TGFT “atom of space”

phase space:

(T ⇤
SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4

• equivalent formulation in terms of Lorentzian data + constraints

Hilbert space

Quantum geometry in group-theoretic variables

Hv = L2
�
Gd; dµHaar

�

+ constraints on states

wavefunction is thus tensor over product of d group manifolds

thus vectors are effectively
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bi 2 R3 note that: su(2) ' R3 as vector spaces

• thus one can associate to a triangle the phase space:
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[T ⇤SU(2)]⇥4

• conjugate variables (extrinsic geometric information): group elements {gi} = discrete connection

equivalent formulation in terms of irreps of G 

spin network vertex

<latexit sha1_base64="Q4wpA8e42KGFiwlXRpJLnZYMSzA="></latexit>
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extension to "matter" dofs - example: scalar matter

with consequent extension of field operators, quantum states and operators on Fock space
• domain of wavefunctions extended to include values of scalar fields

Clearly, if one wants to introduce more (say n) than one minimally coupled massless

scalar field, the group field operator becomes '̂(gI ,�a) ⌘ '̂(gI ,�1, . . . ,�n), with a =

1, . . . , n. Of course, the commutation relation in (2.6a) has to be changed consistently, so

that h
'̂(gI ,�

a), '̂†
�
hI , (�

0)a
�i

= IG(gI , hI)�(n)
�
�a � (�0)a

�
. (2.13)

Importantly, this change on the kinematic structure of the Fock space is reflected also in

the second quantized operators, which now involve integrals over all the possible values of

�a 2 Rn. For instance, the number operator reads

N̂ =

Z
dn�

Z
dgI '̂

†(gI ,�
a)'̂(gI ,�

a) . (2.14a)

A crucial quantity for describing cosmological geometries is the volume operator

V̂ =

Z
dn�

Z
dgI dg

0

I '̂
†(gI ,�

a)V (gI , g
0

I)'̂(g
0

I ,�
a) , (2.14b)

whose matrix elements V (gI , g0I) are defined from those of the first quantized volume op-

erator in the group representation5.

The presence of “pre-matter” data allows for the construction of a set of observables

naturally related to them, through polynomials and derivatives with respect to �a for each

a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be obtained in

this way are the “scalar field operator” and the “momentum operator” [53]:

X̂b ⌘
Z

dn�

Z
dgI �

b'̂†(gI ,�
a)'̂(gI ,�

a) , (2.14c)

⇧̂b =
1

i

Z
dn�

Z
dgI


'̂†(gI ,�

a)

✓
@

@�b
'̂(gI ,�

a)

◆�
, (2.14d)

whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.
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from quantizing the classical geometry of a single tetrahedron in 4d flat spacetime:

Hilbert space of 
quantum tetrahedron

quantum geometric operators (triangle areas, volume,...) act on this Hilbert space
n4

j2

n2

j1
n1

j3
n3

j4
Ț

diagonalises area operator

diagonalises volume operator

phase space of classical geometries of a simplex

௜ܮ
ȭ௜ܮ௜=0

quantization

closure relation

spin network vertex

j = spin labelling irrep of SU(2)

Building block of quantum space as a spin network vertex:

(different perspective: spin networks from canonical quantization of GR in first order variables)

3D Euclidian space

SPIN NETWORK FORMALISM FOR QUANTUM SPACETIME

88

spin network vertex ~ quantum tetrahedron

n4

j2

n2

j1
n1

j3
n3

j4
Ț

diagonalises area operator

diagonalises volume operator

phase space of classical geometries of a simplex

௜ܮ
ȭ௜ܮ௜=0

quantization

closure relation

spin network vertex

j = spin labelling irrep of SU(2)

Building block of quantum space as a spin network vertex:

(different perspective: spin networks from canonical quantization of GR in first order variables)

3D Euclidian space

SPIN NETWORK FORMALISM FOR QUANTUM SPACETIME

88

(in terms of SU(2) irreps)

+ additional "geometricity" constraints that can be imposed at dynamical level

Hilbert space of quantum tetrahedron can be given different concrete representations:
<latexit sha1_base64="giuTfK27mZTCd4a8o0m88uyPV0M="></latexit>

 (g1, ..., g4) =  (g1h, ..., g4h) =
X

{ji,mi;I}

 j1...j4;I
m1...m4

Dj1
m1n1

(g1)...D
j4
m4n4

(g4)C
j1...j4I
n1...n4

Peter-Weyl decomposition
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Hv = L2

(
SU(2)→4

SU(2)

)



Quantum states of many quantum tetrahedra

• full Hilbert space (arbitrary number of (connected or disconnected) tetrahedra):

GFT Fock space

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1

V=0 sym

n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
'̂(~g) , '̂†(~g0)

i
= IG(~g,~g0)

⇥
'̂(~g) , '̂(~g0)

⇤
=

h
'̂
†(~g) , '̂†(~g0)

i
= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0

i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES
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ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
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Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
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gluing 
(entangling edge dof)

maximally entangled state 
of edge degrees of freedom

Hilbert space 
for V open vertices

Hilbert space
for graph Ȗ

Spin network states arising from the entanglement of individual vertices (fundamental excitations of the GFT field):

SPIN NETWORK FORMALISM FOR QUANTUM SPACETIME - GROUP FIELD THEORY PERSPECTIVE

link state

internal links 
of combinatorial pattern Ȗ

Ȗ

maximal entanglementmany- body wave-function 
for V open vertices

1111

• gluing quantum tetrahedra with entanglement

TGFT as a field theory of simplicial geometry

Gluing tetrahedra = discrete space connectivity = entanglement between “atoms of space”

LQG: space(time) from entangled states of quantum geometry

a

b

Entanglement of a Wilson line

in the Hilbert space decomposition the Wilson loop pure state reads

=
1p

2j + 1

2j+1X

c=1

hU |�1, j, a, ci hU |�2, j, c, bi
c

{|�, j, a, ci}, {|�, j, c, bi} orthonormal sets in H�1 , H�2

|�, j, a, bi = 1p
2j + 1

2j+1X

c=1

|�, j, a, ci ⌦ |�, j, c, bi

w/

define the reduced density matrix ⇢1 = Tr2[|�, j, a, bih�, j, a, b|]

S(�1) = �Tr[⇢1 log ⇢1] = log(2j + 1)

entanglement entropy of the wilson line

maximally mixed state

LQG structural level:

Donnelly 2012

gravity as a lattice gauge theory on a superposition of SU(2)/SL(2,C)  spin-network graphs 

diffeos compatible definition of entanglement: localisation 
and boundary charges — holographic dualities?

=> space geometry from pre-geometry, ent & coarse graining 

 (study of continuum limit) Girelli Livine 05, Livine Terno 2005-08

Charles Livine 2016, GC Mele, Vitale, Oriti

Delcamp Dittrich Riello, Geiller 16-17

Freidel Donnelly 16

Area law for entanglement entropy as a signature of good semiclassical behaviour:

Bianchi Guglielmon Hackll Yokomizo 16
 GC Rovelli Haggard Riello Ruggiero 14-15, Hamma Hung Marciano Zhang 15

Bianchi Myers 2012

 GC Anzà 16, Han et al. 16

=>

& BH entropy: Rovelli, Perez, de Lorenzo, Smerlak, Husain, Bodendorfer, 

Oriti, Pranzetti Sindoni … \infty

Dittrich, Bahr, Steinhaus, Martin-Benito...

Freidel Perez Pranzetti 16

-

-

Forming extended structures: gluing building blocks ——-> states on connected graphs/simplicial complexes

g

g

g

g
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3

4

generic quantum state: collection of spin network vertices (incl. glued ones) or tetrahedra (incl. glued ones)

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]
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Kristina Giesel Dynamics of LQG

• the next task is to define a dynamics for such quantum states

• basic strategy is to encode in TGFT action the definition of (quantum) simplicial geometry of 4d cells 
in terms of data associated to their (boundary) 3d cells, in group-theoretic language

quantum states for extended simplicial 3-complexes (spin network graphs) = 
entangled many-body states of many quantum tetrahedra (spin network vertices)

• spin network states for arbitrary graphs 
~ arbitrary quantum simplicial lattices

<latexit sha1_base64="x4MH0RlCqEEbgNZLPGqzXfrNQK4="></latexit>

� H� 8�

9

Spin networks = graphs dual to simplicial complexes

▪ edges carrying SU(2) spins

▪ open edges carrying SU(2) magnetic indices

▪ nodes carrying intertwiners (gauge invariant tensors)

As kinematical states, spin networks enter* various related QG approaches:

• Loop quantum gravity (canonical quantization of general relativity)

• Spin foam models (covariant LQG or gravity as generalized lattice gauge theory)

• Group field theory (quantum field theory for simplicial geometry)

*with different Hilbert space structures for graph superposition!

SPIN NETWORK FORMALISM FOR QUANTUM SPACETIME

SPIN NETWORK GRAPHSIMPLICIAL COMLEX
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• GFT field operators (creating/annihilating spinnet vertices/tetrahedra):
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a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
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is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
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tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
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irreducible unitary representation of SU(2) labeled by the half-integer Ji.
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
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Observables

examples:

geometric quantities (areas, volume, curvature, ...) and observables for 
(scalar) matter become operators acting on the single-tetrahedron Hilbert 
space and then on the many-tetrahedra Fock space 

• universe volume

Clearly, if one wants to introduce more (say n) than one minimally coupled massless

scalar field, the group field operator becomes '̂(gI ,�a) ⌘ '̂(gI ,�1, . . . ,�n), with a =

1, . . . , n. Of course, the commutation relation in (2.6a) has to be changed consistently, so

that h
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0)a
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�a � (�0)a

�
. (2.13)

Importantly, this change on the kinematic structure of the Fock space is reflected also in

the second quantized operators, which now involve integrals over all the possible values of

�a 2 Rn. For instance, the number operator reads

N̂ =
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†(gI ,�
a)'̂(gI ,�
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A crucial quantity for describing cosmological geometries is the volume operator
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whose matrix elements V (gI , g0I) are defined from those of the first quantized volume op-

erator in the group representation5.

The presence of “pre-matter” data allows for the construction of a set of observables

naturally related to them, through polynomials and derivatives with respect to �a for each

a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be obtained in

this way are the “scalar field operator” and the “momentum operator” [53]:
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whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.
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many-body operators are more complicated, like curvature 
(eg holonomies along paths across several tetrahedra)

9

Spin networks = graphs dual to simplicial complexes

▪ edges carrying SU(2) spins

▪ open edges carrying SU(2) magnetic indices

▪ nodes carrying intertwiners (gauge invariant tensors)

As kinematical states, spin networks enter* various related QG approaches:

• Loop quantum gravity (canonical quantization of general relativity)

• Spin foam models (covariant LQG or gravity as generalized lattice gauge theory)

• Group field theory (quantum field theory for simplicial geometry)

*with different Hilbert space structures for graph superposition!

SPIN NETWORK FORMALISM FOR QUANTUM SPACETIME

SPIN NETWORK GRAPHSIMPLICIAL COMLEX

9



The universe as a quantum condensate 
(in the TGFT formalism) 

• which fundamental quantum 
dynamics?



• main guideline for model building

define models that produce, in perturbative expansion (i.e. where lattice structures are relevant), 


• interaction processes (Feynman diagrams) of quantum simplices corresponding to 4d lattices, 


• quantum (Feynman) amplitudes given by lattice gravity path integrals (coupled to scalar fields) 

TGFT dynamics

• general structure of action

• interaction: gluing of 3-simplices to form 4-dimensional cells


• kinetic term: gluing conditions for 4-cells across 3-simplices
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Figure 1: GFT propagator and vertex

2.2 Non-commutative Fourier transform and bivector formulation

The simplicial geometry encoded in the model (5) is best understood in a dual formulation,
coined ‘metric representation’ in [21], obtained by a group Fourier transform of the field. The
relevant Fourier transform here is the obvious extension of the non-commutative SO(3) Fourier
transform [33, 34, 35] to the group [SO(3)× SO(3)]4:

ϕ̂(x1, · · · x4) :=
∫

[dgi]4 ϕ(g1, · · · g4) eiTrx1g1 · · · eiTrx4g4 (7)

The variables xi belong to the Lie algebra so(4) = su(2) ⊕ su(2). The kernel of the Fourier
transform is a product of ‘plane waves’ Eg(x) = eiTrxg, where the trace Tr is defined in terms of
the usual trace of 2× 2 matrices1 as Trxg=

∑
± εg±tr[x±g±] with εg±=sign(trg±). Thus Eg(x)

is itself a product of two SO(3) plane waves eg±(x±) :=eiεg±trx±g± . The plane waves satisfy the
properties: ∫

d6x Eg(x) = δ(g), Eg-1(x) = Eg(−x) (8)

1Let τj be i times the Pauli matrices, then trτiτj =−δij . Given and SU(2) element u=eθnjτj parametrized by
the angle θ ∈ [0, π] and the unit R3-vector %n and a=ajτj in the algebra su(2), we thus have tr[au]=− sin θ%n · %a.
Also εu :=sign(tru)=sign(cos θ).
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• main guideline for model building

define models that produce, in perturbative expansion (i.e. where lattice structures are relevant), 


• interaction processes (Feynman diagrams) of quantum simplices corresponding to 4d lattices, 


• quantum (Feynman) amplitudes given by lattice gravity path integrals (coupled to scalar fields) 

TGFT dynamics

• example: + c.c.EPRL model

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:
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any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that

<latexit sha1_base64="JmK+t4+xCLyvGEYbWPEe0aslmvs=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9SIUvXisYD+gDWWz3bRrN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrBxwn3I/oQIlQMIpWailyTarksVcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmlWK95FpXp/Xq7d5HEU4BhO4Aw8uIQa3EEdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx+Wbo5u</latexit>
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any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
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spin networks.
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obtain
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, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15
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the interaction term contains a Kronecker delta for the j labels colouring the links that

15

both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles

5

can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

<latexit sha1_base64="pK5IOO6vI5lMYEBwuno0FFRJJXQ=">AAACNXicbVDLSsNAFJ3UV62vqEs30SJUkJIUX8uiG5cV7AOaECaTSTt28mBmIpQha7/Grf0WF+7ErV8gOEm7sK0HLhzOuZd77/ESSrgwzXettLK6tr5R3qxsbe/s7un7Bx0epwzhNoppzHoe5JiSCLcFERT3EoZh6FHc9UZ3ud99xoyTOHoU4wQ7IRxEJCAICiW5+rEtCPWxtEMohhwx2cky97L25EroZefEhWeuXjXrZgFjmVgzUgUztFz9x/ZjlIY4EohCzvuWmQhHQiYIojir2CnHCUQjOMB9RSMYYu7I4pXMOFWKbwQxUxUJo1D/TkgYcj4OPdVZXLzo5eJ/Xj8VwY0jSZSkAkdouihIqSFiI8/F8AnDSNCxIhAxom410BAyiIRKb3FLfhuf+0TmGxkPeKbyshbTWSadRt26qjceLqrN21lyZXAETkANWOAaNME9aIE2QOAFvII3MNEm2of2qX1NW0vabOYQzEH7/gX7ZK11</latexit>

Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these

23

+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.
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where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
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The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation
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where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:
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any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:
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any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.
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4Y

i=1

1
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mvinvi
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where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv
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the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X
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mv1
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jv1jv2 ◆1◆2
mv1 ,mv2
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5

X

jvai
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5Y
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'̄ jva ◆a
mva
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5Y
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'jva ◆a
mva
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#
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where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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any continuous spectrum depending on ρ comes out effec-
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The boundary space is once again just given by the SU(2)
spin networks.
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where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
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1
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and its projected (gauge fixed) counterpart:

A3(f) :=
1
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(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2
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Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

<latexit sha1_base64="pK5IOO6vI5lMYEBwuno0FFRJJXQ=">AAACNXicbVDLSsNAFJ3UV62vqEs30SJUkJIUX8uiG5cV7AOaECaTSTt28mBmIpQha7/Grf0WF+7ErV8gOEm7sK0HLhzOuZd77/ESSrgwzXettLK6tr5R3qxsbe/s7un7Bx0epwzhNoppzHoe5JiSCLcFERT3EoZh6FHc9UZ3ud99xoyTOHoU4wQ7IRxEJCAICiW5+rEtCPWxtEMohhwx2cky97L25EroZefEhWeuXjXrZgFjmVgzUgUztFz9x/ZjlIY4EohCzvuWmQhHQiYIojir2CnHCUQjOMB9RSMYYu7I4pXMOFWKbwQxUxUJo1D/TkgYcj4OPdVZXLzo5eJ/Xj8VwY0jSZSkAkdouihIqSFiI8/F8AnDSNCxIhAxom410BAyiIRKb3FLfhuf+0TmGxkPeKbyshbTWSadRt26qjceLqrN21lyZXAETkANWOAaNME9aIE2QOAFvII3MNEm2of2qX1NW0vabOYQzEH7/gX7ZK11</latexit>

Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these

23

+ c.c. reproduces EPRL-like spin foam amplitudes

SL(2,C) data (and further geometricity conditions) in interaction term (encode covariant info)

• general structure of action

• interaction: gluing of 3-simplices to form 4-dimensional cells


• kinetic term: gluing conditions for 4-cells across 3-simplices
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Figure 1: GFT propagator and vertex

2.2 Non-commutative Fourier transform and bivector formulation

The simplicial geometry encoded in the model (5) is best understood in a dual formulation,
coined ‘metric representation’ in [21], obtained by a group Fourier transform of the field. The
relevant Fourier transform here is the obvious extension of the non-commutative SO(3) Fourier
transform [33, 34, 35] to the group [SO(3)× SO(3)]4:

ϕ̂(x1, · · · x4) :=
∫

[dgi]4 ϕ(g1, · · · g4) eiTrx1g1 · · · eiTrx4g4 (7)

The variables xi belong to the Lie algebra so(4) = su(2) ⊕ su(2). The kernel of the Fourier
transform is a product of ‘plane waves’ Eg(x) = eiTrxg, where the trace Tr is defined in terms of
the usual trace of 2× 2 matrices1 as Trxg=

∑
± εg±tr[x±g±] with εg±=sign(trg±). Thus Eg(x)

is itself a product of two SO(3) plane waves eg±(x±) :=eiεg±trx±g± . The plane waves satisfy the
properties: ∫

d6x Eg(x) = δ(g), Eg-1(x) = Eg(−x) (8)

1Let τj be i times the Pauli matrices, then trτiτj =−δij . Given and SU(2) element u=eθnjτj parametrized by
the angle θ ∈ [0, π] and the unit R3-vector %n and a=ajτj in the algebra su(2), we thus have tr[au]=− sin θ%n · %a.
Also εu :=sign(tru)=sign(cos θ).

5

Boulatov, Ooguri, Barrett, Crane, De Pietri, Freidel, 
Krasnov, Rovelli, Reisenberger, Perez, DO, Livine, Baratin, 
Chirco, Girelli, Ryan, Gurau, Girelli,  Rivasseau, ......



Z =
X

�

w(�)A� =
X

�

w(�)

Z
Dg� ei S�(g�) ⌘

Z
Dg ei S(g)Z =

Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

connection to lattice gravity in GFT perturbative expansion; non-perturbative GFT = continuum limit of lattice gravity

TGFT dynamics: dynamics of quantum atomic geometry

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

Feynman amplitudes (model-dependent) = sum over group-theoretic data 
associated to complex dual to Feynman diagram

Reisenberger,Rovelli, ’00

A. Baratin, DO, ‘11

M. Finocchiaro, DO, '18

Feynman diagrams = stranded diagrams dual to cellular complexes of 
arbitrary topology 

De Pietri, Petronio, '00; R. Gurau, '10; ...

labelled by group-theoretic data (group elements, group irreps, ...)

• GFT Feynman amplitudes = lattice gravity path integrals (in group/algebra variables) on 
lattice dual to GFT Feynman diagram = spin foam models (in irreps variables)

random tensor models literature



TGFTs: example Boulatov model - topological 3d euclidean QG (no matter)

' : SU(2)⇥3 ! C

S(') =
1

2

Z
[dg]'2(g1, g2, g3) +

1

4!

Z
[dg]'(g1, g2, g3)'(g3, g4, g5)'(g5, g2, g6)'(g6, g4, g1)

for fields satisfying: '(g1, g2, g3) = '(hg1, hg2, hg3) 8h 2 SU(2)

+ cc
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�

~ quantum triangles

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

partition function & perturbative expansion

Feynman diagrams dual to 3d simplicial lattices



GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

COLORED GFT FOR 3D EUCLIDEAN GRAVITY

Feynman diagrams Γ are dual to 3d simplicial complexes
amplitudes AΓ written in group, representation or algebra variables

AΓ =

Z Y

l

dhl
Y

f

δ (Hf (hl)) =

Z Y

l

dhl
Y

f

δ

„−→Y
l∈∂f

hl

«
=

=
X

{je}

Y

e

dje

Y

τ


jτ1 jτ2 jτ3
jτ4 jτ5 jτ6

ff
=

Z Y

l

[dhl]
Y

e

[d3xe] e
i

P

e Tr xeHe

last line is discretized path integral for 3d gravity S(e, ω) =
R
Tr(e ∧ F(ω))

exact duality: simplicial gravity path integral↔ spin foam model (see talk by Raasakka)
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Feynman amplitudes in different representations:
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Feynman amplitudes in different representations:

lattice gauge theory formulation 
of 3d gravity/BF theory 

TGFTs: example Boulatov model - topological 3d euclidean QG (no matter)
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Feynman amplitudes in different representations:

spin foam formulation of 3d gravity

i.e. quantum covariant dynamics 
of spin networks (LQG)

lattice gauge theory formulation 
of 3d gravity/BF theory 

TGFTs: example Boulatov model - topological 3d euclidean QG (no matter)
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Feynman amplitudes in different representations:

spin foam formulation of 3d gravity

i.e. quantum covariant dynamics 
of spin networks (LQG)

lattice gauge theory formulation 
of 3d gravity/BF theory 

discrete 1st order path integral for 3d gravity on 
simplicial complex dual to GFT Feynman diagram

TGFTs: example Boulatov model - topological 3d euclidean QG (no matter)
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Feynman amplitudes in different representations:

spin foam formulation of 3d gravity

i.e. quantum covariant dynamics 
of spin networks (LQG) discretization of 

Palatini gravity:

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

COLORED GFT FOR 3D EUCLIDEAN GRAVITY

Feynman diagrams Γ are dual to 3d simplicial complexes
amplitudes AΓ written in group, representation or algebra variables

AΓ =

Z Y

l

dhl
Y

f

δ (Hf (hl)) =

Z Y

l

dhl
Y

f

δ

„−→Y
l∈∂f

hl

«
=

=
X

{je}

Y

e

dje

Y

τ


jτ1 jτ2 jτ3
jτ4 jτ5 jτ6

ff
=

Z Y

l

[dhl]
Y

e

[d3xe] e
i

P

e Tr xeHe

last line is discretized path integral for 3d gravity S(e, ω) =
R
Tr(e ∧ F(ω))

exact duality: simplicial gravity path integral↔ spin foam model
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lattice gauge theory formulation 
of 3d gravity/BF theory 

discrete 1st order path integral for 3d gravity on 
simplicial complex dual to GFT Feynman diagram

TGFTs: example Boulatov model - topological 3d euclidean QG (no matter)

' : SU(2)⇥3 ! C

S(') =
1

2

Z
[dg]'2(g1, g2, g3) +

1

4!

Z
[dg]'(g1, g2, g3)'(g3, g4, g5)'(g5, g2, g6)'(g6, g4, g1)

for fields satisfying: '(g1, g2, g3) = '(hg1, hg2, hg3) 8h 2 SU(2)

+ cc
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�

~ quantum triangles

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

partition function & perturbative expansion

Feynman diagrams dual to 3d simplicial lattices



The universe as a quantum condensate 
(in the TGFT formalism) 

• continuum approximation and 
collective physics



Continuum approximation and collective physics

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

TGFTs: field theories of quantized simplices with non-local interactions (describing how simplices form higher-cells)

TGFTs can be well defined, controllable QFTs (renormalization, continuum limit, ...)
Ben Geloun, Carrozza, Tanasa, Toriumi, Krajewski, Martini, DO, Rivasseau, 
Gurau, Lahoche, Ousmane-Samary, Benedetti, Marchetti, Pithis, Thürigen, ....

key task is to control collective physics (in continuum approximation, upon coarse-graining)

see S. Carrozza, 2404.07834 [math-ph]

give definition of non-perturbative lattice gravity path integrals in their perturbative expansion

https://arxiv.org/abs/2404.07834


Continuum approximation and collective physics
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TGFTs: field theories of quantized simplices with non-local interactions (describing how simplices form higher-cells)

key task is to control collective physics (in continuum approximation, upon coarse-graining)



Continuum approximation and collective physics

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

TGFTs: field theories of quantized simplices with non-local interactions (describing how simplices form higher-cells)

key task is to control collective physics (in continuum approximation, upon coarse-graining)

Universe as BEC (TGFT condensate)

TGFT mean field hydrodynamics

F�(J) = lnZ�[J ] �[�] = supJ (J · �� F (J)) h'i = �

<latexit sha1_base64="dJGsCq9YX48nnfEMnVYnZZiKihs="></latexit>

✴  simplest approximation: mean field 
hydrodynamics - infinite resummation 
of lattice gravity path integrals

�[�] ⇡ S�(�)
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mean field ~ condensate wavefunction

• corresponding quantum states:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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 (simplest): GFT condensate, GFT field coherent state 
- infinite superposition of discrete dofs

hypothesis: relevant regime is QG hydrodynamics hypothesis: geometric phase is QG condensate phase

(universe as QG fluid)TGFT condensate hydrodynamics



The universe as a quantum condensate 
(in the TGFT formalism) 

• TGFT condensate cosmology 

• reconstruction of effective 
gravitational dynamics for 

(diffeo-invariant, relational) 
observables
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� (D) D ' {geometries of tetrahedron} '

' {continuum spatial geometries at a point} '
' minisuperspace of homogeneous geometries
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• general form of resulting (Gross-Pitaevskii-like) equations of motion for condensate wavefunction (mean field):
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• general form of resulting (Gross-Pitaevskii-like) equations of motion for condensate wavefunction (mean field):
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�

�'
V(')|'⌘� = 0

polynomial functional of 
condensate wavefunction

Gielen, DO, Sindoni, '13; DO, 
Sindoni, Wilson-Ewing, '16

cosmology as QG hydrodynamics ~ non-linear extension of (loop) quantum cosmology

that is, in isotropic restriction and with just one matter field, using standard variables on minisuperspace, 
i.e. scale factor and matter scalar field:

"wavefunction" on minisuperspace

hydrodynamic (non-linear, possibly non-local) eqn on minisuperspace

<latexit sha1_base64="quo3uj9TYslid55BGFYNNYnS2B0="></latexit>

�(a,�)

K(a, @a,�, @�)�(a,�) + V [�(a,�)] = 0
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we have (many) operators acting on TGFT Fock space - need to turn them into "local" spacetime quantities
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need to turn general TGFT mean field equations into equations for cosmological observables

we have (many) operators acting on TGFT Fock space - need to turn them into "local" spacetime quantities

apply relational strategy!
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used to define collective relational (spacetime localized) observables
as expectation values in "good clock+rods" condensate states

operators defined in full QG theory

can be done in different ways S. Gielen, A. Calcinari, '22, '23

(i.e. TGFT coherent states peaking on specific values of clock&rods scalars)
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used to define collective relational (spacetime localized) observables
as expectation values in "good clock+rods" condensate states

operators defined in full QG theory

can be done in different ways S. Gielen, A. Calcinari, '22, '23

(i.e. TGFT coherent states peaking on specific values of clock&rods scalars)

(differential equations wrt to "clock-time"and "rod-space")

spatiotemporal dynamics for cosmological observables can be then compared with GR 
(and models from theoretical cosmology) 

• eqn for condensate wavefunction ------> eqn for geometric/cosmological observables



TGFT cosmology: some results
M. Assanioussi, G. Calcagni, A. Calcinari, M. De Cesare, R. Dekhil, P. Fischer, F. Gerhardt, S. Gielen, 
A. Jercher, T. Landstaetter, I. Kotecha, S. Liberati, L. Marchetti, L. Mickel, DO, X. Pang, A. Pithis, A. 
Polaczek, M. Sakellariadou, L. Sindoni, A. Tomov, Y. Wang, E. Wilson-Ewing, ....

• very early times: very small volume - QG interactions subdominant

quantum bounce         
(no big bang singularity)!

    main open problems
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but there is still very much to do

(i) More solid arguments that the classical limit is GR

(ii) Compute quantum corrections to Effective QFT scattering

(iii) IR renormalization?    Scaling   [Orsay group, Smerlak Bonzom]

(iv) Lorentzian structure?

(v) Open points in the definition (Edge splitting invariance?) [Bojowald Perez, Warsaw school]

(vi) Difficulties of low energy computation

(vii) Questions on the vertex expansion

(viii) Observable consequences?  Cosmology?  [Barrau, Mielczarek, Grain, Cailleteau, Ashtekar, Sloan]L. Sindoni, DO, E. Wilson-Ewing, '16; ....
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(i) More solid arguments that the classical limit is GR

(ii) Compute quantum corrections to Effective QFT scattering

(iii) IR renormalization?    Scaling   [Orsay group, Smerlak Bonzom]

(iv) Lorentzian structure?
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(vii) Questions on the vertex expansion

(viii) Observable consequences?  Cosmology?  [Barrau, Mielczarek, Grain, Cailleteau, Ashtekar, Sloan]L. Sindoni, DO, E. Wilson-Ewing, '16; ....

• intermediate times: large volume - QG interactions still subdominant

of isotropic GFT quanta) it is necessary to identify m2
j = 3⇡G for all j. For these val-

ues of mj, the GFT condensate dynamics reproduce the classical Friedmann equations of
general relativity. (As an aside, note that while it may be possible, at a specific relational
instant �o, to choose a di↵erent set of values for mj that also gives the correct limit,
this identification will not be preserved by the dynamics and hence the correct classical
Friedmann equations would in this case only be recovered in a small neighbourhood of
relational time around �o.)

The condition that m2
j = 3⇡G is a requirement on the form of the terms Aj and Bj that

are determined by the GFT action: if Bj/Aj 6= 3⇡G for some j, then it follows that the
correct Friedmann equations are not recovered in the classical limit. Note also that this
should be understood as a definition of G which arises as a hydrodynamic parameter and it
is thus a function of the microscopic GFT parameters, and not as an interpretation of the
microscopic parameters. This is an important conceptual point since this identification
has no reason to be valid in a generic regime of the dynamics (e.g., for non-condensate
GFT states) and may be di↵erent in other settings.

So, if all m2
j = 3⇡G, then the generalised Friedmann equations of the GFT condensate

become, in the classical limit,
✓
V 0

V

◆2

=
V 00

V
= 12⇡G, (81)

which are exactly the Friedmann equations of general relativity for a spatially flat FLRW
space-time with a massless scalar field �, used as a relational time (see Appendix A 1 for
details).

The solution to these equations of motion is the standard one of classical general
relativity,

V = Voe
±
p
12⇡G�, (82)

as expected, with the sign in the exponent depending on whether the universe is expanding
or contracting, and Vo depending on the initial conditions.

D. Single Spin Condensates

The other case where the equations of motion for V (�) can be solved exactly, and
for generic initial conditions, is when only one ⇢j is non-zero, which corresponds to a
condensate wave function that is very sharply (infinitely) peaked in j,

�j(�) = 0, for all j 6= jo. (83)

Then the sum over j in all of the expressions trivializes and an exact solution can be
found which includes quantum corrections.
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but there is still very much to do

(i) More solid arguments that the classical limit is GR

(ii) Compute quantum corrections to Effective QFT scattering

(iii) IR renormalization?    Scaling   [Orsay group, Smerlak Bonzom]

(iv) Lorentzian structure?

(v) Open points in the definition (Edge splitting invariance?) [Bojowald Perez, Warsaw school]

(vi) Difficulties of low energy computation

(vii) Questions on the vertex expansion

(viii) Observable consequences?  Cosmology?  [Barrau, Mielczarek, Grain, Cailleteau, Ashtekar, Sloan]

effective phantom-like dark energy (of pure QG origin)

+ asymptotic De Sitter universe

• "phenomenological" approach (simplified GFT interactions):

• late times: as universe expands, interactions become relevant, until they drive evolution
accelerated cosmological expansion
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FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where �11 < �21, while for red dashed line we have �11 =

�21. Black dotted lines show w = 1 and the phantom divide w = �1. Parameters are same as in

figure 1 with additional ones are �1 = �10�8
, µ1 = 0, µ2 = 0, n1 = n2 = 6 and �2 = �9.5⇥ 10�8

for �11 < �21, �2 = �9.5725⇥ 10�8 for �11 = �21.

One may then worry about whether this e↵ective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the e↵ective energy density ⇢ , defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since �11 < �21, and for large volume we have � ! �11, we see that ⇢2 is nearly a

constant given by ⇢2(�11). Using the solution (43), we get

⇢2(�11) =
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(�21 � �11)
1
2

.

Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in

computing the total volume we can ignore ⇢2 and let V = V1⇢21. Inserting this approximate

expression back in the expression for w, we get

w = �1�
b

V
, (47)

where b = 4V2⇢2(�11) is a constant. Notice again that b > 0, thus we have w < �1, and

the phantom divide w = �1 is being crossed.
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ues of mj, the GFT condensate dynamics reproduce the classical Friedmann equations of
general relativity. (As an aside, note that while it may be possible, at a specific relational
instant �o, to choose a di↵erent set of values for mj that also gives the correct limit,
this identification will not be preserved by the dynamics and hence the correct classical
Friedmann equations would in this case only be recovered in a small neighbourhood of
relational time around �o.)

The condition that m2
j = 3⇡G is a requirement on the form of the terms Aj and Bj that

are determined by the GFT action: if Bj/Aj 6= 3⇡G for some j, then it follows that the
correct Friedmann equations are not recovered in the classical limit. Note also that this
should be understood as a definition of G which arises as a hydrodynamic parameter and it
is thus a function of the microscopic GFT parameters, and not as an interpretation of the
microscopic parameters. This is an important conceptual point since this identification
has no reason to be valid in a generic regime of the dynamics (e.g., for non-condensate
GFT states) and may be di↵erent in other settings.

So, if all m2
j = 3⇡G, then the generalised Friedmann equations of the GFT condensate

become, in the classical limit,
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V
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which are exactly the Friedmann equations of general relativity for a spatially flat FLRW
space-time with a massless scalar field �, used as a relational time (see Appendix A 1 for
details).

The solution to these equations of motion is the standard one of classical general
relativity,

V = Voe
±
p
12⇡G�, (82)

as expected, with the sign in the exponent depending on whether the universe is expanding
or contracting, and Vo depending on the initial conditions.

D. Single Spin Condensates

The other case where the equations of motion for V (�) can be solved exactly, and
for generic initial conditions, is when only one ⇢j is non-zero, which corresponds to a
condensate wave function that is very sharply (infinitely) peaked in j,

�j(�) = 0, for all j 6= jo. (83)

Then the sum over j in all of the expressions trivializes and an exact solution can be
found which includes quantum corrections.

40

~ classical Friedmann dynamics in GR 
(wrt relational clock, with effective 
Newton constant) - flat FRW

(here written neglecting matter contribution)

• special case: fixed-spin condensate - reproduces LQC dynamics L. Sindoni, DO, E. Wilson-Ewing, '16; S. Gielen, '16, ....
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cosmic acceleration produced by non-linear terms in hydrodynamics eqn!
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One may then worry about whether this e↵ective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the e↵ective energy density ⇢ , defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for
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Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in

computing the total volume we can ignore ⇢2 and let V = V1⇢21. Inserting this approximate
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✓
V 0

V

◆2

=
V 00

V
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which are exactly the Friedmann equations of general relativity for a spatially flat FLRW
space-time with a massless scalar field �, used as a relational time (see Appendix A 1 for
details).

The solution to these equations of motion is the standard one of classical general
relativity,

V = Voe
±
p
12⇡G�, (82)

as expected, with the sign in the exponent depending on whether the universe is expanding
or contracting, and Vo depending on the initial conditions.

D. Single Spin Condensates

The other case where the equations of motion for V (�) can be solved exactly, and
for generic initial conditions, is when only one ⇢j is non-zero, which corresponds to a
condensate wave function that is very sharply (infinitely) peaked in j,

�j(�) = 0, for all j 6= jo. (83)

Then the sum over j in all of the expressions trivializes and an exact solution can be
found which includes quantum corrections.
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Newton constant) - flat FRW
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cosmic acceleration produced by non-linear terms in hydrodynamics eqn!



Some lessons



1.Cosmology as hydrodynamic approximation of QG system: collective, coarse grained QG dynamics

• focus on cosmological dynamics = focus on few global observables = (from point of view of QG theory as well as 
local effective theory (GR)) focus on collective variables and collective states = result of coarse graining


• symmetry reduction = drastic coarse graining (sharp removal of (infinite) dofs) + restriction to few observables


• cosmological wavefunction on minisuperspace = order parameter labelling collective state, not quantum state

no corresponding Hilbert space of "quantum cosmology" within larger Hilbert space of QG states


• relevant observables are matched with continuum gravitational physics as averages, not eigenvalues


• important role, in observables and dynamics, of "number of QG dofs": modulus of cosmological wavefunction = 
average number operator (literally, in GFT), new observable wrt standard quantum cosmology
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2.Cosmology is emergent dynamics, taking form of non-linear extension of (loop) quantum cosmology

• dynamics of cosmological wavefunction = non-linear extension of LQC, i.e. QG hydrodynamics on minisuperspace


• gravitational couplings (in emergent cosmological dynamics) are functions of underlying QG ones (not directly gravitational)


• "standard" quantum cosmology setting obtained when neglecting non-linear corrections, i.e. underlying QG interactions, 
or linearizing the full dynamics - here, in GFT, FRW is reproduced at large volumes


• non-linear contributions important; example: in GFT can produce cosmic acceleration (phantom-like dark energy, inflation, 
asymptotic deSitter universe) without additional dofs


• large-scale effects of direct QG origin and linked to small-scale effects (failure of EFT intuition and principles)

<latexit sha1_base64="vWFXVQdD2prFbJuDdRSxR+W6WcU=">AAACc3icbVHLSgMxFM2M7/qqCm5cGKxC1TrMiKhQhKIbwU0FW4VOHe5kUhvMPEgyQhn6A36eO//CjXsz0yq+LgROzj3nJvdeP+FMKtt+NcyJyanpmdm50vzC4tJyeWW1LeNUENoiMY/FnQ+SchbRlmKK07tEUAh9Tm/9x4s8f/tEhWRxdKMGCe2G8BCxHiOgNOWVn90QVJ8Az66GVai5SZ/tujW3KdnnDe9jl+uCAXgMuyxS+MvS1hbPKWSeU7csq461qIYLQjtHZb4UmiBBrGTB3+9Vc+2n9AzbXrliW3YR+C9wxqCCxtH0yi9uEJM0pJEiHKTsOHaiuhkIxQinw5KbSpoAeYQH2tEwgpDKblbMbIh3NBPgXiz00T0V7HdHBqGUg9DXyrxd+TuXk//lOqnqnXYzFiWpohEZPdRLOVYxzheAAyYoUXygARDB9F8x6YMAovSaSnoIzu+W/4L2oeUcW0fXR5XG+Xgcs2gDbaEqctAJaqBL1EQtRNCbsW5sGth4NzfMLXN7JDWNsWcN/Qjz4APQRbhS</latexit>

K(a,�) (a,�) + �i

Z
V(a1,�1; ...; ai,�i) (a1,�1) · · · ⇤(ai,�i) = 0



3. Cosmological evolution is relational evolution with respect to physical clock

• relational evolution requires conditions of (good) clock, implemented as conditions on relevant quantum states


• which clock? possible mismatch between "fundamental" and "effective" clock dofs 

eg: "massless free scalar field" at fundamental level =/= massless free scalar field at effective (hydrodynamic) level


• how does the cosmological physics (e.g. bounce, cosmological perturbations, etc) depend on the choice of clock? 


• what is invariant under change of physical clock? what is general covariance with respect to transformations between 
(realistic) physical frames? what is invariant?
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• cosmological perturbations: spatial localization to be defined also via relational strategy, i.e. by additional rod fields  


- dynamics obtained for each choice of relational frame should be compared with GR dynamics in particular gauge


4. Also spatial localization and thus local physics, including cosmological perturbations, is relational
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Most principles of QFT and GR are emergent & approximate (locality, unitarity, local causality, ....)
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6. Effective cosmological dynamics is affected by RG flow (and critical behaviour of underlying QG dynamics

• effective cosmological dynamics takes place within one particular phase of underlying QG system, thus need to 
check values of couplings, their running and what happens close to criticality


• bounce (when reproduced) happens in hydrodynamic approximation of full QG

 


• assuming universe volume is an extensive quantity, this happens at small values of (average) number operator, 
thus in the "danger zone" for validity of hydrodynamic approximation


• bounce scenario may not be viable and one may need to resort to more fundamental QG dynamics with no fully 
"geometric/spatiotemporal description


• cosmological interpretation of underlying QG phase transitions? if early universe is close to QG phase transition, 
what is impact on cosmological observables, e.g. CMB spectrum?

Most principles of QFT and GR are emergent & approximate (locality, unitarity, local causality, ....)



Thank you for your attention!


