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Outline for this Talk

» Beckenstein Bound

» Generalize to QFT (Casini) = Relative Entropy

» Crash Course Modular Theory

» Relative Entropy defined via Modular operator

» Applications to noncommutative QFT



The Classical Bekenstein Bound

What happens if we throw a hot cup of (filter-)coffee into a black hole?

Black Hole Entropy

For a stationary, non-charged, non-rotating black hole, the entropy is
proportional to the event horizon area:

Sey = aM?.



Dropping Matter into a Black Hole (Poor man's derivation)

Consider a system outside the black hole with mass m < M and entropy
S. The total initial entropy is:

ST =5m+S
Dropping m into the black hole (neglecting energy losses) gives:

SeH+m = a(M + m)2 ~ aM? 4+ 2aMm = Sgy + 2aMm

Entropy Increase Condition

SgHym — S~ >0
Thus,

S <2aMm



The Bekenstein Bound

If BH is large enough to swallow the system (radius R), and identifying
E = m, one finds:

Bekenstein Bound [Beckenstein 1981]

For a system with radius R and energy E:

S < 2nkgRE

where kg is the Boltzmann constant.

» Universal entropy bound on physical systems

» Derived from black hole entropy formula



Quantum Field Theory Formulation of the
Beckenstein Bound



Bekenstein Bound: Formulation in QFT

Von Neumann entropy

S diverges for type Energy E is ill-defined:

Il algebras in QFT Local energy density has

»lx UV divergences in QFT
S

<orkg R E

Radius R ambiguous

Global vs local: “For global states, E is well-defined, but R is not; for
localized states R is well-defined, vacuum entanglement (pair creation)
makes both S and E UV-sensitive and ill-defined without careful
renormalization.”



QFT Challenges: Divergences

Problem [Casini 08]

Naive application of von Neumann entropy in QFT leads to divergences

» Physical origin: UV divergences from vacuum fluctuations

» Solution: Subtract vacuum contributions

Regularized Entropy

Sv = S(pv) = S(pY) = —tr(pv log pv) + tr(pY log p}))

where:
» V: spatial region of interest
» py: reduced density matrix of the excited state associated with V

> S(pY): von Neumann entropy of vacuum state



Local Hamiltonian and Vacuum State

Vacuum Density Matrix

where K is the local Hamiltonian (self-adjoint, dimensionless).

Example
For half-space V = {x! > 0}, K is the boost operator:

K=Llg = 27r/ x* Too(0, x) dx
x1>0

» Too: Hamiltonian density operator, physical units: [R - E] = [Lo1]



Regularized Energy
Problem

Expectation value (K),, diverges due to vacuum fluctuations

Solution
Take for right hand side, difference between excited and vacuum states:

Ky = tr(Kpv) — tr(KpY)

QFT Bekenstein Bound



Relative Entropy

Definition

Srer,v = tr py(log(pv) — log(pY)) > 0

Theorem (Positivity of Relative Entropy)

The relative entropy Sy v is always non-negative.

Quantum relative entropy S(p || o) has two key interpretations:
1. State Distinguishability, where reference state o

2. Quantifies unexpected information content when encountering p
while expecting o



Key Result

The positivity of relative entropy implies the Bekenstein bound!

Full Circle

Black hole entropy — Bekenstein bound — QFT formulation — Relative
entropy positivity

Mathematical Framework to study relative Entropy

Tomita-Takesaki-Modular theory [1967, 1970]



Tomita-Takesaki Theory & Relative Entropy



Tomita-Takesaki Theory: Foundations

Basic Setup:
> (M, ,]Q)): von Neumann algebra M on Hilbert space ¢
> |Q): cyclic and separating vector for M

Tomita Operator S:
» Definition: SA|Q) = A*|Q) for all A e M
» S is closable and densely defined

Polar Decomposition:
S =JA?

» J: modular conjugation (anti-linear, unitary, J? = 1)
» JMJ =M (commutant relation)
» A: modular operator (positive, self-adjoint)



Modular Group and KMS States

Modular Automorphism Group:
> 0.(A) = ATAA for t € R
» One-parameter group of automorphisms: o; 0 05 = 0445

» Covariance: (M) =M

KMS State Definition:

» A state w is KMS at 8 > 0 for {o,} if, for all A, B € M, the map
t > w(Aoy(B)) extends analytically to 0 < Imz < 3 and satisfies

(JJ(A O't(B)) = w(0t+;B(B) A)

Connection to Modular Theory:
> State w(-) = (Q] - Q) is KMS for {o;} at f =1



Relative Modular Theory

Setup:

» Two cyclic and separating states: w and w’
» Corresponding vectors: |Q2) and |Q)

Relative Tomita Operator:

» Definition: Sy, A|Q) = A*|Q) for Ae M

» Polar decomposition: S, ,, = w/_,wAl/z

w’ w
Properties:

» J. . relative modular conjugation
> A, relative modular operator

> Jw/7wMJw/’w = MI



Araki-Uhlmann Relative Entropy

Definition:

Sa(w',w) = —(Q] Iog(Aw/M)\Q)

Special Case - Unitarily Equivalent States:
> If w(U - U™1) = w'(:) for some unitary U
> Araki [1977]-Uhlmann [1977] formula:

e ity e N —i
Srel(w',w) = ’E<Q|UAtU A tQ>|t:0



Applications of relative Entropy in QFT



Bisognano-Wichmann Theorem & KMS

Physical Context:
» Rindler wedge: Wg := {x = (x0,x1,---,%:) € R? : x3 > |x0]}
» Wedge algebra: local observables in the right wedge

Bisognano-Wichmann Theorem:

» Modular operator: A = e27lo:

> Boost generator: Loy = [ d971x x! Too(x)

KMS Connection:

» Vacuum state |Q2) is KMS for wedge algebra at § =2«
» Modular group o; implemented by boosts:

ot(A) = U(N(—27t))AU(A(27t))
» Unruh effect



Explicit Relative Entropy Calculation

Setup:

» Reference state: vacuum w
> Excited state: w’ generated by U|Q) = e/#()|Q)
» Operators localized in right wedge Wk

Calculation:
- d ity A —i
So(w',w) = 1$<Q\UAtU AT,
d

_ iﬁ <Q‘ei¢(f) e2mitlos e—i¢(f)e—27ritL019>’

= 27T/ X1 Too dx
x°=0,x*>0

Too is the energy density smeared with f.

t=0



Recent Works on S,¢: Incomplete Chronological Overview

2019
> Longo, R. (2019) - "Entropy of Coherent Excitations"

» Explicit formula for vacuum relative entropy of coherent states on
wedge algebras

> Hollands, S. (2019) - "Relative entropy for coherent states in
chiral CFT"

> Result: Relative entropy between vacuum and exponentiated stress
tensor equals ¢ times Schwarzian action of diffeomorphisms

» Hollands, S.; Ishibashi, A. (2019) - "News vs Information"

> Relative entropy in linearized quantum gravity around black holes
> Main result: £(S5+ A/4) = 2nF (entropy-area-flux relation)



Recent Works on S,

» Casini H., Grillo S., Pontello, D. (2019) - "Relative entropy for
coherent states from Araki formula"

» Computes vacuum—coherent relative entropy in the Rindler wedge via
Araki’s formula, matching the canonical result.

2020

» Faulkner T., Hollands S., Swingle B., Wang Y. (2020)-
"Approximate recovery and relative entropy |. general von Neumann
subalgebras"



Recent Works on Relative Entropy: 2021

2021

> Edoardo D’Angelo (2021)- "Entropy for spherically symmetric,
dynamical black holes from the relative entropy between coherent
states of a scalar quantum field"

> Kurpicz, F.; Pinamonti, N.; Verch, R. (2021) - "Temperature
and entropy-area relation of quantum matter near spherically
symmetric outer trapping horizons"

» Ciolli, F.; Longo, R.; Ranallo, A.; Ruzzi, G. (2021) - "Relative
entropy and curved spacetimes"
» QNEC inequality for coherent states in curved spacetime



Some Works on Relative Entropy: 2023-2025

2022

> Galanda, S.; AM ; Verch, R. (2023) - "Relative Entropy of
Fermion Excitation States on the CAR Algebra"

» Counterpart to CCR results, uses self-dual CAR algebra

2024

» Frob, M.; AM ; Papadopoulos, K. (2024) - "Relative Entropy in
de Sitter is a Noether Charge"

» Connection of relative entropy to Noether charge of modular flow
translations

> Frob, M.; Sangaletti, L. (2024) - "Petz-Rényi relative entropy in
QFT from modular theory"



> Finster F., Jonsson R., Lottner M. , Murro S., AM, (2024)-
Notions of Fermionic Entropies of a Causal Fermion System

» Defines fermionic von Neumann, entanglement, and relative entropies
for causal fermion systems via reduced one-particle density operator
» connects to modular-theoretic computations of relative entropy

2025
> Hollands, S.; Longo, R. (2025) - "A New Proof of the QNEC"

> Finster, F.; AM (2025) - "The Relative Fermionic Entropy in
Two-Dimensional Rindler Spacetime"
» Fermionic relative entropy using modular theory and density
operators
» Application to non-unitary excitations in Rindler spacetime



Applications of relative Entropy in noncommutative
QFT



Relative Entropy in QG - Intro NCQFT

[DFRO1] QFT in a NC Minkowski-spacetime is represented on
V ® Fs(H), where V is the representation space of X

(X, X,] =i

)
where p,v =0,...,3 and 0 is a skew-symmetric matrix
0 © 0 0
0. — -0 0 O 0
=1 o0 0o 0 o
0 0 -© 0

with ©,0’ ¢ R and © > 0.



Application to NCQFT

[GLO7] proved that ¢g can be written on the Fock space .%,(.¢) by
existence of a unitary map U from U : V @ Fs(H) — Fs(H)

bo(F) - = / d*x F(x) o (x)

5 , .
:/Q (f~(p)e™ ™" a(p) + " (p) e*"a"(p)) ,

Wp

with w, = +1/p% + m? and p = (wp, p) and f € Z(R*) and P is the
momentum operator.

Furthermore, the authors proved that ¢y (and ¢_p) is a wedge local field.



Solution

Theorem
The deformed relative entropy Sg(w’,w) is up to first order in © explicitly

given by

59 (W/7 w) — i%<Q|ei¢9(f@’)e2th°1 e—i¢g(f@/)e—27ritL01 Q> |t:0

= So(w',w) + 8%@ (/ dpu(k) wi |f+,(k)|2)27

where So(w’,w) is the undeformed relative entropy.



The deformed version of the Beckenstein bound

5§271'RE—|—8§6m2.

By coefficient comparison of the Beckenstein bound but not neglecting
the m? term

S<2rRE+4nG m?,

we identify © with the Planck-length squared /3, i.e.

32




Thank you for your Attention!

Armin Uhlmann 1971 Huzihiro Araki 2009
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