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Outline for this Talk

▶ Beckenstein Bound

▶ Generalize to QFT (Casini) ⇒ Relative Entropy

▶ Crash Course Modular Theory

▶ Relative Entropy defined via Modular operator

▶ Applications to noncommutative QFT



The Classical Bekenstein Bound

What happens if we throw a hot cup of (filter-)coffee into a black hole?

Black Hole Entropy

For a stationary, non-charged, non-rotating black hole, the entropy is
proportional to the event horizon area:

SBH = αM2.



Dropping Matter into a Black Hole (Poor man’s derivation)

Consider a system outside the black hole with mass m ≪ M and entropy
S . The total initial entropy is:

S− = SBH + S

Dropping m into the black hole (neglecting energy losses) gives:

SBH+m = α(M +m)2 ≈ αM2 + 2αMm = SBH + 2αMm

Entropy Increase Condition

SBH+m − S− ≥ 0

Thus,

S ≤ 2αMm



The Bekenstein Bound

If BH is large enough to swallow the system (radius R), and identifying
E = m, one finds:

Bekenstein Bound [Beckenstein 1981]

For a system with radius R and energy E :

S ≤ 2πkBR E

where kB is the Boltzmann constant.

▶ Universal entropy bound on physical systems

▶ Derived from black hole entropy formula



Quantum Field Theory Formulation of the
Beckenstein Bound



Bekenstein Bound: Formulation in QFT

S ≤ 2π kB R E

Von Neumann entropy

S diverges for type

III algebras in QFT

Energy E is ill-defined:

Local energy density has

UV divergences in QFT

Radius R ambiguous

Global vs local: “For global states, E is well-defined, but R is not; for
localized states R is well-defined, vacuum entanglement (pair creation)
makes both S and E UV-sensitive and ill-defined without careful
renormalization.”



QFT Challenges: Divergences

Problem [Casini 08]

Naive application of von Neumann entropy in QFT leads to divergences

▶ Physical origin: UV divergences from vacuum fluctuations

▶ Solution: Subtract vacuum contributions

Regularized Entropy

SV = S(ρV )− S(ρ0
V ) = − tr(ρV log ρV ) + tr(ρ0

V log ρ0
V )

where:
▶ V : spatial region of interest
▶ ρV : reduced density matrix of the excited state associated with V

▶ S(ρ0
V ): von Neumann entropy of vacuum state



Local Hamiltonian and Vacuum State

Vacuum Density Matrix

ρ0
V =

e−K

tr e−K

where K is the local Hamiltonian (self-adjoint, dimensionless).

Example
For half-space V = {x1 > 0}, K is the boost operator:

K = L01 = 2π
∫
x1>0

x1 T00(0, x) dx

▶ T00: Hamiltonian density operator, physical units: [R · E ] = [L01]



Regularized Energy

Problem

Expectation value ⟨K ⟩ρV
diverges due to vacuum fluctuations

Solution

Take for right hand side, difference between excited and vacuum states:

KV = tr(KρV )− tr(Kρ0
V )

QFT Bekenstein Bound

SV ≤ KV



Relative Entropy

Definition

Srel,V = tr ρV (log(ρV )− log(ρ0
V )) ≥ 0

Theorem (Positivity of Relative Entropy)

The relative entropy Srel,V is always non-negative.

Quantum relative entropy S(ρ ∥ σ) has two key interpretations:

1. State Distinguishability, where reference state σ

2. Quantifies unexpected information content when encountering ρ
while expecting σ



Key Result

The positivity of relative entropy implies the Bekenstein bound!

Full Circle

Black hole entropy → Bekenstein bound → QFT formulation → Relative
entropy positivity

Mathematical Framework to study relative Entropy

Tomita-Takesaki-Modular theory [1967, 1970]



Tomita-Takesaki Theory & Relative Entropy



Tomita-Takesaki Theory: Foundations

Basic Setup:
▶ (M,H , |Ω⟩): von Neumann algebra M on Hilbert space H

▶ |Ω⟩: cyclic and separating vector for M

Tomita Operator S :
▶ Definition: S A |Ω⟩ = A∗|Ω⟩ for all A ∈ M
▶ S is closable and densely defined

Polar Decomposition:
S = J∆1/2

▶ J: modular conjugation (anti-linear, unitary, J2 = 1)
▶ JMJ = M′ (commutant relation)
▶ ∆: modular operator (positive, self-adjoint)



Modular Group and KMS States

Modular Automorphism Group:
▶ σt(A) = ∆itA∆−it for t ∈ R
▶ One-parameter group of automorphisms: σt ◦ σs = σt+s

▶ Covariance: σt(M) = M

KMS State Definition:
▶ A state ω is KMS at β > 0 for {σt} if, for all A,B ∈ M, the map

t 7→ ω
(
Aσt(B)

)
extends analytically to 0 < Im z < β and satisfies

ω
(
Aσt(B)

)
= ω

(
σt+iβ(B)A

)
.

Connection to Modular Theory:
▶ State ω(·) = ⟨Ω| · |Ω⟩ is KMS for {σt} at β = 1



Relative Modular Theory

Setup:

▶ Two cyclic and separating states: ω and ω′

▶ Corresponding vectors: |Ω⟩ and |Ω′⟩

Relative Tomita Operator:

▶ Definition: Sω′,ω A |Ω′⟩ = A∗|Ω⟩ for A ∈ M
▶ Polar decomposition: Sω′,ω = Jω′,ω∆

1/2
ω′,ω

Properties:

▶ Jω′,ω: relative modular conjugation
▶ ∆ω′,ω: relative modular operator
▶ Jω′,ωMJω′,ω = M′



Araki-Uhlmann Relative Entropy

Definition:

Srel(ω
′, ω) = −⟨Ω| log

(
∆ω′,ω

)
|Ω⟩

Special Case - Unitarily Equivalent States:

▶ If ω(U · U−1) = ω′(·) for some unitary U

▶ Araki [1977]-Uhlmann [1977] formula:

Srel(ω
′, ω) = i

d

dt

〈
Ω
∣∣U∆itU∗∆−itΩ

〉∣∣
t=0



Applications of relative Entropy in QFT



Bisognano-Wichmann Theorem & KMS

Physical Context:
▶ Rindler wedge: WR := {x = (x0, x1, . . . , xn) ∈ Rd : x1 > |x0|}
▶ Wedge algebra: local observables in the right wedge

Bisognano-Wichmann Theorem:
▶ Modular operator: ∆ = e2πL01

▶ Boost generator: L01 =
∫
dd−1x x1 T00(x)

KMS Connection:
▶ Vacuum state |Ω⟩ is KMS for wedge algebra at β = 2π
▶ Modular group σt implemented by boosts:

σt(A) = U(Λ(−2πt))AU(Λ(2πt))
▶ Unruh effect



Explicit Relative Entropy Calculation

Setup:

▶ Reference state: vacuum ω

▶ Excited state: ω′ generated by U|Ω⟩ = e iϕ(f )|Ω⟩
▶ Operators localized in right wedge WR

Calculation:

S0(ω
′, ω) = i

d

dt
⟨Ω|U∆itU∗∆−itΩ⟩

∣∣
t=0

= i
d

dt
⟨Ω|e iϕ(f )e2πitL01e−iϕ(f )e−2πitL01Ω⟩

∣∣
t=0

= 2π
∫
x0=0 ,x1>0

x1 T00 dx

T00 is the energy density smeared with f .



Recent Works on Srel : Incomplete Chronological Overview

2019
▶ Longo, R. (2019) - "Entropy of Coherent Excitations"

▶ Explicit formula for vacuum relative entropy of coherent states on
wedge algebras

▶ Hollands, S. (2019) - "Relative entropy for coherent states in
chiral CFT"
▶ Result: Relative entropy between vacuum and exponentiated stress

tensor equals c times Schwarzian action of diffeomorphisms

▶ Hollands, S.; Ishibashi, A. (2019) - "News vs Information"
▶ Relative entropy in linearized quantum gravity around black holes
▶ Main result: d

dt
(S + A/4) = 2πF (entropy-area-flux relation)



Recent Works on Srel

▶ Casini H., Grillo S., Pontello, D. (2019) - "Relative entropy for
coherent states from Araki formula"
▶ Computes vacuum–coherent relative entropy in the Rindler wedge via

Araki’s formula, matching the canonical result.

2020
▶ Faulkner T., Hollands S., Swingle B., Wang Y. (2020)-

"Approximate recovery and relative entropy I. general von Neumann
subalgebras"



Recent Works on Relative Entropy: 2021

2021
▶ Edoardo D’Angelo (2021)- "Entropy for spherically symmetric,

dynamical black holes from the relative entropy between coherent
states of a scalar quantum field"

▶ Kurpicz, F.; Pinamonti, N.; Verch, R. (2021) - "Temperature
and entropy-area relation of quantum matter near spherically
symmetric outer trapping horizons"

▶ Ciolli, F.; Longo, R.; Ranallo, A.; Ruzzi, G. (2021) - "Relative
entropy and curved spacetimes"
▶ QNEC inequality for coherent states in curved spacetime



Some Works on Relative Entropy: 2023-2025

2022
▶ Galanda, S.; AM ; Verch, R. (2023) - "Relative Entropy of

Fermion Excitation States on the CAR Algebra"
▶ Counterpart to CCR results, uses self-dual CAR algebra

2024
▶ Fröb, M.; AM ; Papadopoulos, K. (2024) - "Relative Entropy in

de Sitter is a Noether Charge"
▶ Connection of relative entropy to Noether charge of modular flow

translations

▶ Fröb, M.; Sangaletti, L. (2024) - "Petz-Rényi relative entropy in
QFT from modular theory"



▶ Finster F., Jonsson R., Lottner M. , Murro S., AM, (2024)-
Notions of Fermionic Entropies of a Causal Fermion System
▶ Defines fermionic von Neumann, entanglement, and relative entropies

for causal fermion systems via reduced one-particle density operator
▶ connects to modular-theoretic computations of relative entropy

2025
▶ Hollands, S.; Longo, R. (2025) - "A New Proof of the QNEC"

▶ Finster, F.; AM (2025) - "The Relative Fermionic Entropy in
Two-Dimensional Rindler Spacetime"
▶ Fermionic relative entropy using modular theory and density

operators
▶ Application to non-unitary excitations in Rindler spacetime



Applications of relative Entropy in noncommutative
QFT



Relative Entropy in QG - Intro NCQFT

[DFR01] QFT in a NC Minkowski-spacetime is represented on
V ⊗ Fs(H ), where V is the representation space of X

[Xµ,Xν ] = iθµν ,

where µ, ν = 0, . . . , 3 and θ is a skew-symmetric matrix

θµν =


0 Θ 0 0

−Θ 0 0 0
0 0 0 Θ′

0 0 −Θ′ 0

 ,

with Θ,Θ′ ∈ R and Θ ≥ 0.



Application to NCQFT

[GL07] proved that ϕ⊗ can be written on the Fock space Fs(H ) by
existence of a unitary map U from U : V ⊗ Fs(H ) → Fs(H )

ϕθ(f ) : =

∫
d4x f (x)ϕθ(x)

=

∫
d3p
ωp

(
f −(p) e−ipθPa(p) + f +(p) e ipθPa∗(p)

)
,

with ωp = +
√
p⃗2 +m2 and p = (ωp, p⃗) and f ∈ S (R4) and P is the

momentum operator.

Furthermore, the authors proved that ϕθ (and ϕ−θ) is a wedge local field.



Solution

Theorem

The deformed relative entropy Sθ(ω
′, ω) is up to first order in Θ explicitly

given by

Sθ(ω
′, ω) = i

d

dt
⟨Ω|e iϕθ(fΘ′ )e2πitL01e−iϕθ(fΘ′ )e−2πitL01Ω⟩

∣∣
t=0

= S0(ω
′, ω) +

8π
3
Θ

(∫
dµ(k)ωk |f +Θ′(k)|2

)2

,

where S0(ω
′, ω) is the undeformed relative entropy.



The deformed version of the Beckenstein bound

S ≤ 2π R E +
8π
3

Θm2.

By coefficient comparison of the Beckenstein bound but not neglecting
the m2 term

S ≤ 2π R E + 4πG m2,

we identify Θ with the Planck-length squared l2P , i.e.

Θ =
3
2
G =

3
2
l2P .



Thank you for your Attention!

Armin Uhlmann 1971 Huzihiro Araki 2009
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