How To Make Spectral Geometry Work

Achim Kempf

University of Waterloo

Perimeter Institute

October 10, 2025

Can One Hear Shapes?

- ullet Goes back to Hermann Weyl (> 100ys ago)
- **Setup:** Thin metal sheet, e.g., a "metal potato surface"
- Tap the metal, \rightarrow record resonance frequencies.
- Question: Does the spectrum determine the shape?

Would it be important?

- Would bridge between Differential Geometry and Functional Analysis, i.e., between GR and QT.
- Linear Regime: Does the sound determine the shape?
- **Answer:** No. Isospectral shapes exist.
- Question: Can we gain more information from the sound?

Can We Gain More Information?

- **Answer:** Yes tap strongly enough.
- Enter the nonlinear regime.
- **Linear:** Sum of solutions is a solution (eigenmodes oscillate harmonically).
- **Nonlinear:** Sum of solutions is **not** a solution (analog: interacting water waves).
- ⇒ Eigenmodes start locally interacting.

What Happens in the Nonlinear Regime?

- Exciting a specific ω_n also excites other ω_m .
- Result: Sound makes sound!
- Mode interaction depends on how modes propagate.
- Propagation depends on curvature.
- **Key insight:** The "sound-makes-sound" effect encodes curvature information.

How to Calculate the Metric?

- **Experiment (A):** Tap lightly, record resonances ω_n .
- **Experiment (B):** Excite pairs (ω_n, ω_m) strongly.
 - Record newly excited resonances (u, w) (e.g., ϕ^4 theory).
 - Repeat for all pairs (ω_n, ω_m) .
 - Record the **interaction matrix** V(n, m, u, w).

What is the Matrix V?

- *V* is the interaction Hamiltonian $V = \lambda \phi^4$.
- Expressed in the **mode eigenbasis** $|v_n\rangle$:

$$V(n, m, u, w) = \langle v_n | \langle v_m | V | v_u \rangle | v_w \rangle$$

• This matrix V is the **hearable** outcome of Experiment (B).

How is the Shape Heard? (Step 1)

- **Goal:** Obtain the metric $g_{\mu\nu}(x)$.
- $g_{\mu\nu}$ is obtainable from **geodesic distance function** $\sigma(x, x')$.
- $\sigma(x, x') = \frac{1}{2}(\text{Geodesic Distance})^2$.

$$g_{\mu\nu}(x) = -\lim_{x' o x} rac{\partial^2 \sigma(x,x')}{\partial x^\mu \partial x'^
u}$$

How is the Shape Heard? (Step 2)

- **Goal:** Obtain $\sigma(x, x')$.
- σ comes from the wave propagator G(x, x').
- *G* satisfies the **Hadamard condition** near $x \to x'$:

$$G(x,y) = \frac{U(x,y)}{\sigma(x,y)} + V(x,y)\ln(\sigma(x,y)) + W(x,y) + \dots$$

• In 4D:

$$g_{\mu
u}(x) \propto -\lim_{x' o x} \partial_{x^\mu} \partial_{x'^
u} rac{1}{G(x,x')}$$

How is the Shape Heard? (Step 3)

- **Problem:** We cannot directly hear G(x, x').
- **Solution:** Change basis from $|x\rangle$ to eigenbasis $|v_n\rangle$.

$$G(x,x') = \sum_{n,m} U^{\dagger}(x,v_n) G(v_n,v_m) U(x',v_m)$$

Here: $G(v_n, v_m) = \omega_n \delta_{n,m}$ because we chose eigenbasis

- ω_n are the resonance frequencies from Experiment (A).
- $U(x, v_n)$ is the unitary change of basis.

How is the Shape Heard? (Step 4)

- **Problem:** How to obtain $U(x, v_n)$?
- **Locality** \Rightarrow In position basis $\{|x\}\rangle$, V is diagonal:

$$V(x, x', x'', x''') = f(x) \, \delta(x - x') \, \delta(x' - x'') \, \delta(x'' - x''')$$

• Therefore, $U(x, v_n)$ can be chosen to be any basis change that diagonalizes V(n, m, u, w).

How is the Shape Heard? (Step 5)

- V is a diagonalizable 4-tensor \Rightarrow Obtain diagonalizing U.
- Diagonalization is not unique each choice yields a coordinate system.
- Conclusion: From ω_n (Experiment A) and V(n, m, u, w) (Experiment B), we compute

$$U \Rightarrow G \Rightarrow \sigma \Rightarrow g_{\mu\nu}.$$

• **Final Result:** We can always determine the shape from the sound.

What Does This Mean for QFT on Curved Spacetime?

- The metal potato \rightarrow A curved spacetime.
- Experiment (A): Excite free particles (keep them non-interacting) → particle spectrum.
- Experiment (B): Drive system into nonlinear regime → make
 2 particles interact, measure outgoing particles.
- Do this for all particle pairs \Rightarrow obtain the **S-matrix**, i.e., V.
- **New Result:** The Hearables, i.e., particle spectrum + S-matrix determine the metric.

Physics and Math Take-Aways

- **Physics Take-Away:** The S-matrix completely encodes curvature.
- Encodes energy-momentum nonconservation.
- **Generalization of Noether's theorem:** Nonconservation reveals the full nonsymmetric geometry.
- **Application:** Accelerators can, in principle, measure spacetime curvature from the S-matrix.
- Math Take-Away: Geometry can be expressed purely in frequency data.
- ⇒ A new kind of Fourier theory of geometry.
- Quantum gravity? PRL w. Barbara Šoda and Marcus Reitz.

Thank You

Questions?