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Abstract: We first review and then in the last section present further new proposals and consequences
concerning the use of non Riemannian, metric independent measures of integration and their appli-
cation in the formulation of gravity theories, cosmology as well as applications to the construction
of dynamical tension string theories. The well known unimodular gravity theory appears as a very
special case of a gravity theory that uses non-canonical spacetime volume-forms . Concerning the
most important issues in cosmology, we outline the construction of: (a) unified description of dark
energy and dark matter as manifestations of a single entity — a special scalar field “darkon”; (b)
quintessential models of universe evolution with a gravity-“inflaton”-assisted dynamical Higgs mech-
anism - dynamical suppression/generation of spontaneous electroweak gauge symmetry breaking in
the “early” /“late” universe; (c) mechanism for suppression of 5-th force without fine-tuning; through
spontaneously broken scale invariant theories (d) construction of stable non singular Emergent
universe solutions Concerning application of non-canonical . (e) construction of models that can
address the HO problem. (f) the construction of holomorphic gravity, possible through the use of
a Non Riemannian Measure. (g) the construction of dynamical tension string theories, where the
string tension appears as an integration constant, (h) the construction of brane world scenarios in the
context of dynamical tension string theories (i) we discuss avoidance of the Hagedorn temperature

possible relaxation of string swampland constraints in dynamical tension string theories



1. Introduction: the origin of the cosmological constant problem in General Relativity
from the use of the Riemannianian integration measure and the idea of Non Gravitating
vacuum energy

We are motivated by the cosmological constant problem. On the mathematical level
this boils down to an asymmetry between the matter sector and the gravitational sectors of
the theory concerning the role of an origin for the energy density. As it is well known, in
non-gravitational physics, like in particle mechanics, for example, the origin from which
we measure energy is not important. In mathematical terms that means that the equations
of motion are invariant under addition of a constant to the matter Lagrangian Ly,

L — Ly +C.

In general coordinate invariant theories we woork with a lagrangian density however,
which we will denote as £,,. However, when the lagrangian density Lagrangian L, is
integrated with the standard Riemannian measure of integration, the square root of the
determinant of the metric \/—_3 as in,

fdj‘:r vV —8Lm .



The shift of the lagrangian density,
E;r;r; — Em _I_ E .

when the lagrangian density Lagrangian L, is integrated with the standard Riemannian
measure of integration, the square root of the determinant of the metric ,/—g, is not a
symmetry of the theory now, indeed, the gravitational equations of motion derived from
the variation of the metric get an extra contribution of the form Cg,,, after the above shift.
This implies the choice of measure of integration has a crucial effect on the cosmological
constant problem, and in particular that for the standard measure of integration, the vacuum
energy gravitates. This motivates us to search for alternative measures of integrations,
or what is the same alternative volume forms, as we discuss next where a shift of the
Lagrangian is a symmetry. This could be achieved if the measure is a total derivative, then
the shift above would not change the equations of motion of the theory and we could talk
then, at least in some sense of a non gravitating vacuum energy model, as we will see,
this possibility is present when we go on and discuss the Non-Riemannian Volume-Form
Formalism . Invariance under a shift of the lagrangian density we call Non Gravitating
vacuum energy.



2. Extension of Gravity theories by allowing Non-Riemannian Measures

Volume-forms are fairly basic objects in differential geometry - they exist on arbitrary
differentiable manifolds and define covariant (under general coordinate reparametriza-

tions) integration measures. It is important to stress that the existence of volume-forms is
completely independent of the presence or absence of additional geometric structures on the

manifold — Volume forms are defined [7] by nonsingular maximal rank differential forms
w:

[Mm{...} = [wdrﬂﬂ{...} ,

W= — Wy, apdx" A AdXHD (1)

Hp = _qu---luﬂﬂ ,



The volume element densngr () transtorms as scalar densitv under general

coorainate reparametrizations. INOTce also that L1 1S a total aerwvauve as well, ufererore
adding a constant to any lagrangian that multiplies () will give rise to a total derivative that =
will not give a modification of the equations of motion and no generation of a cosmological =
constant, according to our expressed goal to have some sense of a non gravitating vacuum  «
energy principle. B

In standard generally-covariant theories (with action 5 = f dﬂr\/—_gﬂ} the Rieman- w
nian spacetime volume-form is defined through the “D-bein” (frame-bundle) canonical &
one-forms ¢ = Eif'dxi‘ (A=0,...,D—1) B

w=2e"A...neP ! = det ||£ |dxftp . Adxf't — () = det ||.r3‘:‘|| dPx = \/—det |G| dP x
(2)
Instead of, or alongside with, \/—g we can employ one or several different alternative &

non-Riemannian volume elements as in (1) given by non-singular exact D-forms w!/) = dBU) &
where: ae

1

1 (j)
By D=1

BU) = —[D — ]}! H1.[D—1

gh1--HD E}FLEU]

H2... 0D

(3)

In other words, the non-Riemannian volume elements are defined in terms of the dual =

def AL padxit — QU = @[B{ﬂ'] —

field-strengths of auxiliary rank D — 1 tensor gauge fields B',[flj . B



Most of our research on “non-Riemannian measures” has still involved a spacetime
manifold with a standard Riemannian geometric structure, and a torsionless affine connec-
tion [ either independent of g, (first-order metric-affine / Einstein-Palatini formalism)
or as a Levi-Civita connection w.r.t. g, (second-order purely metric / Einstein-Hilbert
formalism), but more recently we have also introduced theories with torsion and non

Riemannian measures [5]
The generic form of modified gravity actions involving (one or more) non-Riemannian
volume-elements, called for short actions, read (henceforth D = 4, and we will use units

with 16 tGpnewion = 1):

s= [@xoBV)(R+LD)+ [dx R oB)) L0 + [dtx /=5, (4)

j=2
where R is the scalar curvature. The equations of motion of (4) w.r.t. the auxiliary tensor
gauge fields EI,[,’H.; according to (3) imply:
Ww(R+LV) =0, 9,V =0 (j=2), — R+LMW =M , V=M, (5

where {al}l M i (j = 1) are free integration constants not present in the original NRVF gravity
action (4).



A characteristic feature of the NRVF gravitational theories (4) is that when starting
in the first-order (Palatini) formalism all non-Riemannian volume-elements &(B"/) yield
almost pure-gauge degrees of freedom, additional physical (tield-propagating) gravitational
degrees of freedom except for few discrete degrees of freedom with conserved canonical
momenta appearing as the arbitrary integration constants M j in (5). The reason is that
the NRVF gravity action (4) in Palatini formalism is linear w.r.t. the velocities of some of
the components of the auxiliary gauge fields BF[!’H,,; defining the non-Riemannian volume-
element densities, and does not depend on the velocities of the rest of auxiliary gauge field
components.

However, in the second-order formalism (where I“Imﬁ is the usual Levi-Civita con-

nection w.r.t. g,,) the first non-Riemannian volume form $d(B [1]} in (4) is not any more
pure-gauge. The reason is that the scalar curvature R (in the metric formalism) contains

second-order (time) derivatives (the latter amount to a total derivative in the ordinary
case S = [d*x,/=gR +...). Now defining y; = ®(B'")/,/=g, the latter field becomes

physical degree of freedom as seen from the equations of motion of (4) w.r.t. gi":

1
Ry + E[glrwux1 - ?gavﬂ}{l] +...=0. (6)



3. Generally Covariant Formulation of Unimodular Theory as an example of the use of
Non-Riemannian Measures

Let us note that the well-known covariant formulation of unimodular gravity [9] can
be viewed as a simple particular case within the general class (4) of modified gravity actions
based on the non-Riemannian volume-form formalism. Indeed, the action of unimodular
gravity when expressed in a generally covariant form[9] reads:

S=fddx\f—g(R—l—lh—l—Em}—fd4rﬁblh (7)

with A being a dynamical field, and @ = d,,F" where the vector density F" can be written
as Hodge-dual F! = %EJ‘“’“‘IBM w.r.t. rank 3 auxiliary gauge field B, (cf. (3) for D = 4).
Variation w.r.t. FV implies A = const, whereas variation w.rt. A yields ® = ,/—g, in
what follows, for general NRVF gravity models (4) the field ratio x; is either a non-trivial
algebraic function of the matter fields in L) within the first-order (Palatini) formalism (cf.
Eq.(49) below), or it becomes a new dynamical scalar field within the second-order (metric)
formalism (cf. Eq.(6)).



4. Jackiw Teitlboim Gravity

In two dimensions, where Einstein gravity becomes trivial because the Einstein tensor
vanishes identically, a single modified measure provides an acceptable theory of gravity.
That is, we can consider the Non Riemannian formulation of the Jackiw Teitlboim Gravity,

5=fR &
MESJ x

where
B 1

6
and where the variation with respect to the gauge field A 8 leads to the condition that the

curvature R = M, where M is a constant. This is, as anticipated in fact the Jackiw-Teitelboim
model [10].

O(A) = - "Fa,Ag,



5. The Constrained Volume of the Modified Measure formulation

In our case the traditional measure is replaced by a density which is independent of
the metric, this density we choose it to be a total derivative, for example in 4 dimensions,
the curl of a totally antisymmetric 3 index tensor, the variation with respect to totally
antisymmetric 3 index tensor leads to the result that the Lagrangian it multiplies is a
constant. Notice also that the constraint that the volume be a constant is automatically
satisfied, since the integral of the density which is a total derivative is a surface term, so the
volume in unchanged by local variations that leave the surface unchanged. To make this
more explicit, let us consider

S = f d*x (1) (R + £V) + f dix Y ®(j) L) + f dtx /=g L0 4 gleonstraint) (g
j=2

where
glconstraint) _ ﬁi{fﬂﬂl’ {E*I:l} _ ":1_]' + E ‘_;qullf-/ tf'lr'i-"{j} _ ":,r}



We take now the measures ®(1) and &(;) to be independent variables. The variation
of the global lagrange multipliers A4, A i implies that the total volume determined by each of
this measures is constrained to be a constant cq, Cj. Finally, the variation with respect of the
measures $(1) and (/) gives us the result that each of the lagragian densities are constants,
in fact equal to the global lagrange multipliers, R + L) = _xy, £V = —A j- After this
point, all the theory follows the same structure as we had with the other formalism and the
two formalism gives rise to exactly the same physical consequences.

5.1. The Central Charge Action or Perelman Entropy for RG flow

An example of the constrained Volume of the Modified Measure formulation is the
Central Charge Action or Perelman Entropy for RG flow where it has been found that the
RG equations can be obtained from an action principle of that kind. In the central charge

action construction, for example in the paper On sigma model RG flow, ‘central charge’

action and Perelman’s entropy, see for example [11] the variation with respect to a scalar ¢
is subjected to the constraint that the volume is fixed, which gives the result that that the
lagrangian is a constant , as we discussed in a general way before.

To get a non-trivial functional £(G) Perelman [12] suggested to minimize an action
S(G, ¢) in ¢ while restricting ¢ to satisfy a unit volume condition:

F=/dﬂ‘x Ge2=1. )

Imposing this condition, the action with a global Lagrange multiplier A that was proposed
which is exactly a particular case of the formulation of the modified measure formalism in
the constrained volume approach. The variation with respect to the measure implies again
that the lagrangian, which is identified as p, And the resultis [11], [12], f = —A = constant

pointed out to
me by E.Witten



THE MEASURE a0 =o@0) = w0, 80

(D-1)!

* Automatically satisfies one of the axioms required in the causal
fermion systems, which is the the integral of the measure is kept
fixed in the variation of the action, this is true because this measure is
a total derivative , so the integral of this measure becomes a Surface
term because of Gauss theorem, and of course in the variational
principle we do not vary at the boundaries. For a detailed connection
between modified measure theory and Causal Fermion Systems, see,

* Modified measures as an effective theory for causal fermion systems

Felix Finster, Eduardo Guendelman, Claudio F. Paganini,
Class.Quant.Grav. 41 (2024) 035007 e e-Print: 2303.16566 [gr-qc]



5.2. Causal Fermion Systems

Another example of a Theory that requires a measure, in this case a universal measure,
is the Causal Fermion systems [34] , in this case also the total volume defined by this
measure has to be constant under variations and the correspondence with the Modified
Measures Formulation has been argued and studied in [35] .

6. Simple Model of Unified Dark Energy and Dark matter

A simple NRVF gravity model providing a unified description of dark energy and
dark matter defined by an action, particular representative of the class (4), was proposed
in [13] and then generalized in [14] where also intriging symmetries were also discovered
which we will review. We consider,

s—fd‘lx 3(R+ X — Vy(¢)) + (B) (X — vgtp}}] (10)

or equivalently:

S = fd*x V—8(R=U(¢)) + (/-8 +P(B)) (X - V(¢))

(11)

using the notations: V=V, U=V, -5, X = —%g“”&j;qb&pq:, and ®(B) = IIS!EF‘L'“EIF;EM
(cf. (3)). Variation of the action (11) w.r.t. auxiliary gauge field B,,; yields (cf. the general
Eqgs.(5)):

X —V(¢p) = —2Moy, (12)



where M)j is free integration constant. The variation of (11) w.r.t. scalar field ¢ can be
written in the following suggestive form:

Vit = —vV2XU'(9), (13)

— (B
The dynamics of ¢ is entirely determined by the dynamical constraint (12), completely
independent of the potential U(¢). On the other hand, the ¢-equation of motion written in
the form (13) is in fact an equation determining the dynamics of x. The energy-momentum
tensor T}, in the Einstein equations can be written in a relativistic hydrodynamical form as:

(14)

T,rw = Polyully + & le",ﬁ ’ Ijl = Uy (15)

where 1 is a fluid velocity unit vector:

s
V2X

and the energy density g and pressure p are given as:

Uy = — (note uf'uy, = -1, (16)

f=po+2Mp+U(¢p), p=—-2My—U(¢p) (17)

with pp = (1 + x)2X = p + p. Energy-momentum conservation V' Ty, = 0 implies:

vﬁ (Pﬂ”j;) = —¥ ZX UJ(¢], i-vl']_.lvvuy - U . (]8}



the last Eq.(18) meaning that the matter fluid flows along geodesics. In Eqgs.(15), (17) the
quantity ppg = 2My + U(¢) = —p has the interpretation as dark energy density, whereas py
is the dark matter energy density. For U(¢) = const or U(¢) = 0 the model (11) possesses
a non-trivial hidden nonlinear Noether symmetry under:

detp = ev'X, deguv =0, 68" = —EL:P"” (®(B)++/—g) . (19)
2vX
where Bl = 31,r wrtp . with a Noether conserved current [/ = pouy, according to (14):

V' =0. Spemﬁcall}r for Fr1edmam1—Lema1trE-Rnbertsnn-Walker metric with Friedmann
scale factor a(t) Eq.(14) with U(¢) = 0 implies: pyg = ¢p /a3, cg being a free integration
constant.

Thus, according to (15), (17) the model provides an exact description of ACDM model,
and for a non-trivial potential U(¢), breaking the hidden Noether symmetry (19), we have
interacting dark energy and dark matter.

The above interpretation justifies the alias “darkon” for the scalar field ¢. Let us
specifically emphasize that both dark energy and dark matter components of the energy
density (17) have been dynamically generated thanks to the non-Riemannian volume ele-
ment construction — both due to the appearance of the free integration constant My and
of the hidden nonlinear Noether symmetry (19) (“darkon” symmetry). In Ref.[15] the cor-
respondence between ACDM model and the “darkon” Noether symmetry was exhibited
up to linear order w.r.t. gravity-matter perturbations and the implications of the “darkon”

symmetry breaki_ng for pr.:-ssible Explanatinn of the cosmic tensions was brieﬂ}? discussed.
[1A4] comfront some notential with the late aceelerated exnansion data.



7. Scale Invariance, avoidance of Fifth Force in Fermionic and Dust Matter Models and
Flat Potentials

Continuing with the issue of Dark matter formulated in the context of modified

measure theories but now with spontaneously broken scale invariance, we show now that
in this class of theories the fifth force problem can be solved.

more explicitly, let us consider the action containing a non Riemannian measure & which is
a total divergence and is invariant under the global scale transformations:

6 M H

M
ha qa—up—fe, b D (20)

where 8 = const. It is convenient to represent the action in the following form:
5 = S5¢+5p+5m (21)
S, = —% f(fb +bg/—g)R(T, g)e" Mrgty
Sp = ffwm*’ [(‘I’Jr by H}%Sﬁvfﬁty%s — (v/=gVa — @Vy) " Mr dx;
S = [(®+buy/g)Lud'x,

where the Lagrangian for the matter, as collection of particles, which provides the scale
invariance of 5,; reads

N E _|4
1 dx® dxt 5Mix — x: (A
L= —m T [ el G i S E @)




where A is an arbitrary parameter. For simplicity we consider the collection of the particles
with the same mass parameter m. We assume in addition that x;(A) do not participate
in the scale transformations (20). We will assume that dx;/dA = 0 for all particles. It is

convenient to proceed in the frame where gpy =0, | =
defined by

n(¥) =Y _1 0 (¥ —
iV T 8(03)
where g3 = det(gy) and
Sp = —m f A4 x(® + by /—g) n(F) e2 /My (24)
It turns out that when working with the new metric (¢ remains the same)
Guv = 0 (x + bg) gy, (25)

here y = ®/,/—g, and we call this metric the Einstein frame metric, the connection
becomes Riemannian. Notice that g, is invariant under the scale transformations (20). The
transformation (25) causes the transformation of the particle density

(%) = (x + bg) "2 e 29/ Mp (%) (26)

The Lagrangian density coupled to the Measure & has to be a constant, as we have
discussed in general. Let us call this constant M

After the change of variables to the Einstein frame (25) and some simple algebra, the
gravitational equations take the standard GR form

_ K
G (Gap) = 3Tl (27)

1,2, 3. Then the particle density is

xi(A)) (23)



where Gy, (§,g) is the Einstein tensor in the Riemannian space-time with the metric g,,. =

The components of the effective energy-momentum tensor are as follows: 258
ff . Ctbyr,
W = g (¢ 8X) 28)
~ d-b 3x+by, +2b ~
Vore(d:Z, M) — $ x4+ g
+ oo EHf"Pg ) ;';j-i—b zm m i
259
X = E]"p N
Iﬁﬁ = 7 b (Pxps — ZuX) (29)
e C—bm+ Ebg
+ |V O, M) — £ X +
&kl f'_,lrf[’tp ‘: } 1‘:+b‘- zm ‘
Here the following notations have been used: 260
b, —b
— _zap _ 8 i
— 23 cp“cpﬁ and ) b (30)
and the function V,¢¢(¢; {) is defined by 261
b [ME_E"‘WMP + ‘Lﬁ] + Vs
Veeelds x) = (31)
eff\9 (X + by)2
The dilaton ¢ field equation in the Einstein frame is as follows 262
1 l;{ + by \/_""”‘"E-‘p j| & (x + bg}Me‘z‘“WMP —(x— E:ag}Vl +2V5 — ﬁbg[x + E:Jg}X
vV—8 X+ bg Mp (x + bg]'z
& X —bm+ Ebg

(32

p 2-.,#X+bg



In the above equations, the scalar field y is determined as a function x (¢, X, i1) by means of
the following constraint:

I:bg _x} (M(:_E‘I‘P*FMP + V]) +2V2 - R E}EI{ - X — EJ'm +2h3

mn

(33)

One should now pay attention to the interesting result that the explicit 7 dependence
involving the same form of y dependence

x_hrn+2bg -
M H
E\I;Jr;-l—fig

appears simultaneously in the dust contribution to the pressure (through the last term in

(34)

Eq. (39)), in the effective dilaton to dust coupling (in the r.h.s. of Eq. (32)) and in the r.h.s.

of the constraint (44).

Let us analyze consequences of this wonderful coincidence in the case when the matter
energy density (modeled by dust) is much larger than the dilaton contribution to the dark
energy density in the space region occupied by this matter. Evidently this is the condition

under which all tests of Einstein’s GR, including the question of the fifth force, are fulfilled.

if the dust is in the normal conditions there is a possibility to provide the desirable feature
of the dust in GR: it must be -. This is realized provided that in normal conditions (n.c.) the
following equality holds with extremely high accuracy:

xX"<) % by — 2bg (35)

=]

=] [ [ [ [ =]



Remind that we have assumed by, > b,. Then ylne) 4 by > 0, and the transformation (25)
and the subsequent equations in the Einstein frame are well defined. Inserting (35) in the
last term of Eq. (38) we obtain the effective dust energy density in normal conditions

o) =2 /by — bg mit (36)

When we get only a slight deviation of from { from by, — 2b,, when the matter energy
density is many orders of magnitude larger than the dilaton contribution to the dark energy
density, we obtain an effective 5th force coupling f. For this look at the ¢-equation in the
form (32) and estimate the Yukawa type coupling constant in the r.h.s. of this equation. In
fact, using the constraint (44) and representing the particle density in the form 1 = N /v
where N is the number of particles in a volume v, one can make the following estimation for
the effective dilaton to matter coupling "constant” f defined by the Yukawa type interaction
term frng (if we were to invent an effective action whose variation with respect to ¢ would
result in Eq. (32)):

f= m x— bm+ qu m x—bm+ ?-ll-’g &  Poac o Poacl!
- Mp 2./T + b M 2/bu — bg i NM,

becomes less than the ratio of the "mass of the vacuum” in the volume occupied by the
matter to the Planck mass. The model yields this kind of "Archimedes law" without any
especial (intended for this) choice of the underlying action and without fine tuning of
the parameters. The model not only explains why all attempts to discover a scalar force
correction to Newtonian gravity were unsuccessful so far but also predicts that in the near
future there is no chance to detect such corrections in the astronomical measurements
as well as in the specially designed fifth force experiments on intermediate, short (like
millimeter) and even ultrashort (a few nanometer) ranges. This prediction is alternative to
predictions of other known models.

(37)




7.1. Flat potentials in the absence of matter, consequences for DE or Inflation 208

If we set To clarify what the theory is telling us only in the gravity, scalar field sector, 2

we set the dust matter momentum tensor are as follows: 300
+ by .
Tff — XKT0% (2 . ¥ 28
0 X+ bg (4} 800 ) (38)

) 5-b,
+ Sm[Veﬁ((ﬁFKr ) — §+Er X}

30

T:fﬁ = iwqf‘!}k‘ﬁ: SuX) (39)

e vy — 2% x
+ S| Vesr(@: 8, ]_X+bg

Here the following notations have been used: a2

1._. b, —b
— _gap — & 79
=58 Pad,p and & be (40)

and the function V,¢¢(¢; x) is defined by 303

| b, [Me—z"‘*ﬁ'f“# +WVi| +W

Vers (i x) = TETAE (41)

The dilaton ¢ field equation in the Einstein frame is as follows a4

1 X—l—b.p \/_“*‘"apﬂ . [c;+bg}Me-2WMP — (£ — bg) Vi +2Vh — 8bg(x + bg) X
V g X+ bg (x + bg)z
= (42)

In the above equations, the scalar field y is determined as a function x (¢, X, ) by means of s
the following constraint: 06



In the above equations, the scalar field y is determined as a function x(¢, X, ) by means of
the following constraint:

[bg —x) (ME_E’I‘MMP + Vl) +2Va  5.p.X
_ LA
(x +bg)? x + by

(43)

which now becomes, after some simplifications a linear equation. The simplest case,
resulting from the choice EJS = (), studied first in [2] already gives a very simple result

- 215
= e ¢/ Mp 4
(44)
which then inserted into (41), gives
B [’{,—E:HPEMP + W }2
Verr(9) = i (45)

which generalizes the effective potential used by Starobinsky for example. It also displays
an infinite flat region, that can be used for inflation, but it does not display Dark energy in
that case.



As we have seen, the matter modifies the scalar field dynamic, this will have very
important consequences in the discussion of the tensions in cosmology in some more
complete models.

Furthermore , in the case E:lg # 0, K essence terms appear, this will also will be explored
later in this paper in more comprehensive treatments.

8. Actions with full Lagrangian Densities Shift Invariance for all lagrangian densities

QOur original motivation to introduce a modified measure different than ,,f—_g was
to obtain invariance under under the shift of the lagrangian densities that couple to each
measure P(j), as in

£ — 0+,
but in (4) we have still left a lagrangian density L0 that couples to ,/—g, so the shift
symmetry does not hold for Lo

It is possible nevertheless to introduce /—g in the equations of motion and not directly
as a measure in the action by introducing a term in the action of the form

Py(C)
v —&
where @;(C) is a total derivative, whose variation implies that ®,(B) is proportional to

v —g, that is

&, (B)

where x> is a new constant that will affect the strength of the effective potential as we will
explain in several examples below.



9. Quintessential Inflationary Model with Dynamical Higgs Effect in Metric-Affine 126
Formulation a7

The starting point is the following specific NRVF gravity action from the class (4) ==
involving coupling to a scalar “inflaton” ¢ and to the bosonic sector of the standard s
electroweak particle model where, following Bekenstein's idea from 1986 [17] about gravity- s
assisted dynamical spontaneous symmetry breakdown, the Higgs-like SU(2) x U(1) iso- s
doublet scalar ¢; enters with a standard positive mass-squared and without self-interaction =
in sharp distinction w.r.t. standard particle model. The pertinent NRVF action reads s

explicitly [19], [18], 34
D(A . Oy (C
S — fdﬂxdrl(ﬂj [R[g,rj _ ELQ% + L“J([p,ﬂ'}] + fﬂmx@z(ﬂ) [fzghfp + LEw-—gauge — V‘jt__g-
with notations: 138
o  ®Dy(A) = L& 9,A,,, and similarly for ®(B), $y(C) according to (3); 116
*  The scalar curvature R(g,T') = ¢"'R,,, (') is given in terms of the Ricci tensor R, (I')  sw
in the first-order (Palatini) formalism; 138
¢  The matter Lagrangian reads: 139
1 . *
L“]{:p,cr} = Xp + f1e"7 + X, — mﬁagﬁrﬂe“q“, X, = —Egj”“aﬂqﬂvq} , Xo=—gM"Vyuo Vo,
*  Lgw-gauge denotes the Lagrangian of the SU(2) x U(1) gauge fields. 340

¢ 1jissmall dimension full constant which will be identified in the sequel with the “late” .

universe cosmological constant in the dark energy dominated accelerated expansion’s s
epoch. 343



The equations of motion w.r.t. auxiliary tensor gauge fields in ®;(A), ®2(B) and
@, (C) yield (cf. (5)):
Dy (A)
V=8
Dy (C) _ M, ®,(B) _
V=8 " V8

where M 2, x» are integration constants. The ¢gi-equations of motion together with (47)-

+ (i —miojoa)e"? =My, (47)

i ]' ¥
3”“ (Ryv{r] - Ea,uq]avq] - vﬁga vl’gﬂ) —4ky

fle —2ag + LEW—gauge - (43}

(48) imply that the ratio y; = % is an algebraic function of the matter fields:

(g0 = ) _ 2x2 (2629 + M)
X1\P.0) = =g M, + (md oo, — fr)exd’

(49)

The equation of motion w.r.t. I‘{f1 yields a solution for Ff,i as the Levi-Civita connection
w.r.t. to a Weyl-conformally rescaled metric:

S = X1(9,0) g (50)

with x4 {fp, ) as in (49). The conformal transformation ¢ — Zuv via (50) on the NRVF
action (46) converts the latter into the physical Einstein-frame action (objects in the Einstein-
frame are indicated by a bar):

1 v =il = —
Sgg = fd'*x vV —8F [R{g} — ig‘“ dydyp — g Vo, Voo, — Uege (@, o) + LEW—gauge{g}] . (31)

Here the interesting object is the effective Einstein-frame scalar potential:

[M1 + E”‘P(m%cr;ﬁra — f1}]2
4_}‘(’1 (sz‘znq: + Mz]

ueff{(p; '7} = + ZF—"U r (52}



which is entirely dynamically generated due to the appearance of the free integration constants
M, 7 and y2 (47)-(48). Fig 1 shows the qualitative LI, ff shape. Uq( @, o) exhibits a number
of remarkable features:

Uesi (@, ) possesses two (infinitely) large flat regions as a function of ¢ at o = fixed.
The first one — the (-) flat “inflaton” region for large negative values of ¢ (and ¢, -
finite) corresponds to the “slow-roll” inflationary evolution of the “early” universe
driven by ¢ where:

M
Uegi (¢ 0) =~ Uy = —— + 2k, (53)

independent of the finite value of v;, which is energy scale of the inflationary epoch.
Thus, in the “early” universe there is no spontaneous breaking of electroweak SU(2) x
LI(1) symmetry. Moreover, ¢; does not participate in the “slow-roll” inflationary
evolution, so o stays constant there equal to the “false”vacuum value o = 0

The second flat region is the (+) flat “inflaton” region for large positive values of ¢
(and ¢, - finite) which corresponds to the evolution of the post-inflationary (“late”)
universe. Here:

(mﬂ a0 — fl)

+ 21 54
inh \ (54)

Uegi (. 0) = U4 (o) =

becomes a dynamically induced SU(2) x U(1) spnntanenus symmetry breaking Higgs-
like potential with a Higgs “vacuum” at |oy,.| = i L /fi.



10. Emergent Universe Solutions, followed by inflation, in the the case of one
quintessential inflation field

Let us also note that Ref. [21] (for an earlier version, see [20]) exhibits an explicit
realization of the cosmological “seesaw” mechanism through the NRVF formulation, as
well as it yields an additional “emergent universe” cosmological solution without a “Big-
Bang” initial singularity. For a brief illustration of the latter effects let us consider the
“inflaton-only” NRVF action studied in [21] (for simplicity we skip the R? term):

S = f dix b1 (A) [R + X, — f1E_‘Iﬂ + f d*x @y (B) [—b 679 X, + fre 289 — %} , (55

where b is an additional dimensionless parameter.
The “inflaton” potential in the Einstein frame (analog of (68)) is:

Uei(9) = % (fre™2% + M;)2 (fae 229 + My) ™" (56)

so that on the (-) and (+) “inflaton” flat regions U(¢) reduces to: U, _ y = éﬁlﬁ and U,y =~

J%EIHE, accordingly. Therefore, choosing f; ~ fo ~ ]D_EM%I conforming to the inflationary
scale, and taking M; ~ M‘éw and M, ~ M%, we achieve U,H_ )~ 1|{]_112j"|r*1}11J1 vastly smaller
than U{_ ) If we take & — —a in (55) the roles of f> and M, > are interchanged.

Similar “seesaw” effect is found in Refs.[23], [24] where the scalar potential is extracted
from the slow-roll parameters. ', Furthermore, the NRVF model (55) yields in Elnstein-

frame “emergent universe” solution for the range of the b-parameter: —4(2 — 1/3) < b% <
—1.



=10

Figure 2. Qualitative shape of the one-dimensional plot for the effective scalar potential U, sy.



12. General shift invariant theory using Two Independent Non-Riemannian Measures
and two scalar fields and potentials with three flat regions

We shall assume the action General form with lagrangian densities shift invariace

'uwnlving two 'u'u:lependent non-metric integration measure densities generalizing the
model analyzed in [21] is given by

S — f:f‘x‘-’-lﬁ{ﬂ] [R+Lﬂ”] —I—f::f“rﬁir-g{ﬂ}[L{EJ—FER!—l— ﬁ’{H]] .

— 57
Ve 7

Here the following definitions are used:

The quantities ®1(A) and ®»(B) are two densities and these are independent non-
metric volume-forms defined in terms of field-strengths of two auxiliary 3-index
antisymmetric tensor gauge fields

1 .
Dy {:ﬂl} = ijnMaﬁAvxﬂ r {I}I{B} =

1 .
E'E.Im. KA a;;Bym ‘ (58)
The scalar curvature R = ¢"'R,,, (') and the Ricci tensor R, (I') are defined in the first-
order (Palatini) formalism, in which the affine connection I"j is a priori independent

of the metric g,,,.. Let us recall that R + R2 gravity within the second order formalism
was originally developed in [37].



¢  The two different Lagrangians L2 correspond to two scalar matter fields ¢ and g2 4

such that 4T
L{l} 1 Y 1 Hy
L= —53 ayq}laufpl - Eg ajf@’iau?z - v["?}qu}.ﬂ; (59)
(2) bl —H1P) MV EJ‘Z Py L HV
L' = _EE "o, 910,01 — EE "y @20,90 + U1, ¢2), (60)
where the potentials V (¢, ¢2) and U( ¢y, ¢2) are defined as ars

V(g ¢2) = fiexp{—a1¢1} +g1exp{—a2g2}, and U(gy, @2) = frexp{—2a1¢1} + g exp-
(61)

Here a1, a2, f1, g1, f2,€ and g are positive parameters, whereas by and b; are dimen- 4
sionless and their signs are to be discussed. The parameters a; and a; have dimensions
of M;J,l, instead the parameters f, fo, g1 and g» have units of M‘},} and the param-
eter € has units of M;ﬁ. Let us recall that since we are considering units in which

GNewton = 1/167 then the Planck mass Mp; = v/2 = /T/87TGNewton- 480

Notice that since both ®;(A) and ®;(B) are total derivatives, the shift of these lagrangians
by constants C 1) and C?) are symmetries

(1 _|_C[1J

and
12 (2 + c2)

notice that these symmetries, as well as the scale symmetry will be spontaneouly broken by s
the integration of the equations of motion. 482



12.1. Resulting three Flat Regions from an Effective Scalar Potential 483

After going through the procedure of defining the Einstein frame, etc, we find, k-
essence terms and an effective potential for the two scalars. Upon substituting expression s
(2?) into (??) we arrive at the explicit form for the Einstein-frame scalar Lagrangian: 486

Legs = A1(@1, 92) X1+ Az(@1, 92) X2 + B1 (@1, 92) X7 + Ba (91, 92) X5 + B1a (@1, 92) X1 X2 — Uege( 91,

(62)
where the functions A (@1, ¢2) and As(¢1, ¢2) are given by
s l -y _ . V’"Ml o
A]((P],(Pz)—l-i- [zblt’ e(V MI)JU+M2+6(V—M1)2 =1

487

flg-a'l‘l’l +gle—ﬁ24’2 — M,

—2aq +gze—2a¢Pz + M, + G(fle_“% +gl(g;;24’z =<3

1 —aer —ax1¢ —n2¢2
[Zble €(f18 +glt’ M])] fzt’

and
V-M,

2+ €(V— M, )2
fle_“l‘Pl +gle—a2¢2 — Ml
fre72%P1 + gre= 2492 + M, + €(fre™2P1 + ge %!
(64)
The coefficient By (g1, ¢2) is defined as 459

1
Ax(py ) =1+ [Ebze"”‘m —e(V - Ml)] e

488

€ [u + M+ (V- Ml)ble‘“"?l] — Lp2e~2a9n
U+ Mz +e(V—M;)?
e[fze-Za‘P: + 82072592 + My + (fre 91 + gre~ %292 — M1)ble‘“l"’l] — 1p2e 2
fze‘z“'q’l +gze_2“2‘?’2 + M; + e(fie 291 + goe— %292 — M, )2

Bi(¢1, ¢2) = x2

= X2 , (65)



and for the function Bz( ¢, ¢2) we obtain
e [u + M, + (V- Mljb;_.e—mz] — 1pZe—20e2
e[fze_z“‘i'" + g2 20 4 M, + (fre 91 4 gre 202 — Mi}bze—“m] — 1p2e~ 20

- , (66
2 fre 2091 + goe 20292 + My + €( fre~ 191 + goe~ %292 — My )? (66)
and the coefficient By»( @1, ¢2) becomes
Bi2(¢1, 92) = x2E0 [ — Eibae™ 292 — Exbre™ 191 + 2E0E B> [( M2 + U) +
e(M1 — V)? +2€[(1/Eo) — (E1 + E2) (M1 — V)], (67)

where the quantities Ey, E; and E; are defined as

(V- M) bre a1 bye 229
- L Ei=xa| X 2|, and Br=xa| X 2
20U+ M +e(V—M)E - Vvow ) M RERIVIONM,

The effective scalar field potential as a function of the scalar fields yields

Ep

V— M,)?
Ueti (@1, @2) = ( J =
4y [U+M2 +s(v—Mi}2}

(fre™™19" 4 gre” ™29 — M;)?
43y [fzﬂ—hlm +g2£_2"‘2"°2 + M> +s(f1g—:t1¢’1 + gre 292 — My ]2]

, (68)

where we have used for V and U, the expressions given by Eq.(61).

The crucial feature of U (@1, g2) is the presence of three infinitely large flat regions.
In this sense, we have one for large positive values of the scalar fields ¢y and ¢; and two
others for the limits ¢; —+ —o0 and ¢2 —+ —oc0.

For large negative values of ¢, which we will choose to describe the very early
phase of the universe, meaning the emergent phase and inflation we have for the effective
potential and the coefficient functions in the Einstein-frame scalar Lagrangian (62)-(68):
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For large negative values ot ¢, which we will choose to describe the very early
phase of the universe, meaning the emergent phase and inflation we have for the effective s

potential and the coefficient functions in the Einstein-frame scalar Lagrangian (62)-(68): 499
2/ f
U , ~ U —o0, = U, = 1 , 69
ett (@1, @2) = Uegr(—00, @2) = U,y T+ ef/f) (69)
1 bZS-III
1+ 5b1f1/ /4
A1(@1, 92) = Ay(—co, g2) = Ay = ] +IE}§}ff . Bi(@1,92) ~ Bi(—oc0,@2) = By = —x2-L f2
(70)
For the terms A, and B; in the limit in which ¢; — —c0 we have 501
Ax(1,92) = Ax(~e0,92) = A : d Ba(p1,92) = Ba(—o0,g2) = By = 225
. s —0o, = = ———  an s ey —00, = LA S
2091, 92 2 P2 2 1+Eﬁ;’fz 2091, P2 2 P2 2 1+Eﬁf
(71)

For the coefficient Bj2(¢1, ¢2) in the limit in which the scalar field ¢; — —oco becomes s

i i N 2% L
Bi2(¢1,92) =~ Bia(—e0, ¢2) = Bip = IzEn[ — Eaby + Egfo + £ +eEoff +2ef1(Ep + Ez}};

(72)
where

Bp=— 1
"7 20t ef]]

Ei = x> [? — 25‘j|, and E; = —2xse.
1



For the second flat region we will consider that the scalar field ¢ — —oo such that the s

effective potential in the second flat region is given by 04
2
81/8
u 1. = 1, —00) = U = r 73
and the kinetic coefficients A, and B, in the limit in which ¢, — —oco result 05

1+ 1e1/ g b3/4g2 —€(1+byg1/82)

Ax(g1, —o0) = Agg = By (@1, —00) = Byg = —x2

1+egi/g 1+egi/g2 '
74)
and the terms Aj and By in this limit result 506
A1, 92) = A1 (g1, —o0) = Agp = — Bi(¢1, ¢2) =~ B1(g@1, —c0) = By = — 225
1 ‘?’1; 4”2 - 1 (}Dl; 13 1+€8?ng r 1 "Plf 4”2 - 1 931.- i 18 1 +Eg%fg;
(75)

For the coefficient Bys (@1, @;) in the limit in which the scalar field ¢; — —co we have s

2e
Bi2(@1, @2) = Bia(@1, —0) = Brag = x2E3 [ —Exby +E3gy + £ +eLagi +2eg1(Eg+ Ez)]f

(76)
where )
Ei=—21  _ and Es=»x [—2—26:].
> 2xagr +egd] &
In the third flat region for large positive ¢1 and also @3, we find that the effective s
potential reduces to 509

_ M3/ M;
T ™ 4 (1+eM2/My)

ueff(q}'lr ‘PZ] = Ueff(+°°r —I—m] = Ue (77)



and the kinetic coefficients are 510

M, M
A =A ~A = — B =F ~B ., =
1(p1, 92) = A2(91,92) =~ Ay, My s 1(91, 92) = Ba(91, ¢2) ~ B ) = ex2 M+
(78)
and for this limit we find that the coefficient B12(¢1, ¢2) becomes 511
M

B12( 91, @2) = B1a(+00, +00) = Byy(4) = 2€x2 = 2B(). (79)

M> + EM%

We will consider that the flat region (69) corresponds to the evolution of the early sw
universe (emergent and inflation). On the other hand, the flat regions (73) and (77) concern s
to the evolution of the late universe with a two phase structure. 514

In particular, if we assume the order of magnitude of the coupling parameters in the s
effective potential given by Eq.(69), are f1 ~ fa ~ (1072Mp )4, then the order of magnitude s
of the vacuum energy density of the early universe during the inflationary epoch yields 517

Uett(—00, 2) = Upps ~ f2/fo ~108Mp, (80)

here we have assumed that the parameter € is small and the integration constant y, ~ O(1). ==

In order to study the evolution of the universe from an emergent and inflationary s
scenarios to dark epoch, we consider that the standard Friedman-Lemaitre-Robertson- =
Walker space-time metric is given by 21

dr?

1—Kr?

ds? = —d? + (1) [ +r2(d? + sin? dtrbz}}, (81)



where a(f) denotes the scale factor and K corresponds to the space curvature. 522
By assuming that the matter is described by a perfect fluid with an energy density and s

pressure p and p, we have that the associated Friedmann equations are 524
a 1 , K 1 ,
E__E{P+3p)’ H + a3 =p and p+3H(p+p)=0, (82)
where H = % is the Hubble parameter. Also, here the energy density and pressure s
associated to the scalar fields ¢1 = @1 (t) and ¢, = @, (t) are defined as 526

p = A1(91, 92) X1 + A2 (91, 92) X2 +3B1 (91, 92) X7 +3B2(91, 92) X3 +3B1a( 91, 92) X1 X2 + Uegi (91,
(83)
and 527

p = A1(@1, 2) X1+ Az(@1, ¢2) X2 + B1( 91, 92) X5 + Ba( @1, 92) X3 + B1a( 91, 92) X1 X2 — Upge (91, 92)
(84)

Henceforth the dots indicate derivatives with respect to the time f and we have
assumed that the scalar fields are homogeneous.

Using this more generic structure we showed that the non linear K essence allows s
for the existence of a non singular Emergent universe for the Early Universe. This phase, su
during an infinite time, is followed by an inflationary phase, which then decays firsttoan s
early dark energy phase and then to a late dark energy phase, in the late universe the the =
Dark Matter can be explained in terms of the Kessence terms for the scalar fields, displayed s
in the above equations. 535

B
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12.2. Different roles for the three flat regions. Emphasis on the H0 Tension

13. Dynamical Generation of Inflation in Metric Formulation

Let us now consider a substantially truncated version of the model (46) without any
matter fields, involving few non-Riemannian volume elements [28]

B (A) By (C)
5—[@4 1(A)[R(g) — 2L \}_g } +¢:2(B}ﬁ}, (85)

where now unlike (46) R(g) = g/ Ry, (T'(g)) is the scalar curvature in the second order

(metric) formalism (I (g) being the Levi-Civita connection w.r.t. Suv)-

The equations of motion w.r.t. auxiliary tensor gauge fields A1, $2(B) and &¢(C)
are special cases of the dynamical constraint Eqs.(47)-(48) with all matter field terms being
zero, which again introduce the three free integration constants My 5, x».

Passage to the physical Einstein frame is again realized via the conformal transfor-

mation (50), however this time we have to use the well-known formulas for conformal

transformations within the metric formalism ; bars indicate magnitudes in the g, -frame)

X1 = q:,(_; and re defining a new scalar field through x1 as x1 = exp (u/ V3 3) we find that

we are able to write the Einstein-frame NRVF action in the form [28]:

Spp — f dx/Z[R(g) - 1 & ud,u — Uege(w)] (86)
Uesi(u) = 2ko — Myexp (—%) + x2Maexp (—EV%) : (87)

Thus, from the original pure-gravity NRVF action (85) we derived a physical Einstein-frame
action (86)-(87) containing a dynamically created scalar field u with a non-trivial effective
scalar potential Ugg(u) (87) entirely dynamically generated by the initial non-Riemannian
volume elements in (85) because of the appearance of the free integration constants M1 5, x»
in their respective equations of motion. There are two main features of the effective potential
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(87) which are relevant for cosmological applications with the dynamically created field u
as an “inflaton”.

*  Uys(u) (87) possesses one flat region for large positive values of u where Uy (1) =~ 2k,
which corresponds to “early” universe” inflationary evolution with energy scale 2L,.

o U.(u) (87) has a stable minimum for a small finite value u = u, where e *+/ V3
M1 /(2x2Mz).

. The region around the stable minimum at # = u, correspond to “late” universe’
evolution where the minimum value of the potential:

Mz

=2ipp (88)

is the dark energy density value.

In Ref.[28] a thorough analysis has been performed of the slow-roll inflationary dy-
namics driven by the dynamically created “inflaton” 1 with its dynamically generated
effective potential (87), including explicit calculation of the standard slow-roll parameters
€ and 7, as well we have obtained explicit expressions for the tensor-to-scalar ratio r and
the scalar spectral index n; of density perturbations as functions of the number of e-folds
N = log a (a being the Friedmann scale factor):

ro 12 5 :1521—£—\/§, (89)
[N + if,?u,- (N) + co]

with ¢p = l&—{g _3 log (2[1 +2/ \/’5) ) . u;(N') is the value of the “unflaton” at the start of

inflation as function of .

For a plausible assumption about the scales of M; 5, x; and taking A" = 60 e-folds
till end of inflation the observables are predicted to be: n; = 0.969 , r = 0.0026, which
conform to the PLANCK constraints [22] (0.95 < ng < 097 , r < 0.064).
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14. The construction of holomorphic gravity is possible through the use of a Non
Riemannian Measure.

14.1. Non Holomorphic Structure of the Acion in General Relativity and similar theories with the
Riemannian Measure

The action of GR, and other theories that use the standard Riemannian volume element

d*x,/—g is of the form,
5 — fd‘l:-:v.f_—gL (90)

where L is a generally coordinate invariant lagrangian. Now notice the non holomorphic
structure due to the appearance of ,/—g, that under a general coordinate transformation,
even when holomorphic,

d*x — Jd*x

, while |/—g needs to be defined, for example if | is real and negative, we can define

NETED A Rver:

where | is the jacobian of the transformation and | | | is the absolute value of the trans-
formation. Therefore cfl:r\/—_g — |—J‘;|d4x —g, so invariance is achieved only for [ =| | |,
that is if | > 0, that is signed general coordinate transformations are problematic, and
ill defined. One could argue that when taking the square root of the determinant of the
metric one may choose the negative solution when it suit us, but this would be an arbitrary
procedure if no specific rule is given to choose the positive or the negative root. We choose

instead to declare that \/—g is always positive and replace it in the measure by something
else whose sign is well defined.
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Recall that 0 is a branch point of the square root function. Suppose w = /z, and z
starts at 4 and moves along a circle of radius 4 in the complex plane centered at 0. When we
move in the complex circle from 4 we start with 2, but after we do the full circle we get —2,
not 2. Obviously one of the definitions of the function will not leave the volume element
invariant.

Of course we need to define a measure that will transform holomorphically , the
Riemannian measure, which makes use of the square root is not acceptable. Of course
complex coordinate transformations will be even more problematic than just real and with
a negative jacobian.

14.2. Theory using Metric Independent non-Riemannian Volume-Forms, holomorphic cases

For another equation that will be invariant under holomorphic general coordinate
invariant transformations, we must avoid ,/—g, such an equation which will be,

02
—— = x = K = const. (91)
(—g)
The resulting action that replaces (58) is,
®(H)
_ [ 4 ~2[PH)
s_fde[RJrL}Jrfde[(_S)]. 92)
the density ®(H) is defined from eq.
1 ..
O(H) = gf’”'“aﬂHm (93)

so the integration obtained from the variation of the H gauge field is eq. (91) now. The
solution of eq. (91) are
Q +vK. (94)
(-8
where the sign in (94) will be dynamically determined, The measure () could have a
small imaginary part. Of course this imaginary part can be set to zero by initial conditions,
but that is not mandatory.
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L L -

where the sign in (94) will be dynamically determined, The measure () could have a
small imaginary part. Of course this imaginary part can be set to zero by initial conditions,
but that is not mandatory.

Notice that although the theory has the complex holomophic invariance, a particular
solution (which here means choosing between the plus or minus) does not have to be,
although the space of all solution is holomorphic invariant. The restriction to some sign
breaks the holomorphic invariance.

15. The determinant of the vierbein is a non invariant measure under signed Local
Lorentz Transformations

Another possibility for a measure that would transform like the the jacobian of the
coordinate transformation, not the absolute value of the jacobian, would be the determinant
of the vierbein. This will destroy however (up to a sign) the invariance of the theory under
signed local Lorentz transformation of the vierbeins. that is Local Lorentz transformations
with negative determinants, so, it is not a solution, rather we trade one asymmetry for
another.

15.1. The four scalars as integration manifold

Notice that using the volume element converts the the integration over coordinates in
the action into integration over scalar fields, since

Od*x = dgydgrdpsdgy

. The scalars are complex as the original coordinates. The mapping of the coordinates
to the scalars may not be one to one. The scalar integration manifold existing in the
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15.2. Gravitational Equations of motion

Here we review [54]. We start by considering the equation that results from the
variation of the degrees of freedom that define the measure (), that is the scalar fields ¢,,

these are,
Aﬁaj,(R+L+2Q%} =0 (95)

Notice that the determinant of A" is proportional to (), so if the measure is not
vanishing, the matrix A" is non singular and therefore 9, (R+L+ ZQ?—{'_%%) = (), so that,

R+L+ ZQ% = M = constant (96)

The variation with respect to the metric ¢"", we obtain.

oL (H)
Q{R ny + YT + “,'Qz— - 'D {97)
o g ) F

solving Q%%l from (96) and inserting into (97), we obtain,

1 1 dlL 1
R;nf — Eg}l'lfR + EMS';W + @ — ES‘;WL =0 {98)

which gives exactly the form of Einstein equation with the canonical energy momentum
defined from L

d
T}w = glmxlr_. — Z@L . {99)
The equations of motion of the connection (in the first order formalism) implies that
the connection is the Levi Civita connection. L can describe a scalar field with the potential
and the term %M can be interpreted as a shift of the scalar field potential by a constant or a
floating contribution to the cosmological constant. Notice that there no way to introduce

an explicitly a cosmological constant term in the action.
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16. String Theories with dynamical tension and associated Braneworld scenarios

The standard world sheet string sigma-model action using a world sheet metric is [70],

[71], [72]

Ss."grrm—rrmdﬂ’ = _dezﬂr_\-“ 'Tﬂha XFa, X" S - (100)

Here 7™ is the intrinsic Riemannian metric on the 2-dimensional string worldsheet
and y = det(7,p); guv denotes the Riemannian metric on the embedding spacetime. T is a
string tension, a dimension full scale introduced into the theory by hand.

Now instead of using the measure \/—7, on the E—dijnenﬁipnal world-sheet, in the
framework of this theory two additional worldsheet scalar fields ¢'(i = 1,2) are considered.
A new measure density is introduced:

1 .
(17[:40] - EEf'f'Eﬂbaaﬁﬂfabqﬂl' (101)



There are no limitations on employing any other measure of integration different than
v/—7- The only restriction is that it must be a density under arbitrary diffeomorphisms
(reparametrizations) on the underlying spacetime manifold. Then the modified bosonic
string action is (as formulated first in [55] and latter discussed and generalized also in [56])

E.nb
e
where F;, is the field-strength of an auxiliary Abelian gauge field A;: Fy, = d,A) —
dpAs. To check that the new action is consistent with the sigma-model one, let us derive

the equations of motion of the action (102). The variation with respect to q}“' leads to the
following equations of motion:

1 f
5= [ 0(9)(3770,X 8, X gy — 5 —Fu(4)) (102)

Efd

V=7

since det (e 9, q?"} = &, assuming a non degenerate case (9 # 0), we obtain,

€™y 9a (770 X" 0, XY quv — F.i) =0. (103)

o
3. XM, X" g — \/%_Tﬁ,d _ M = const. (104)

The equations of motion with respect to ¥ are

) 1 ecd
Tﬂ'b = BHXJ”BEJX' g}"” — Er}’gbﬁPﬂd =0. (105)

One can see that these equations are the same as in the sigma—model formulation .



Taking the trace of (105) we get that M = 0. By solving %Pfd from (104) (with M = 0) we
obtain the standard string eqs. The emergence of the string tension is obtained by varying
the action with respect to Aj:

eﬂha&(i(—_ii) — 0. (106)

Then by integrating and comparing it with the standard action it is seen that

Do) _
N T. (107)
That is how the string tension T is derived as a world sheet constant of integration
opposite to the standard equation (100) where the tension is put ad hoc. Let us stress that
the modified measure string theory action does not have any ad hoc fundamental scale
parameters. associated with it. This can be generalized to incorporate super symmetry,
see for example [56], [59], [58], [60]. For other mechanisms for dynamical string tension
generation from added string world sheet fields, see for example [68] and [69]. However the
fact that this string tension generation is a world sheet effect and not a universal uniform
string tension generation effect for all strings has not been sufficiently emphasized before.
Notice that Each String in its own world sheet determines its own tension. Therefore the
tension is not universal for all strings.

Introducing Background Fields including a New Background Field, The Tension Field

Schwinger [79], [80] had an important insight and understood that all the information
concerning a field theory can be studied by understanding how it reacts to sources of
different types. This has been discussed in the text book by Polchinski for example [74] .
Then the target space metric and other external fields acquire dynamics which is enforced by
the requirement of zero beta functions. However, in addition to the traditional background
fields usually considered in conventional string theory, one may consider as well an
additional scalar field that induces currents in the string world sheet and since the current



Introducing world sheet currents that couple to the internal gauge fields

If to the action of the string we add a coupling to a world-sheet current j*, i.e. a term

Scurrent = f oA, (108)

then the variation of the total action with respect to A, gives
$
e’d (—) =it 109
We thus see indeed that, in this case, the dynamical character of the brane is crucial here.

How a world sheet current can naturally be induced by a bulk scalar field, the Tension Field
Suppose that we have an external scalar field ¢(x!) defined in the bulk. From this

field we can define the induced conserved world-sheet current

a X"

do”

' = edup———e™ = edagpe™, (110)
where ¢ is some coupling constant. The interaction of this current with the world sheet
gauge field is also invariant under local gauge transformations in the world sheet of the
gauge fields A; — Az 4 daA.

For this case, (109) can be integrated to obtain

T = % —ep+ T, (111)

or equivalently

S = —7(e¢+T), (112)



The constant of integration T; may vary from one string to the other. Notice that the
interaction is metric independent since the internal gauge field does not transform under
the the conformal transformations. This interaction does not therefore spoil the world sheet
conformal transformation invariance in the case the field ¢ does not transform under this
transformation. One may interpret (112 ) as the result of integrating out classically (through
integration of equations of motion) or quantum mechanically (by functional integration of
the internal gauge field, respecting the boundary condition that characterizes the constant
of integration T; for a given string ). Then replacing ® = ,/—7(e¢ + T;) back into the
remaining terms in the action gives a correct effective action for each string. Each string
is going to be quantized with each one having a different T;. The consequences of an
independent quantization of many strings with different T; covering the same region of
space time will be studied in the next section.

The Tension field from World Sheet Quantum Conformal Invariance

The case of two different string tensions

[f we have a scalar field coupled to a string or a brane in the way described in the sub
section above, i.e. through the current induced by the scalar field in the extended object,
according to eq. (112), so we have two sources for the variability of the tension when going
from one string to the other: one is the integration constant T; which varies from string to



string and the other the local value of the scalar field, which produces also variations of
the tension even within the string or brane world sheet. As we discussed in the previous
section, we can incorporate the result of the tension as a function of scalar field ¢, given as
e + T, for a string with the constant of integration T; by defining the action that produces
the correct equations of motion for such string, adding also other background fields, the
anti symmetric two index field A, that couples to €9, X", X" and the dilaton field ¢ .

S = — f 2o (ed + T,-}%v/—_rmﬂbaﬂ)c:ﬁabx"gﬁ., + f 20 A, €9, XM, XY + f 20/ F¢R.

(113)
Notice that if we had just one string, or if all strings will have the same constant of
integration T; = Tp. We will take cases where the dilaton field is a constant or zero, and the
antisymmetric two index tensor field is pure gauge or zero, then the demand of conformal
invariance for D = 26 becomes the demand that all the metrics

S = (e + Ti) gy (114)

will satisfy simultaneously the vacuum Einstein’s equations. The interesting case to
consider is when there are many strings with different T;, let us consider the simplest case
of two strings, labeled 1 and 2 with Ty # T, , then we will have two Einstein ‘s equations,

for g1, = (e +T1)gw and for g2, = (e + T2) g,

Ry (gap) =0 (115)
and , at the same time,

Ry (825) =0 (116)



These two simultaneous conditions above impose a constraint on the tension field ¢,
because the metrics gl P and 32“, p are conformally related, but Einstein "s equations are not

conformally invariant, so the condition that Einstein "s equations hold for both gl 8 and g2 B
is highly non trivial. Then for these situations, we have,

ep+T1 = QE{EIP—FTE:} (117)
which leads to a solution for e¢
B 02T, — Tq (118)
=T
which leads to the tensions of the different strings to be
QE{TE —T1)
ep+T1 = 1_ 2 (119)
and T, Ty)
2 — 11

Both tensions can be taken as positive if T; — Ty is positive and ()? is also positive and
less than 1.



16.0.1. Flat space in Minkowski coordinates and flat space after a SI}ECiEl] conformal
transformation

The flat spacetime in Minkowski coordinates is,

2 i
dst = 1, pdx"dxP (121)
where 1, is the standard Minkowski metric, with oo = 1, #0; = 0 and #;; = —4j;.
] We now consider the conformally transformed metric e
ds5 = Q(x)* 1, pdx"dxP (122)
where conformal factor coincides with that obtained from the special conformal transfor-
mation ( 5
xH 4+ atx®)
B — 123
! (1+ 2a,x¥ + a?x?) (123)
for a certain D vector a,. which gives 02> = a +2on11‘ T In summary, we have two
solutions for the Einstein s equations, gi g = Map and
1
= Vs = 124
g‘%ﬁ Tap (14 2ay,x" 4 a®x?)? Tup (124)
We can then study the evolution of the tensions using ()? = 1 We will

- (14+2apxt4acx?)? "
consider the cases where a* £ 0.



The homogeneous and isotropic Universe in Dynamical String Tension Theories

We now consider the case when a is not light like and we will find that for a* # 0,
irrespective of sign, i.e. irrespective of whether a" is space like or time like, we will have
thick Braneworlds where strings can be constrained between two concentric spherically
symmetric bouncing higher dimensional spheres and where the distance between these
two concentric spherically symmetric bouncing higher dimensional spheres approaches
zero at large times. The string tensions of the strings one and two are given by

oy - BT+t + a2 (L-T)(A+2mat +a™)?
ep+ 11 = (420,00 +a2x2)2 =1 (2a,x¥ + a2x2) (2 + 2a,xF + a2x2)

(14 2auxF +a2x2)2 -1 (2auxt 4 a2x2) (2 + 2a,xH + ax?)
Let us by consider the case where 4" is time like, then without loosing generality we can take
al = (A,0,0,...,0). Now, in order to get homogeneous and isotropic cosmological solutions

we must consider the limit A — 0 and (T; — T7) — 0, in such a way that —[%m = K,
where K is a constant. In that case the spatial dependence in the tensions (125) and (126)
drops out and we get,

K
E(P-FT]:E(P—FTQ:E (127)

The embedding metric can now be solved.

1, a
v = (EE]:‘.?—I—TI}SFF - f”fﬁlﬁ (128)

which is not a vacuum metric, as opposed to 1,,, because of the conformal factor %.



Life of the homogeneous and isotropic Universe and emergence of a Braneworld at large times

One should notice that the hﬂngEI'lEDUE and isotropic solution has been obtained

only in the limit A — O and (T> — T1) — 0, in such a way that ':T%E = K, where K is a
constant. If A and T; — T7 are small but finite, then for large times, of the order of 1/A. We
can formulate this as an uncertainty principle,

(T, — T1)At = constant (129)

where we have used that A is of the order of (T, — T7). So a small uncertainty in the tension
(T — T1) leads to a long lived homogeneous and isotropic phase, while a big uncertainty
in the tension (T; — T7 ) leads to short lived homogeneous and isotropic phase.

In fact in these situations, for finite (T2 — T1) and A, it is the case that the string
tensions can only change sign by going first to infinity and then come back from minus
infinity. We can now recognize at those large times the locations where the string tensions
go to infinity, which are determined by the conditions

2a,xt +a*x* =0 (130)

or
2+ 2a,x" +a*x* =0 (131)



Let us start by considering the case where a" is time like, then without loosing generality
we can take a" = (A, 0,0, ..., 0). In this case the denominator in (125), (126) is

(2aux” + a®x*) (2 + 2aux" + ax*) = (2At + A% (12 — X)) (2 4+ 24t + A% (1* —x?)) (132)

The condition (130), if A # 0 implies then that

1 1
X+ 425 4xh - (t+ )= —— (133)
A A
if A — 0, it is more convenient to write this in the form
Axi+x3 + x5 +xf_) —AF -2t =0 (134)

which for the limit A — 0 gives us the single singular point t = 0, which is the origin of the
homogeneous and isotropic cosmological solution.
The other boundary of infinite string tensions is, (131) is given by,

1
X435 +xh g — (H+ EJE

1

= 7 (135)

This has no limit for A — 0, all these points disappear from the physical space (they go to
infinitv).



This has no limit for A — 0, all these points disappear from the physical space (they go to
infinity).

For A # 0 we see that (135) represents an exterior boundary which has an bouncing
motion with a minimum radius ?1,_- att = —;5_- , The denominator (132) is positive between
these two bubbles. So for T; — Ty positive the tensions are positive and diverge at the
boundaries defined above.

The internal boundary (133) exists only for times { smaller than —% and bigger than

0, so in the time interval (— %, 0) there is no inner surface of infinite tension strings. This

inner surface co]lapses to zero radius att = — % and emerges again from zero radius at

t=0.
For large positive or negative times, the difference between the upper radius and the
lower radius goes to zero as t — oo

1 1 1 1
LR YN Il Y R
\/A2+(f+ ) \/ A2+(f+A} _}fAE_}G (136)

of course the same holds t —+ —oo. This means that for very large early or late times the
segment where the strings would be confined (since they will avoid having infinite tension)
will be very narrow and the resulting scenario will be that of a brane world for late or early
times, while in the bouncing region the inner surface does not exist. Notice that this kind
of braneworld scenario is very different to the ones previously studied, in particular both
gravity (closed strings) and gauge fields (open strings) are treated on the same footing,
since the mechanism that confines the strings between the two surfaces relies only on the
string tension becoming very big,.



Quantum creation, by analitically continuing the
time to imaginary time, we could match the?2
branches of the classical evolution in

g | by g L | F 1 " 1
X1 +x3+x3....+xp_1— (I + H]_ = 3
1
051\ Classical Evolution
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19. Possible Applications for the construction of a Hagedorn Temperature free String
Model of the Strong interactions.

In [83], Andreev has discussed the need to avoid the Hagedorn temperature [52] in
order to obtain a behavior more in accordance to that of QCD, since in the real world there
is no phase transition but an analytic crossover. If strings are indeed relevant for QCD then
one has to show that a stringy description is also valid for high T and he has shown that
this can still be achieved but in the context of string models, but then these string models
have to be multi tension string models, so it appears that our ideas and those of Andreev
go in the same direction.

The approach by Andreev is more phenomenological than ours and he introduces
strings with different tensions and then gives a prescription concerning the string tensions
that one should be allowed to contribute at a given temperature. Such type of prescriptions
will probably not be necessary in our approach, no need to eliminate states with certain
string tensions depending of the temperature, instead we would rely on the the dynamical
effect where the tensions grow and suppress the Hagedorn temperature. Much work in
this direction is needed.



24, Can Dynamical Tension String Theory recover the Swampland?

The standard string theory is argued generates a space of acceptable theories and a
“swampland” a space of theories that cannot be correct [57].
In a general setting, there are a few statements made where the Planck scale appears

[88]:

1. distance conjecture: the statement into the requirement that trans-Planckian excur-

sions can not be allowed for any fields present in the cnsmﬂlﬂgical evolution.

Ap/Mp < O(1)

with Mp being the reduced Planck mass

2, Due to the difficulties of consistently constructing the meta-stable de-Sitter vacua
at the heart of cosmology it has been further proposed a requirement on possible field
potentials of theories in the Landscape [88], given by either

Mp

dv /de
%

> 0(1)
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But in dynamical string tension implies a
dynamical Planck scale that can go to infinity

* At the points in space time where the dynamical Planck scale goes to
infinity the Swampland constraints dissapear

* Tensions going to infinity represent target scale invariant states, so it
is reasonable they will appear in some phases of the evolution of the

universe.
e Other ideas concerning Dark Matter, Dark Energy .

When talking to Professor Maldacena, on strings with different
tensions he observed that ordinary string interactions decouple for
strings with different tension, which lead me to the idea that there are
strings that constitute the visible matter and then strings with a
different tension are the Dark Matter,




Furthermore, both the visible matter and the dark strings share the
same space time and in particular the same compactification, and it is
the compactification what is organizing the particle structure, since for
the visible sector, we obtain the Standard Model, then the Dark Strings
should give rise to dark copies of the Standard Model.

Strings with a different tension as dark matter E.l. Guendelman
Eur.Phys.).C 85 (2025) 6, 671 and Addendum that discusses the idea
that the dark matter must be copies of the standard model

Strings with a different tension producing dark copies of the Standard
Model. Guendelman, E.I., Eur. Phys. J. C 85, 1079 (2025).
https://doi.org/10.1140/epjc/s10052-025-14777-8 see comments

inScienMag

-Strings Reimagined: Dark Matter's Standard Model
Echoes
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More comments on social media of Guendelman,
E.l. Dynamical string tension theories with target

space scale invariance SSB and restoration. Eur.
Phys. J. C85, 276 (2025).
https://doi.org/10.1140/epjc/s10052-025-13966-9

* Out of the string theory swampland

e EurekAlert!

e Escaping String Theory Swampland

* Mirage News

 Emerging from the String Theory Swampland: A Breakthrough Discovery
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Other issues related to non commutativity in
dynamical string tension: the string tension

determines a non Commutativity parameter of the coordinates that in
terms determines a minimum length, this non commutativity
parameter is now local, so the minimum length and also the zero point
enegy density becomes local. ISSUES BEING EXPLORED NOW WITH
DOUGLAS SINGLETON.
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