Towards a Completion of Quantum Mechanics¹

"It seems clear that the present quantum mechanics is not in its final form." (P.A.M. Dirac)

Regensburg, October 10, 2025

¹Jürg Fröhlich, formerly at ETH Zurich

Contents

- 1. Dispelling a Curse
- 2. Diffusion and the Theory of Random Walks
- 3. The stochastic evolution of individual systems in QM
- 4. The *ETH*-Approach to Quantum Mechanics (QM) Concluding Remarks

The heroes of the year 1925

Heisenberg

Born

Jordan

Dirac

Summary

To cast Quantum Mechanics - incomplete in its text-book version - in a final form, we must understand how to derive the *stochastic dynamics* of *individual isolated open systems* from fundamental physical principles (which are at the core of the so-called *ETH*-Approach to Quantum Mechanics, with *E* standing for "events," *T* for "trees," and *H* for "histories").

I show how, in the non-relativistic limit (with the velocity of light $c \to \infty$), this problem is solved for simple systems of charged matter interacting with the quantized electromagnetic field. An important insight is that the masslessness of photons plays a key role in this endeavor.

1. Dispelling a Curse

"The interpretation of quantum mechanics has been dealt with by many authors, and I do not want to discuss it here. I want to deal with more fundamental things." (P.A.M. Dirac)

Quantum Mechanics (QM) is not a "Theory of Everything" – QM is a theory that has changed everything in our understanding of the microcosm – for good! – Yet,

QM is afflicted by a curse: Most people who use it in their daily work appear to be unable to coherently describe its meaning, e.g., to say what is meant by **events** and to explain how events arise, such as the successful measurement of a physical quantity, the fluorescence of atoms, decay of unstable nuclei, appearance of particle tracks in a detector, etc.

They view q-m time evolution as *linear and deterministic*, but go on to claim that QM is fundamentally *probabilistic*, as suggested by Einstein (1916) and Born (1926). These seemingly contradictory features of the theory have given rise to a plethora of so-called *"interpretations of QM"* (*Copenhagen, Many-Worlds, Q-bism, ...*) and of *modifications* of QM intended to explain the emergence of events, among which I mention *Bohmian mechanics, GRW, cellular automata*, etc.

Looking for a stochastic Law of Dynamics

"The constant element in physics, since Newton, is not a configuration or a geometrical form, but a Law of Dynamics." (Werner Heisenberg)

I don't know of any compelling "interpretation of QM," and I have not learned of a satisfactory modification/extension of QM – which is why I endeavor to propose my own attempt towards a completion of QM.

In text-book QM, the time evolution of *states* is described by a *Schrödinger-von Neumann equation*, or, if dissipative processes are at work, by *Lindblad-type eqs.* – **unless** a *"measurement"* intervenes causing *"wave-function collapse"* governed by *Born's Rule* (Born, von Neumann, Lüders). – However, measurements are *q-m processes*, too, involving interactions between a "small system" and a macro system triggering a measurement process; so why is it not possible to describe the evolution of the **total** system by a *Schrödinger-von Neumann eq.*?

What appears to be correct is to claim that states averaged over a very large ensemble, \mathcal{E} , of identical, identically prepared physical systems – "ensemble states" — evolve in time according to a linear, deterministic law. But states of **indvidual** systems in \mathcal{E} evolve according to a (non-linear) stochastic Law of Dynamics. The nature of this law is the subject of ongoing controversies. — It is the **subject of this talk**.

2. Diffusion and the Theory of Random Walks

To set the stage for our endeavor I first sketch the solution to a simpler problem: Consider a gas of non-interacting particles on a lattice \mathbb{Z}^{ν} , $\nu=1,2,\ldots$, subject to thermal noise. The state of the gas at time t is described by the density, ρ_t , of particles. This is the analogue of an ensemble state in QM.² The linear deterministic evolution equation of the state ρ_t is the diffusion equation, namely

$$\dot{\rho}_t(x) = D(\Delta \rho_t)(x) = D\left[\sum_{y:|y-x|=1} \rho_t(y)\right] - 2\nu D \rho_t(x), \quad x \in \mathbb{Z}^{\nu}, \quad (1)$$

where $D\left(=k_BT/(6\pi\eta\,r)\right)$ is the diffusion constant, Δ is the discrete Laplacian, and the sum on the right side of (1) extends over all sites y that are nearest neighbors of x (indicated by |y-x|=1).

We would like to understand what kind of *stochastic motion* of an **individual** particle, ξ , in the gas implies that the time-dependence of an *"ensemble state"* ρ_t is given by the diffusion equation (1).

The answer can be found by "unraveling" Eq. (1):

 $^{^2}$ given by a density matrix Ω

The stochastic motion of *individual* particles

"Ontology"

The "true" state of an **individual** particle ξ at an arbitrary time t is a **site**, $x_{\xi}(t) \in \mathbb{Z}^{\nu}$ – its position at time t. It corresponds to a density $\rho_t(x;\xi) := \delta_{x_{\xi}(t)}(x), \ x \in \mathbb{Z}^{\nu}$, i.e., to a "pure state", where $\delta_y(x) \equiv \delta_{yx}$ is the Kronecker δ .

During a time interval [t,t+dt), a particle ξ may remain at $x_{\xi}(t)$, or it may jump to a nearest-neighbor site $y=x_{\xi}(t)+\delta$, where δ is a unit vector (i.e., its state may "jump" from $\delta_{x_{\xi}(t)}$ to δ_{y}). The diffusion eq. (1) determines the *probabilities* of these different options:

At time t + dt, the state, $x_{\xi}(t + dt)$, of the particle is given by

$$x_{\xi}(t+dt) = \begin{cases} x_{\xi}(t), & \text{with prob. } p_{nj}[t,t+dt] := 1 - 2\nu D \, dt, \\ y = x_{\xi}(t) + \delta, & \text{with prob. } p^{\delta}[t,t+dt] := D \, dt, \end{cases}$$
 (2)

This Poisson jump process is a discrete version of the Wiener process.

Law (2) for the stochastic motion of an **individual** particle ξ implies that, when taking an average over the states of **all** particles in the gas, the time-dependence of the ensemble state, ρ_t , is given by the diffusion eq..

Some applications of Law (2)

[A trajectory of ξ , is described by a *simple random walk* $(\xi(0),\ldots\xi(n))$, $\xi(j)\in\mathbb{Z}^{\gamma}, \, \forall\, j;\, n\geq 0$ is the number of jumps ξ performs between an initial time $t_0=0$ and (final) time t>0. Imagine that the particle ξ makes a nearest-neighbor jump in each time interval $[t_j,t_j+dt_j],$ $j=1,\ldots,n$, tracing out a random trajectory $\underline{\xi}$. According to (2), the probability of $\underline{\xi}$ is given by

$$\operatorname{prob}\left[\underline{\xi}, dt_1 \cdots dt_n\right] = \left(\prod_{j=1}^n e^{-2\nu D(t_j - t_{j-1})} D dt_j\right) e^{-2\nu D(t - t_n)}$$

This is the lattice analogue of the *Wiener measure* in the theory of *Brownian motion*. It implies the diffusion equation (1) for the "ensemble state" ρ_t and has many further applications. For example, it yields a formula for the average distance traveled by ξ in time t:

$$\begin{split} \mathbb{E}\big[x_{\xi}(t) - x_{\xi}(0)\big]^2 &= \sum_{n} \underbrace{\mathbb{E}\big[\xi(n) - \xi(0)\big]^2}_{=n} & \cdot \underbrace{\frac{(2\nu D \cdot t)^n}{n!} e^{-2\nu D \cdot t}}_{\text{prob. to make n jumps in time $t - t_0$}}_{= 2\nu D \cdot t} & \left(\textit{diffusive motion with entropy prod.}\right) \end{split}$$

3. The stochastic evolution of individual systems in QM

Inspired by the example of the *diffusion equation* (1) "unraveled" by the *Poisson jump process* describing the stochastic motion of a single particle ξ in a gas (Law (2)), we present a q-m *stochastic Law of Dynamics* of **individual** systems obtained by "unraveling" a q-m analogue of the diffusion equation.

We think of a very large ensemble, \mathcal{E} , of systems, all identical to a specific system S, consisting of matter interacting with the quantized radiation field. In the non-relativistic limit, $c \to \infty$, ensemble states of S are described by density matrices, Ω , acting on a separable Hilbert space \mathcal{H} . As shown in the next section, the time evolution of an ensemble state, Ω_t , is described by a Lindblad equation, which is linear and deterministic:

$$\Omega_{t+dt} = \Omega_t + \mathcal{L}[\Omega_t] dt + \mathcal{O}(dt^2), \quad \text{with}$$

$$\mathcal{L}[\Omega] \stackrel{e.g.}{=} -i[H_0, \Omega] + \alpha \sum_{k=1}^K \left[V_k \Omega V_k^* - \frac{1}{2} \{\Omega, V_k^* V_k \} \right], \quad (3)$$

"Unraveling" the Lindblad equation

In (3), \mathcal{L} is the Lindblad generator, H_0 is the Hamiltonian of S when matter is decoupled from the radiation field, V_1, \ldots, V_K are ("jump") operators on \mathcal{H} , which describe *dissipative effects* arising from interactions of matter with the radiation field, and $\alpha \propto e^2$.

"Ontology"

As in the example of diffusion theory, we have to ask what the state of an **individual** system in $\mathcal E$ is. A conventional idea is that it is *pure* at all times t, i.e., given by a rank-1 orth. projection, Π_t , on $\mathcal H$. If, at time t, **all** systems in $\mathcal E$ were prepared in Π_t the *ensemble state* at time t + dt would be given by the density matrix

$$\Omega_{t+dt} = \Pi_t + \mathcal{L}[\Pi_t] dt + \mathcal{O}(dt^2)$$
.

The spectral decomposition of Ω_{t+dt} has the form

$$\Omega_{t+dt} = p_{nj}[t, t+dt] \, \Pi^{0}_{t+dt} + \sum_{\delta > 0} p^{\delta}[t, t+dt] \, \Pi^{\delta}_{t+dt}, \qquad (4)$$

where $\left\{\Pi_{t+dt}^{\delta}\,\middle|\,\delta=0,1,2,\dots\right\}$ are the spectral projections of Ω_{t+dt} ,

State reduction

and "nj" stand for "no jump". These spectral projections represent the possible states of an **individual** system at time t+dt, with the coefficients interpreted as probabilities (or frequencies – Born's Rule), as explained in Sect. 4. Suppose that Π_t is a rank-1 orthogonal projection (i.e., a pure state). Assuming that dt is very **small**, we then find that

$$\Pi_{t+dt}^{0} \approx \Pi_{t}, \quad p_{nj}[t, t+dt] \equiv p^{0}[t, t+dt] = 1 - \mathcal{O}(dt) \approx 1,
p_{nj} > p^{1} > p^{2} > \dots > 0, \quad \text{with} \quad p^{\delta} = \mathcal{O}(dt), \quad \forall \delta \geq 1,
p_{nj}[t, t+dt] + \sum_{\delta > 0} p^{\delta}[t, t+dt] \dim(\Pi_{t+dt}^{\delta}) = 1.$$
(5)

Our task is to find explicit expressions for the probability $p_{nj}[t_1,t_2]$ of **not** observing a quantum jump in an interval $[t_1,t_2)$ of times, for the time-dependence of the state Π^0_t , with $t \in [t_1,t_2)$, and for the probability of observing a "quantum jump" at time t_2 to a state $\Pi^\delta_{t_2}$, $\delta > 0$, perpendicular to $\Pi^0_{t_2}$, for arbitrary times $t_1 < t_2$. This is accomplished with a novel tool of functional analysis called *Infinitesimal Perturbation Theory* (IPT).

Explicit formulae for p_{nj} and Π_t^0 , using IPT

Eq. (4) & IPT \Rightarrow (non-linear) stochastic Law of Dynamics for states of **individual** systems: [Between two "quantum jumps", at times t_1 and t_2 ,

$$(i) \qquad p_{nj}[t_1,t_2] = \exp\Bigl\{\int_{t_1}^{t_2} {
m Tr}igl(\Pi_t^0\,{\cal L}[\Pi_t^0]igr)dt\Bigr\} < 1\,,$$

$$(ii) \qquad \frac{d\Pi_t^0}{dt} \stackrel{dt \to 0}{=} \left[\Pi_t^0\right]^{\perp} \mathcal{L}[\Pi_t^0] \ \Pi_t^0 + \Pi_t^0 \ \mathcal{L}\left[\Pi_t^0\right] \left[\Pi_t^0\right]^{\perp}, \quad t \in [t_1, t_2).]$$

Eq. (ii) is a non-linear evolution equation for state-trajectories between two consecutive "quantum jumps". – If $\alpha=0$, i.e., if the dissipative terms in the Lindblad equation (3) are absent, then eq. (ii) describes unitary Schrödinger-von Neumann evolution, with $p_{nj}\equiv 1$!

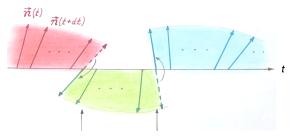
The probability to jump from $\Pi^0_{t_2}$ to a state $\Pi^\delta_{t_2+dt_2}$, for some $\delta>0$, in the time interval $[t_2,t_2+dt_2]$ is given by the $\delta^{\rm th}$ eigenvalue of an explicit non-negative matrix (given by $\left[\Pi^0_{t_2}\right]^\perp \mathcal{L}\left[\Pi^0_{t_2}\right] \left[\Pi^0_{t_2}\right]^\perp dt_2$.)

These results uniquely determine a *probability measure* on the space of *state-trajectories* of **individual** systems, *S*, exhibiting "quantum jumps".

Quantum Poisson Jump Process

The resulting stochastic process on the state-space of S is called a "quantum Poisson jump process". It is the quantum-mechanical cousin of the random-walk- or Wiener process described in Sect. 2.

[In the example of a *qubit* interacting with the quantized radiation field (with $c \to \infty$), the pure states are parametrized by vectors, $\vec{n} \in S^2$, on the *Bloch sphere* (the corresponding density matrix on \mathbb{C}^2 is given by $\rho_{\vec{n}} := \frac{1}{2} \left[\mathbf{1}_2 + \vec{\sigma} \cdot \vec{n} \right]$). The state trajectory of an individual *qubit* is described by a stochastic process on the Bloch sphere with anti-podal "*quantum jumps*" $(\vec{n} \mapsto -\vec{n})$ at discrete times, and, in between two such jumps, $\vec{n}(t)$ evolves according to a *non-linear (cubic) equation of motion.*]



4. The ETH-Approach to Quantum Mechanics

In this last section, I will explain why the q-m evolution of ensemble states of systems of charged matter interacting with the quantized radiation field, in the limit where $c \to \infty$, is described by a Lindblad equation with dissipative terms, as considered in the last section; and how the "ontology" – the specific unraveling of the Lindblad evolution – proposed there can be derived from basic physical principles at the core the so-called ETH- Approach to QM – where E stands for events, T for trees, and H for histories.

Dissipation in a system S may be caused by interactions of the degrees of freedom in S with an environment E. But one could argue — as did *John Bell* — that one ought to consider $S \vee E$ as the total system, and that the states of the system $S \vee E$ should then be expected to evolve **unitarily** according to a deterministic, linear Schrödinger-von Neumann eq..

It turns out that the **radiation field** – more generally, any field with massless modes – represents an "environment" that causes **fundamental dissipation**, which leads to a stochastic evolution of **individual** systems.

Key ingredients of the ETH-Approach

Here are the basic ingredients constituting the *ETH*-Approach.

I. **Potential events**, \mathfrak{e} , in an isolated open system S are described by partitions of unity, $\mathfrak{e} = \left\{\widehat{\pi}_{\xi} \,\middle|\, \xi \in \mathfrak{X}_{\mathbf{e}}\right\}, \quad \sum_{\xi \in \mathfrak{X}} \widehat{\pi}_{\xi} = 1$, by mutually disjoint orthogonal projections, $\widehat{\pi}_{\xi}$, of finite rank ($\mathfrak{X}_{\mathbf{e}}$ = "spectrum" of \mathfrak{e} denumerable).

At every time $t \in \mathbb{R}$, \exists a representation of projections of all \mathfrak{e} of S,

$$\mathfrak{e} \ni \widehat{\pi}_{\xi} \mapsto \pi_{\xi}(t), \ \forall \xi \in \mathfrak{X}_{\mathfrak{e}}, \ \forall \mathfrak{e} \text{ of } S,$$
(6)

by concrete orth. projections, $\pi_{\xi}(t)$, on a separable Hilbert space \mathcal{H} . Heisenberg time evolution: For all $\widehat{\pi} \in \mathfrak{e}, \forall \mathfrak{e}$ of S, and for arbitrary times t and t', $\pi(t)$ and $\pi(t')$ are unitarily conjugated by the propagator of S. \to Introduce Algebras of potential events

$$\mathcal{E}_{\geq t} := \left\langle \pi(t') \, \middle| \, \pi(t') \, \text{ represents } \widehat{\pi} \in \mathfrak{e}, \, \forall \mathfrak{e} \, \text{ of } S, \, \forall t' \geq t \right\rangle^{-}. \tag{7}$$

Clearly

$$\mathcal{E}_{\geq t'} \subseteq \mathcal{E}_{\geq t}$$
, whenever $t' > t$.

The Principle of Declining Potentialities

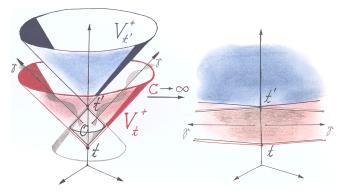
Heisenberg time evolution implies that all the algebras $\mathcal{E}_{\geq t}, t \in \mathbb{R}$, are *unitarily conjugated* to each other; in particular $\mathcal{E}_{\geq t} \simeq \mathcal{E}_{\geq 0} \equiv \mathcal{E}_0, \forall t$.

II. Principle of Declining Potentialities (PDP): In the ETH-Approach to QM, an isolated open physical system S capable of producing events is characterized by the property that

$$\mathcal{E}_{\geq t'} \subsetneq \mathcal{E}_{\geq t}, \quad \forall \, t' > t \,.$$
 (PDP) (8)

Physics: PDP is an expression of *fundamental dissipation*. It holds in theories with massless modes, *photons* (& gravitons); e.g., in relativistic QED (*D. Buchholz*) and in quantum optics in the limit where $c \to \infty$. – Photons and gravitons emitted in a diamond $\mathcal{O} \subset V_t^+$ can escape at the speed of light **without detection** in $V_{t'}^+$; hence, the energy and information they carry away **cannot** be recovered at times $\geq t'$.

PDP as a consequence of "Huygens' Principle"



Huygens' Principle for ${\it c} < \infty$ Huygens' Principle for ${\it c} \to \infty$

<u>Left</u>: A subalgebra of operators localized in \mathcal{O} commute with all of $\mathcal{E}_{\geq t'}$ Right: Em field ops.in different time-slices commute with each other

As in the genesis of Relativity Theory, the em field (and/or the gravit. field) apparently play a crucial role in the ETH-Approach to QM.

States of physical systems

III.1. States of physical systems: A state, ω , of a system S at time t is a normalized, positive, linear functional on the algebra $\mathcal{E}_{>t}$.

A state at time t enables one to predict the probability of potential events of S actualizing/happening at times $\geq t$, as it ought to.

If PDP holds, states of S at time t depend *non-trivially* (!) on t, *even* in the *Heisenberg picture*, as we will see.

Given an initial state, ω_0 , of S at time 0, the *ensemble state*, ω_t , at a later time t>0 corresp. to ω_0 is given by *restricting* ω_0 to the *sub-alg*. $\mathcal{E}_{\geq t} \subsetneq \mathcal{E}_0$ (PDP). In general, the map from ω_0 to ω_t does *not* preserve *purity* (i.e., the restr. of a pure state ω_0 on \mathcal{E}_0 to $\mathcal{E}_{\geq t}$, t>0, need *not* be pure) – a manifestation of *entanglement* of the system's state with the states of modes that, for *fundamental reasons*, are *unobservable*.

Time evolution of ensemble states

In *non-relativistic QED*, i.e., for $c \to \infty$, the following special property P holds:

P The algebra \mathcal{E}_0 is isomorphic to the algebra, $B(\mathcal{H}_0)$, of bounded operators on a separable Hilbert sub-space, $\mathcal{H}_0 \subseteq \mathcal{H}^{4}$.

Hence a state ω_0 on \mathcal{E}_0 is given by a *density matrix*, Ω_0 , on \mathcal{H}_0 . The isomorphism $\mathcal{E}_{\geq t} \simeq \mathcal{E}_0$ then implies that the *ensemble state*, ω_t , of S at time t>0, i.e.,

$$w_t := w_0 \Big|_{\mathcal{E}_{\geq t}}$$

can also be represented by a density matrix, Ω_t . If the algebras $\mathcal{E}_{\geq t}, t \geq 0$, were *independent* of t then, in the *Heisenberg picture*, $\Omega_t = \Omega_0, \ \forall \ t > 0$.

In the <u>Schrödinger picture</u>, the density matrix Ω_t repr. ω_t at time t > 0 is defined by

$$\mathsf{Tr}\big(\Omega_t \cdot \pi(0)\big) := \mathsf{Tr}\big(\Omega_0 \cdot \underbrace{\pi(t)}_{\in \mathcal{E}_{>t}}\big), \quad \forall \, \widehat{\pi} \in \mathfrak{e}, \, \forall \, \mathfrak{e}. \tag{9}$$

 $^{^4}$ In relativistic QED, \mathcal{E}_0 would be a von Neumann algebra of type III $_{\mathbb{F}}$ or II $_{\mathbb{F}}$.

Lindblad equation, states of individual systems

The map $\Omega_0 \mapsto \Omega_t$ is *linear, positivity-preserving* and *trace-preserving*, for all t > 0; in fact, it is *completely positive*. Hence it is given by a *Lindblad semi-group*, as assumed in Sect. 3.

III.2. **States of individual systems**: The true state of an **individual** system S characterized by ingredients I, II, III.1 and Property P is given by a density matrix proportional to an *orthogonal projection*, Π_t , in $\mathcal{E}_{\geq t}$ of *finite rank* (generically of rank 1), \forall times t.

Let Ω_{t+dt} (dt>0: time step) be the density matrix obtained by restricting the state at time t, i.e., $\dim(\Pi_t)^{-1}\Pi_t$, to $\mathcal{E}_{\geq (t+dt)} \subsetneq \mathcal{E}_{\geq t}$, see (9). According to the spectral theorem, Ω_{t+dt} is given by a convex combination of its spectral projections,

$$\Omega_{t+dt} = \rho^0[t, t+dt] \Pi^0_{t+dt} + \sum_{\delta>0} \rho^{\delta}[t, t+dt] \Pi^{\delta}_{t+dt},$$

with
$$p^0 \gg p^1 > \cdots \geq 0$$
.

If the time step dt is tiny then $\Pi^0_{t+dt} \approx \Pi_t$.

The State-Selection Postulate

The potential event $\mathfrak e$ repr. by the projections $\left\{\Pi_{t+dt}^{\delta} \mid \delta=0,1,\ldots\right\}$ actualizes at time t+dt according to the following

- IV. **State-Selection Postulate** ("Ontology" of QM): The true state at time t+dt of an individual isolated system S, whose state at time t is ∞ to the projection Π_t , is a density matrix proportional to
 - Π^0_{t+dt} , with *probability* $p^0[t, t+dt] \dim(\Pi^0_{t+dt}) = 1 \mathcal{O}(dt)$, or to one of the projections
 - Π_{t+dt}^{δ} , with *probability* $p^{\delta}[t, t+dt] \dim(\Pi_{t+dt}^{\delta}) = \mathcal{O}(dt)$, for some $\delta > 0$.

The State-Selection Postulate says that, at each time, a state is selected (i.e., an *event actualizes*) in accordance with *Born's Rule*. – The limit, as $dt \rightarrow 0$, is under control!

Conclusions: (i) In this talk I have sketched a *completion of non-relativistic QM* derived from the *ETH-Approach*. Property P and IV completely justify the analysis presented in Sect. 3! The *ETH-*Approach solves the infamous *"measurement problem"* and the *"unitarity paradox"*.

Concluding Remarks

(ii) The *ETH*-Approach can be generalized to encompass *relativistic quantum theory* (coupled to gravity). But the fine print of this generalization remains to be worked out.

(iii) ...

<u>Achknowledgement</u>: I thank *C. Albert, Ph. Blanchard, Z. Gang,*<u>A. Pizzo, B. Schubnel</u> and *S. Zivi* for many useful discussions and collaboration on problems related to this talk. – I am indebted to *Felix Finster* for providing me with an opportunity to present these thoughts.

To conclude let me express my hope that Western European countries will welcome back – among other peoples – the Russian people in the European family, that they will solve conflicts by negotiations, rather than by war, and that they will work for Trust and Peace and the future of humankind, rather than waste absurd amounts of resources for rearmament!