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Summary

To cast Quantum Mechanics - incomplete in its text-book version -
in a final form, we must understand how to derive the stochastic
dynamics of individual isolated open systems from fundamental
physical principles (which are at the core of the so-called
ETH-Approach to Quantum Mechanics, with E standing for
“events,” T for “trees,” and H for “histories”).

I show how, in the non-relativistic limit (with the velocity of light
c !1), this problem is solved for simple systems of charged
matter interacting with the quantized electromagnetic field. An
important insight is that the masslessness of photons plays a key
role in this endeavor.



1. Dispelling a Curse

“The interpretation of quantum mechanics has been dealt with by many
authors, and I do not want to discuss it here. I want to deal with more
fundamental things.” (P.A.M. Dirac)

Quantum Mechanics (QM) is not a “Theory of Everything” –
QM is a theory that has changed everything in our understanding
of the microcosm – for good! – Yet,

QM is a✏icted by a curse: Most people who use it in their daily work
appear to be unable to coherently describe its meaning, e.g., to say what
is meant by events and to explain how events arise, such as the
successful measurement of a physical quantity, the fluorescence of atoms,
decay of unstable nuclei, appearance of particle tracks in a detector, etc.

They view q-m time evolution as linear and deterministic, but go on to
claim that QM is fundamentally probabilistic, as suggested by Einstein
(1916) and Born (1926). These seemingly contradictory features of the
theory have given rise to a plethora of so-called “interpretations of QM”
(Copenhagen, Many-Worlds, Q-bism, ...) and of modifications of QM
intended to explain the emergence of events, among which I mention
Bohmian mechanics, GRW, cellular automata, etc.



Looking for a stochastic Law of Dynamics

“The constant element in physics, since Newton, is not a configuration or
a geometrical form, but a Law of Dynamics.” (Werner Heisenberg)

I don’t know of any compelling “interpretation of QM,” and I have not
learned of a satisfactory modification/extension of QM – which is why I
endeavor to propose my own attempt towards a completion of QM.

In text-book QM, the time evolution of states is described by a
Schrödinger-von Neumann equation, or, if dissipative processes are at
work, by Lindblad-type eqs. – unless a “measurement” intervenes
causing “wave-function collapse” governed by Born’s Rule (Born, von
Neumann, Lüders). – However, measurements are q-m processes, too,
involving interactions between a “small system” and a macro system
triggering a measurement process; so why is it not possible to describe
the evolution of the total system by a Schrödinger-von Neumann eq.?

What appears to be correct is to claim that states averaged over a very
large ensemble, E , of identical, identically prepared physical systems –
“ensemble states” – evolve in time according to a linear, deterministic
law. But states of indvidual systems in E evolve according to a
(non-linear) stochastic Law of Dynamics. The nature of this law is the
subject of ongoing controversies. – It is the subject of this talk.



2. Di↵usion and the Theory of Random Walks

To set the stage for our endeavor I first sketch the solution to a simpler
problem: Consider a gas of non-interacting particles on a lattice Z⌫,
⌫ = 1, 2, . . . , subject to thermal noise. The state of the gas at time t is
described by the density, ⇢t , of particles. This is the analogue of an
ensemble state in QM.2 The linear deterministic evolution equation of
the state ⇢t is the di↵usion equation, namely

⇢̇t(x) = D
�
�⇢t

�
(x) = D

⇥ X

y :|y-x |=1

⇢t(y)
⇤
- 2⌫D ⇢t(x) , x 2 Z⌫ , (1)

where D (=kBT/(6⇡⌘ r)) is the di↵usion constant, � is the discrete
Laplacian, and the sum on the right side of (1) extends over all sites y
that are nearest neighbors of x (indicated by |y - x | = 1).

We would like to understand what kind of stochastic motion of an
individual particle, ⇠, in the gas implies that the time-dependence of an
“ensemble state” ⇢t is given by the di↵usion equation (1).

The answer can be found by “unraveling” Eq. (1):

2
given by a density matrix ⌦



The stochastic motion of individual particles

“Ontology”

The “true” state of an individual particle ⇠ at an arbitrary time t is a
site, x⇠(t) 2 Z⌫ – its position at time t. It corresponds to a density
⇢t(x ; ⇠) := �x⇠(t)(x), x 2 Z⌫, i.e., to a “pure state”, where �y (x) ⌘ �yx
is the Kronecker �.

During a time interval [t, t + dt), a particle ⇠ may remain at x⇠(t), or it
may jump to a nearest-neighbor site y = x⇠(t) + �, where � is a unit
vector (i.e., its state may “jump” from �x⇠(t) to �y ). The di↵usion eq.
(1) determines the probabilities of these di↵erent options:

At time t + dt, the state, x⇠(t + dt), of the particle is given by

x⇠(t + dt) =

�
x⇠(t), with prob. pnj [t, t + dt] := 1- 2⌫D dt ,

y = x⇠(t) + �, with prob. p�[t, t + dt] := D dt ,
(2)

This Poisson jump process is a discrete version of the Wiener process.

Law (2) for the stochastic motion of an individual particle ⇠ implies that,
when taking an average over the states of all particles in the gas, the
time-dependence of the ensemble state, ⇢t , is given by the di↵usion eq..



Some applications of Law (2)

[A trajectory of ⇠, is described by a simple random walk
�
⇠(0), . . . ⇠(n)

�
,

⇠(j) 2 Z⌫, 8 j ; n � 0 is the number of jumps ⇠ performs between an
initial time t0 = 0 and (final) time t > 0. Imagine that the particle ⇠
makes a nearest-neighbor jump in each time interval [tj , tj + dtj ],
j = 1, . . . , n, tracing out a random trajectory ⇠. According to (2), the
probability of ⇠ is given by

prob
⇥
⇠, dt1 · · · dtn

⇤
=

⇣ nY

j=1

e-2⌫D(tj-tj-1)D dtj
⌘
e-2⌫D(t-tn)

This is the lattice analogue of the Wiener measure in the theory of
Brownian motion. It implies the di↵usion equation (1) for the “ensemble
state” ⇢t and has many further applications. For example, it yields a
formula for the average distance traveled by ⇠ in time t:

E
⇥
x⇠(t)- x⇠(0)

⇤2
=
X

n

E
⇥
⇠(n)- ⇠(0)

⇤2
| {z }

=n

· (2⌫D · t)n
n!

e-2⌫D·t

| {z }
prob. to make n jumps in time t-t0

= 2⌫D · t (di↵usive motion with entropy prod.)]



3. The stochastic evolution of individual systems in QM

Inspired by the example of the di↵usion equation (1) “unraveled” by the
Poisson jump process describing the stochastic motion of a single particle
⇠ in a gas (Law (2)), we present a q-m stochastic Law of Dynamics of
individual systems obtained by “unraveling” a q-m analogue of the
di↵usion equation.

We think of a very large ensemble, E , of systems, all identical to a
specific system S , consisting of matter interacting with the quantized
radiation field. In the non-relativistic limit, c !1, ensemble states of S
are described by density matrices, ⌦, acting on a separable Hilbert space
H. As shown in the next section, the time evolution of an ensemble state,
⌦t , is described by a Lindblad equation, which is linear and deterministic:

⌦t+dt = ⌦t + L
⇥
⌦t

⇤
dt +O(dt2), with

L
⇥
⌦
⇤ e.g.
= -i

⇥
H0,⌦

⇤
+ ↵

KX

k=1

h
Vk⌦V ⇤

k -
1

2

�
⌦,V ⇤

k Vk

 i
,

(3)



“Unraveling” the Lindblad equation

In (3), L is the Lindblad generator, H0 is the Hamiltonian of S when
matter is decoupled from the radiation field, V1, . . . ,VK are (“jump”)
operators on H, which describe dissipative e↵ects arising from
interactions of matter with the radiation field, and ↵ / e2.

“Ontology”

As in the example of di↵usion theory, we have to ask what the state of
an individual system in E is. A conventional idea is that it is pure at all
times t, i.e., given by a rank-1 orth. projection, ⇧t , on H.3 If, at time t,
all systems in E were prepared in ⇧t the ensemble state at time t + dt
would be given by the density matrix

⌦t+dt = ⇧t + L
⇥
⇧t

⇤
dt +O(dt2) .

The spectral decomposition of ⌦t+dt has the form

⌦t+dt = pnj [t, t + dt]⇧0
t+dt +

X

�>0

p�[t, t + dt]⇧�
t+dt , (4)

where
�
⇧�

t+dt

�� � = 0, 1, 2, . . .
 
are the spectral projections of ⌦t+dt ,

3
or proportional to a finite-rank orth. projection



State reduction

and “nj” stand for “no jump”. These spectral projections represent the
possible states of an individual system at time t + dt, with the
coe�cients interpreted as probabilities (or frequencies – Born’s Rule), as
explained in Sect. 4. Suppose that ⇧t is a rank-1 orthogonal projection
(i.e., a pure state). Assuming that dt is very small, we then find that

⇧0
t+dt ⇡⇧t , pnj [t, t + dt] ⌘ p0[t, t + dt] = 1-O(dt) ⇡ 1 ,

pnj > p1 > p2 > · · · > 0, with p� = O(dt), 8 � � 1 ,

pnj [t, t + dt] +
X

�>0

p�[t, t + dt] dim(⇧�
t+dt) = 1 .

(5)

Our task is to find explicit expressions for the probability pnj [t1, t2] of not
observing a quantum jump in an interval [t1, t2) of times, for the time-
dependence of the state ⇧0

t , with t 2 [t1, t2), and for the probability of
observing a “quantum jump” at time t2 to a state ⇧�

t2 , � > 0, perpendi-
cular to ⇧0

t2 , for arbitrary times t1 < t2. This is accomplished with a novel
tool of functional analysis called Infinitesimal Perturbation Theory (IPT).



Explicit formulae for pnj and ⇧0
t , using IPT

Eq. (4) & IPT ) (non-linear) stochastic Law of Dynamics for states of
individual systems: [Between two “quantum jumps”, at times t1 and t2,

(i) pnj [t1, t2] = exp
⌦Z t2

t1

Tr
�
⇧0

t L[⇧0
t ]
�
dt
↵
< 1 ,

(ii)
d⇧0

t

dt
dt!0
=

⇥
⇧0

t

⇤? L[⇧0
t ] ⇧

0
t + ⇧0

t L
⇥
⇧0

t

⇤ ⇥
⇧0

t

⇤?
, t 2 [t1, t2).]

Eq. (ii) is a non-linear evolution equation for state-trajectories between
two consecutive “quantum jumps”. – If ↵ = 0, i.e., if the dissipative
terms in the Lindblad equation (3) are absent, then eq. (ii) describes
unitary Schrödinger-von Neumann evolution, with pnj ⌘ 1!

The probability to jump from ⇧0
t2 to a state ⇧�

t2+dt2
, for some � > 0, in

the time interval [t2, t2 + dt2] is given by the �th eigenvalue of an explicit

non-negative matrix (given by
⇥
⇧0

t2

⇤? L
⇥
⇧0

t2

⇤ ⇥
⇧0

t2

⇤?
dt2 .)

These results uniquely determine a probability measure on the space of
state-trajectories of individual systems, S , exhibiting “quantum jumps”.



Quantum Poisson Jump Process

The resulting stochastic process on the state-space of S is called a
“quantum Poisson jump process”. It is the quantum-mechanical cousin
of the random-walk- or Wiener process described in Sect. 2.

[In the example of a qubit interacting with the quantized radiation field
(with c !1), the pure states are parametrized by vectors, ~n 2 S2, on
the Bloch sphere (the corresponding density matrix on C2 is given by
⇢~n := 1

2

⇥
12 + ~� · ~n

⇤
). The state trajectory of an individual qubit is

described by a stochastic process on the Bloch sphere with anti-podal
“quantum jumps” (~n 7! -~n) at discrete times, and, in between two such
jumps, ~n(t) evolves according to a non-linear (cubic) equation of motion.]



4. The ETH-Approach to Quantum Mechanics

In this last section, I will explain why the q-m evolution of ensemble
states of systems of charged matter interacting with the quantized
radiation field, in the limit where c !1, is described by a Lindblad
equation with dissipative terms, as considered in the last section; and
how the “ontology” – the specific unraveling of the Lindblad evolution –
proposed there can be derived from basic physical principles at the core
the so-called ETH- Approach to QM – where E stands for events,
T for trees, and H for histories.

Dissipation in a system S may be caused by interactions of the degrees of
freedom in S with an environment E . But one could argue – as did John
Bell – that one ought to consider S _ E as the total system, and that the
states of the system S _ E should then be expected to evolve unitarily

according to a deterministic, linear Schrödinger-von Neumann eq..

It turns out that the radiation field – more generally, any field with
massless modes – represents an “environment” that causes fundamental

dissipation, which leads to a stochastic evolution of individual systems.



Key ingredients of the ETH-Approach

Here are the basic ingredients constituting the ETH-Approach.

I. Potential events, e, in an isolated open system S are described by
partitions of unity, e =

�
b⇡⇠

�� ⇠ 2 Xe

 
,
P

⇠2X b⇡⇠ = 1 , by mutually
disjoint orthogonal projections, b⇡⇠, of finite rank (Xe = “spectrum”
of e denumerable).

At every time t 2 R, 9 a representation of projections of all e of S ,

e 3 b⇡⇠ 7! ⇡⇠(t) , 8⇠ 2 Xe , 8e of S , (6)

by concrete orth. projections, ⇡⇠(t), on a separable Hilbert space H.

Heisenberg time evolution: For all b⇡ 2 e,8 e of S , and for arbitrary
times t and t 0, ⇡(t) and ⇡(t 0) are unitarily conjugated by the
propagator of S . ! Introduce Algebras of potential events

E�t :=
⌦
⇡(t 0)

��⇡(t 0) represents b⇡ 2 e, 8e of S , 8t 0 � t
↵-

. (7)

Clearly
E�t 0 ✓ E�t , whenever t 0 > t .



The Principle of Declining Potentialities

Heisenberg time evolution implies that all the algebras E�t , t 2 R,
are unitarily conjugated to each other; in particular
E�t ' E�0 ⌘ E0 ,8 t.

II. Principle of Declining Potentialities (PDP): In the
ETH-Approach to QM, an isolated open physical system S
capable of producing events is characterized by the property that

E�t 0 $ E�t , 8 t 0 > t . (PDP) (8)

Physics: PDP is an expression of fundamental dissipation. It holds
in theories with massless modes, photons (& gravitons); e.g., in
relativistic QED (D. Buchholz) and in quantum optics in the limit
where c !1. – Photons and gravitons emitted in a diamond
O ⇢ V+

t can escape at the speed of light without detection in
V+
t 0 ; hence, the energy and information they carry away cannot be

recovered at times � t 0.



PDP as a consequence of “Huygens’ Principle”

Huygens’ Principle for c < 1 Huygens’ Principle for c !1

Left: A subalgebra of operators localized in O commute with all of E�t 0

Right: Em field ops.in di↵erent time-slices commute with each other

As in the genesis of Relativity Theory, the em field (and/or the gravit.
field) apparently play a crucial role in the ETH-Approach to QM.



States of physical systems

III.1. States of physical systems: A state, !, of a system S at time t is
a normalized, positive, linear functional on the algebra E�t .

A state at time t enables one to predict the probability of potential
events of S actualizing/happening at times � t, as it ought to.

If PDP holds, states of S at time t depend non-trivially (!) on t, even in
the Heisenberg picture, as we will see.

Given an initial state, !0, of S at time 0, the ensemble state, !t , at a
later time t > 0 corresp. to !0 is given by restricting !0 to the sub-alg.
E�t $ E0 (PDP). In general, the map from !0 to !t does not preserve
purity (i.e., the restr. of a pure state !0 on E0 to E�t , t > 0, need not be
pure) – a manifestation of entanglement of the system’s state with the
states of modes that, for fundamental reasons, are unobservable.



Time evolution of ensemble states

In non-relativistic QED, i.e., for c !1, the following special property P
holds:

P The algebra E0 is isomorphic to the algebra, B(H0), of bounded
operators on a separable Hilbert sub-space, H0 ✓ H.4

Hence a state !0 on E0 is given by a density matrix, ⌦0, on H0. The
isomorphism E�t ' E0 then implies that the ensemble state, !t , of S
at time t > 0, i.e.,

!t := !0

���
E�t

can also be represented by a density matrix, ⌦t . If the algebras
E�t , t � 0, were independent of t then, in the Heisenberg picture,
⌦t = ⌦0, 8 t > 0.

In the Schrödinger picture, the density matrix ⌦t repr. !t at time t > 0
is defined by

Tr
�
⌦t · ⇡(0)

�
:= Tr

�
⌦0 · ⇡(t)|{z}

2 E�t ($E0)

�
, 8 b⇡ 2 e, 8 e. (9)

4In relativistic QED, E0 would be a von Neumann algebra of type III1 or II1.



Lindblad equation, states of individual systems

The map ⌦0 7! ⌦t is linear, positivity-preserving and trace-preserving,
for all t > 0; in fact, it is completely positive. Hence it is given by a
Lindblad semi-group, as assumed in Sect. 3.

III.2. States of individual systems: The true state of an individual

system S characterized by ingredients I, II, III.1 and Property P is
given by a density matrix proportional to an orthogonal projection,
⇧t , in E�t of finite rank (generically of rank 1), 8 times t.

Let ⌦t+dt (dt > 0: time step) be the density matrix obtained by
restricting the state at time t, i.e., dim(⇧t)-1 ⇧t , to E�(t+dt) $ E�t ,
see (9). According to the spectral theorem, ⌦t+dt is given by a
convex combination of its spectral projections,

⌦t+dt = p0[t, t + dt]⇧0
t+dt +

X

�>0

p�[t, t + dt]⇧�
t+dt ,

with p0 � p1 > · · · � 0.

If the time step dt is tiny then ⇧0
t+dt ⇡ ⇧t .



The State-Selection Postulate

The potential event e repr. by the projections
�
⇧�

t+dt

�� � = 0, 1, . . .
 

actualizes at time t + dt according to the following

IV. State-Selection Postulate (“Ontology” of QM): The true state at
time t + dt of an individual isolated system S , whose state at time t
is / to the projection ⇧t , is a density matrix proportional to

• ⇧0
t+dt , with probability p0[t, t + dt] dim(⇧0

t+dt) = 1-O(dt),

or to one of the projections

• ⇧�
t+dt , with probability p�[t, t + dt] dim(⇧�

t+dt) = O(dt),

for some � > 0.

The State-Selection Postulate says that, at each time, a state is selected
(i.e., an event actualizes) in accordance with Born’s Rule. – The limit, as
dt ! 0, is under control!

Conclusions: (i) In this talk I have sketched a completion of non-
relativistic QM derived from the ETH-Approach. Property P and IV
completely justify the analysis presented in Sect. 3! The ETH-Approach
solves the infamous “measurement problem” and the “unitarity paradox”.



Concluding Remarks

(ii) The ETH-Approach can be generalized to encompass relativistic
quantum theory (coupled to gravity). But the fine print of this
generalization remains to be worked out.
(iii) . . .
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—

To conclude let me express my hope that Western European countries

will welcome back – among other peoples – the Russian people in the
European family, that they will solve conflicts by negotiations, rather
than by war, and that they will work for Trust and Peace and the
future of humankind, rather than waste absurd amounts of resources
for rearmament!


