

Welcome to Regensburg!

Today: Geometry

classical geometry
↔ quantum geometry

Einstein equations in the continuum limit

- Consider linearized gravity $g_{ij} = \eta_{ij} + h_{ij}$
- Construct causal fermion system $(\mathcal{H}, \mathcal{F}, \rho)$.
- Analyze the EL equations of causal action principle. Gives

$$R_{jk} - rac{1}{2}\,R\,g_{jk} + \Lambda g_{jk} = \kappa\,T_{jk} + \mathscr{O}ig(h^2ig)$$

with $\kappa \sim \varepsilon^2$ and undetermined cosmological constant.

 Whole setup is generally covariant. Scaling of error terms gives higher orders in curvature,

$$\mathscr{O}(\varepsilon^4 \operatorname{Riem}^2)$$

- with A. Grotz (2011)
- $(\mathcal{H}, \mathcal{F}, \rho)$ causal fermion system with spacetime $M := \operatorname{supp} \rho$.
- For $x \in M$ define spin space $S_xM := x(\mathcal{H})$.
- · There are general notions of

```
spin connection D_{x,y}: S_yM \to S_xM unitary,
```

and *metric connection* $\nabla_{x,y}$.

- · Curvature defined via holonomy
- Unfortunately, it seems impossible to reformulate the causal action principle in this language.

Synthetic geometric notions

- two-dimensional area change and matter flux, connects to T. Jacobson's derivation of the Einstein equations (with E. Curiel and J.M. Isidro)
- total mass (with A. Platzer)
- quasi-local mass, synthetic scalar curvature (with N. Kamran)

• ...

Extrinsic geometric notions

- Work in progress (C. Krpoun, ...)
- $(\mathcal{H}, \mathcal{F}, \rho)$ causal fermion system with spacetime $M := \operatorname{supp} \rho$.
- F is Banach manifold, Hilbert-Schmidt scalar product gives Riemannian metric
- $M \subset \mathcal{F}$ is a subset (or *submanifold*)
- Consider extrinsic curvature, Gauß-Codazzi equations, ...
- Moreover: $\mathcal{L}(x,y)$ is a nonlocal kernel, gives "smeared derivatives", ...
- Hope: Will give
 - geometric reformulation of causal action principle
 - geometric derivation of generalized Einstein equations in non-smooth setting

• ...