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Conjecture: Positive Energy Theorem for Initial Data Set,
Schoen and Yau ’79

Let (Mn, g, k) be an asymptotically large euclidean initial
data set sitting inside some spacetime (M, g) satisfies the
Dominant Energy Condition. Then E ≥ |P|g. If the ADM mass
of one end is zero. Then (M, g) is flat (Mn, g, k) along.
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Theorem: Positive Energy Theorem for Initial Data Set for Spin
Manifolds,Witten, Parker & Taubes

Let (Mn, g, k) be a Spin asymptotically large euclidean initial
data set sitting inside some spacetime (M, g) satisfies the
Dominant Energy Condition. Then E ≥ |P|g. If the ADM mass
of one end is zero. Then (M, g) is flat (Mn, g, k) along.



Why Generalize the Positive Energy
Theorem?

3/36

The classical Positive Energy Theorem (PET) applies to
hypersurfaces, i.e., spacelike submanifolds of
codimension one.

Can we extend the PET to initial data sets (Mr, g, k)
immersed in a semi-Riemannian manifold (Nr+z, ḡ) with
z > 1?
What kind of geometric and analytical conditions must
be imposed in this more general setting?

Goal of this talk

To present a generalization of the Positive Energy Theorem
to higher codimension, following the spinorial approach of
Witten, Hijazi, Zhang, and Daguang without assuming the
condition on the parity of the codimension.
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z > 1?

What kind of geometric and analytical conditions must
be imposed in this more general setting?

Goal of this talk

To present a generalization of the Positive Energy Theorem
to higher codimension, following the spinorial approach of
Witten, Hijazi, Zhang, and Daguang without assuming the
condition on the parity of the codimension.



Why Generalize the Positive Energy
Theorem?

3/36

The classical Positive Energy Theorem (PET) applies to
hypersurfaces, i.e., spacelike submanifolds of
codimension one.
Can we extend the PET to initial data sets (Mr, g, k)
immersed in a semi-Riemannian manifold (Nr+z, ḡ) with
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Manifolds (ALE)
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Let n ≥ 3. A Riemannian manifold (Mn, g) is said to be
asymptotically large Euclidean(ALE) if there is a bounded set K
such thatM \ K is a finite union of ends,M \ K = ∪ki=1Mi. Such that
for each endMl there exists a diffeomorphism, asymptotic charts,

Φl : Ml 7→ Rn \ B1(O), (1)

Then it will have coordinates x1, . . . , xn where

gij(x) = δij +O2(||x||−q) (2)

where q ≥ n−2
2 . Moreover, the scalar curvature is integrable

Rg ∈ L1(M, g).



Asymptotically large Euclidean
Manifolds (ALE)
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Ilustration of an asymptotic large Euclidean manifold with multiple ends.
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LetMr be a smooth manifold.
An initial data set (I.D.S.) on M is a pair (g, k) where g is a
Riemannian metric on M and where k is a symmetric
(0,2)-tensor, k ∈ Γ(Sym2(T∗M)⊗ R). Let I(M,R) be set of
initial data sets for the line bundle.

Then we can define
the Einstein constrain equations,

The energy density µ = Rg − |k|2g + trg(k)2.
The current density J := (divgk)♯ −∇(trgk).

If µ ≥ |J|g then we say that (M, g, k) satisfies the
Dominant Energy Condition (D.E.C).
If k ≡ 0 then we have that µ = Rg ≥ 0.
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Let (M, g) be a Lorentzian manifold. We say that
(Mn, g, k) ∈ I(M,R) sits in (Mn+1, g)

The immersion ι : M ↪→ M is an isometric embedding
with TM|M = TM⊕ R
The symmetric two tensor k is the second fundamental
form of the embedding.

Example
Let (R3, gE, 0) ∈ I(M,R) and let (M, gM). Then we can
just consider (R3, gE, 0) sits in (M, gM).
Let Sn and (gst, gst) ∈ I(Sn,R). The (Sn, gst, gst) sits in
Rn+1
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Definition
An A.L.E. I.D.S. is a pair (g, k) ∈ I(M,R) such that (M, g) is an ALE
manifold and kij(x) ∈ O1(|x|−q−1). The energy density and the
norm of the current density are integrable, µ, |J|g ∈ L1.
Let (Mr, g, k) be an asymptotically flat I.D.S.. Then we can define the
ADM-mass or energy and the momentum

ADM-massmADM(Mk, g) =
limρ→∞

1
2(n−1)ωn−1

∫
Sρ

∑r
i,j=1(gij,i − gii,j) xj

|xj|dVSρ .

ADM-momentum,
Pi = limρ→∞

1
(r−1)ωn−1

∫
Sρ

∑r
j=1(kij − trg(k)gij)ν jdµSρ

for 1 ≤ i, j ≤ r.
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Weighted Hölder Spaces, Ck,αs (M)

∥u∥Ck,αs = sup
x∈M

rk−s+α(x)∥∇ku(x)∥Cα(B r
2
(x))+

m∑
i=0

sup
x∈M

|ri−s(x)∇iu(x)|

Weighted L2,

||u||L2
q(M) =

(∫
M
r−q2−n|u|2dVg

) 1
2

.

Weighted Sobolev space

Hkδ(M) :=

u ∈ Hkloc(M) |
k∑
j=0

∫
M
|∇ju|2r−2δ−n+2j dµg <∞

 .



Weighted function Spaces

Geometric Set up 10/36

Weighted Hölder Spaces, Ck,αs (M)

∥u∥Ck,αs = sup
x∈M

rk−s+α(x)∥∇ku(x)∥Cα(B r
2
(x))+

m∑
i=0

sup
x∈M

|ri−s(x)∇iu(x)|

Weighted L2,

||u||L2
q(M) =

(∫
M
r−q2−n|u|2dVg

) 1
2

.

Weighted Sobolev space

Hkδ(M) :=

u ∈ Hkloc(M) |
k∑
j=0

∫
M
|∇ju|2r−2δ−n+2j dµg <∞

 .



Spin Geometry for People in a Hurry 11/36

Spin Geometry for
People in a Hurry



Set up for the Spin Bundle
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Over (Mn, g, k) we can consider:
The bundle R⊕ TMwith the sections e0 = (1, 0) and
{ei}ni=1 any O.N.B. of TM.
The Lorentzian metric g(eµ, eν) = δµν − 2 δ0

µδ
0
ν .

Under this construction, we can just see that (R⊕ TM, g) is the
pullback of TMn+1.

Then we can just consider the connection on TM⊕ R to be ∇̄ and
the connection onMn as ∇, then,

∇̄ = ∇+ k(, )e0.
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Let S(M) be a spinor bundle over (M, g) with an action of Cl(TM).
To define an action of Cl(R⊕ TM), consider the extended bundle:

S̃(M) = S(M)⊕ S(M),

with inner product given by the sum of the ones on each
component.
Define the action as follows for v ∈ TpM:

v · (ψ1, ψ2) = (v · ψ1,−v · ψ2), e0 · (ψ1, ψ2) = (ψ2, ψ1).

This extends the Clifford action to Cl(R× TM) and satisfies the
Clifford relations.



Spin connection
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The connection in S̃(M) can be reconstructed as follows,

∇̃i = ∇i +
1
2

n∑
j=1

k(ei, ej)ej • e0.

Then two Dirac operators can be defined,
Classical Dirac operator,

D̃ =
n∑
i=0

ei • ∇̃ei

Submanifold Dirac or Dirac-Witten operator,

D =
n∑
i=1

ei •

∇i +
1
2

n∑
j=1

k(ei, ej)ej • e0

 = DM −
trg(k)

2
e0



Schrödinger-Lichnerowicz formula
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Then the Schrödinger-Lichnerowicz formula for the Dirac operators
can be defined,

Classical Dirac operator,

D̃ =
n∑
i=0

ei • ∇̃ei → D(ϕ) = ∇∗∇(ϕ) +
Rg
4
(ϕ)

Submanifold Dirac or Dirac-Witten operator,

D = DM −
trg(k)

2
e0 → D2(ϕ) = ∇∗∇(ϕ) +

1
2
(µ+ Je0)ϕ.



The Dirac-Witten operator
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Let (M, g, k) be a spin initial data set satisfying the strict dominant
energy condition. Then,

For all u ∈ H1
−q(S̃(M)),

||u||H1
−q

≤ C ·
(
||D̃(u)||L2

−q−1
+ ||u||L2

−q

)
,

Let u ∈ L2
−q−1(S̃(M)) be such that, (u, D̃(v))L2

−q−1
= 0 for

all v ∈ C∞c (S̃(M)). Then u ∈ H1
−q(S̃(M)) and D̃(u) = 0.

The Dirac-Witten operator is a Fredholm operator of
positive index.
D : W1,2

−q(S̃(M)) → L2
−q−1(S̃(M)) is an isomorphisim.
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We want to find a Spinor ϕ ∈ Γ(S̃(M)) such that,
Dϕ =0,∫

M
||∇̃ϕ||2 + ⟨ϕ, (1

2
(µ+ Je0))ϕ⟩ − ||D(ϕ)||2 =

(n− 1)ωn−1

2
(E − |P|).

The Witten boundary integral „reproduces" the ADM four
momentum norm,∫
M
||∇̃ϕ||+ ⟨ϕ, (1

2
(µ+ Je0))ϕ⟩ − ||D(ϕ)||2 =

lim
ρl 7→∞

∫
Sρl

n∑
i=1

⟨ϕ,
n∑
j=1

(δji + ei • ej)∇̃jϕ⟩

Where {ρl} is a sequence of radius such that the integral of the
elements will decay properly.



Witten’s boundary integral
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Choosing ϕ ∈ Γ(S̃(M)) such that it is:
Asymptotically Constant with respect to the frame ei.
It is an eigenspinor of the action of

∑r
i=1 Pieie0 with

eigenvalue |P| =
√∑r

i=1 P2
i .

We obtain that,
n∑
i=1

limρl 7→∞

∫
Sρl

⟨ϕ,
n∑
j=1

(δ
j
iei • ej)∇̃jϕ⟩ =

n∑
i=1

lim
ρl 7→∞

∫
Sρl

⟨ϕ,
n∑
j=1

(δ
j
iei • ej)∇̃jϕ⟩

+ lim
ρl 7→∞

∫
Sρl

⟨ϕ,
n∑
j=1

(δ
j
iei • ej)

 1

2

r∑
i=1

k(ei, ej)e0

ϕ⟩.

=
n∑
i=1

lim
ρ→∞

∫
Sρ

r∑
j=1

(gij,i − gii,j)ν
j

+
r∑
j=1

(kij − trg(k)gij)ν
j⟨⟨ϕ, eje0ϕ⟩⟩dµSρ

=
(n − 1)ωn−1

2
(E − |P|)|ϕ|
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Let (Mr, g, k) be a complement A.L.E. spin initial data set sitting in
some spacetime (Mr+1, g) satisfying the dominant energy
condition. Then we have that El ≥ |P|2g.

Proof.
Let ψ0 ∈ Γ(S̃(M))A.C. eigenspinor of the action of

∑r
i=1 Pieie0 with

eigenvalue |P|. Then there exists:
η = −D(ψ0).
Since D is an isomorphism there exists ξ ∈ W1,2

−q such that
ξ = D(η).

We define ψ = ψ0 + ξ such that D(ψ) = D(ψ0) + D(ξ) =
−η + η = 0. Therefore,

lim
i→∞

2

(n − 1)ωn−1

∫
Sρi

|∇̃ψ|2 − |D̃ψ|2 +
1

2
⟨⟨ψ, (µ + J • e0)ψ⟩⟩dµSρi = E − |P|
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What Happen in
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The P.E.T. in Higher Codimensions
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Theorem: P.E.T. for Spin I.D.S. in higher codimensions,Hijazi,
Zhang and Daguang 2012

Let Mn be a compact spacelike spin submanifold of a
pseudo-Riemannian manifold Nn+m, which has possibly
finite number of generalized future or past apparent horizons
Σi. Suppose that the normal bundle ofM is spin andm is odd.
If the generalized dominant energy condition holds, thenEl ≥√∑

k,A P2
lkA



The P.E.T. in Higher Codimensions

What Happen in Higher Codimensions? 23/36

Theorem: P.E.T. for Spin I.D.S. in higher codimensions

Let (Mn, g, k) be an asymptotically large euclideanspin initial
data set sitting inside some pseudo-Riemannian manifold
(M, g). assumming that the normal bundle is spin. If the
generalized dominant energy condition holds, then

El ≥
√∑

k,A

P2
lkA
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LetMr be a smooth manifold and E a vector bundle over it.
An initial data set (I.D.S.) on M is a pair (g, k) where g is a
Riemannian metric on M and where k is a symmetric
(0,2)-tensor, k ∈ Γ(Sym2(T∗M)⊗ E). Let I(M, E) be set of
initial data sets for the vector bundle E.

Then we can
define the Generalized Einstein constrain equations for
E,

µG := 1
4
∑z

A=1
(
trg(kA)2 − |kA|2 + Rg

)
JGA := div(kA)♯ +∇(trg(kA)).

If
µG ≥

z∑
A=1

|JGA |
2
g +

√√√√√ r∑
j ̸=k=1

r∑
B̸=A=1

kBij
2kAik

2


then we say that (M, g, k) satisfies the Dominant Energy
Condition (D.E.C).
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Let (M, g) be a smooth manifold equipped with a
pseudo-Riemannian metric with signature (r, z) We say that
(Mr, g, k) ∈ I(M, E) sits in (Mr+z, g)

The immersion ι : M ↪→ M is an isometric embedding
with TM|M = TM⊕ E
The symmetric two tensor k ∈ Γ(Sym2(T∗M)⊗ E) is the
second fundamental form of the embedding.



Generalized ADM quantities
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Therefore we can define the ADM energy-momentum for the initial
data set (Mr, g, k) of codimension z of an end of M to be,

E = lim
ρ→∞

1
2(r − 1)ωn−1

∫
Sρ

r∑
i,j=1

(gij,i − gii,j)ν jdµSρ

PliA = lim
ρ→∞

1
(r − 1)ωn−1

∫
Sρ

r∑
j=1

(kAij − trg(kA)gij)ν jdµSρ

(3)

for any i ∈ {1, . . . , r} and A ∈ {1, . . . z}.



The group Spin(r, z) and its maximal
compact subgroup
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If we consider (Rr ⊕ Rz, ⟨, ⟩r,z) then the complexified Clifford
algebra is,

Cl((R⊕ Rz, ⟨, ⟩r,z)) ≡ T (Rr+z)/I(r,z).

Where I(r,z) be the ideal generated by the elements of the form

(v,w)⊗ (v′,w′) + (v′,w′)⊗ (v,w) = −2⟨v, v′⟩eu + 2⟨w,w′⟩eu

Then the Spin(r, z) ⊆ Cl(r,z) is defined as,

Spin(r, z) = {v1 · . . . · v2k ∈ Cl0r,z : ⟨v, v⟩r,z = 1 ∧ k ∈ N}

For r, z > 0 such that r + z > 2 then is non-compact. Topologically
retracts onto its maximal compact subgroup.

K+ = {v1 ·v2 ·. . .·v2a ·w1 ·. . .·w2b : vi,wj ∈ Rr,z, |vi| = 1∧|wj| = −1}



Reduction of the structure group to
K

What Happen in Higher Codimensions? 28/36



The Inner product
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In a K-Clifford algebra, Cl(V, β), there are two standard scalar
product,

(ϕ, ψ) = (ϕ • ψ)∅ & (ϕ, ψ)Σ =
2r+z∑
i=1

ϕiψ̄i

To extend this to a positive definite Hermitean scalar product in
the spinor bundle it can be used the complex Element,
ω = i

z(z−1)
2 Πz

A=1eA,
⟨ϕ, ψ⟩ = (ωϕ, ψ)Σ

The behavior of the inner product it is going to be dominated by
the codimension of the normal bundle.

If z is odd, ei • ω = −ωei and eA • ω = ω • eA. Moreover,
⟨ei • ϕ, ψ⟩ = −⟨ϕ, ei • ψ⟩ and ⟨eA • ϕ, ψ⟩ = ⟨ϕ, eA • ψ⟩
If z is even, ei • ω = ωei and eA • ω = −ω • eA. Moreover,
⟨ei • ϕ, ψ⟩ = ⟨ϕ, ei • ψ⟩ and ⟨eA • ϕ, ψ⟩ = −⟨ϕ, eA • ψ⟩
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In a K-Clifford algebra, Cl(V, β), there are two standard scalar
product,

(ϕ, ψ) = (ϕ • ψ)∅ & (ϕ, ψ)Σ =
2r+z∑
i=1

ϕiψ̄i

To extend this to a positive definite Hermitean scalar product in
the spinor bundle it can be used the complex Element,
ω = i

z(z−1)
2 Πz

A=1eA,
⟨ϕ, ψ⟩ = (ωϕ, ψ)Σ

The behavior of the inner product it is going to be dominated by
the codimension of the normal bundle.

If z is odd, ei • ω = −ωei and eA • ω = ω • eA. Moreover,
⟨ei • ϕ, ψ⟩ = −⟨ϕ, ei • ψ⟩ and ⟨eA • ϕ, ψ⟩ = ⟨ϕ, eA • ψ⟩
If z is even, ei • ω = ωei and eA • ω = −ω • eA. Moreover,
⟨ei • ϕ, ψ⟩ = ⟨ϕ, ei • ψ⟩ and ⟨eA • ϕ, ψ⟩ = −⟨ϕ, eA • ψ⟩
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Let Rr ⊕ Rz be a real vector space with an inner product of
signature (r, z).
We define a ∗-involution by:

∗ : Rr ⊕ Rz → Rr ⊕ Rz, (u, v) 7→ (u, v)∗ := (−u, v).

This involution satisfies (x∗)∗ = x, and flips the sign of vectors in
the negative-definite part.
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We can define the following map,

⟨⟨•, •⟩⟩ : Clr,z × Clr,z 7→ C
(ϕ, ψ) 7→ ⟨⟨ϕ, ψ⟩⟩ := (ψ∗ϕ)∅

The previous map is in fact an indefinite sesquilinear form, i.e.
complex-valued bilinear form which is antilinear in the second slot,
and is not positive definite.
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Let Clr,z together with the inner product ⟨, ⟩.
The Clifford multiplication by vector from ei ∈ Rr ⊕ 0 is
skew-symmetric, ⟨⟨ei · ϕ, ψ⟩⟩ = −⟨⟨ϕ, ei · ψ⟩⟩.
The Clifford multiplication by vector from eA ∈ 0 ⊕ Rz is
symmetric, ⟨⟨eA · ϕ, ψ⟩⟩ = ⟨⟨ϕ, eA · ψ⟩⟩.
⟨⟨, ⟩⟩ is invariant under the action of elements from
a ∈ K+ , ⟨⟨a · ϕ, a · ψ⟩⟩ = |a|2⟨⟨ϕ, ψ⟩⟩

Then we have the following properties for the Dirac operators,
The Dirac operator D̄ is formally self-adjoint with respect
to the L2

−q inner product.
The Dirac-Witten operator D̃ is formally self-adjoint with
respect to L2

−q.
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Theorem
Let (M, g, k) be a spin initial data set. For any ψ ∈ C∞(S̃(M)),

D̃2(ϕ) =
z∑
i=1

M∇Σ∗
ei
M∇Σ

ei (ϕ)

+
1
2

[
1
2

∑
A=s+1

(
trg(kA)2 − |kA|2 + Rg

)

− 1
2

( r∑
j ̸=k=1

r+z∑
B ̸=A=1+r

kBijk
A
ikej · ek · eB · eA

)

+
(
div(kA)♯ +∇(trg(kA))

)
eA
]
· ϕ
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Let (Mr, g, k) be a complete A.L.E. spin initial data set immersed in a
spacetime (Mr+z, g) satisfying the Dominant Energy Condition.
Then: El ≥

√∑r
i=1
∑r+z

A=r+1(PAi )2

Sketch of the proof:
Let ψ0 ∈ Γ(S̃(M)) be asymptotically constant in a frame
{eα}, and an eigenspinor of

∑
i,A PiAeieA, with eigenvalue

|P|.
Define η := −D(ψ0). Since D is an isomorphism, there
exists ξ ∈ W1,2

−q such that ξ = D(η).
Set ψ := ψ0 + ξ, so that D(ψ) = 0.

Then the spinorial identity yields:

lim
i→∞

2
(n− 1)ωn−1

∫
Sρi

(
|∇̃ψ|2 − |D̃ψ|2 + 1

2
⟨⟨ψ, (µG +

z∑
A=1

JA · eA)ψ⟩⟩

)
dµ = E−|P|
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Key Ideas
The Positive Energy Theorem extends to spacelike
submanifolds of codimension z > 1, provided the
normal bundle is spin.
The dominant energy condition and the ADM
Energy-momentum must be generalized.
The Spin structure must be adapted to the case of
pseudo-Riemannian manifolds.

Next work
Make a rigidity statement.
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Thanks for your attention!
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