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The Calderón problem,

an inverse problem in geometric analysis
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Set-up

• Let Ω be a bounded domain of Rn, n ≥ 3, with C∞ boundary.

• Let γ = (γ ij), referred to as a conductivity, be a bounded measurable
function from Ω to the set Sn of positive-definite symmetric matrices,
satisfying the uniform ellipticity condition

γ ij(x) ξi ξj ≥ c|ξ|2 ,

for a.e. x ∈ M and for all ξ ∈ Rn, where c > 0 is some positive constant.

• Let λ be a real parameter, referred to as a frequency.

Consider the boundary value problem{
Lγu := −div (γ∇u) = λu, on Ω,

u = f on ∂Ω.
(1)

We have :

Proposition

If λ /∈ σDir (Lγ) and f ∈ H1/2(∂Ω), then (1) admits a unique solution
u ∈ H1(Ω).
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The Dirichlet-to-Neumann (DN) map

For γ and f smooth enough, the DN map is defined by

Λγ,λf = (γ∇u) · ν |∂Ω , (2)

where ν = (ν i ) is the unit outer normal to the boundary.

In general, the DN map Λγ,λ : H1/2(∂Ω) → H−1/2(∂Ω) is defined in a weak
sense by

⟨Λγ,λf |g⟩ =
∫
Ω

γ∇u · ∇v dx − λ

∫
Ω

u v dx , for all f , g ∈ H1/2(∂Ω), (3)

where u is the unique solution of (1), v is any element of H1(Ω) s.t. v|∂Ω = g ,

and ⟨·|·⟩ is the standard L2 duality pairing between H1/2(∂Ω) and H−1/2(∂Ω).

The DN map Λγ,λ is an elliptic pseudo-differential operator Λγ,λ of order 1.
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An inverse problem

Question : Does the knowledge of the DN map Λγ,λ determine uniquely the
conductivity γ ?

This is known as the Calderón problem.

Remarks :

• Calderón considered only the case of isotropic conductivities, that is
γ ij = c(x)δij . We are concerned with the general anisotropic case.

• The answer depends significantly on whether λ = 0 or λ ̸= 0. We shall
see that this is due to the differences between the gauge invariances
enjoyed by the DN map for these cases.
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The Calderón problem at zero frequency

Question : Does the knowledge of the DN map Λγ,0 at zero frequency λ = 0
determine uniquely the conductivity γ ?

Due to a natural gauge invariance, the answer to the above question is no.

Indeed :

Proposition

For all ψ ∈ Diff(Ω) such that ψ|∂Ω = Id, one has

Λψ∗γ,0 = Λγ,0 , (4)

where

ψ∗γ :=

(
Dψ · γ · (Dψ)T

|detDψ|

)
◦ ψ−1 . (5)

This leads to :
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Calderón conjecture at zero frequency

Conjecture

Let Ω ⊂ Rn, n ≥ 3, be a bounded domain with smooth boundary and let
γ1, γ2 be bounded measurable conductivities on Ω. If

Λγ1,0 = Λγ2,0

then there exists a diffeomorphism ψ : Ω → Ω such that such that ψ|∂Ω = Id
and such that

γ2 = ψ∗γ1 .

In dimension n ≥ 3, for Cω conductivities, the Calderón conjecture for λ = 0
has been proved by Lee-Uhlmann and Lassas-Uhlmann.

For C∞ rather than Cω conductivities, the conjecture is still open. There exist
counterexamples with γ ∈ C∞(Ω), but only Hölder continuous on a connected
component of ∂Ω (Daudé, K. and Nicoleau). These use operators that fail to
satisfy Hörmander’s unique continuation principle and are local in that
supp f ⊊ ∂Ω.
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Riemannian formulation at zero frequency

The proof of Lee and Uhlmann makes use of an equivalent Riemannian
formulation by rewriting

Lγu = 0 , (6)

as
∆gu = 0 , (7)

where
g ij := det(γ ij)

1
n−2 γ ij .

The transformation law (5) for (γ ij) gets converted into the tensorial
transformation law for (g ij) :

ψ∗g =
(
Dψ · g · (Dψ)T

)
◦ ψ−1 .
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The idea behind the proof of Lee and Uhlmann is to compute the symbol of
Λg,0 in boundary normal coordinates,

gij dx
idx j = (dxn)2 +

n−1∑
α,β=1

gαβ(x
γ , xn)dxαdxβ ,

and to show that it determines the Taylor series of g along ∂Ω :

One factorizes

−∆g = (i∂xn + iE(xn, xγ)− iA(xn, xγ)).(i∂xn + iA(xn, xγ)) mod S−∞ ,

and computes
Λg,0f = |g |1/2A f modS−∞ .



Counter-
examples to
uniqueness

for a
Calderón
problem

Niky
Kamran

The
anisotropic
Calderón
problem

Statement
of the main
result

Main ideas
of the proof

Some
details of
the proof

Gauge invariance in the case λ ̸= 0

When λ ̸= 0, there is a corresponding gauge invariance for the DN map Λγ,λ
which is more subtle than in the case λ = 0 : One has to restrict to the
subgroup SDiff(Ω) ⊂ Diff(Ω) of diffeomorphisms ψ such that

|detDψ| = 1 on Ω , ψ|∂Ω = Id .

This is a consequence of :

Lemma

Let ψ : Ω → Ω be a diffeomorphism and assume that u solves

−div ((ψ∗γ)∇u) = λu .

Then, if we set ũ = u ◦ ψ, one has

−div (γ∇ũ) = λ |detDψ| ũ .
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Then, we obtain immediately :

Proposition

For any λ /∈ σDir (Lγ) and ψ ∈ SDiff(Ω), we have

Λψ∗γ,λ = Λγ,λ. (8)

In view of the above proposition, we introduce the following definition :

Definition

Let γ1, γ2 be conductivities defined in Ω. We say that γ1 and γ2 are isometric
if there exists ψ ∈ SDiff(Ω) such that γ2 = ψ∗γ1.
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Calderón conjecture at non-zero frequency

In the case of non-zero frequency, we are thus led in view of the above
discussion to modify the Calderón conjecture as follows :

Conjecture

Let Ω ⊂ Rn, n ≥ 3, be a bounded domain with smooth boundary and let
γ1, γ2 be bounded measurable conductivities on Ω. Let λ ̸= 0 be any fixed
frequency that does not belong to the Dirichlet spectrum of Lγj , j = 1, 2. If

Λγ1,λ = Λγ2,λ

then γ1 and γ2 are equal up to isometry.

In what follows , we shall construct C k counterexamples to this conjecture.
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Statement of the main result
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Main result

We introduce the following definition :

Definition

Given k ≥ 0 and ϵ > 0 we say that the conductivities γ1, γ2 are (ϵ, k)-close if

||γ2 − γ1||Ck (Ω,Sn)
≤ ϵ .

Our main result is the following :

Theorem

Let Ω ⊂ Rn, n ≥ 3 be a bounded domain with smooth boundary and let γ be
a smooth conductivity in Ω. Let us consider λ0 ̸= 0 which does not belong to
the Dirichlet spectrum of Lγ . Then, for any k ≥ 1 and ϵ > 0 there exists a
pair of non-isometric conductivities (γ1, γ2) on Ω of class C k , which are (ϵ, k)
close to γ and satisfy

Λγ1,λ0 = Λγ2,λ0 .
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Main ideas of the proof

Our non-uniqueness results are based on the usual conformal invariances for
div-grad operators and on transformations by suitably chosen diffeomorphisms.

First, we recall the identity :

div (c2γ∇v) = c [div (γ∇(cv))− div (γ∇c)v ] .

Thus, if we begin with v satisfying

− div (c2γ∇v) = λv , (9)

we get immediately

−div (γ∇(cv)) +
1

c

(
div (γ∇c) + λ(c − 1

c
)

)
(cv) = λ(cv).
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Second, we introduce an auxiliary function f ∈ C∞(Ω) which will be chosen in
order to use the natural invariance given in Lemma 1 with a suitable
diffeomorphism ψ : Ω → Ω depending on f .

We rewrite (9) as

−div (γ∇(cv)) +
1

c

(
div (γ∇c) + λ(c − 1

c
+ cf )

)
(cv) = λ(1 + f )(cv) ,

If we assume now that the conformal factor c satisfies

div (γ∇c) + λ(c − 1

c
+ cf ) = 0 ,

we get immediately :

−div (γ∇(cv)) = λ(1 + f )(cv) .

It remains to choose a suitable function f ∈ C∞(Ω).
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We do this by choosing f ∈ C∞(Ω) which satisfies for some fixed α ∈ (0, 1),∫
Ω

f (x) dx = 0 , ||f ||C0,α(Ω) ≤ ϵ , (10)

where ϵ > 0 is small enough.

In particular, we see that 1 + f ≥ 1
2
in Ω.

Lemma (Dacorogna and Moser)

Under the assumption (10), there exists for all k ∈ N a C k+1,α diffeomorphism
ψ : Ω → Ω such that ψ = Id on ∂Ω and |det Dψ| = 1 + f on Ω. Moreover,
we have the following estimate :

||ψ − Id ||k+1,α ≤ Ck ||f ||k,α,

where the constant Ck only depends on k and Ω.
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Thus, using the gauge invariance (8), we see that our initial equation (9)

−div (c2γ∇v) = λv ,

can be written equivalently in the simpler form :

−div (ψ∗γ∇w) = λw with w = (cv) ◦ ψ−1 .

We therefore immediately get the following result :
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Proposition

If c satisfies

div (γ∇c) + λ(c − 1

c
+ cf ) = 0 ,

with
c = 1 , γ∇c · ν = 0 on ∂Ω ,

where f ∈ C∞(Ω) satisfies for some fixed α ∈ (0, 1) and ϵ small enough,∫
Ω

f (x) dx = 0 , ||f ||C0,α(Ω) ≤ ϵ , (11)

then there exists a C k+1,α diffeomorphism ψ : Ω → Ω such that ψ = Id on ∂Ω
and such that if λ is not a Dirichlet eigenvalue of Lc2γ , then

Λc2γ,λ = Λψ∗γ,λ.
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Unique continuation principle

Remark : In the case where f = 0 or λ = 0, the previous Proposition will not
lead to counterexamples to uniqueness.

Indeed, the equation for the conformal factor c,

div (γ∇c) + λ(c − 1

c
+ cf ) = 0 ,

can be written in this case as

div (γ∇d) + Vd = 0 on Ω,

with d = c − 1 and

V = λ

(
c + 1

c

)
,

Then, it follows from the unique continuation principle, that the unique
solution is d = 0, or equivalently c = 1.

In other words, the two conductivities c2γ and ψ∗γ are isometric.
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Numerical range

Let us begin by an abstract result on the numerical range (with constraints) of
the operator Lγ .

Lemma

Let W (Lγ) the numerical range with constraints of Lγ defined as

W (Lγ) = {< Lγu, u > ; u ∈ X}, (12)

where we have set

X = {u ∈ C∞
0 (Ω,R) , ||u||2 = 1 ,

∫
Ω

u(x) dx = 0} . (13)

Then, W (Lγ) is an open interval (m,+∞) with m := inf W (Lγ) > λ1 > 0,
where λ1 denotes the first Dirichlet eigenvalue of Lγ on Ω.
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Conformal factor

Now, let us consider a fixed λ0 > 0 (for instance) which does not belong to
the Dirichlet spectrum of Lγ .

First, we choose a parameter α > 0 such that αm
2α+1

< λ0. Using the previous

Lemma (with Lγ ↔ αLγ
2α+1

) , we see that

λ0 ∈ (
αm

2α+ 1
,+∞) = W (

αLγ
2α+ 1

) .

In particular, there exists u ∈ X such that

λ0 =
α

2α+ 1
< Lγu, u > .

For ϵ > 0 small enough, we define the positive conformal factor cϵ(x) on Ω by

cϵ,α(x) = (1 + ϵu(x))α.

This conformal factor satisfies cϵ,α(x) = 1, (γ∇cϵ,α(x)) · ν = 0 on ∂Ω.
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Choice of f

For a suitable frequency λϵ,α > 0 to be defined later, we set :

fϵ,α = − 1

λϵ,α cϵ,α
div(γ∇cϵ,α) +

1

c2ϵ,α
− 1.

By construction, our non-linear PDE (with c ↔ cϵ,α, f ↔ fϵ,α, λ↔ λϵ,α) :

div (γ∇c) + λ(c − 1

c
+ cf ) = 0 ,

is satisfied and we have fϵ,α ∈ C∞(Ω). Now, we choose λϵ,α > 0 in order to
satisfy ∫

Ω

fϵ,α(x) dx = 0.

Using Green’s formula, we easily get :

λϵ,α =

∫
Ω

γ∇cϵ,α·∇cϵ,α
c2ϵ,α

dx∫
Ω

(
1

c2ϵ,α
− 1

)
dx

,

In other words, we have solved our non-linear PDE ”backwards” by suitably
choosing f .
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Some useful asymptotics

We can get easily the asymptotic expansion :

λϵ,α =
α

2α+ 1
< Lγu, u > +O(ϵ) = λ0 + O(ϵ).

This is why we have considered (a posteriori)
αLγ
2α+1

instead of Lγ .

For ϵ small enough, we get :

• λϵ,α > 0.

• for all k ∈ N and β ∈ (0, 1), ||fϵ,α||k,β = O(ϵ).

• cϵ,α(x) = 1 + O(ϵ).

• λϵ,α is not an eigenvalue Lcϵ,αγ .

As a consequence, for all k ∈ N, there exists a C k+1 diffeomorphism ψϵ,α close
to the identity such that :

Λc2ϵ,αγ,λϵ,α
= Λ(ψϵ,α)∗γ,λϵ,α .
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Renormalization at frequency λ0

Now, if we define the new conductivity :

βϵ,α =
λ0

λϵ,α
γ,

we get obviously :
Λc2ϵ,αβϵ,α,λ0

= Λ(ψϵ,α)∗βϵ,α,λ0
.

Finally, since volume is an invariant under diffeomorphisms, we can show using
the previous asymptotics that for ϵ small enough, the conductivities c2ϵ,αβϵ,α
and (ψϵ,α)∗βϵ,α are not isometric.

And the proof is finished.
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Thank you very much for your attention !
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