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What is a causal fermion system?

� approach to fundamental physics

� novel mathematical model of spacetime

‘‘quantum spacetime,” “quantum geometry”

� physical equations are formulated in generalized

spacetimes

causal action principle, causal variational principles
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How to get into the setting of causal fermion systems?

Let us begin with following setup:

� SM vector bundle over a smooth manifold M (spinor

bundle, tangent bundle, complex line bundle, . . . )

� Assume that each fiber SxM is endowed with an inner

product

≺.|.≻x : SxM × SxM → C .

� Consider a family (ψn) of sections (for example wave

functions, vector fields, . . .

� Assume that sections form a Hilbert space H, endowed

with scalar product 〈.|.〉H

〈.|.〉H : H ×H → C .
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How to get into the setting of causal fermion systems?

≺.|.≻x : SxM × SxM → C

〈.|.〉H : H ×H → C

� For any x ∈ M introduce the

local correlation operator F (x) by

〈ψ|F (x) φ〉H := ≺ψ(x) |φ(x)≻ ∀ ψ, φ ∈ H .

� This gives rise to a mapping

F : M → F ⊂ L(H) .

� Assume a volume measure µM on M. Introduce the

push-forward measure,

ρ := F∗(µM) (i.e. ρ(Ω) := µM

(

F−1(Ω)
)

)
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Causal fermion systems

Definition. Let (H, 〈.|.〉H) be Hilbert space

Given parameter n ∈ N (“spin dimension”)

F :=
{

x ∈ L(H) with the following properties:

� x is symmetric and has finite rank

� x has at most n positive

and at most n negative eigenvalues
}

ρ a measure on F

(ρ,F,H) is a causal fermion system.

M := supp ρ is the spacetime of the causal fermion system.

M
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Example: Dirac spinors in Lorentzian spacetime

Let (M,g) be a Lorentzian spacetime,

for simplicity globally hyperbolic,

4-dimensional, signature (+,−,−,−),
then automatically spin,

(SM,≺.|.≻) spinor bundle

SpM ≃ C
4

spin inner product

≺.|.≻p : SpM × SpM → C

is indefinite of signature (2,2)

(D − m)ψm = 0 Dirac equation
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Example: Dirac spinors in Lorentzian spacetime

� Cauchy problem well-posed, global smooth solutions

(for example symmetric hyperbolic systems)

� finite propagation speed

C∞
sc (M,SM) spatially compact solutions

(ψm|φm)m :=

∫

N

≺ψm|/νφm≻x dµN(x) scalar product

completion gives Hilbert space (Hm, (.|.)m)
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Example: Dirac spinors in Lorentzian spacetime

� Choose H as a subspace of the solution space,

H = span(ψ1, . . . , ψf )

� To x ∈ R
4 associate a local correlation operator

〈ψ|F (x)φ〉 = −≺ψ(x)|φ(x)≻x ∀ψ, φ ∈ H

Is symmetric, rank ≤ 4

at most two positive and at most two negative eigenvalues

� Here ultraviolet regularization may be necessary:

〈ψ|F (x)φ〉 = −≺(Rεψ)(x)|(Rεφ)(x)≻x ∀ψ, φ ∈ H

Rε : H → C0(M,SM) regularization operators

ε > 0 : regularization scale (Planck length)
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Example: Dirac spinors in Lorentzian spacetime

� Thus F (x) ∈ F where

F :=
{

F ∈ L(H) with the properties:

⊲ F is symmetric and has rank ≤ 4
⊲ F has at most 2 positive

and at most 2 negative eigenvalues
}
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Example: Dirac spinors in Lorentzian spacetime

We obtain mapping x 7→ F (x) ∈ F ⊂ L(H)

Ft

~x

F ⊂ L(H)

Take push-forward measure

ρ := F∗(µM) (i.e. ρ(Ω) := µM

(

F−1(Ω)
)

)
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Example: Dirac spinors in Lorentzian spacetime

M := suppρ

F ⊂ L(H)

We thus obtain a causal fermion system of spin dimension two.
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Causal action principle

Let x , y ∈ F. Then x and y are linear operators.

x ·y ∈ L(H):

rank ≤ 2n

in general not self-adjoint: (x ·y)∗ = y ·x 6= x ·y

thus non-trivial complex eigenvalues λxy
1 , . . . , λ

xy
2n
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Causal action principle

Nontrivial eigenvalues of xy : λ
xy
1 , . . . , λ

xy
2n ∈ C

Lagrangian L(x , y) =
1

4n

2n
∑

i ,j=1

(

|λ
xy
i | − |λ

xy
j |

)2
≥ 0

action S =
x

F×F

L(x , y) dρ(x) dρ(y) ∈ [0,∞]

Minimize S under variations of ρ, with constraints

volume constraint: ρ(F) = const

trace constraint:

∫

F

tr(x) dρ(x) = const

boundedness constraint:
x

F×F

2n
∑

i=1

|λxy
i |2 dρ(x)dρ(y) ≤ C

� F.F., “Causal variational principles on measure spaces,”

J. Reine Angew. Math. 646 (2010) 141–194
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A few general remarks

One basic object: measure ρ on set F of linear operators on H,

describes spacetime as well as all objects therein

� Underlying structure: family of fermionic wave functions

� Geometric structures encoded in these wave functions

Matter encodes geometry

“Quantum spacetime”

The setting allows for the description of both continuum and

discrete spacetimes.

� Causal action principle describes spacetime as a whole

(similar to Einstein-Hilbert action in GR)

� Causal action principle is a nonlinear variational principle

(similar to Einstein-Hilbert action or classical field theory)

� Linear dynamics of quantum theory recovered in limiting

case (more details later)
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Results of the theory

Continuum limit

(classical fields coupled to second-quantized Dirac field):

� interactions of the standard model (electroweak + strong)

� general relativity

� quantum mechanics

Other limiting case (more recently, with C. Dappiaggi, N.

Kamran and M. Reintjes)

� quantum field theory

(second-quantized fermionic and bosonic fields)
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Analysis in the Continuum Limit

The above example of a Lorentzian spacetime is the starting

point for continuum limit analysis:

� Consider Dirac systems in a classical bosonic field

Are measures critical points in the limit εց 0?

Fundamental Theories

of Physics 186

Springer, 2016

548+xi pages

arXiv:1605.04742 [math-ph]

classical fields coupled to second-quantized Dirac field:

� interactions of the standard model (electroweak + strong)

� general relativity
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The limiting case of classical GR

� Space-time goes over to a Lorentzian manifold

� The EL equations of the causal action principle give rise to

the Einstein equations,

Rjk −
1

2
R gjk + Λ gjk = κTjk + O

(

ℓ4
Planck Riem2

)

� κ ∼ ℓ2
Planck is determined by the length scale of the

microscopic space-time structure.
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How to go beyond classical GR?

� M := supp ρ no longer has a manifold structure

� no tensor equations

� Instead: Work directly with structures of causal fermion

system

� In particular: EL equations of causal action principle still

well-defined
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Inherent structures of a causal fermion system

Let (ρ,F,H) be a causal fermion system of spin dimension n,

base space M := suppρ.

points in M are linear operators on H

� For x ∈ M, consider eigenspaces of x .

� For x , y ∈ M,

consider operator products xy

project eigenspaces of x to eigenspaces of y

Gives rise to:

� vector bundles, sections therein

� geometric structures (connection, curvature)

� analytic structures
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A Lorentzian quantum geometry

� A causal fermion systems has inherent geometric
structures:

spinor space (Sx ,≺.|.≻x ),

Sx := x(H) ⊂ H “spin space”, dimSx ≤ 2n

≺u|v≻x : Sx × Sx → C , ≺u|v≻x := −〈u | x v〉H

Physical wave functions

Let u ∈ H and πx : H → Sx orthogonal projection

ψu(x) := πx u

kernel of fermionic projector

P(x , y) = πx y |Sy
: Sx → Sy

“gives relations between space-time points”
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Inherent geometric structures

P(x , y) : SyM → SxM gives relations between spin spaces

idea: a polar decomposition gives

Dx,y : SyM → SxM unitary spin connection

holonomy of connection gives curvature

R(x , y , z) = Dx,y Dy ,z Dz,x : SxM → SxM

Additional structures:

tangent space TxM, carries Lorentzian metric,

∇x,y : TyM → TxM corresponding metric connection

spin and metric connections are compatible

→ F.F., A. Grotz, “A Lorentzian Quantum Geometry,” arXiv:1107.2026

[math-ph], Adv. Theor. Math. Phys. 16 (2012) 1197-1290
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Correspondence to Lorentzian spin geometry

Let (M,g) be a globally hyperbolic Lorentzian manifold.

Choose Pε(x , y) as regularized Dirac sea structure:

� ε is regularization scale

� regularization can be removed:

Pε(x , y)
εց0
−→ P(x , y)

where P(x , y) is two-point distribution of Hadamard form
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Correspondence to Lorentzian spin geometry

Theorem. In the limit εց 0:

Dx,y goes over to the metric spin connection.

Curvatures gives the Riemann curvature tensor.

x
0

x

x

1

N

lim
N→∞

lim
εց0

DxN ,xN−1
DxN−1,xN−2

· · · Dx1,x0

= DLC

x,y + O

(

L(γ)
‖∇R‖

m2

)

(

1 + O

(

s

m2

))

→ F.F., A. Grotz, “A Lorentzian Quantum Geometry,” arXiv:1107.2026

[math-ph], Adv. Theor. Math. Phys. 16 (2012) 1197-1290

Felix Finster Causal fermion systems



Synthetic Notions of curvature

Instead of recovering notions of differential geometry,

alternative approach: introduce synthetic notions of curvature:

� Compare volumes and areas (isoperimetric inequalities,

positive mass, . . . )

� Compare interacting spacetimes with vacuum spacetime
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Surface layer integrals

Ω Ω

ν y

x b

b

δN

∫

N

· · · dµN

∫

Ω

dρ(x)

∫

M\Ω
dρ(y) · · · L(x , y)

Here (· · · ) stands for a suitable differential operator.

→ F.F., J. Kleiner, “Noether-like theorems for causal variational principles,”

arXiv:1506.09076 [math-ph], Calc. Var. Partial Differential Equations

55:35 (2016)
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The total mass of a static causal fermion system

Synthetic notions have been studied mainly in the static setting

� positive mass (generalizes ADM mass)

� positive quasi-local mass

� synthetic scalar curvature

� right now, we are studying isoperimetric flows using

minimizing movements, . . . , . . .

→ F.F., A. Platzer, “A positive mass theorem for static causal fermion

systems,” arXiv:1912.12995 [math-ph], Adv. Theor. Math. Phys. 25

(2021) 1735–1818

→ F.F., N. Kamran, N., “A positive quasilocal mass for causal variational

principles,” arXiv:2310.07544 [math-ph], Calc. Var. 64 (2025) 91pp
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The total mass abstractly

� Let (Ωn)n∈N be exhaustion of N by compact sets,

(Ω̃n)n∈N exhaustion of Ñ with

µ(Ωn) = µ̃(Ω̃n) ∀n

M := lim
n→∞

(
∫

Ω̃n

d µ̃(x̃)

∫

N\Ωn

dµ(y) L(x̃ , y)

−

∫

Ωn

dµ(x)

∫

Ñ\Ω̃n

d µ̃(ỹ) L(x , ỹ)

)

N

Ωn xM

Ñ
M̃

Ω̃n
x̃

y

ỹ
L
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The quasilocal mass

Ω̃ ⊂ Ñ

Φ−1 Φ−1(Ω̃)

N

Φ an isometry of the Lagrangian in the sense that

L
(

Φ(x),Φ(y)
)

= L(x , y) for all x , y ∈ F .

M(Ω̃) := inf
{

Mµ̃,Φ∗µ

(

Ω̃,Ω
)

∣

∣

∣
Φ ∈ G,Ω ⊂ Φ(N) with

Ω and Ω̃ have the same volume, . . .
}
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Applications

Physical applications:

baryogenesis (see poster by Marco van den Beld Serrano)

wave function collapse, reduction of the wave functions

corrections to classical field equations and quantum field

theory, . . .

Mathematical applications:

singular limits of manifolds (with Niky Kamran and Olaf

Müller)

ρn → ρ as measures on F
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An introductory book

❈�✁✂�✄ ☎✆✝✞✟✠✡

❙☛✂☞✆✞✂

❆✌ ✍✌✎✏✑✒✓✔✎✕✑✌ ✎✑ ✖✓✌✒✗✘✙✌✎✗✚
✛✎✏✓✔✎✓✏✙✜✢ ✣✙✎✤✑✒✜ ✗✌✒ ❆✥✥✚✕✔✗✎✕✑✌✜

✦✧★✩✪✫✬✭✮ ★✯✰✯✭✪✧✱✲✳
✯✰ ★✧✴✲✮★✧✴✫✦✧✵ ✱✲✶✳✫✦✳

✷✸✹✺✻ ✷✺✼✽✾✸✿❀
❁✸❂❃✽✾✺❃✼ ❄✺✼❅✸✿❇❃✼✼
❃✼❅ ❉❃✼❊❋✸✼❅✿✺● ❍✿✸■❅✸

to appear in October in

Cambridge Monographs

on Mathematical Physics

Cambridge University Press

483+xii pages

arXiv:2411.06450 [math-ph]
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� Conference dedicated to causal fermion systems

(both math and physics)

� introductory “summer school” at the beginning

� You can register at

www.causal-fermion-system.com/conference2025
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