Niky Kamran, McGill University, Montréal

Titel: Global counterexamples to uniqueness for a Calderón problem with C^k conductivities

Abstract: Let Ω be a bounded subset of \mathbb{R}^n with C^{∞} boundary, where $n \geq 3$, and let $\gamma = (\gamma^{ij})$ be a bounded measurable function on $\overline{\Omega}$ taking values in the set S_n of positive definite $n \times n$ symmetric matrices. The Calder'on inverse problem consists in recovering the map γ from the from the knowledge of the Dirichlet-to-Neumann map at fixed frequency for the operator $L_{\gamma} = -\partial_i(\gamma^{ij}\partial_j)$, up to some gauge equivalences induced by the invariance properties of the Dirichlet-to-Neumann map. We obtain counterexamples to uniqueness for the Calderón problem by showing that for any smooth map γ and any frequency that does not belong to the Dirichlet spectrum of L_{γ} , there exists, for any $k \geq 1$ and any $\epsilon > 0$, a pair of non gauge-equivalent maps γ_1, γ_2 of class C^k which are ϵ -close to γ in the $C^k(\overline{\Omega}, S_n)$ topology, such that their Dirichlet-to-Neumann maps are equal. This is joint work with Thierry Daudé (Besançon), Bernard Helffer (Nantes) and François Nicoleau (Nantes).