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1. Introduction



2024 Survey of New Harvard Physics PhD Students



Why Another Interpretation/Formulation of QM?

Don’t we have too many as it is?

We don’t have any that meet all of the following minimal
consisteny requirements:

• Empirical adequacy (Bohmiam mechanics doesn’t generalize,
Everett/many worlds cannot produce empirical probabilities)

• Unambiguous predictions for macroscopic systems when
treated quantum-mechanically (Dirac-von Neumann)

• Able to account at least schematically for the emergence of
macroscopic systems and the classical limit (Dirac-von Neumann,
Copenhagen)

• Avoidance of too many extra-empirical assumptions and
speculative metaphysical hypotheses (SMHs) (Everett/many
worlds)



The Wave-Function Paradigm
In most textbook treatments of quantum theory, one takes the
basic object to be a wave function |Ψ(t)⟩ in a Hilbert spaceH over
the complex numbers C, axiomatically evolving according to the
Schrödinger equation for some self-adjoint Hamiltonian H(t):

iℏ∂|Ψ(t)⟩
∂t

= H(t)|Ψ(t)⟩

(Sometimes one instead takes the basic object to be a density
matrix ρ(t) on the Hilbert space, or a linear map ω on a C*-algebra)

A host of other axioms provide an instrumentalist algorithm for
using |Ψ(t)⟩ to calculate probabilities of measurement outcomes

Much of the interpretative debate lies within this wave-function
paradigm, and asks about the nature of |Ψ(t)⟩ (epistemic?
ontological? nomological? something else?), and whether it
should be supplemented with additional (or ‘hidden’) variables



Historical Origins of the Wave-Function Paradigm
The 1925 matrix mechanics of Heisenberg, Born, and Jordan took
the ontology out of quantum theory

Schrödinger’s 1926 undulatory mechanics replaced that missing
ontology with his wave functions

Copenhagenists, QBists, and (perhaps) C*-algebraists don’t agree
that wave functions are part of the ontology

But most people operate within the wave-function paradigm – the
notion that quantum theory is about wave functions (or density
matrices) – and build everything on top of that

So now one hears talk of whether the wave function ‘is complete’,
or if there are hidden variables in addition to wave functions, or if
one is a ‘psi-epistemicist’ or a ‘psi-ontologist’ (in the language of
Harrigan, Spekkens, 2010)



Goals of this Talk
The main goal of this talk is to argue that every quantum system
can be understood as an ‘indivisible’ stochastic process in disguise,
with no fundamental role for wave functions or density matrices

Additional goals:

• Define what an indivisible stochastic process is

• Give a correspondence between indivisible stochastic processes
and quantum theory (applications for stochastic modeling?)

• Describe some concrete examples, including classical analogue
models of quantum systems that are hopefully realizable in the
lab or in simulations
• Demystify and deflate the exotic features of quantum systems
(interference, entanglement, decoherence, measurements, etc.)

• Introduce a new nomological (lawlike) definition of causal
influences for quantum systems that’s local



The Textbook Axioms of Quantum Theory
(1) Each state of a quantum system is represented by a unit-norm
state vector/wave function |Ψ⟩, or a positive-semidefinite and
unit-trace density operator/density matrix ρ, in a Hilbert spaceH

(2) A closed quantum system evolves according to a unitary
time-evolution operator U(t) = U−1†(t), or the Schrödinger
equation for some self-adjoint Hamiltonian H(t) = H†(t)

(3) Each observable is represented by a self-adjoint operator
A(t) = A†(t) whose eigenvalues are the possible numerical
meaurement outcomes (more generally: POVMs)

(4) The Born rule ⟨Ψ|A|Ψ⟩ or tr(Aρ) gives the statistical average of
measurement outcomes over measurement-outcome probabilities

(5) Immediately after a measurement, the quantum state collapses
to single out a unique measurement outcome

Note: decoherence doesn’t single out a unique measurement outcome!

The
measurement

axioms



The Wigner’s Friend Paradox
• W (“Wigner”) remains outside a perfectly sealed box
• F (“Wigner’s Friend”) is inside the box and does a
measurement on a quantum system also inside the box

Question: Do we activate the collapse axiom (5) or not?

We have essentially four options for resolving this ambiguity:

(A) Invoke the collapse axiom (5), but then we need a rigorous
definition of a measurement (the “measurement problem”)

Focus of
this talk

Measurements
are a very
narrow
category – how
do we account
for phenomena
happening
more
generally?
(“category
problem”)

(B) Avoid invoking the collapse axiom (5) forW while assuming a
unique outcome, but then the quantum state is manifestly
incomplete (F ’s outcome is then literally a “hidden variable”)

(C) Replace the collapse axiom (5) with something else (e.g.,
spontaneous dynamical collapse) (need new parameters!)

(D) Don’t assume a unique outcome (“Everett/many-worlds
interpretation”), but then what does probability mean (etc.)?



Revisiting the Double-Slit Experiment

In the double-slit experiment, one imagines sending particles,
one at a time, toward a wall with two slits, and then observing
where the particle arrives on a screen

This new formulation isn’t limited to any specific kind of
quantum system, but a well-known single-particle thought
experiment will provide a good example

Slits are close together

C = where it landsB = which slitA = starting conditions

slyly assumed so that we have a 3D configuration space that resembles
physical 3D space—otherwise we’d need a 3N-dimensional space!
(Where are the two slits supposed to be? And how is this intuitive?)



Double-Slit Experiment (cont.)

Usual classical assumption: p(C|A) =
∑
B

p(C|B)p(B|A)

note: doesn’t follow from general
marginalization rules!

=⇒ requires a Markov or
divisibility assumption at B

This predicts the following pattern over many repetitions:

CBA

blend of two
distributions

This matches observations for macroscopic particles, like stones



Double-Slit Experiment (cont.)
For electrons over many repetitions, one instead observes what
looks like an interference pattern:

CBA

Does this mean that each particle is really a ‘Schrödinger wave,’ or
that each particle somehow ‘goes through both slits’? No!

We’ll show that one can account for this pattern merely by
allowing the dynamics to be non-Markovian or indivisible:

p(C|A) ̸=
∑
B

p(C|B)p(B|A)



2. Indivisible Stochastic Processes



Indivisible Stochastic Processes
An indivisible stochastic process is a simple generalization of a
non-Markovian stochastic process

Fixed ingredients (i.e., the same in every run):

• Kinematics: Configuration space C (i.e., the sample space)

• Dynamics: For times t, t0 in respective index sets T , T0, a
1st-order conditional-probability map Γ(t← t0) : C × C → [0, 1]

division
events

Contingent ingredients (i.e., can differ between runs)

• For times t ∈ T , a probability distribution p(t) : C → [0, 1]

The new axioms (simpler!)

Linear marginalization rule: pi(t) =
∑
j

Γij(t← t0)pj(t0)

important for later!



Indivisibility

Indivisibility is a simple and remarkably new idea: ‘failure of
iterativeness’

Originated in the theory of quantum channels [Wolf, Cirac, 2008]

First applied to classical stochastic processes only a few years ago!
[Milz, Modi, 2021]

For t > t′ > t0: Γ(t← t0) ̸= Γ(t← t′)Γ(t′ ← t0)

More precisely: No such Γ(t← t′) generically exists

Unlike for a textbook non-Markovian stochastic process, no
higher-order conditional probabilities are specified by the model

Generically non-Markovian of “infinite order”



Ex: Interpolation of a Discrete Determinstic Process

Consider the simplest kind of discrete-time deterministic process

Configurations 1, ..., N that deterministically transition in time
steps δt by a permutation (not assumed time-reversal invariant)

E.g., 1 7→ 7 7→ 3 7→ 2 7→ 13 7→ 5 7→ · · · 7→ 4 7→ 1 7→ 7 7→ 3 7→ · · ·

Can use an N -dimensional vector space and represent each
configuration 1, . . . , N with a member of the standard basis:

e1 =

 1
0

...
0

 , e2 =

 0
1

...
0

 , . . . , eN =

 0
0

...
1


Then represent the dynamical law as a permutation matrix Σ:

e1 7→ Σe1 = e7 7→ Σ2e1 = e3 7→ Σ3e1 = e2 7→ Σ4e1 = e13 7→ · · ·

δt

δt



Unitary and Unistochastic Representations

Σ is an N ×N permutation matrix

=⇒ Σ is an N ×N unitary matrix

(ΣN = 1 implies that the eigenvalues are the N th roots of unity)

=⇒ For t any smoothly variable time, U(t← 0) ≡ Σt/δt exists
and is still unitary

=⇒ Γij(t← 0) ≡
∣∣Σt/δt

ij

∣∣2 gives a unistochastic matrix and
defines an indivisible stochastic process

Analytically interpolates the original discrete-time deterministic
process to a smooth-in-time indivisible stochastic process, with

Γ(n δt← 0) = Σn for n ∈ Z



Divisibility and Indivisibility

Using the unitary matrix U(t← 0), can define for any pair of
times t, t′:

U(t← t′) ≡ U(t← 0)U†(t′ ← 0)

Convenient composition law: U(t← 0) = U(t← t′)U(t′ ← 0)

But the indivisible stochastic process will fail to have such a
composition law for most times:

Γ(t← 0) ̸= Γ(t← t′)Γ(t′ ← 0)

If one tries to define Γii′(t← t′) ≡ |Uii′(t← t′)|2 anyway, then:

Γ(t← 0)− Γ(t← t′)Γ(t′ ← 0) = (interference terms!) ̸= 0

However, the stochastic process will divide at the special
integer-step times t′ = n δt =⇒ division events



An Emergent Quantum Theory

Notice: U(t← 0) is a smooth function of t =⇒ we can define a
Hamiltonian:

H(t) ≡ iℏ∂U(t← 0)

∂t
U†(t← 0) = H†(t)

Define a complex-valued, time-evolving state vector or wave
function:

|Ψ(t)⟩ ≡ U(t← 0)e1 = U(t← 0)

 1
0

...
0


known initial condition

(no initial epistemic uncertainty)

Then we have the Schrödinger equation:

iℏ∂|Ψ(t)⟩
∂t

= H(t)|Ψ(t)⟩

And the Born rule:
pi(t) = |Ψi(t)|2



Handling Initial Epistemic Uncertainty
More generally, if we don’t know the initial condition with
certainty, then we can encode initial epistemic probabilities into a
diagonal density matrix:

ρ(0) ≡ diag (p1(0), ..., pN (0))

Define a time-evolving, non-diagonal density matrix:

ρ(t) ≡ U(t← 0)ρ(0)U†(t← 0)

Then we have the von Neumann equation:

iℏ∂ρ(t)
∂t

= [H(t), ρ(t)]

And the Born rule becomes

pi(t) = tr(Piρ(t))

with Pi ≡ eie
†
i an elementary projection matrix



Ex: Classical Analogue Model for a Qubit

Consider a black box containing either of two possible classical
systems, A or B, each with two similar-looking configurations 1
and 2

For A: E1 < E2, whereas for B: E2 < E1, but with the same
energy difference

Thermally couple to a reservoir with gradually changing
temperature T (t) that we can control, with T (0) = 0

There are then four Boltzmann occupation probabilities
p(t) ∝ exp(−E/kT (t)):

Γ(t← 0) ≡
(
p(1, t|1, 0) p(1, t|2, 0)
p(2, t|1, 0) p(2, t|2, 0)

)
By symmetry: p(1, t|1, 0) = p(2, t|2, 0), p(1, t|2, 0) = p(1, t|2, 0)



Another Emergent Quantum Theory

So Γ(t← 0) is a 2× 2 doubly stochastic =⇒ unistochastic

That is, there exists a 2× 2 unitary matrix U(t← 0) such that
Γij(t← 0) = |Uij(t← 0)|2 =⇒ Schrödinger equation, etc.

The original stochastic description is generically indivisible (e.g.,
take p(1, t|1, 0) = exp(−t2/τ2) for some constant time scale τ > 0)

But the unitary description has a nice composition property:

U(t← 0) = U(t← t′)U(t′ ← 0)

So working with the unitary description gives us a convenient
‘divisible’ formalism (that’s what Hilbert spaces are for!)

Cost: density matrix ρ(t) with nonzero off-diagonal entries
(coherences) =⇒ artifacts of the indivisibility/non-Markovianity



Amplitudes and Interference

Consider the following two amplitudes that share the same initial
and final conditions but differ at an intermediate time t′:

amplitudes
path(1) = ⟨2|U(t← t′)|1⟩⟨1|U(t′ ← 0)|1⟩

path(2) = ⟨2|U(t← t′)|2⟩⟨2|U(t′ ← 0)|1⟩

It is easy to show that:

|path(1) + path(2)|2 = p(2, t|1, 0)
But:

|path(1)|2 + |path(2)|2 ̸= p(2, t|1, 0)
This is precisely probabilistic interference, in a classical analogue
model of a qubit (note: no hackneyed analogy here with
electromagnetic interference!)

This analogue model can be generalized to two or more qubits, to
demonstrate entanglement



3. The Stochastic-Quantum
Correspondence



The Stochastic-to-Quantum Direction
Given any indivisible stochastic process with N configurations,
introduce a (not unique) complex N ×N matrix Θ(t← 0)
according to:

Γij(t← 0) = |Θij(t← 0)|2

This new matrix satisfies the sum rule∑
i |Θij(t← 0)|2 = 1

If Γ(t← 0) is unistochastic, then Θ(t← 0) can be assumed to be a
unitary matrix U(t← 0)

If not, then place each column of Θ(t← 0) into an empty N ×N
matrix Kβ(t← 0), where β = 1, ..., N

These are Kraus operators =⇒ Stinespring-dilate to a unitary!

=⇒ Emergent quantum system in a Hilbert-space representation!

Linear marginalization rule =⇒ Linear time evolution!



Unistochastic Matrices and the Complex Numbers
For N > 2, an N ×N unistochastic matrix will not generally be
orthostochastic (i.e., based on a real orthogonal matrix)

Hence, to exploit the stochastic-quantum theorem and unitary
evolution, the complex numbers (or an algebraic construct
isomorphic to them) will be necessary!

Hilbert spaces are fictions anyway, and the complex numbers also
let us invoke the spectral theorem, symmetry generators,
Hamiltonians, energy eigenvalues, stationary states, the
Schrödinger equation, the uncertainty principle, spinors, etc.

Actually, one also needs the complex-conjugation operator K
(needed for time-reversal transformations), which satisfies:

K2 = 1, Ki = −iK
Then i, K, and iK generate a Clifford algebra called the
pseudo-quaternions [Stueckelberg, 1960]



Wave Functions and the Schrödinger Equation
If the density matrix is rank-one, then there exists an N × 1 state
vector |Ψ(t)⟩ that gives a simple factorization:

ρ(t) = |Ψ(t)⟩⟨Ψ(t)| (i.e., Ψ(t)Ψ†(t))

The state vector then satisfies the Schrödinger equation:

iℏ∂|Ψ(t)⟩
∂t

= H(t)|Ψ(t)⟩

So wave functions and the Schrödinger equation are secondary
pieces of derived mathematics, not primary ontological furniture

We therefore see that wave functions are not purely epistemic, but
encode a blend of epistemic and nomological information, and are
not physical or ontological objects (like Magritte’s pipe, or aether!)

And the standard unitary Hilbert-space formalism formally yields
a ‘divisible’, 1st-order differential equation for the dynamics!

The linearity ultimately
descends from the linear
maginalization rule!



The Quantum-to-Stochastic Direction
Given any unitarily evolving quantum system with an
N -dimensional Hilbert space, pick a convenient orthonormal basis,
and then define an indivisible stochastic process via the
unistochastic matrix

Γij(t← 0) ≡ |Uij(t← 0)|2
which we also do to
define a path integral!

Are we losing phase information here? It actually doesn’t matter!

Remember: all empirical results come from measurement
processes, and these should now be modeled explicitly using
measuring devices

If the measuring device is properly regarded as a subsystem of the
overall indivisible stochastic process, and the chosen orthonormal
basis captures the device’s pointer variables, then, by
construction, the indivisible stochastic process will produce the
correct final measurement-outcome probabilities!



Division Events

We now have a framework that allows us to explain on theoretical
grounds why the well-known Markov approximation (irrelevance
of past states) often works so well in applications

Consider a composite system SE (Subject + Environment)

Suppose that for each configuration i of the subject system, the
environment has a corresponding configuration e(i)

Suppose that the overall transition matrix ΓSE(t← 0) yields

pSE
i′e′(t

′) = pSi′(t
′)δe′e(i′) (classical correlation)

environment configuration that
depends on subject configuration



Division Events (cont.)

Then from classical marginalization over the environment at t > t′,
one can show that

pSi (t) =
∑
e

pSE
ie (t) =

∑
i′

ΓS
ii′(t← t′)pSi′(t

′)

Hence:

ΓS(t← 0) = ΓS(t← t′)ΓS(t′ ← 0)

That is, due to the correlating interaction with the environment,
there is automatically a new ‘division event’ at t′ playing the role
of t = 0

Division events are ubiquitous for open systems in noisy
environments, thereby explaining why the Markov approximation
often works so well on macroscopic scales



Decoherence
It is easy to show that at t′, the subject system’s (reduced) density
matrix becomes momentarily diagonal

ρ11 ρ12 · · ·
ρ21 ρ22 · · ·

...
...

. . .
ρNN

ρ(t′) =


ρ11 0 · · ·
0 ρ22 · · ·
...

...
. . .

ρNN

→

This is decoherence!

So we learn that the off-diagonal entries in a density matrix
(coherences, corresponding to superpositions in wave functions)
are merely a mathematical artifact of indivisible dynamics

Coherences are the price for making the dynamics look divisible!

Meanwhile, decoherence itself is just what the prosaic leakage of
correlations into the environment looks like when seen through
the lens of the Hilbert-space formulation



Entanglement

To start, note that even in classical-deterministic physics, during
an interaction, systems have non-factorizing dynamics

Given two subsystems A,B, if they are not interacting with each
other from t = 0 up to just before t′ > 0, then the composite
system’s transition matrix tensor-factorizes:

ΓAB(t← 0) = ΓA(t← 0)⊗ ΓB(t← 0) (for t < t′)

However, a transition matrix encodes cumulative statistical
information, so for all t > t′ until a division event, the composite
transition matrix fails to tensor-factorize:

ΓAB(t← 0) ̸= ΓA(t← 0)⊗ ΓB(t← 0) (for t > t′)

That is, the theory just doesn’t contain or supply laws for the
subsystems A and B separately



Entanglement (cont.)

This already looks like entanglement, but seen entirely from the
stochastic side of the stochastic-quantum correspondence

If there is a division event (e.g., by the environment) at some later
time t′′ > t′, then the composite system’s transition matrix divides
starting at t′′:

ΓAB(t← 0) = ΓAB(t← t′′)ΓAB(t′′ ← 0) (for t > t′′ > t′)

If the subsystems are no longer interacting after t′ or t′′, then the
relative transition matrix tensor-factorizes:

ΓAB(t← t′′) = ΓA(t← t′′)⊗ ΓB(t← t′′) (for t > t′′ > t′)

So decoherence causes a ‘breakdown’ in entanglement, as
expected, and notice that we haven’t used Hilbert spaces here!



{Observables} = {Beables} ∪ {Emergeables}
Beables are just random variables on the configuration space C

Use a diagonal matrix: A(t) ≡ diag (a1(t), ..., aN (t))

Expectation values: ⟨A(t)⟩ = tr(A(t)ρ(t))

If A(t) = Pi ≡ diag (0, ..., 1, ..., 0) is an elementary projector and
ρ(t) = Ψ(t)Ψ†(t) is rank-one, one obtains the Born rule:

pi(t) = |Ψi(t)|2

By modeling the measurement process as an overall unistochastic
process, one sees patterns in the dynamics that look just like
beables to measuring devices, treated as stochastic systems as well

These “emergeables” are represented by non-diagonal self-adjoint
matrices, and together with the beables constitute the system’s
noncommutative algebra of observables, thereby completing the
textbook axioms (see the papers for the detailed calculations!)



The Stochastic-Quantum Correspondence

So we arrive at a stochastic-quantum correspondence, according to
which the Hilbert-space formalism serves as a form of ‘analytical
mechanics’ for stochastic systems, giving rise to an effective
1st-order differential equation

This correspondence is many-to-one in both directions

This is like how classical mechanical systems based on 2nd-order
differential equations have a many-to-one correspondence with
the 1st-order Hamiltonian phase-space formalism

Like any form of analytical mechanics, the Hilbert-space
formalism provides a powerful set of mathematical tools for
specifying microphysical laws in a systematic manner, for
studying dynamical symmetries, and for calculating predictions



4. Causal Locality



Conventional Wisdom on (Causal?) Locality

Depending on whom you ask, the conventional wisdom you may
hear about (causal?) locality in quantum theory could be:

• Hidden-variables theories are possible in principle, but they
entail nonlocality or nonlocal causation, and without them
quantum theory is (causally) local

• No-go theorems have ruled out hidden variables altogether

• Quantum theory is unavoidably nonlocal and/or causally
nonlocal, with or without hidden variables

All these mutually inconsistent parcels of conventional wisdom
are widely disputed!

Bell’s theorem, according to Bell himself, actually only asserts the
last of the three! (And I’ll be challenging that assertion in this talk)



Nonlocality and Forces

In Newtonian mechanics, there is a perfectly clear way to identify
nonlocality in the dynamical laws of a system

A Newtonian system’s dynamical laws exhibit nonlocality
precisely if they include an action-at-a-distance force or potential
(e.g., in Newtonian gravity)

The trouble is that if we leave forces and potentials behind, as in
stochastic processes or in quantum theory, then this simple
definition of nonlocality is no longer available!

Can we look to causal influences to determine whether a system’s
dynamical laws are nonlocal?

What is nonlocality rigorously supposed to mean now?



The Situation in Quantum Theory

Moreover, the no-communication theorem ensures that one
cannot use quantum systems to send faster-than-light messages,
but that doesn’t necessarily prohibit nonlocal causation from
going on behind the scenes

So it’s not immediately obvious whether quantum theory involves
any nonlocal causation

Quantum theory involves probabilistic rather than deterministic
relationships between observations, so there isn’t a tight linkage
between purported cause-and-effect pairings



Causal Locality, Defined
There is a case to be made that causal talk is just “folk science”
[Norton, 2003], and not physically fundamental

In that case, asking whether quantum theory is fundamentally
causally local is arguably either unimportant or meaningless

But let’s address those who take causal locality seriously, and,
along the way, show how to make quantum theory a hospitable
domain for talk of causal influences

Let’s start with a simple attempt at a definition of causal locality:

Causal influences cannot propagate faster than light.

Notice that this is a condition on any causal influences that happen
to occur, not an assertion that there must exist particular causal
influences [Myrvold, 2024]!



Einstein, Podolsky, and Rosen

In a 1935 paper, “Can [the] Quantum-Mechanical Description of
Physical Reality Be Considered Complete?”, Einstein, Podolsky,
and Rosen used an early version of quantum steering

In simplified form, if two particles are prepared in an entangled
wave function, and then separated in space, a measurement of one
particle in a chosen basis can mean that the other particle’s wave
function collapses to a corresponding basis

So the first observer can seemingly “steer” the other particle to a
chosen collapse-basis, in language introduced shortly thereafter
by Schrödinger

However, the no-communication theorem prohibits the first
observer from controlling the specific wave function for the other
particle in that collapse-basis



The EPR Authors’ Interpretation

Einstein, Podolsky, and Rosen took for granted that the first
observer couldn’t actually have any influence on the other particle

Some quantum-steered wave-functions are eigenstates of certain
observables, so EPR argued that the other particle must already
have predetermined values of those observables, a fact not
captured by the original two-particle wave function

Hence, the authors’ conclusion that quantum theory is incomplete



Contestable Implications for Nonlocal Causation

One could attempt to read the EPR argument instead as implying
that the first observer’s measurement intervention nonlocally
causes the other particle to collapse to its final wave function

This would be a concrete manifestation of what Einstein in 1947
called “spooky action at a distance” (“spukhafte Fernwirkung”)

But this reading is contestable because it relies on questionable
notions:

•Wave-function collapse

• An interventionist conception of causation, and interventions (in
this case measurement settings and measurement outcomes) are
not thought to be physically fundamental things



Bell’s 1964 Theorem

In 1964, Bell was inspired by the EPR argument and an existing
nonlocal hidden-variables theory (de Broglie-Bohm pilot-wave
theory, or Bohmian mechanics) to write a paper “On the
Einstein-Podolsky-Rosen Paradox” attempting to tackle the
question of nonlocal causation head-on

Bell viewed the EPR argument as creating a logical fork: either
accept causal nonlocality, or provide hidden variables that
uniquely predetermine specific measurement outcomes

To that end, Bell considered measurement-deterministic
hidden-variables theories in which the hidden variables dictated
specific measurement outcomes (as in Bohmian mechanics)

Bell’s goal was to show that the second prong of the fork could not
ultimately save causal locality



Set-Up for Bell’s 1964 Theorem

Ingredients:

• λ = the hidden variables

• A,B = ±1 = far-separated measurement outcomes

• a,b = local measurement settings

Assumptions for Bell’s notion of “local causation”:

• A = A(a, λ), B = B(b, λ)

And there is also an implicit assumption of an interventionist
conception of causation



Crucial Assumption about Expectation Values
To Bell, these assumptions implied the following expression for
the statistical average or expectation value of pairwise products
AB of measurement outcomes:

P (a,b) =

∫
dλ ρ(λ)A(a, λ)B(b, λ)

Here ρ(λ) is the standalone probability distribution for the hidden
variables λ (a big assumption itself!)

{

crucial factorization!

It’s ironic that Bell’s results hinge on assumptions about
expectation values

Earlier, Bell had identified a flaw in a 1932 anti-hidden-variables
theorem of von Neumann that likewise came down to unjustified
assumptions about expectation values!

(Grete Hermann actually got there first, in the 1930s)



The Bell Inequality

Using this formula for expectation values, Bell was able to prove
his famous Bell inequality, which should then be satisfied by all
measurement-deterministic hidden-variables theories satisfying
Bell’s local-causality assumptions:

1 + P (b, c) ≥ |P (a,b)− P (a, c)|

Quantum theory predicts violations of the Bell inequality

Indeed, the 2022 Nobel Prize in Physics was awarded to Aspect,
Clauser, and Zeilinger for experimentally confirming those
violations (Press release: “This means that quantum mechanics
cannot be replaced by a theory that uses hidden variables.” (!?!))

Bell’s 1964 paper therefore appears to rule out locally causal
measurement-deterministic hidden-variables theories



Implications of Bell’s 1964 Argument
Provided one doesn’t take the EPR argument to be definitive,
Bell’s 1964 argument leaves open several possibilities:

• Nonlocally causal measurement-deterministic hidden-variables
theories (like Bohmian mechanics)

•Measurement-stochastic hidden-variables theories

• Formulations of quantum theory that attempt to eschew hidden
variables completely (includes the textbook theory!)

Bell’s 1964 argument certainly doesn’t rule out hidden variables
altogether!

In 1975, Bell attempted to generalize his 1964 theorem to
encompass the second and third possibilities (again, including the
textbook theory!), and also avoided relying on interventionism



Bell’s 1975 Theorem

Bell’s 1975 argument applied to all theories with stochastic
measurement outcomes, with or without hidden variables, so that
includes the textbook theory

Bell’s goal in the 1975 paper was to show that all empirically
adequate such theories involve nonlocal causation

One big problem was how to establish causation when
measurement outcomes are stochastic (so no tight linkages)

Another was how to compute the needed expectation value using
a more general probability distribution ρ(A,B|a,b, λ):

P (a,b) =

∫
dλ ρ(λ)

∑
A,B

ρ(A,B|a,b, λ)AB{
no factorization anymore?



Bell’s First Attempted Principle

Recounting his 1975 theorem in that 1990 lecture, Bell starts with a
first attempt at a principle of local causality:

“The direct causes (and effects) of events are near by, and even the indirect causes
(and effects) are no further away than permitted by the velocity of light.”

This is very similar to the definition of causal locality from the
beginning of this talk – but then Bell goes on to say:

“The above principle of local causality is not yet sufficiently sharp and clean for
mathematics.”

Just before he states his second attempted principle of local
causality, he includes the following very important warning:

“Now it is precisely in cleaning up intuitive ideas for mathematics that one is likely
to throw out the baby with the bathwater. So the next step should be viewed with the
utmost suspicion.”



Set-Up for Bell’s 1975 Theorem
Ingredients:

• λ = “beables” (could even include the wave function itself!)

• A,B = far-separated measurement outcomes, |A|, |B| ≤ 1

• a,b = local measurement settings can now be regarded as
non-interventionist
beables themselves!

Assumptions for Bell’s new principle of local causality:

• There is a sufficiently rich collection of local beables λ in the
overlap of the past light cones of A,B (treated as beables) that

ρ(A|a,b, B, λ) = ρ(A|a, λ), ρ(B|a,b, A, λ) = ρ(B|b, λ)

In general: ρ(A,B|a,b, λ) = ρ(A|a,b, B, λ)ρ(B|a,b, λ)

So equivalently: ρ(A,B|a,b, λ) = ρ(A|a, λ)ρ(B|b, λ){
factorization!



Expectation Values and Inequalities Revisited

The expectation value for the product AB from before is now:

P (a,b) =

∫
dλ ρ(λ)

(∑
A

ρ(A|a, λ)A
)(∑

B

ρ(B|b, λ)B
){

factorization!

Bell was then able to prove a generalization of his inequality, first
written down by Clauser, Horne, Shimony, Holt in 1969

So any measurement-stochastic theory that satisfies Bell’s
local-causality assumptions is ruled out by experiment

Bell concluded that all other theories (including the textbook
theory) therefore involve nonlocal causation



Reichenbach’s Principle of Common Causes

But Bell’s new principle of local causality tucked in a new implicit
assumption, as is manifest in its factorization form:

Reichenbach’s principle of common causes (1956)

In modern form, Reichenbach’s principle states that if A,B are
variables that are correlated

P (A,B) ̸= P (A)P (B),

but A,B do not causally influence each other, then there is the
assertion that there must exist some other variable C such that

P (A,B|C) = P (A|C)P (B|C)

In words, there is the assertion that there must exist a “common
cause” variable that “screens off” the correlation



Bell’s Principle of Local Causality and Reichenbach
Recall Bell’s principle of local causality:

ρ(A|a,b, B, λ) = ρ(A|a, λ), ρ(B|a,b, A, λ) = ρ(B|b, λ)

And in its equivalent factorization form:

ρ(A,B|a,b, λ) = ρ(A|a, λ)ρ(B|b, λ)

These are clearly an application of Reichenbach’s principle of
common causes, and actively assert the existence of a particular
causal influences

Here the role of the asserted “common cause” C is played by the
local beables λ in the overlap of the past light cones of A,B

Essentially, lacking a concrete microphysical theory of causal
influences, Bell assumed that any causally local theory should
entail local Reichenbachian common-cause variables



Causal Locality versus Local Causality

A terminological distinction, due to Myrvold:

• “Causal locality” is the more basic condition that any causal
influences that happen to occur should respect the finite speed of
light

• “Local causality” is a stronger condition involving the active
assertion that some (local) causal influences must exist in some
situations, such as the common causes in Reichenbach principle
and Bell’s principle

Notice that causal locality does not actively assert the existence of
any particular causal influences!



Good Reasons to Doubt Reichenbach

Reichenbach’s principle of common causes may seem intuitively
plausible, but that’s far from an obvious reason to require it as
part of a condition on causal locality!

In short, interactions are simply not Reichenbachian variables!

“It is true that this common cause cannot be stated in exactly the form which for
example Reichenbach set up to describe common causes for a classical statistical
system. But that is not surprising. Quantum mechanics is not classical mechanics. The
structure of the correlations in a quantum system differ from those in a classical
system, as Bell so succinctly showed. But those correlations do not arise mysteriously
somehow in the development of a widely spaced system. Those correlations do not
require some mysterious non-local action to be explained. They are simply there, as are
correlations in a classical system, due to the evolution from a common (quantum)
cause in the past.”

For one thing, it assumes every “common cause” is a variable that
can be conditioned on and summed/integrated over!

As Unruh wrote in 2002:



Other Theorems
Other arguments purporting to demonstrate nonlocal causation
(EPR, GHZ, etc.) depend on an interventionist conception of
causation, or (Bong et. al.) assume the a priori existence of
theoretical probability distributions at intermediate times without
adequate justification

It is not clear how one would derive the Bell inequality or prove
these other theorems when working at the level of the atoms(!)
that make up the measuring devices

Note that advocates of Everettian QM already deny that the
premises of these theorems capture the correct notion of locality

Next I’ll show that the new indivisible formulation exploits these
loopholes to allow for an improved criterion for causal locality,
and that it’s causally local according to that criterion



Bayesian Networks and Causation

The first step is to note a key connection with another theory

In the theory of Bayesian networks, one considers a set of random
variables related by a collection of basic, directed conditional
probabilities

A

B

C

D

For example:

Here we have a simple Bayesian network with four random
variables A,B,C,D that supplies a basic, directed conditional
probability distribution p(A = a|B = b, C = c,D = d)

Endogenous
variable

Exogenous
variables



Basic versus Derived Conditional Probabilities
In a concrete instantiation of this Bayesian network, one has a
contingent joint probability distribution p(b, c, d)

This induces a contingent standalone probability distribution p(a)
according to the following multilinear relation:

p(a) =
∑
b,c,d

p(a|b, c, d)p(b, c, d)

One can define other conditional probability distributions, but
these will be derived rather than basic, and will depend
nonlinearly on the contingent probabilities of the given
instantiation

For example: p(b|a, c, d) = p(a|b, c, d)p(b, c, d)∑
b′ p(a|b′, c, d)p(b′, c, d)

So the basic, directed conditional probabilities supplied by the
Bayesian network have a more fundamental status as the laws of
the model



A Non-Interventionist Causal Reading

Crucially, Bayesian networks admit a non-interventionist causal
reading

If the model supplies a basic, directed conditional probability
distribution p(a|b, c, d), then any stochastic fluctuations in B,C,D
dictate stochastic fluctuations in A

Taking this seriously, one can argue that by supplying p(a|b, c, d)
in its laws, the model is asserting that B,C,D exerts a causal
influence on A

Notice how the directedness of these nomological (lawlike)
conditional probabilities nicely captures the asymmetric nature of
cause-and-effect relationships

Yet it does so without privileging an arrow of time, so it threads a
very fine needle!



A Nomological Theory of Causation
The indivisible formulation of quantum theory in this talk is based
on microphysical laws consisting of directed nomological
(lawlike) conditional probabilities, just like for a Bayesian network

The indivisible formulation therefore provides a hospitable
domain for causal talk

One can arguably apply a causal reading to those nomological
conditional probabilities, motivating a new theory of causation:

On a theory X , to say that the variables B,C, ... have nomological
causal influences on a variable A is just to say that the theory X
specifies, in its basic, fixed laws, a conditional probability of the
form p(A|B,C, ...), read as “the nomological conditional
probability of A, given B,C, ... .”

In that sense, one can regard quantum theory as a nomological
theory of causation par excellence



Causal Independence

Consider an overall unistochastic system consisting of two
subsystemsQ,R

The overall system’s nomological conditional probabilities then
take the following form:

p((qt, rt), t|(q0, r0), 0)

Definition: Q is free of causal influences fromR over the time
interval from 0 to t if after marginalizing over rt, the resulting
conditional probability distribution has no dependence on r0:

p(qt, t|(q0, r0), 0) = p(qt, t|q0, 0)



An Improved Principle of Causal Locality
One can now state an improved principle of causal locality:

A theory with microphysical directed conditional probabilities is
causally local if any pair of localized systemsQ andR that remain
at spacelike separation in the given situation never exert causal
influences on each other, in the sense that the directed conditional
probabilities forQ are independent ofR, and vice versa.

It’s a straightforward calculation to show that this principle is
satisfied by the indivisible formulation presented in this talk

Spacelike separation =⇒ UQR(t← 0) = UQ(t← 0)⊗ UR(t← 0)

=⇒ ΓQR(t← 0) = ΓQ(t← 0)⊗ ΓR(t← 0)

=⇒ p((qt, rt), t|(q0, r0), 0) = p(qt, t|q0, 0) p(rt, t|r0, 0)

=⇒ p(qt, t|(q0, r0), 0) = p(qt, t|q0, 0) QED

standard rule

mod-square commutes with tensor products



Interactions and Entanglement
By contrast, suppose thatQ,R are not kept at spacelike separation
and do interact – at some interaction time t′

Then: UQR(t′ ← 0) ̸= UQ(t′ ← 0)⊗ UR(t′ ← 0)

=⇒ ΓQR(t← 0) ̸= ΓQ(t← 0)⊗ ΓR(t← 0) for all t ≥ t′

because ΓQR(t) encodes cumulative statistical effects starting at
time 0, at least until the next division event

This breakdown in factorization of ΓQR(t) starting at t′ is
precisely entanglement as manifested at the level of the
underlying indivisible unistochastic process

The two subsystemsQ,R are exerting causal influences on each
other, stemming from their local interaction at t′ – i.e., the
common cause – but notice that it’s not a Reichenbachian variable!



Revisiting the EPR Argument
Adding observer-subsystems A (“Alice”) and B (“Bob”) to model
the EPR argument doesn’t change these basic facts

A B
Q R

0

t′

t

(Q,R)

(Q,A) (R,B)

time

space

One can show by a straightforward calculation that B does not
exert causal influences on A in the required sense:

p(at, t|(q0, r0, a0, b0), 0) = p(at, t|(q0, r0, a0), 0)

The only causal influences on A come fromQ,R, which are both
in its past light cone, as expected



5. Concluding Remarks



Conclusion
In short, consider a stochastic process over a fixed orthonormal
basis, without imposing all the intricate nomological structure of a
textbook stochastic process, and you get quantum theory

One then seems to have a causally local hidden/physical-variables
theory, based on simpler axioms than textbook quantum theory,
arguably without a measurement problem, and deflating a lot of
the exotic talk about quantum phenomena

There are many prospects for future research directions:
• Applications to dynamical systems and stochastic processes?
• New algorithms for quantum simulations?
• New ways to think about quantum causal models?
• Implications for old problems in statistical mechanics?
• Ramifications for algebra-first approaches?
• Generalizations of quantum theory?
• New possibilities for quantum gravity?



Thank you!
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