Causal fermion systems as an approach to non-smooth Lorentzian geometry

Felix Finster, Universität Regensburg

Emerging Fields Kick-Off Workshop Wien, 24 February 2025

Causal fermion systems:

- approach to fundamental physics
- Limiting cases:
 - classical field theory, general relativity
 - relativistic quantum field theory
- From mathematical perspective:
 - general framework for non-smooth spacetime geometry
 - analytic backbone: causal action principle
- The approach is fully quantum
 - basic object is a family of functions in spacetime (physical wave functions, complex-valued or spinorial)
 - geometry is encoded in this family of wave functions

How does one get into the setting of causal fermion systems? Typical smooth setting:

- Suppose (\mathcal{M}, g) is a globally Lorentzian spin manifold
- Let $(\psi_n)_{n=1,...,N}$ be a family of solutions of the *Dirac equation*

 $(\mathscr{D}-m)\psi_n=0$

Similarly: family of scalar wave or Klein-Gordon fields

What does one really need?

 ψ_n are sections of a vector bundle SM, and fibre endowed with inner product

 \prec . |. \succ_x : $S_x \mathscr{M} \times S_x \mathscr{M} \to \mathbb{C}$

• simplest case: $S\mathcal{M} = \mathbb{C} \times \mathcal{M}$ and

$$ee \psi(x) | \phi(x) \succ = \overline{\psi(x)} \phi(x)$$

- (ψ_n) span *Hilbert space* $(\mathcal{H}, \langle . | . \rangle_{\mathcal{H}})$
- This makes it possible to introduce for any $x \in \mathscr{M}$ the local correlation operator $F(x) \in \mathrm{L}(\mathcal{H})$ by

$$\langle \psi | oldsymbol{F}(x) \phi
angle_{\mathcal{H}} = - \prec \psi(x) | \phi(x) \succ_x \quad orall \psi, \phi \in \mathcal{H}$$

• Then $F(x) \in \mathcal{F}$ and thus

 $F:\mathscr{M}
ightarrow \mathcal{F}$

Next assume a volume measure μ on *M* and set

 $ho := F_* \mu$ push-forward measure on \mathcal{F}

Definition (causal fermion system)

- Hilbert space $(\mathcal{H}, \langle . | . \rangle_{\mathcal{H}})$
- $n \in \mathbb{N}$ (spin dimension)
- *F* ⊂ L(*H*) symmetric linear operators of rank at most 2n,
 with at most n positive and at most n negative eigenvalues

• ho a measure on ${\cal F}$

Then $(\mathcal{H},\mathcal{F},\rho)$ is a causal fermion system

Definition (causal action principle)

$$\mathcal{L}:\mathcal{F} imes\mathcal{F} o\mathbb{R}^+_0 \ \mathcal{S}(
ho):=\int_\mathcal{F} d
ho(x)\int_\mathcal{F} d
ho(y) \,\mathcal{L}(x,y)$$

Minimize S varying of ρ under certain constraints.

• $\mathcal{L}(x, y)$ formed of eigenvalues of operator product xy.

More details at www.causal-fermion-system.com

Geometric structures of causal fermion system

• spacetime $M := \operatorname{supp} \rho$ (topological space, subset of \mathcal{F})

Definition (with A. Grotz, 2012)

 $egin{aligned} S_x &:= x(\mathcal{H}) & ext{ spin space} \ \prec & ert \colon \succ_x &:= \langle \, . \, ert x. \,
angle_\mathcal{H} & ext{ spin inner product} \end{aligned}$ $abla_{x,y}:S_y o S_x \qquad ext{ spin connection }$

Corresponding holonomoy gives curvature

 Disadvantage: these structures do not seem to harmonize with the causal action principle

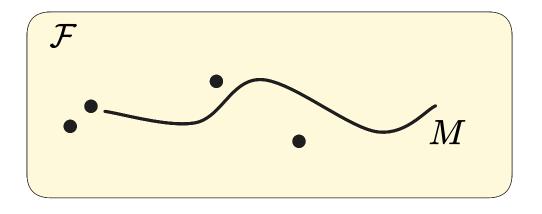
Connection to metric measure spaces

- Basic structure:
 - Measure space (\mathcal{F}, ρ)

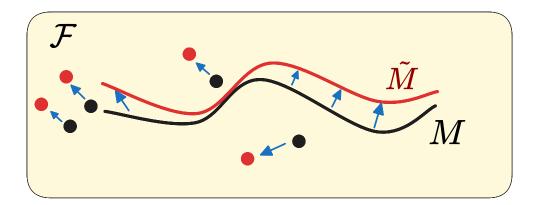
• Lagrangian $\mathcal{L}:\mathcal{F}\times\mathcal{F}\to\mathbb{R}^+_0$

Resembles *metric measure space*. But there are major differences:

• $M := \operatorname{supp} \rho$ typically *singular* or *low-dimensional*

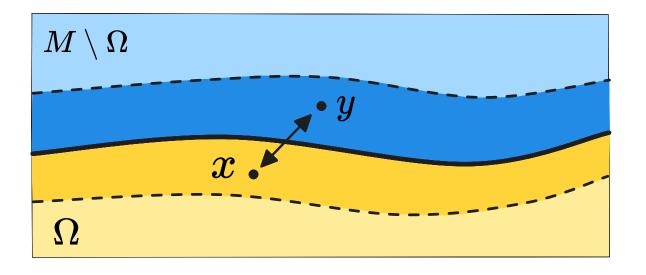


• When varying the measure, also its support changes:



- There are corresponding Euler-Lagrange equations
- There are Noether-like theorems, linearized equations, ...
- Moreover, $\mathcal{L}(x, y)$ is of short range
- Gives rise to structure of *surface layer integral*

$$\int_\Omega d
ho(x)\int_{M\setminus\Omega} d
ho(y)\;(\cdots)\mathcal{L}(x,y)$$

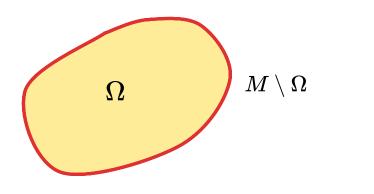


• Finally, it encodes the causal structure

 $x ext{ and } y ext{ are } egin{cases} ext{timelike separated} & ext{if } \mathcal{L}(x,y) > 0 \ ext{spacelike separated} & ext{if } \mathcal{L}(x,y) = 0 \end{cases}$

• All these structures are related to each other via the causal action principle.

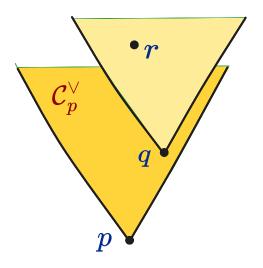
A positive quasi-local mass (with N. Kamran)



 $egin{aligned} V &=
ho(\Omega) & ext{volume} \ A &= \int_\Omega d
ho(x) \int_{N \setminus \Omega} d
ho(y) \, \mathcal{L}(x,y) & ext{ area} \end{aligned}$

- comparing volume and area with flat spacetime gives positive mass density
- ongoing project: isoperimetric flow, scalar curvature

• use analytic structures (causal propagation speed of linearized field equations)



- $\mathcal{C}_p^ee \subset M$ future light cone
- also gives transitive causal structure:

$$q\in \mathcal{C}_p^ee \ \land \ r\in \mathcal{C}_q^ee \ \Longrightarrow \ r\in \mathcal{C}_p^ee$$

Cone structures II

- so far: all works in general non-smooth, even discrete spacetimes
- if *M* is assumed to have a smooth manifold structure, "localization" gives rise to corresponding local cone structures

 $J_p^ee \subset T_p M \quad ext{convex cone structure}$

(similar to Sánchez, Minguzzi, Bernard, Suhr, ...)

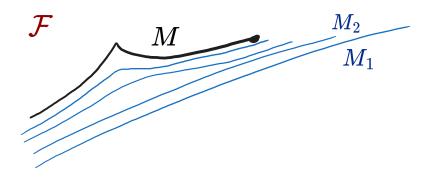
Cone structures III (with C. Paganini, M. van den Beld Serrano)

- go one step further: (M, g) globally hyperbolic spacetime
- *H* formed of *regularized Dirac sea configurations*
- Regularization described by *measure* μ_p *on* the boundary of light cone L_p^{\vee}
- ongoing work

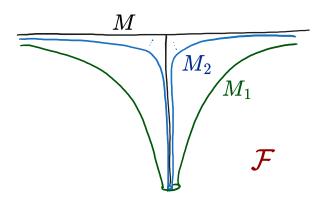
- gravity as statistical theory on the light cone (related to T. Phadmanabhan's *thermodynamical gravity*)
- this should give rise to a Lorentz-Finsler metric, ...

Convergence of sequences of spaces of spacetimes (with O. Müller and N. Kamran)

• Singular or non-regular limits of spacetimes



• Pinching off: Schwarzschild metric



Convergence of sequences of spaces or spacetimes

- Consider family of causal fermion systems $(\mathcal{H}_n, \mathcal{F}_n, \rho_n)$
- Unitarily identify the Hilbert spaces

$$U_n: \mathcal{H}_n
ightarrow \mathcal{H} \quad ext{unitary}$$

Measure convergence

$$ho_nig(U_n^{-1} \ . \ U_nig) o
ho$$

Example: Sequences of closed Riemannian manifolds

- (M_n, g_n) family of closed Riemannian manifolds
- $\mathcal{H}_n := L^2(M_n)$
- $\exp(\varepsilon^2 \Delta)$ heat kernel, with $\varepsilon > 0$ regularization length
- local correlation operators

$$F^arepsilon(x):=e^{arepsilon^2\Delta}\,\delta_x\,e^{arepsilon^2\Delta}\,\,\in\,\,\mathrm{L}(\mathcal{H}_n)$$

is symmetric, has rank at most one, thus $F_x \in \mathcal{F}$

• $ho:=F^{arepsilon}_*\mu_n$ push-forward measure

Thank you for your attention

www.causal-fermion-system.com

Abstract of the talk

The theory of causal fermion systems is an approach to fundamental physics. From the mathematical perspective, it provides a general framework for desribing and analyzing non-smooth geometries.

Its analytic backbone is the causal action principle, a geometric variational principle which generalizes the Einstein-Hilbert action. Afer a few general remarks I want to focus on a few aspects which seem most relevant in the context of non-smooth Lorentzian geometry:

- spin connection and spin curvature of a causal fermion system
- positive mass, quasi-local mass and scalar curvature
- cone structures
- notions of convergence of sequences of spacetimes