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metric, i.e., a symmetric, non-degenerate (0, 2) tensor with signature
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Definition

(M, g) Lorentzian manifold, v € T,,M is

timelike <0

null . =0andv#0
if gp(v,v)

causal <0and v #0

spacelike >0orv=0

analogously for curves into M of sufficient regularity
length of a curve v: Lg( f \/’97(5) ,7(s))|ds
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Lorentzian geometry (2/2)

Definition
?’ (M, g) spacetime: (M, g) Lorentzian manifold,

time-oriented, i.e., 3 timelike vector field T’
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Lorentzian geometry (2/2)

Definition
(M, g) spacetime: (M, g) Lorentzian manifold,
time-oriented, i.e., 3 timelike vector field T’

Definition
v causal is future directed if g,(v,T(p)) <0

analogously for curves

Causal relations: p < q :< 3 f.d. timelike curve
fromptoq, IT(p):={qge M :p<q}

p < q :< 3 f.d. causal curve from p to g or p = g,
Jt(p):={g€M:p<q}

Time separation: 7(p, q) := sup{Lgy(7) : v f.d. causal from p to ¢} U {0},
Tt M x M — [0,00] s.c., 7(p, q) + 7(q,7) < 7(p,7) VP < g <7
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Motivation (1/3) - Curvature

Einstein equations relate curvature to matter

R1c——Rg—ﬁT J
c
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Motivation (1/3) - Curvature

Einstein equations relate curvature to matter

T

R1c—ng— SIS J

C

Classical curvature as (2nd) derivative of the metric (Riemann tensor)

Ny
what if the metric is non-smooth (non-regular)? as e.g.

e PDE point-of-view, physically relevant models (matched spacetimes,
shock waves, impulsive gravitational waves, etc.)

@ approaches to Quantum Gravity (no metric)

@ singularities vs inextendibility vs curvature blow-up — cosmic
censorship hypothesis of Penrose
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Motivation (2/3) - How to detect curvature?

Triangle comparison:

Theorem (Toponogov)
(smooth) Riemannian manifold has Sec(g) > K (<) if V Aabc (small
enough), p, g on the sides of Aabe

d(p,q) > d(p,q)  (d(p,q) <d(p,q))
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(smooth) Riemannian manifold has Sec(g) > K (<) if ¥ Aabc (small
enough), p, g on the sides of Aabe

d(p,q) > d(p,q)  (d(p,q) <d(p,q))

Definition
(smooth) semi-Riemannian manifold has Sec(g) > K (<) if spacelike

sectional curvatures > K (<) and timelike sectional curvatures < K (>)
v

Theorem (Alexander, Bishop 2008)

(smooth) semi-Riemannian manifold has Sec(g) > K (<) if V geodesic
Aabe (small enough), p, g on the sides of Aabe

dsigned (p, Q) > Czsigned (137 ‘j) (dsigned (Z% Q) < signed (]37 q))
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Motivation (3/3) - What to do in the Lorentzian case?

Riemannian manifolds C  metric spaces

Lorentzian manifolds / spacetimes C 7

==
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Riemannian manifolds C  metric spaces

Lorentzian manifolds / spacetimes C 7

==

analog of metric space in the Lorentzian setting?

~» Lorentzian (pre-)length spaces (Kunzinger-S. '18)
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Lorentzian (pre-)length spaces

X (metrizable) topological space, £: X x X — {—oo} U [0, 00| such that
l(z,x) > 0Vr € X, 7:=max({,0), <:=£1((0,00)), <:=£71(]0, 00))

Clemens Samann, University of Vienna Work. Sem. Math. Phys. 7 /28



Lorentzian (pre-)length spaces

X (metrizable) topological space, ¢: X x X — {—o0} U [0, 00| such that
l(z,x) > 0Vr € X, 7:=max({,0), <:=£1((0,00)), <:=£71(]0, 00))

Definition
(X,¢) is a Lorentzian pre-length space if
7(z,2) = 7(2,y) + 7(y, 2) (z<y<2),

and 7 is l.s.c.
¢ and 7 called (extended) time separation function

Clemens Samann, University of Vienna Work. Sem. Math. Phys. 7 /28



Lorentzian (pre-)length spaces

X (metrizable) topological space, ¢: X x X — {—o0} U [0, 00| such that
l(z,x) > 0Vr € X, 7:=max({,0), <:=£1((0,00)), <:=£71(]0, 00))

Definition
(X,¢) is a Lorentzian pre-length space if
7(z,2) = 7(2,y) + 7(y, 2) (z<y<2),

and 7 is |l.s.c.
¢ and 7 called (extended) time separation function

@ smooth spacetimes (M, g) with usual time separation function
U(p,q) :=sup{Ly(7) : v f.d. causal from p to ¢}

Clemens Samann, University of Vienna Work. Sem. Math. Phys. 7 /28



Lorentzian (pre-)length spaces

X (metrizable) topological space, ¢: X x X — {—o0} U [0, 00| such that
l(z,x) > 0Vr € X, 7:=max({,0), <:=£1((0,00)), <:=£71(]0, 00))

Definition
(X,¢) is a Lorentzian pre-length space if
7(z,2) = 7(2,y) + 7(y, 2) (z<y<2),

and 7 is |l.s.c.
¢ and 7 called (extended) time separation function

@ smooth spacetimes (M, g) with usual time separation function
U(p,q) :=sup{Ly(7) : v f.d. causal from p to ¢}

@ Lorentz-Finsler spacetimes, spacetimes of low regularity

Clemens Samann, University of Vienna Work. Sem. Math. Phys. 7 /28



Lorentzian (pre-)length spaces

X (metrizable) topological space, ¢: X x X — {—o0} U [0, 00| such that
l(z,x) > 0Vr € X, 7:=max({,0), <:=£1((0,00)), <:=£71(]0, 00))

Definition
(X,¢) is a Lorentzian pre-length space if
7(z,2) = 7(2,y) + 7(y, 2) (z<y<2),

and 7 is |l.s.c.
¢ and 7 called (extended) time separation function

@ smooth spacetimes (M, g) with usual time separation function
U(p,q) :=sup{Ly(7) : v f.d. causal from p to ¢}

@ Lorentz-Finsler spacetimes, spacetimes of low regularity

e directed graphs (causal sets)
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Causal curves

Definition

I C Rinterval, v: I — X is future directed causal (timelike) if v (left-)
continuous and for t1,ty € I, t1 < to: y(t1) < v(t2) (v(t1) < Y(t2));
analogously for null ((t1) < v(t2) and v(t1) € (t2)) and past directed
curves
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Causal curves

Definition

I CRinterval, v: I — X is future directed causal (timelike) if ~y (left-)
continuous and for t1,ty € I, t1 < to: y(t1) < v(t2) (v(t1) < Y(t2));
analogously for null (y(t1) < ~(t2) and y(t1) € (t2)) and past directed
curves

@ Lorentz cylinder S§ x R: every non-constant locally Lipschitz curve is
timelike and causal ~» need causality conditions

e Minkowski spacetime R$: t + (¢, cos(t),sin(t)) has null tangent but
is timelike

Proposition (Kunzinger-S '18)
continuous, strongly causal spacetimes: different notions of causal curves
agree
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Length and maximal causal curves

Definition
v: [a b] — X fd. causal T—length defined by

mf{z z Z4.1)):61,:750<t1<...<t]\[:b}

Clemens Samann, University of Vienna Work. Sem. Math. Phys. 9 /28
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Definition
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<ty =b}
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Length and maximal causal curves

Definition
v: [a b] — X fd. causal T—length defined by
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<tN:b}
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Length and maximal causal curves

Definition
v: [a b] — X fd. causal T—length defined by

mf{z z Z+1)):a:t0<t1<...

<tN:b}

o t— (t,cos(t),sin(t)) timelike but 7-length zero

o L:(7) < 7(v(a),7(b))
e v is maximal if L:(v) = 7(v(a),y(b)
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Length and maximal causal curves

Definition
v [a b] — X fd. causal T—length defined by

lnf{z z z+1))ia:t0<t1<...<t]\[:b}

o t— (t,cos(t),sin(t)) timelike but 7-length zero

° Lr(y) < 7(v(a),~(b))
(7) = 7(7(a),7(b)

@ v is maximal if L

Proposition (Kunzinger-S '18)
(M, <, <,7) the Lorentzian pre-length space induced by a smooth and
strongly causal spacetime (M, g), then L-(v) = Ly(7v)
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Length and maximal causal curves

Definition
v [a b] — X fd. causal T—length defined by

1nf{z z Z4.1)):CL:tQ<t1<...<1f]\[:b}

o t— (t,cos(t),sin(t)) timelike but 7-length zero

° Lr(y) < 7(v(a),~(b))
(7) = 7(7(a),7(b)
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Proposition (Kunzinger-S '18)
(M, <, <,7) the Lorentzian pre-length space induced by a smooth and
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Length and maximal causal curves

Definition
v [a b] — X fd. causal T—length defined by

lnf{z z z+1))1a:t0<t1<...<t]\[:b}

o t— (t,cos(t),sin(t)) timelike but 7-length zero

o Lr(v) <7(v(a),7(b))
e v is maximal if L:(v) = 7(v(a),y(b)

Proposition (Kunzinger-S '18)
(M, <, <,7) the Lorentzian pre-length space induced by a smooth and
strongly causal spacetime (M, g), then L-(v) = Ly(7v)

¢ is intrinsic if £(x,y) = sup{L-(y) : 7y causal from x to y}~> Lorentzian

length spaces
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Lorentzian model spaces of constant curvature K € R

Q2 _ 1
Mg=( R K=0
r72 _
Hl (’I") K = =7z
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Lorentzian model spaces of constant curvature K € R

Sf(r) K = ;15
Mg =< R? K=0
Hi(r) K=-%

5'%(1") simply connected covering manifold of 2D Lorentzian pseudosphere
(K = 1: de Sitter space)
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Lorentzian model spaces of constant curvature K € R

2
8
o

S K=1%
Mg =< R? K=0
Hi(r) K=-% A

5‘%(1”) simply connected covering manifold of 2D Lorentzian pseudosphere
(K = 1: de Sitter space)

R? 2D Minkowski space

H?(r) simply connected covering manifold of 2D Lorentzian
pseudohyperbolic space (K = —1: anti-de Sitter space)

Harris, Alexander and Bishop: for small timelike triangles there is a unique
(up to isometry) timelike triangle in My
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Timelike curvature via triangle comparison

Definition
Lorentzian pre-length space X has timelike curvature bounded below
(above) by K € R if all points in X have nhd. U s.t.:

@ T7|yxy finite and continuous
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Timelike curvature via triangle comparison

Definition
Lorentzian pre-length space X has timelike curvature bounded below
(above) by K € R if all points in X have nhd. U s.t.:

@ T7|yxy finite and continuous

Q x,y € U with x < y = 3 f.d. maximal causal curve in U from x to y

© Axyz small timelike geodesic triangle in U, Axyz comparison
triangle of Azyz in Mg, then for p,q points on the sides of Azyz
and p, q corresponding points in Azyz:

7(p,q) < 7(P,q) (respectively 7(p,q) > 7(p,q))
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Timelike curvature via triangle comparison

Definition
Lorentzian pre-length space X has timelike curvature bounded below
(above) by K € R if all points in X have nhd. U s.t.:
© 7|uxu finite and continuous
Q z,y € U with z < y = 3 f.d. maximal causal curve in U from z to y
© Auxyz small timelike geodesic triangle in U, AZzyz comparison
triangle of Azyz in Mg, then for p,q points on the sides of Azyz
and p, g corresponding points in AZxyz:

7(p,q) < 7(p,q) (respectively 7(p,q) > 7(p,q))

Beran, Kunzinger, Ohanyan, Rott '24: smooth Lorentzian manifold with
timelike sectional curvature bounds
TLCBB implies TL non-branching
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Optimal transport and (Ricci) curvature

@ Optimal Transport: Monge, Kantorovich, move matter in the
cheapest / optimal way from A to B
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Optimal transport and (Ricci) curvature

e Optimal Transport: Monge, Kantorovich, move matter in the
cheapest / optimal way from A to B

e Minimize [ .y c(x,y)dm(x,y) over all couplings 7 of initial
distributions (7 € P(X x Y') w/ given marginals (pry )sm, (pry )sm)

@ What is optimal? depends on distances and geometry!

@ Turn this on its head to define curvature by requiring that optimal
transport behaves as in model spaces

Transporting clouds of points on the sphere

in the Lorentzian case

cost c = T time separation J

Clemens Samann, University of Vienna Work. Sem. Math. Phys. 12 /28



Selected applications

@ inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
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@ Generalized cones: Lorentzian warped products of metric spaces with
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Differential calculus for causal functions on LLS
preprint 2408.15968 w/ Beran, Braun, Calisti, Gigli, McCann, Ohanyan, Rott

Motivation:
in smooth spacetimes: V f f.d. causal, v f.d. causal curve, by reverse
Cauchy-Schwarz

1

1
) = 160 = [dronae > [195,6@)lw)de
0

0

~> need to know that what |V f| and |7| is
in the metric case: minimal weak upper gradient and metric speed
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Differential calculus for causal functions on LLS
preprint 2408.15968 w/ Beran, Braun, Calisti, Gigli, McCann, Ohanyan, Rott

Motivation:

in smooth spacetimes: V f f.d. causal, v f.d. causal curve, by reverse
Cauchy-Schwarz

1

1
) = 160 = [dronae > [195,6@)lw)de
0

0

~> need to know that what |V f| and |7| is
in the metric case: minimal weak upper gradient and metric speed

Goal

develop such a differential calculus in the synthetic Lorentzian setting J
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Differentiating the reverse triangle inequality

Proposition (Diff. the reverse triangle inequality on the halfsquare)
T: {(s,t) € [0,1]%, s <t} — [0,0) such that

T(r,s)+T(s,t) <T(rt) VO<r<s<t<l
then exists maximal measure {1 among Borel measures v on [0, 1] sat.

v((a,b)) < T(a,b)  Va,be[0,1], a<b.
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Differentiating the reverse triangle inequality

Proposition (Diff. the reverse triangle inequality on the halfsquare)
T:{(s,t) €[0,1)%, s <t} — [0,00) such that

T(r,s)+T(s,t) <T(rt) VO<r<s<t<l
then exists maximal measure {1 among Borel measures v on [0, 1] sat.
v((a,b)) < T(a,b) Va,b € [0,1], a <b.

. . . "  T(ti+h)
w is the weak limit as h | 0 of pj, having densities duy,(t) := === dt
writing = pL' + pt with g+ L £, 0 # p < 1, then

/pp—l fz tzvtz—i-l

infimum taken over all finite partitions 0 =ty < ... <ty =1 of [0, 1]
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Causal speed and energy

Definition (causal speed)

~v:10,1] — X causal path, apply Prop. to T'(s,t) := 7(v(s),y(t)) ~
maximal measure || := p on [0, 1] is the causal speed of
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Causal speed and energy

Definition (causal speed)

~v:10,1] — X causal path, apply Prop. to T'(s,t) := 7(v(s),y(t)) ~
maximal measure || := p on [0, 1] is the causal speed of
Lebesgue decomposition is |¥| = |¥|£! + ||+

~ need not be continuous! ~ left-continuous causal paths LCC([0, 1], X)

Definition (p-energy of left-continuous causal paths)
0#p<1 .
L[,
A= [ ey at
0

~ timelike geodesic, i.e., T7(y(s),~v(t)) = (t — s)7(7(0),v(1)) > 0,
if and only if v maximizes the p-energy
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Left-continuous causal paths of probability measures

Lifting the causal structure to P(X): p,v € P(X), u causally precedes v,
ie., p 2 v, if 3r € ll<(u, v) (7 coupling of p, v with 7(<) =1) ~
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Lifting the causal structure to P(X): p,v € P(X), u causally precedes v,
ie., p 2 v, if 3r € ll<(u, v) (7 coupling of p, v with 7(<) =1) ~
left-continuous causal paths of probability measures LCC(]0, 1], P(X))

Definition (p-Lorentz-Wasserstein distance, Eckstein-Miller '17)
1

lp(p,v) == sup (/ 7 dw)p
)

m€ll< (p,v 2

Prop. = causal paths of probability measures have causal speed

Definition (p-energy of left-continuous causal paths of prob. meas.)
0#p<1, ue LCC(|0, 1] P(X)
/ ], (0P dt

w timelike £,,-geodesic, i.e., £y(u(s), pu(t)) = (t — $)€p(1(0), (1)) > 0,
if and only if u maximizes the p-energy
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Calculus for causal functions (1/2)

Definition (Causal (or monotone) function)

f:+ X — [—o00,00] is a causal function if it is monotone (or causally
order-preserving), i.e.,, Vz,y € X, z <y = f(z) < f(y)
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From now on: X with polish topology, m Radon measure on X

Definition (Test plan)
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Calculus for causal functions (1/2)

Definition (Causal (or monotone) function)

f: X — [—o0,00] is a causal function if it is monotone (or causally
order-preserving), i.e., Vo, y € X, z <y = f(z) < f(y)

From now on: X with polish topology, m Radon measure on X
Definition (Test plan)
7 € P(LCC([0,1], X)) test plan if 3C > 0 s.t. (eval,)ym < Cm Vt € [0, 1]

Definition (Weak subslope)

f Borel causal function, G: X — [0,00] is a weak subslope of f if every
test plan 7 satisfies

1

Jam) - saED) drm = [ [ 66)11e dedr)

0
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Calculus for causal functions (2/2)

Theorem and definition (Maximal weak subslope)

f Borel causal function, then 4 m-a.e. unique maximal weak subslope
G: X —[0,00] of f and |[df| :=G
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Theorem and definition (Maximal weak subslope)

f Borel causal function, then 4 m-a.e. unique maximal weak subslope
G: X — [0,00] of f and |[df|:=G

f, g causal functions A > 0

Concavity: |[d(A f +g)| > A|df| + |dg] m-a.e.

Positive 1-homogeneity: A > 0 = |d(\ f)| = A|df| m-a.e.
Locality: |df| = |dg| wm-a.e. on {f =g}

Chain rule: ¢: R — R nondecreasing, then

ld(¢o f)l = (¢ o f)|df] m-ae.
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Calculus for causal functions (2/2)

Theorem and definition (Maximal weak subslope)

f Borel causal function, then 4 m-a.e. unique maximal weak subslope
G: X — [0,00] of f and |[df|:=G

f, g causal functions A > 0

e Concavity: |[d(A f+g)| > A|df| + |dg] m-a.e.

o Positive 1-homogeneity: A > 0= |d(A f)| = A|df| m-a.e.

o Locality: |df| =|dg|] m-a.e.on{f =g}

e Chain rule: ¢: R — R nondecreasing, then

[d(po )l = ("0 f)ldf| m-ae.

o Leibniz rule: f,g >0 = |d(fg)| > f|dg| +g|df] m-a.e.

Definition (Infinitesimally Minkowskian)

X infinitesimally Minkowskian if V' f, g causal the parallelogram identity
2(|df |2 + |d(f + 9)|?) = |dg|* + |d(2f + g)|*> holds m-a.e.
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Vertical right-differentiation

Definition (Perturbations of causal functions)

f: X — [—o00,00] causal, Pert(f) admissible perturbations of f:

Pert(f) :={g: X — [-00,00] : 3¢ > 0 s.t. f+eg is causal}
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Vertical right-differentiation

Definition (Perturbations of causal functions)

f: X — [—o00,00] causal, Pert(f) admissible perturbations of f:

Pert(f) :={g: X — [-00,00] : 3¢ > 0 s.t. f+eg is causal}

Definition (Vertical right-differentiation)
f:+ X — [—00,00] causal, g € Pert(f), p <0, define

07 on {f = :|:OO}
+ P2 .— d P_|dflp
el0 pe |
Clemens Samann, University of Vienna Work. Sem. Math. Phys. 20 / 28



Relating vertical with horizontal derivative

calculus rules for perturbations: chain rule, Leibniz rule ~»
Theorem (Vertical vs horizontal derivative)

(M, £, m) infinitesimally Minkowskian, f: M — R causal, g: M — R s.t.
+g € Pert(f); then

im W);”dw = [ A9V ) 1P (0) dn()

where 7 represents the p-gradient of f, i.e., for p~1 + ¢~ =1 with
0+#q<1,|dffP € L'(m) and limsup,_,qt =" [f§ 7|9 dr dm(v) < +o00

limsup/ f(lyt) ; f(’YO) dﬂ'(’Y)

t—0

t
1 1
SR ST T
< = [ 1aflP(0) am(x) + timint - [[ |31 ardn(3)
0
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Smooth (g-)d'Alembertian comparison (1/2)

Definition (g-d'Alembertian)
q <0, f € C*M) with timelike gradient, define

0,(f) = div (VFIVFI§2)

Theorem (Smooth ¢-d'Alembertian comparison)

(M, g) globally hyperbolic spacetime of dimension n s.t.
Ric(v,v) > (n — 1)K Vv € TM unit timelike, K € R, then Yy € M
(ry :==7(.,y)), on I~ (y) \ Cr (y):

> 1+ (n — 1)VEKr, cot(vVKT,), K >0,
Dq?y < qn, K =0,

1+ (n—1)y/—Kr,coth(vV—K7,), K <O0.
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Smooth (g-)d'Alembertian comparison (2/2)

e since |V7,|, =1, Oy7y = O7y for any ¢ < 0
e Expectation: g-d’Alembertian comparison holds for any Kantorovich
potential, not just p_lT,Zf

Tp 7'2 .
° Dq?y = D% ~» classical result:

Theorem (D'Alembertian comparison)

(M, g) globally hyperbolic spacetime of dimension n s.t.
Ric(v,v) > (n — 1)K Vv € TM unit timelike, K € R, then Yy € M
(ry :==7(.,y)), on I~ (y) \ Cr (y):

(n — 1)VK cot(VKr,), K >0,
Or, <zt K =0,

)
Ty

(n —1)v/—K coth(v—=KT,), K <O0.
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Synthetic timelike non-negative Ricci curvature

e [McCann, '18], [Mondino, Suhr, '18], [Cavalletti, Mondino, '20],
[Braun, '23].
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Synthetic timelike non-negative Ricci curvature

e [McCann, '18], [Mondino, Suhr, '18], [Cavalletti, Mondino, '20],

[Braun, '23].
o u,v € P(X) timelike p-dualizable if 3 optimal 7 € II(p, v) with
(L) =1

e Entropy: Ent(p, m) := [y plog(p) dm if = pm and (plog(p))+
integrable, otherwise Ent(u, m) = oo

e pe(0,1), N € (0,00): X isa TCD,(0,N) space if
Y(p10, p11) € Pac(X)? timelike p-dualizable 3 timelike £,-geodesic
w: [0,1] = Pae(X) from pg to pg s.t. t — e(t) := Ent(u(t), m) is

N2
semi-convex, i.e., e’ — % > 0 in the distributional sense
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p-D'Alembertian comparison

Theorem (p-D’'Alembertian comparison)
X w/ synthetic TL Ricci curvature > 0 and dim < N, N > 1,

7 continuous, 0 # ¢ < 1, % + % =1, 0= # (or 7%/q-concave), then
V0 < g € Pert(y) bounded, compact support:

/ dtg(V)|dpP~2 dm < N/g dm

@ also for synthetic TL Ricci curvature > K € R
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p-D'Alembertian comparison

Theorem (p-D’'Alembertian comparison)

X w/ synthetic TL Ricci curvature > 0 and dim < N, N > 1,
T continuous, 0 # ¢ < 1, % + % =1, ¢= W (or 79/g-concave), then
V0 < g € Pert(y) bounded, compact support:

/ dtg(Ve)|dplP~2 dm < N/g dm

@ also for synthetic TL Ricci curvature > K € R
o if Pert(y) rich enough conclusion holds in distributional sense

@ Eschenburg (1988) proved such estimates where 7(-, z) is smooth; we
extend across the timelike cut locus for the first time

@ thus even on smooth globally hyperbolic spacetimes new results

e dTg(Vy)|dyp|P~2 is a measure, but non unique unless infinitesimal
Minkowskianity holds and Pert(p) dense
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New proof of the smooth Lorentzian splitting theorem
preprint 2410.12632 w/ Braun, Gigli, McCann, Ohanyan

e using the p-D'Alembertian O, (f) := div (VflVfV,f_?) instead of the
D’Alembertian gives ellipticity (while losing linearity), p < 0
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New proof of the smooth Lorentzian splitting theorem
preprint 2410.12632 w/ Braun, Gigli, McCann, Ohanyan

e using the p-D'Alembertian O, (f) := div (Vf]Vngf_Q) instead of the
D’Alembertian gives ellipticity (while losing linearity), p < 0
@ avoids having to consider the spacelike slices individually

@ other techniques from optimal transport and the synthetic calculus on
Lorentzian length spaces

Theorem (Lorentzian splitting, Newman; Eschenburg; Galloway)

(M, g) globally hyperbolic or timelike geodesically complete, Ric(v,v) > 0
for timelike v € T'M, containing a complete timelike line, then
(M, g) = (R x S, —dt?> + h)

Clemens Samann, University of Vienna Work. Sem. Math. Phys. 26 / 28
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Outlook

@ natural notion of convergence a la Gromov-Hausdorff (work in
progress w/ Mondino)

@ Coordinates for Lorentzian length spaces with timelike curvature
bounded below (w.i.p. w/ Beran, Harvey, Rott)

o (CY-stability of synthetic TL Ricci curvature bounds & impulsive
gravitational waves (w.i.p. w/ Mondino, Ryborz)

e splitting for low regularity spacetimes (w.i.p. w/ Braun, Gigli,
McCann, Ohanyan)
o splitting for synthetic TL Ricci non-negative

@ timelike curvature bounds for discrete spaces — applications to
Quantum Gravity (causal sets etc.)
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