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Corollary:

Yes, by coordinate transformation to optimal regularity.
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Shock wave solutions of Einstein-Euler equations appear singular:

Riemann curvature in L™, but metric only Lipschitz continuous.

Can one remove these “singularities” in the metric tensor?
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-
Corollary:

Yes, by coordinate transformation to -
-

?

Thm: (“Optimal Regularity”) [R. & Temple, 2019]

Any LP connection can be regularised by coordinate transformation to

~

_one derivative above their L” Riemann curvature (“optimal regularity”).
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‘Thm: (“Optimal Regularity”)

Any L? connection can be resularised by coordinate transformation to
Y g Y

one derivative above their L Riemann curvature 5

Proof:
Write connection transformation law

as solvable system of elliptic PDE’s
for the regularising transformation.



Optimal Regularity
and
Uhlenbeck Compactness



Covariant derivative V =0+ 1

The setting: /

e Connection components: [ = Fg. (k,i,j=1,...,n)

E.g.: Fg. = gkl(al-gﬂ +0,8; — 9,8;;) for a metric g;; .

® Their Riemann curvature: Riem(I') = Curl(T") + [, T']

Both defined on an open & bounded set Q2 C R”.

The problem of optimal regularity is local.

> The set 2 C R"” represents a chart (x, U) on a manifold, = x(U).



Optimal regularity and coordinate transformations:

Riem(I') € L?

“Optimal Regularity”

e 'el?” means ||['|Pdx < co component-wise

e TeW'” means 'el? & ol € L”
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e TeW'” means 'el? & ol € L”



Optimal regularity and coordinate transformations:

Riem(I") ~ Curl(I")
\ makes this possible

e lL?

9
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Optimal regularity and coordinate transformations:

o
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Optimal regularity and coordinate transformations:

“Optimal Regularity”

I - T +0(4%)

Riem(I') — ag - Riem(I")



Optimal regularity and coordinate transformations:

o

Riem(I') € L? Riem(I') € L?

Question: dox — y 7




Optimal regularity and coordinate transformations:

Typical, when solving
Einstein equations.
E.g.: GR shock waves.

e lL?

9
ox

Riem(I') € L? Riem(I') € L?

Question: dox — y 7




Optimal regularity and coordinate transformations:

e L%

9
ox

Riem(I') € L? Riem(I') € L?

Question: dx — y 7

Prior Results: Yes, smoothing transformation exists for...

* Riemannian metrics (pos. def.). [Kazdan-DeTurck, 1981]



Optimal regularity and coordinate transformations:

e L%

9
ox

Riem(I') € L? Riem(I') € L?

Question: dx — y 7

Prior Results: Yes, smoothing transformation exists for...

* Riemannian metrics (pos. def.). [Kazdan-DeTurck, 1981]

* Lorentzian metrics, (/.°”), under restrictive conditions, ruling out shock waves.
[Anderson, 2002] and [LeFloch & Chen, 2008]

* Lorentzian metrics, (/.°”), across single shock surfaces. [Israel, |966]

* Lorentzian metrics, (/.°”), across spherical shock interactions. [R. & Temple, 2014]



Optimal regularity and coordinate transformations:

e wtrp e L?

0 0

0y Oz

Riem(I') € L? Riem(I') € L?

Ne :L’M

Question: dx — y 7

-
Thm |: Yes, smoothing transformation exists...

~

.

for any affine connection, (p > n/2)!




‘Thm |: (“Optimal Regularity”) [R.& Temple, 2019/2021]

-

Let n/2 < p < c0. Assume that in x-coordinates
1Tl 2o + lIRIeM(I' )| 1 < M.

Then, locally there exists a coordinate transformation x — y
to a connection of optimal regularity, | |, & WP, such that

1w + 1l pr2r < CM),
dy

where J = — and C(M) > O depends only on Q,n,p & M > 0.

o0x

y,

Norms are taken component-wise in fixed x-coordinates.

Egs D= Y IS r = Y ([ Ik Pao)’

k,i,9 k,i,9

1

ICllwre = Dl ze + | DT| 2o



(Thm |: (“Optimal Regularity”) [R.& Temple, 2019/2021] a
Let n/2 < p < 00. Assume that in x-coordinates

1Tl 22 + [[Riem(T' Y|, < M.

Then, locally there exists a coordinate transformation x — y
to a connection of optimal regularity, | |, & WP, such that

1T e + [ llwr2r < CM),

where J = ? and C(M) > O depends only on Q,n,p & M > 0.
— * _J

* This extends optimal regularity result of Kazdan-DeTurck [ 81]

from Riemannian metrics to general affine connections.




(Thm |: (“Optimal Regularity”) [R.& Temple, 2019/2021] A
Let n/2 < p < 00. Assume that in x-coordinates

1Tl 22 + [[Riem(T' Y|, < M.

Then, locally there exists a coordinate transformation x — y
to a connection of optimal regularity, | |, € WP, such that

HFyHWLp + HJHWIQP S C(M)’

where J = ? and C(M) > O depends only on Q,n,p & M > 0.
— * _J

* This extends optimal regularity result of Kazdan-DeTurck [ 81]

from Riemannian metrics to general affine connections.

* Higher levels of optimal regularity [R. & Temple, 2018]:

I'.RiemT,) € W™ — T, € W™ > 1,p>n).



Our results extends from tangent bundles to vector bundles:

Tangent bundle.

Connection: T

dy

Transformation group: Jacobians J = —



Our results extends from tangent bundles to vector bundles:

Tangent bundle. (General Relativity) Vector bundle. (Yang-Mills Theory)
Connection: I Connection: (I', A)
Transformation group: Jacobians J =

S
| S

Transformation group: SO(r, s)

/

Signature of metric 7 in
orthogonality condition

U'nU =n.

o0x



Our results extends from tangent bundles to vector bundles:

Tangent bundle. (General Relativity) Vector bundle. (Yang-Mills Theory)

Connection: I’ Connection: (I', A)
0
Transformation group: Jacobians J = a_;yc Transformation group: SO(r, s)

Thm 1: (“Optimal regularity”) [R. & Temple, 20217
Assume ||, A)|l;2 + ||Riem(I", A ||, » <M, (p > n/2).

Then, locally there exists a coord./gauge transformation,x — y, U € SO(r, s),

to a connection of optimal regularity, (I, Ap) € WHP(Q),b=U-a,/] = %

Q’Vith ”(Fya Ab)”wl,p < C(M) and ”(Ja U)”WLZP < C(M)




Thm I: (“Optimal regularity’)
Assume ||[(T',, Ayll;2 + [|[Riem(T",, A)||;» <M, (p > n/2).

Then, locally there exists a coord./gauge transformation,x — y, U € SO(r, s),

to a connection of optimal regularity, (I';, A,) € Wlr(Q)

with [0, Ap)lyis < CM) and I D)l < CM).

‘ Banach-Alaoglu Theorem

4 R
Uhlenbeck compactness

for general connections

on vector bundles.




Thm I: (“Optimal regularity”)
Assume ||[(T',, Ay)|l;2 + [|[Riem(T", A)l|l;» <M, (p > n/2).

Then, locally there exists a coord./gauge transformation,x — y, U € SO(r, ),

to a connection of optimal regularity, (1, Ap) € 1424(9)

with  [|(T,Aplly, < CM)  and [, Dllyar < CM).

i Banach-Alaoglu Theorem

'Thm 2: (“Uhlenbeck compactness™) [R. & lemple, 2021

Let (I';, A;) € L™ be a sequence of connections on SO(r, §) vector

bundle in fixed gauge and x-coord’s.
Assume  [[(I';, A)ll» + |[Riem(L';, A)ll,, <M  for p > n.

Then, in coord’s/gauges (y;, b;) of optimal regularity, a subsequence

of (I'y, Ap ) converges weakly in W' and strongly in L?.
k l l




Thm 2: (“Uhlenbeck compactness™)

Let (I, A;) € L™ be a sequence of connections on SO(r, §) vector

bundle in fixed gauge and x-coord’s.
Assume  |[|(I', A)|l;~ + [|Riem(I", A)|[;, <M for p > n.

Then, in coord’s/gauges (y;, b;) of optimal regularity, a subsequence

of (I'y, Ap ) converges weakly in W' and strongly in L?.

K. Uhlenbeck’s original compactness theorem:

Assumes

» a fixed smooth Riemannian metric g on the base manifold, (I, =1 );

e connections A, € WP of optimal regularity (on fibre); p > %;

* compact gauge group & C SO(n);
* requires only |[|[Riem(A))||;, £ M. (invariant uniform bound)

Asserts convergence of subsequence A ; weakly in W', strongly in L?.




The RI-equations

Proof of Main Theorem



The coordinate/gauge transformations which regularise a
connection (I', A) to optimal regularity, are solutions of the
Regularity Transformation (RT-) equations:




Regularity Transformation (RI-) equations:

Al'=68dT" — 8(dJ~' AdJ)+d(J'B)

AJ =86UJT) —(dJ;T") — B

dB = div(dJ AT) + div(JdT) — d({dJ: T))
5B =v

Regularises I

{AA = 8dA — 5(dU™" A dU) Regularises A

AU = USA — (U n)~1{dU"; ndU)
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Regularity Iransformation (R1-) equations:
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A Y w

The RT-equations are elliptic regardless of metric signature.

o Unknowns (J,T, B) & (U, A) are matrix valued differential forms.
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The RT-equations are elliptic regardless of metric signature.

* We base co-derivative 0 on Euclidean metric in x-coordinates.

—> ellipticity & non-invariance of RT-equations



Regularity Transformation (RI-) equations:

Al = 6dT = 6(dJ~ ' AdJ) + d(J~'B)
AJ =86UJT) —(dJ;T") — B

N . 3 Regularises [ by J
dB = div(dJ AT) + div(Jdl') — d({(dJ;T))

0B =V Independent
of each other!
AA = 5dA — 5(dU" A dU) /
T sel/ arrT Regularises A by U
AU = USA — (U'n) {dU";ndU)

/N AN

A Laplacian in R"  § co-derivative d exterior derivative

The RT-equations are elliptic regardless of metric signature.
* Unknowns (J, [,B) & (U, A) are matrix valued differential forms.

e We base co-derivative 0 on Euclidean metric in x-coordinates.

— & non-invariance of RT-equations



Derivation of affine RT-equations:

- =J"'JJ-T,

[
Connection Transfo. Law: I'=1,-J a7

7N

Optimal

g 1 Non-optimal
I~T'eWw?

[ €L?&dl', € L”

M.R. & B.Temple,“The Regularity Transformation Equations...”, Adv.Theor. Math. Phys. 24.5 (2020).
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/ Differentiate \
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Derivation of affine RT-equations:

Connection Transfo. Law: [ = I'.—J a7

/ Differentiate \

AJ=(dJ;(T,—D)y+J(6T, =) Al =68dT,—6(dJ~' AdJ) + dsT

g . )
For J to be integrable to coordinates,

we need Curl(J) = 0.
.

J




Derivation of affine R1-equations:

r=J"'J-T,
- A |
Connection Transfo. Law: I'=1 —J""'dJ

X

/ Differentiate \

AJ={dJ;T,-D)+J(6T,—6l) Al =68dT, —5(dJ~' AdJ) + doT

\r )
Introduce unknown B by /

B=JéT
\_

J

a )
For J to be integrable to coordinates,

we need Curl(J) = 0.
.

,

M.R. & B.Temple,“The Regularity Transformation Equations...”, Adv. Theor. Math. Phys. 24.5 (2020).



Derivation of affine RT-equations:

- =J7'JJ-T,

Connection Transfo. Law: I'=1,.-J a7

/ Differentiate \

AJ=(d];(T,-D)+J-6T,—B Al'=6dU,—5(dJ"" AdJ) +d(J'B)

Impose dJ = Curl(J/) =0 on B. = Jintegrable to coord’s

M.R. & B.Temple,“The Regularity Transformation Equations...”, Adv.Theor. Math. Phys. 24.5 (2020).



Derivation of affine R1-equations:

r=J"'JJ-T,
. & |
Connection Transfo. Law: I'=1 . -J""dJ

/ Differentiate \

AT ={(dJ;C,-D)+J-6I',—B Al =6dU,—5(dJ"" AdJ) +d(J7'B)

l Impose dJ = Curl(J/) =0 on B. = Jintegrable to coord’s

dB = div(dJ AT) + div(JdD) — d((dJ:T)) = Be L’

/ \

Controlled in LP By cancellation of 6I'-terms
dl' € [’ © Riem(I') € L”
forI' € L%

M.R. & B.Temple,“The Regularity Transformation Equations...”, Adv. Theor. Math. Phys. 24.5 (2020).



Derivation of affine RT-equations:

~J

Connection Transfo. Law: I'=1, — J1dJ

/ Differentiate \

AJ={(dJ;(T -T))+J-6 —B Al'=68dT,—5(dJ"' AdJ) +d(J~'B)

l Impose dJ = Curl(J) =0 on B.

dB = div(dJ AT) + div(JdT) — d((dJ:T)) = Be L’

Al'=6dT — 8(dJ~' AdJ)+d(J'B)
Set 6B = v, AJ = 8(JT) — (dJ;T) — B
I dB = div(dJ AT) + div(JdT) — d({dJ; T))

éﬁzv H

the RT-equations.



Conversely:
If (J,T", B) solves the RT-equations,
then J is a Jacobian, integrable to coordinates,

regularising 1" to optimal regularity.

Proof and existence theory require careful analysis...

M.R. & B.Temple,“The Regularity Transformation Equations...”, Adv.Theor. Math. Phys. 24.5 (2020).



Existence theory for affine RT-equations:

Obstacle!

v

AT = §dl" — 6(dJ =t AdJ) + d(J~1A),
AJ =6(JT) — (dJ;T) — A,

dA = div(d.J AT) + div(J dT) — d((dJ; TY),
§A = v,




Existence theory for affine RT-equations:

Loss of regularity in iteration:

dJ,dJ~' € L, but dJ~' AdJ & L.
AT = 6dl" — §(dJ- L AdJ) +d(JLA),
AJ = §(JT) — (dJ;T) — A,
dA = div(dJ AT) + div(J dT) — d({d.J;T}),
SA = v,




Existence theory for affine RT-equations:

Resolution: Remove dJ~! A dJ from
iteration, using “‘gauge-type” freedom.

AT = 6dl" — §(dJ- L AdJ) +d(JLA),
AJ =6(JT) — (dJ;T) — A,

dA = div(d.J AT) + div(J dT) — d((dJ; TY),
§A = v,

N

“Gauge-type” freedom




Existence theory for affine RT-equations:

AT = §dl — 6(dJ =t AdJT) + d(J~LA),
AJ = 6(JT) — (dJ;T) — A,

dA = div(dJ AT) + div(J dT) — d((dJ; V),
§A = v,

BA—I—{dJ;f)i w:v+5(<d(];l~“§>



Existence theory for affine RT-equations:

AT = §dl — 6(dJ =t AdJT) + d(J~LA),
AJ = 6(JT) — (dJ;T) — A,

dA = div(dJ AT) + div(J dT) — d((dJ; V),
§A = v,

BA—I—{dJ;f)i w:v+5(<d(];l~“§>

AT = §dl — 6(dJ ™t NdJ) + d(J 1 A)

AJ = §(JT) — B -
dB = div(dJ AT) + div(.JdT')
6B = w

N

Free to choose!

Decoupling!



Existence theory for affine RT-equations:

AT = 8dU — §(dJ "L AdJ) +d(J~LA),
AJ = 6(JT) — (dJ;T) — A,

dA = div(dJ AT) + div(J dT) — d((dJ; V),
§A = v,

BA—I—{dJ;f)i w:v+5(<d(];l~“§>

AT = §dl — 6(dJ ™t NdJ) + d(J 1 A)

AJ =6(JT) — B > Decoupling!
= -

dB = div(dJ A1) + div(JdI') “Reduced RT-equations”

6B = w

N

Free to choose!



“Reduced Rl-equations”

Solvable linear system!

How RT-equations give transformation to optimal regularity:

* Integrability of J to coordinates:

— — 0—data — —
J-& B-eqns => A(dJ) =0, = dJ =Curl(J)=0whend /|, =0



AJ = §(JT) — B
dB = div(dJ AT) + div(.JdT)
6B = w

“Reduced Rl-equations”

How RT-equations give transformation to optimal regularity:

* Integrability of J to coordinates:

— —> o—data —
J-& B-eq's = A(dJ)=0, — dJ = Curl(J) =0

» Optimal regularity is obtain as follows:

The reduced RT-equations induce cancellation of terms involving o1, which

implies [ =" — J~'dJ solves the gauge transformed first RT-equation
AT = 6dT — 6(dJ L AdJ) +d(J 1B

Iy < COM) Il + ALl < M

(Ty))s = JL(T LI HLT)E

8%



' Thm: (“Existence”) (R. & Temple, 2019/2021)
Assume ||I",||;2 + |[Riem(I")||;, £ M in x-coordinates, (n/2 < p < ).

Then, locally, there exists a solution (J, B) € WL2P % % of the
reduced RT-eqn’s with Curl(J) = 0, J invertible, and

I = Jllwrze + 1T = T Hlwree + || Bl p2r < C(M)
kfor some constant C(M) > 0 only depending on M, 2, n, p.

™

Proof:
e[teration via Poisson & Cauchy-Riemann equations with W~1"-sources.

*Augment reduced RT-eqn’s by elliptic PDE’s to replace dJ = 0 with

Dirichlet data J = dy: qu, 30 I‘E 7 b
k+1 — k* — DPEk+1,

X Ayk—l-l — \Ijk—l-la

— A(J —dy) = 0.

J

*Introduce e-rescaling of equations by domain restriction. = Convergence.

*Extend existence theory for Cauchy-Riemann eqn’s to W~ !’-sources.



Applications
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Non-optimal connections on fibre and tangent; non-compact groups SO(r, s).
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Applications:

* Uhlenbeck compactness in Lorentzian geometry.

* GR-shock waves: Spacetime is non-singular.

g A
Corollary:

The L metric connections of GR shock waves are regularised

ol € WP ie., to Holder continuity
=P (Geodesic curves exist.

=P | ocally inertial coordinates exist.
¥—> Metrics in C%! ~ W are regularised to W?? ~ C'*.

_J




Applications:

* Uhlenbeck compactness in Lorentzian geometry.

* GR-shock waves: Spacetime is non-singular.

* Existence and uniqueness of geodesics for affine ¥ connections with
bounded curvature.
> Existence requires Riem(I") € L”.
> Uniqueness requires Riem(I") € W',

» Geometric notion of “‘weak solution”; with zero-mollification limit.



Applications:

* Uhlenbeck compactness in Lorentzian geometry.

* GR-shock waves: Spacetime is non-singular.

* Existence and uniqueness of geodesics for affine ¥ connections with
bounded curvature.

* Strong Cosmic Censorship with bounded curvature.

Inextendability of maximal Cauchy developments with metrics uniformly
bounded in W47, , implies inextendability with metrics

uniformly bounded in C%! and curvature in L?.



Applications:

* Uhlenbeck compactness in Lorentzian geometry.

Non-optimal connections on fibre and tangent; non-compact groups SO(r, s).

* GR-shock waves: Spacetime is non-singular.

Newtonian limit, locally inertial coordinates & geodesics exist.

* Existence and uniqueness of geodesics for affine L” connections with

bounded curvature. [|. Diff. Eqn’s., (2024)]
Riem(I') € L? = existence; Riem(I') € W!* = uniqueness.

* Strong Cosmic Censorship with bounded curvature. [arXiv:2304.04444]

Inextendability with C%! metrics with L? Riemann curvature.

» Singularity Thm’s for C%! metrics with curvature bounded in L”. [to come]

> Builds on work by Graf ['20], and Kunzinger, Steinbauer, ... ['15,’18,°22]

> Spacetimes violating these assumptions are quite singular to begin with...
[Crusciel-Grant, ' | 2]



Work in progress:
» Global Regularisation?

> Essential Regularity? (True best regularity!)
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» Global Regularisation?
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* Central observation:
Connection transfo.law  —  dJ~1,+1] ($)




Work in progress:
» Global Regularisation?

* Central observation:
Connection transfo.law  —  dJ~1,+1] ($)

*($) = J is one derivative above I', & I, € W™

— Transition maps between regularised I"’s form W/ -atlas

—> Global regularisation! O




Work in progress:

> Global Regularisation!?

> Essential Regularity? (True best regularity!)

* Central observation:
Connection transfo.law  —  dJ~1,+1] ($)

* Def: Essential regularity is largest m € N such that I', € W™ for some

in atlas of W2? coordinate transformations, (p > 7n); write m = ess(l).
y

* RT-egn and ($) give necessary & sufficient condition:

‘Thm $: T , € WP has its essential regularity in y-coord’s A

_if and only if Riem(I')) € wm=Le\ wmp,
Proof: =) By RT-eqgn’s.
<) Assume Jy": 1", € wmrlr (= Riem(IT')) € W"7)
=)> y = ¥ has J J~Vin wrtlp
= Riem(I'}) = J - Riem(I';) € W"”. Contradiction! g




The hierarchy of regularities:

e W™ and Riem() € W 1P\ Wm?
l J € WP\ W1y

e W2 and Riem(') € W 1P\ Wm»
| 7 wetnms

e W">? and Riem(I') € W~ 1P\ W"»
l J € WP\ W?»

e W37 and  Riem(I') € W™= 2P\ WP

Nec. & Suff. condt.
foress(I)) = m !




The hierarchy of regularities:

Nec. & Suff. condt.
foress(I)) = m !

['e WP and Riem(I') € Wm—lap\Wm,p

l J € WP\ wmtlp TRT—equations
e W™ and Riem(I) € WP\ Wmr
l J e WP\ wmp TRT—equations
e W2 and Riem(@I) € WP\ W"p
l J € WHP\ W2 TRT—equations &Thm $

e W37 and Riem(I') € W"=2P\ WP



We summarise this as

-
Theorem: (“Global regularisation of connections & manifolds™)

Let ./ be a manifold with W?P-atlas <.
Assume I' € LP(M, ) with Riem(I') € LP( M, A).
Assume m = ess(I’) < 0.

Then solving the RT-equations (multiple times) on a suitable covering
of /M yields an WP atlas &/’ such that ' € W"P( M, ).




Conclusion:
Curvature always controls the regularity of connections,

regardless of metric and metric signature,
as a consequence of the connection transformation law,
expressed as the elliptic RT-equations.

* M. R. & B. Temple, “Optimal regularity and Uhlenbeck compactness for General Relativity and Yang-
Mills Theory”, (2022), Proc. Roy. Soc. A 479:20220444. [arXiv:2202.09535]

* MR. & B. Temple, “On the Optimal Regularity Implied by the Assumptions of Geometry I:
Connections on Tangent Bundles”, (2019/2021), 100 pages, Meth. Appl. Analysis. [arXiv:1912.12997]

* MR. & B.Temple, “On the Optimal Regularity Implied by the Assumptions of Geometry II:
Connections on Vector Bundles”, (2021), 40 pages, Adv. Math. Theor. Phys. [arXiv:2105.10765]



Conclusion:
Curvature always controls the regularity of connections,

regardless of metric and metric signature,
as a consequence of the connection transformation law,
expressed as the elliptic RT-equations.

Thank you very much
, for your attention!
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