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INTRODUCTION AND MOTIVATIONS

Operationally, subsystems are distinguished by subalgebras of physically accessible observables [Zanardi 01; Zanardi, Lidar, Lloyd 03]

often relative to external frame, e.qg. the Lab, or to notion of locality of a background spacetime (external to the fields of interest).

What if no external relatum is available and/or there is tension between locality and gauge-invariance?

In constrained/gauge systems and gravity:
e Kinematical notion of subsystems generically not inherited at gauge-inv. level;
® Non-local gauge-invariant observables;

® Partitioning vs. cross-boundary observables. [Donnelly, Freidel, Francois, Geiller, Gomes, Pranzetti, Riello,
Speranza, Speziale, Wieland, Carrozza, Eccles, Hohn,...]

(edge modes)
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SUBSYSTEM RELATIVITY

4~ MULTIPLE CHOICES y
Gauge-inv. subsystems depend on the ;.. aji, Galley, Hohn, Lock, Smith "21;

Idea: i ; ) )
Use internal reference frames —— relational observables accessible in de la Hamette, Galley, Hohn, Loveridge, Milller 22

& relational observables the chosen internal frame Hohn, Kotec__ha, FMM_ 23;
Carrozza, Hohn, Kirklin, FMM to appear]

Consequences: frame-dependent gauge-inv. properties of subsystems + alternative proposal for entanglement entropy



EXAMPLES OF SUBSYSTEM RELATIVITY

® Special relativity with tetrads frames [de la Hamette, Galley, Hohn, Loveridge, Miiller '21; :> Relativity of simultaneity from relativity of subsystems
Hohn, Kotecha, FMM 23] . ,
[Hohn, Kotecha, FMM 23]

® Finite-dim. quantum systems: external-frame independent description of DoF of interest ~——> Relativity of correlations, subsystem dynamics,

relative to the remaining DoFs (used as internal frame) equilibrium and non-equilibrium themodynamics
[HOhn, Kotecha, FMM 23]

® Subregions in gauge theories and gravity: edge modes frames :> Frame-dependent subregional gauge-inv. algebras

[Carrozza, HOhn "21; [Carrozza, HOhn, Kirklin, FMM to appear]
Carrozza, Eccles, HOhn '22]

® Regulatisation of gravitational entropy via introduction of observer i Observer dependence of gravitational entropy

(from Type III to Type II algebras) [De Vuyst, Eccles, Hohn, Kirklin ‘24]

[Chandrasekaran, Longo, Pennington, Witten ‘22; Kudler-Flam, Leutheusser,
Satishchandran "23; Jensen, Sorce, Speranza 23; Freidel, Gesteau to appear]
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PLAN OF THE TALK

Part I Warm up: Special relativity with internal tetrad frames

Part II Finite-dimensional quantum constrained/gauge systems

Illustration via mechanical toy model example;
Basics of quantum reference frames (perspective-neutral formulation);

Quantum relativity of subsystems & its physical consequences;

Part III Comparison with center construction for subsystem entropy in presence of constraints

Different assignment of gauge invariant subalgebras ~ —— Different notion of entropy (proper entanglement entropy?)

Part IV Subregions in gauge field theory (edge modes as boundary dynamical frames)



Part 1

Special relativity with tetrad frames



SPECIAL RELATIVITY WITH INTERNAL FRAMES e I3 Hamette, Galley, Hohm,

Loveridge, Muller 22;
Hohn, Kotecha, FMM 23]

vk = AHYY A e S5O,.(3,1) internally indistinguishable

X

External/background coordinate frame



€1 X

External/background coordinate frame

SPECTAL RELATIVITY WITH INTERNAL FRAMES

vt — APy

A e S5O,.(3,1)

[de la Hamette, Galley, HOhn,
Loveridge, Muller 22;
Hohn, Kotecha, FMM 23]

internally indistinguishable

— Spacetime index ¢ =1,T,Y,2

_ I
Internal frame (tetrad): €,

* frameindex a = 0,1,2,3 (frame orientation)

—> 2 commuting group actions:

y

r

\

AP e SO, (3,1)

A\l /4 - |74
gauge” transformations ACer |

“symmetries” (frame reorientations) Ageg : AZ € S0,.(3,1)

N

acts on frame only



SPECTAL RELATIVITY WITH INTERNAL FRAMES

€1 X

External/background coordinate frame

14
Nab = €4 €p My —

“Gauge-invariant” description of v :

(indep. of external coordinates)

vt — APy

—> 2 commuting group actions: <

6'5 c SO_|_(3, 1)

Vo = €hv,

[de la Hamette, Galley, HOhn,
Loveridge, Muller 22;
Hohn, Kotecha, FMM 23]

A e S5O,.(3,1)

internally indistinguishable

— Spacetime index ¢ =1,T,Y,2

_ I
Internal frame (tetrad): €,

* frameindex a = 0,1,2,3 (frame orientation)

r

AP e SO, (3,1)

A\l /4 - |74
gauge” transformations ACer |

“symmetries” (frame reorientations) Ageg : AZ € S0,.(3,1)

N

\

acts on frame only

group-valued reference frame (G-frames, more later)

“relational / frame dressed observables”

(description of v relative to frame)



SPECTAL RELATIVITY WITH INTERNAL FRAMES

/
€ 4
v
Introduce a second tetrad frame: 6;/
€
> — PV —
eo Vg = Nup€,V° =€
/"
/ relational observable rel. to €
€1
€1
"symmetry-induced” RF transformations
a’ _ /a’ v
A" =e . €q
(relational obs. describing 1st rel. to 2nd frame)
3
60,
v, = b, < v = e v,

change of rel. obs. associated with same kinematical subsystem quantity

[de la Hamette, Galley, HOhn,
Loveridge, Muller 22;
Hohn, Kotecha, FMM 23]

(]
relational observable rel. to €



SPECIAL RELATIVITY WITH INTERNAL FRAMES e I3 Hamette, Galley, Hohm,

Loveridge, Miiller 22;

/ Hohn, Kotecha, FMM 23]
€ 4
v
/
Introduce a second tetrad frame: €,
€
> — gV —
e /va = Nuv€, U =¢€
]
/ relational observable rel. to € relational observable rel. to €
€1
€1
"symmetry-induced” RF transformations "gauge-induced” RF transformations
a’ - ra’ " H/
A" =e . €g A y
(relational obs. describing 1st rel. to 2nd frame) (coordinate change via gauge fixings)
14
i Vg = Ny €hv
U I _
€a €ar g = Og
A
/
V, = €elv, < - v, = e Fo _ A 7
a a =W a a’ |92 va - UI'L > U,U// — A/,L,U/'l’

change of rel. obs. associated with same kinematical subsystem quantity change of coordinate description of same relational observable



SUBSYSTEM RELATIVITY —> RELATIVITY OF SIMULTANEITY

[HOhn, Kotecha, FMM 23]



SUBSYSTEM RELATIVITY —> RELATIVITY OF SIMULTANEITY

[HOhn, Kotecha, FMM 23]

a
Relational observables describing U rel. to 1st frame: Vg VU = vuv“

Distinct gauge-invariant sets of observables,
i.e., gauge-inv. notions of subsystems,
, with non-trivial overlap (functions of v,v")
Relational observables describing v rel. to 2nd frame: Vg 5 Ug’ vt = fUIuU“ ™~

internal relational
observables
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Distinct gauge-invariant sets of observables,
i.e., gauge-inv. notions of subsystems,
, with non-trivial overlap (functions of v, v")
Relational observables describing v rel. to 2nd frame: Vg 5 Ug’ vt = fUIuU“ ™~
internal relational
observables
. _ a’ I 16’
Relational observables describing 2nd rel. to 1st frame: Aa y Cqr €y
Different frames decompose the total
gauge-inv. "algebra” in different ways into
, subsystem of interest and “"other frame"
Relational observables describing 1st rel. to 2nd frame: A? et el



SUBSYSTEM RELATIVITY —> RELATIVITY OF SIMULTANEITY

[HOhn, Kotecha, FMM 23]

a
Relational observables describing U rel. to 1st frame: Vg VU = ?JMU“
Distinct gauge-invariant sets of observables,
i.e., gauge-inv. notions of subsystems,
, with non-trivial overlap (functions of v, v")
Relational observables describing v rel. to 2nd frame: Vg 5 Ug’ vt = vuv“ ™~
internal relational
observables
. o a’ I 16’
Relational observables describing 2nd rel. to 1st frame: Aa y Cqr €y
Different frames decompose the total
gauge-inv. “algebra” in different ways into
, : subsystem of interest and “"other frame"
Relational observables describing 1st rel. to 2nd frame: Al egeu

time

Note: A would not give a non-trivial fransformation if the observables describing
the subsystem of interest rel. to the two frames were coincident

space

Unless A2 is only a spatial rotation, v, and v, decompose into space and
time components in distinct ways



Part 11

Quantum reference frames & relational subsystems



EXTERNAL/KINEMATICAL VS. INTERNAL/PHYSICAL SUBSYSTEMS

(Total) system of particles with translation invariance:

O O Kinematical factorisation into subsystems (e.g. absolute positions/relative to external frame)

o O O “H

Q Physical/external-frame-indep. factorisation into subsystems (e.g. translation invariant relative distances)
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Kinematical factorisation into subsystems (e.g. absolute positions/relative to external frame)

Physical/external-frame-indep. factorisation into subsystems (e.g. translation invariant relative distances)
description of remaining particles relative to external frame unchanged
(absolute positions of the other particles unchanged)

reorientation (change of state) of internal frame
description relative to internal frames changed
(relations between the frame and the other particles are changed)
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Q O Kinematical factorisation into subsystems (e.g. absolute positions/relative to external frame)

O “H

Physical/external-frame-indep. factorisation into subsystems (e.g. translation invariant relative distances)

O

Description of S relative to R1 invariant under reorientations of Rz, but relative to Rz it changes since relations between S and R2 change

Aphys # Aphys Different internal frames identify
S| Ry S| Rz distinct relational notions of subsystems



EXTERNAL/KINEMATICAL VS. INTERNAL/PHYSICAL SUBSYSTEMS

S O 70\ Kinematical factorisation into subsystems (e.g. absolute positions/relative to external frame)

O Y

Physical/external-frame-indep. factorisation into subsystems (e.g. translation invariant relative distances)

R+
Description of S relative to R+ invariant under reorientations of Rz, but relative to Rz it changes since relations between S and Rz change
Aphys ” Aphys Different internal frames identify
S| Ry SR> distinct relational notions of subsystems
Internal relations to S are invariant under reorientations of phys phys @
. . Aqr N A #
both frames (frame-independent relational observables) | Ry | R

[HOhn, Kotecha, FMM 23]

Gauge-inv. properties of subsystems such as correlations, entropies, dynamics (open
vs. closed), equilibrium and non-eq. thermodynamics contingent on the internal frame



INTERNAL (QUANTUM) DYNAMICAL REFERENCE FRAMES

[Krumm, Hohn, Mdller 20, 21;

: : e de la Hamette, Galley, Hohn, Loveridge, Mlller 21
Setup relative to external (possibly fictitious) frame: Y g ]

Split total DoFs into a (SUB)SYSTEM OF INTEREST (subgroup of particle, subregion,...) Hiin = Hp @ Hg space of externally distinguishable states
and FRAME DoFs (constructed from the complement) / \

Unimodular Lie group as gauge transformations (e.g. Galilei, Poincaré, SU(2), reparametrisations,...)

external frame transformations (internal RS relations not affected)

URS (g) — UR (g) ) US (g) 7 g < G analogue of AY € SO, (3,1) in SR
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Dyvynamical frame R associated with (gauge) group G —> frame configurations associated to group elements
Y (gauge) group J Jroup G-frame: subsystem "as non-invariant as

possible” under G-action to be used
to parametrise the orbits of G



INTERNAL (QUANTUM) DYNAMICAL REFERENCE FRAMES

[Krumm, Hohn, Mdller 20, 21;

: : e de la Hamette, Galley, Hohn, Loveridge, Mlller 21
Setup relative to external (possibly fictitious) frame: Y g ]

Split total DoFs into a (SUB)SYSTEM OF INTEREST (subgroup of particle, subregion,...) Hiin = Hp @ Hg
and FRAME DoFs (constructed from the complement) / o

space of externally distinguishable states

Unimodular Lie group as gauge transformations (e.g. Galilei, Poincaré, SU(2), reparametrisations,...)

external frame transformations (internal RS relations not affected)

Urs (g) = Ur (g) @ Us (g) ) g < G analogue of AY € SO, (3,1) in SR

Dyvynamical frame R associated with (gauge) group G —> frame configurations associated to group elements
Y (gauge) group J Jroup G-frame: subsystem "as non-invariant as

possible” under G-action to be used
frame orientations: system of generalised coherent states (gauge transf. acts transitively from left/gauge cov.) to parametrise the orbits of G

POk = Ur(@)e@)r = lo@ e /G 49 lo(9)X(9)r = 1r

analogue of A/ e,
not necessarily orthogonal/perfectly distinguishable orientations
symmetries/frame reorientations (act from right):

Vr (g/) |90(g)>R — \g@(gg’_l)>R change RS relations (analogue of A%el) ) commuting group actions



PHYSICAL STATES & RELATIONAL OBSERVABLES

[Krumm, Hohn, Mdller 20, 21;
de la Hamette, Galley, Ho6hn, Loveridge, Muller 21]

Physical states invariant under gauge transformations (external frame transf.):

Hphys = {thy8> S.T. |¢phy8> — UR(Q) & US(Q)WPhyS> , g &€ G} |¢phys> — thys‘¢kin>
space of relational equivalence classes of states ——  external-frame indep., internally distinguishable states Mphys = /G dg Ur(g) ® Us(9)
[Rovelli ‘98]

group-averaging “projector”

<¢phys thy8>phys — <¢kin ‘thys Wkin>



PHYSICAL STATES & RELATIONAL OBSERVABLES

[Krumm, Hohn, Mdller 20, 21;
de la Hamette, Galley, Ho6hn, Loveridge, Muller 21]

Physical states invariant under gauge transformations (external frame transf.):

Hphys = {thy8> S.T. |¢phy8> — UR(Q) & US(Q)WPhyS> , g &€ G} |¢phys> — thys‘¢kin>
space of relational equivalence classes of states ——  external-frame indep., internally distinguishable states Mphys = /G dg Ur(g) ® Us(9)
[Rovelli ‘98]

group-averaging “projector”

<¢phys thy8>phys — <¢kin ‘thys Wkin>

Gauge-invariant information encoded in relational observables (e.g. relative distances) obtained via G-twirl:

Of, r(9) = / dg' Urs(g’) (‘%O(Q)XSO(Q) R ® fS) U;rzs (") value of /s when R is in orientation ¢
- \ / relational obs. in the sense of Rovelli, Dittrich, Thiemann,...

frame-orientation conditional gauge transf.

(controlled unitary) gauge invariance: [Ots.r, Urs (g")] =0

(analogue of v, = efv,)
Oe r(9) : As — Aphys *-homomorphism on H phys



(QUANTUM) FRAME RELATIVITY OF SUBSYSTEMS

[Ahmad Ali, Galley, HOhn, Lock, Smith "21;
de la Hamette, Galley, Ho6hn, Loveridge, Muller 22;
Hohn, Kotecha, FMM 23]

Consider two frames:  Hkin = Hpr, @ Hr, ® Hg

Change from relational observables of S relative to R1 to those relative to R2 (for the same fg): InSR, recall: v, = A" vy

/

/
a __ Ja _u
where A" =e e

(rel. obs. describing 1st rel. to 2nd frame)



(QUANTUM) FRAME RELATIVITY OF SUBSYSTEMS

[Ahmad Ali, Galley, HOhn, Lock, Smith "21;
de la Hamette, Galley, Ho6hn, Loveridge, Muller 22;
Hohn, Kotecha, FMM 23]

Consider two frames:  Hkin = Hpr, @ Hr, ® Hg

Change from relational observables of S relative to R1 to those relative to R2 (for the same fg): InSR, recall: v, = A" vy

/

/
a __ Ja _u
where A" =e e

(rel. obs. describing 1st rel. to 2nd frame)

Vgl yg2
Rl —>R2
Ofs R (g1 ) Ofs Ro (gg) relation-conditional
frame reorientation
What's the value of fs What's the value of fs
when R1 is in orientation g1 ? when R1 is in orientation g2 ?

Ry Rs S

O O O

ds — 41 ds — 42
g1 — q1+ (g2 —q1)

translation of R1 by relative distance between R2 and R1



(QUANTUM) FRAME RELATIVITY OF SUBSYSTEMS

Consider two frames:  Hkin = Hpr, @ Hr, ® Hg

A

Vgl y g2
R{—R>
Change from relational observables of S relative to R1 to those relative to R2 (for the same fg): 0, fs,R1 (91) O fs,R2 (92)
ngll fs|R1 — Ogﬂg fs|R
- - 2@ Js |t R fs| i
© S-observables relative to R1 invariant under R2-reorientations, 1 :
and viceversa O, o fs|R
S Ap'hys 5*
S|R; 6 e
© Different gauge-invariant subalgebras describing S - @
relative to R1 and R2
P — -
4 V. ”,V *
O Agﬁi A A&};i invariant under reorientations of both frames | e “
(in particular, relation-conditional ones) i TN
092 B \\/ RNER"
- - . 1 RQ ~ .
internal S relations - o Ry,

(already gauge-inv./indep. of R1 and R2) Ay A



(QUANTUM) FRAME RELATIVITY OF SUBSYSTEMS [H5hn, Kotecha, FMM '23]

Different frames identify different gauge inv. subsystems

Different relational ways to refer to a kinematical subsystem

For finite-systems & ideal frames:

phys phys __  sphys phys
Aphys — A 2| Rq ) ‘AS|R “4 1| Ro X ASIRQ
but

phys phys
S|R 7 A5|32

Inequivalent factorisations of total algebra relative to the two frames

(not in general the same as factorisations across kinematical DoFs)

Relational obs. of
S relative to R1

\

Internal relations to S
‘4

g S|R:

phys
‘AS|R2

relativity of simultaneity:

different observers decompose space of (relational)
length observables in different ways into space and time



JUMPING INTO INTERNAL FRAME PERSPECTIVE

ldea: identify redundant DoFs with those of the frame

different gauge choices —» different frame perspectives

Finite Abelian case (frame orientations — |91)1 regular representation, H r = (*(G) )

ocungancy IR

7{phys

gauge-inv./relational
fix redundancy/condition on states
orientation of R1

R :@@ﬂl o ®1g

Hry R, ® Hs|R,

Reduction map
(invertible isomorphism between
physical and reduced Hilbert space)

relative states to
internal frame R1

el

no redundancy

Recall:

“Jumping into frame perspective via gauge fixing”

_ LV
Vo = Nup €y V




JUMPING INTO INTERNAL FRAME PERSPECTIVE

Recall: “Jumping into frame perspective via gauge fixing”
ldea: identify redundant DoFs with those of the frame Vg = Nypehv”
different gauge choices —» different frame perspectives el — §H
a a
A
o : : : _ 9 Va = Uy < i
Finite Abelian case (frame orientations — 91)1 regular representation, Hp = ¢ (G) )
W Example: G = 7Z,,-transl. inv. (+ mod n) N particles
?{phys
1 N
gauge-inv./relational ‘¢phys> — T = E ‘97 h9> N-1 relative
fix redundancy/condition on states AV g‘ geg \ distances
orientation of R1 1
g1 __ |
R{* = @ @1, @15

Reduction map

(invertible isomorphism between 7 . |
physical and reduced Hilbert space) W(gl )>1 — ‘h gl> N—1 | 1 remaining N-1 particles

relative to particle 1 1in
position g1
MR, R, ® Hs|R,
f2
relative states to Pt
internal frame R1 ,;,'--}91,
7 O 20 o - -0 ®

91 9i+h gith



JUMPING INTO INTERNAL FRAME PERSPECTIVE

Recall: “Jumping into frame perspective via gauge fixing”
ldea: identify redundant DoFs with those of the frame Vg = Nyupehv”
different gauge choices —» different frame perspectives et =
o : : : _ 9 Va = Uy <
Finite Abelian case (frame orientations — |91)1 regular representation, Hr = £“(G) )
— Tensor _Product Structure (TPS)
-
thys ATPS T on H is an equivalence class of isomorphisms (unitaries)
gauge-inv./relational | T:H — ® He
fix redundancy/condition on states such that a=1
orientation of R1
- / /
g1 h T ~T if T oT ! = product of local unitaries ®o U, and
R =({g1)1)@ls @15 | o

permutations of subsystem factors with equal dim.
|
!
Reduction map same notion of locality
(invertible isomorphism between = — M——
physical and reduced Hilbert space)

Hp, 1, @ Hs|r; Jumping into perspective = TPS on Hphys
relative states to

[HOhn, Kotecha, FMM 23]
internal frame R1

el

g1 _ o1 g g/
T9 =Ry , Ri~R
no redundancy



reduction to R1 perspective

Rﬁl = (¢1/1 ®1; ® 1g

Hr,|r, ® Hs|R,

CHANGING THE INTERNAL FRAME PERSPECTIVE

Recall: “Jumping into frame perspective via gauge fixing”

_ [Tm%
Vo = N v

b = gt
A M
Hohys Vo = Uy < z

perspective-neutral

reduction to Rz perspective

Ry =11 ® (g2|]2 ®1s

different frame perspectives linked through

perspective-neutral stage

Hr,|r, ® Hs|R,
>

relative states to internal

relative states to internal

QRF transformation frame R2

‘/191—)’92 — Rgz o (R.?)—l

—2

frame R1
ho
ha N
® 20 o -0
g1 g1+ hy g1+ he

g2 — hq g2 92 + (he — h1)



CHANGING THE INTERNAL FRAME PERSPECTIVE

Recall: “Jumping into frame perspective via gauge fixing”

_ [V
Vo = Nuv€hv

el = o
I-L,
Va = Uy < A“'
?{phys
perspective-neutral
reduction to R1 perspective 3 reduction to R2 perspective
R = (91)1 ®1, ® Ig TPS-neutral Ry =11 ® (922 ®1s
HR,|R, @ Hs|R, HR,|R, @ Hs|R,
P>
relative states to internal QRF transformation relative states to internal
frame R1 frame R2
91—92 _ P9I g1\—1
Vile? =R5* o (R7')
non-local unitary — Inequivalent TPSs Hilbert space counterpart of the

algebra story we’ve seen before



PHYSICAL CONSEQUENCES

[HOhn, Kotecha, FMM 23]

Gauge-invariant physical properties generically depend on the chosen frame:

O

Correlations/entanglement of S with its complement —_—

[see also Giacomini, Castro-Ruiz, Brukner “17; Castro-Ruiz, Oreshkov '21)]

©  QRF-relativity of interactions (degree of locality of total Hamiltonian)

O

Total system R1R2S in isolation
(unitary dynamics)

Subsystems can interact,
exchange heat, work, & energy

gauge-inv. entanglement entropy in general S(p5|Rl) + S(PS|R2) for same global physical state

—_— dynamics of S can be isolated/closed relative to R1, but open relative to R2

QRF-relativity of (quantum) thermodynamics: thermal equilibrium & non-equilibrium processes (heat/work exchanges, entropy production, and entropy flow)

)
. b . ° (57@
Rl \NS\BX ds|R; > QS|R1 q1 , Ql S @\
W\ j Mb (SZ?
<
<
N
V1—>2 Jél
<
@ QS\RZ ) QS\RZ
\‘ -
u.)Z 3 W2 RQ



Part 111

Entanglement entropy: relational vs. center construction



RELATIONAL vs CENTER CONSTRUCTION

N+M particles in 1D with translation invariance G = (R, +) Aphys =192 — Q15+, qN+M — q1,D2, - - -, PN+ M }
Prot|¥phys) = 0



RELATIONAL vs CENTER CONSTRUCTION

— AphyS:{QZ_Q17'°°7QN-I-M_Q1ap27°°°7pN—|—M}

N+M particles in 1D with translation invariance G = (R, +)
Ptot|¢phys> =0

Center construction
[Casini, Huerta, Rosabal '13;

S .~ Donnelly ‘11, ‘14;
T RS ,¢x\ Raby RN Van Acoleyen, Bultinck,
6 é é 6 é é é 5 Haegeman, Marien, Scholz,
1 92 N N +1 N4+ M Verstraete '15,...]
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Assign “regional”/internal gauge-inv. algebras to kinematical complements

As ={9¢2—q1,...,98 —q1,P1,---,PN}

AS — (AS)/ — {(]N+2 —4dN+15---sdN+M — dN4+M—-1PN+15- - - 7pN+M}

Non-trivial center

Zs=AsN(Ag) #C1

Algebra generated by .4 5 and its commutant is a strict subalgebra of Aphys

AsV As =D A% ® A% C Apnys
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Entropy associated to local subalgebra (not entanglement entropy)

classical Shannon

SvN(S) — szSvN(pg) T H({pz})*\
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Assign “regional”/internal gauge-inv. algebras to kinematical complements

As ={9¢2—q1,...,98 —q1,P1,---,PN}

AS — (AS)/ — {(]N+2 —4dN+15---sdN+M — dN4+M—-1PN+15- - - 7pN+M}

Non-trivial center

As>p1+--+pN = —PN1 — - —DPN4M € Ag

Zs=AsN(As) #C1l «

Algebra generated by .4 5 and its commutant is a strict subalgebra of Aphys

AsV As =D A% ® A% C Apnys

<

Entropy associated to local subalgebra (not entanglement entropy)

classical Shannon
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RELATIONAL vs CENTER CONSTRUCTION

N+M particles in 1D with translation invariance G = (R, +)

—

Aphys — {q2 —{q1y---y4dN+M — {q1,P2, ... 7pN—|—M}

Piot|¥phys) = 0

Center construction
[Casini, Huerta, Rosabal '13;

Donnelly ‘11, '14;

Van Acoleyen, Bultinck,
Haegeman, Marien, Scholz,
Verstraete '15,...]
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Assign “regional”/internal gauge-inv. algebras to kinematical complements

As ={9¢2—q1,...,98 —q1,P1,---,PN}

AS — (AS)/ — {(]N+2 —4dN+15---sdN+M — dN4+M—-1PN+15- - - 7pN+M}

Non-trivial center

Zg = Ag N (AS)/ + C1

Algebra generated by .4 5 and its commutant is a strict subalgebra of Aphys

AsV As =D A% ® A% C Apnys

<

Entropy associated to local subalgebra (not entanglement entropy)

classical Shannon

SvN(S) — szSvN(pg) T H({pz})*\

Relational construction
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1 N+1 N+2 N+ M
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S| S|

Assign gauge-inv. algebras via complements relative to R

h
Asir ={a1 —4qr,---,av —qr,p1,.. -, PN}

h
Ap§|§ = {qN+2 —4qRr,---4dN+M — 4R, PN+2, - - - ,pN+M}

h h
AP\ APRYS — A

No gauge-invariant data missing S|R S|R

SVN(,OS|1) — —TT(PS|1 log PS|1)

Proper entanglement entropy
generically frame dependent

Locality defined relationally (non-local combinations of ,S.S kinematical DoFs)

Bigger subalgebras associated with subsystems

“regional”/internal algebras appear as the frame-indep. data Ag},ﬁ N Agﬁlﬁ = Ag



Part IV

Subregion relativity in gauge theories
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LOCAL SUBSYSTEMS IN GAUGE THEORIES

Kinematical (non gauge-inv.) DoFs different from gauge-invariant DoFs

\

non-local
(e.g. Wilson loops)

In presence of (finite) boundaries, subtleties arise for the assignment
of gauge-invariant DoFs to a subregion

gauge-invariance of cross-boundary DoFs would be spoiled

edge modes appear at finite boundaries to restore gauge-invariance
on-shell invariance of subregional presymplectic structure under bulk and boundary gauge transf.
unravel boundary symmetries generated by non-vanishing charges

[Donnelly, Freidel, Francois, Geiller, Gomes, Pranzetti, Riello,
Speranza, Speziale, Wieland, Carrozza, Eccles, Hohn,...]



EDGE MODES AS DYNAMICAL FRAMES & DRESSED OBSERVABLES

[Carrozza, Hohn "21; Carrozza, Eccles, HOhn 22]

Edge modes can be understood as group-valued “internalised” external frames
via e.g. Wilson lines originating in the complement

— not new DoFs to be postulated, but understood from the global theory

— describe how subregion relates to its complement M r M
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EDGE MODES AS DYNAMICAL FRAMES & DRESSED OBSERVABLES

[Carrozza, Hohn "21; Carrozza, Eccles, HOhn 22]

Edge modes can be understood as group-valued “internalised” external frames
via e.g. Wilson lines originating in the complement

— not new DoFs to be postulated, but understood from the global theory

— describe how subregion relates to its complement Uiél] (CE )\_/. Sx
\
Gauge transformation (from left): g>U=g9gU UTAl(y) T,
Sy

Symmetries = (asymptotic) frame reorientations

right action on frame goU=Ug"!

Frame dressed observables = relational observables (non-locally supported on both M and M )
frame reorientations

Of|U(9) — (Ug_l)_l > f gauge transf. of f compensated 0O 0O ~
'\ by gauge action on U fIU(g) > fIU(g)
~—1
®
frame-orientation (Non-inv.) functional (g g)

conditional gauge transf. of fields in M
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SUBSYSTEM RELATIVITY IN GAUGE THEORY

[Carrozza, HOohn, Kirklin, FMM, to appear]

Non unique edge mode frame fields (e.g. different systems of Wilson lines)

Change of relational observables relative to frames U1 and U2:

(1) O > O
\ Sy flU1 (gl) B ) f|U2(92)
(1) (97 92921) @
Y

relation-conditional frame reorientation

g1 = U, U,
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For independent frames:

© observables relative to U1 invariant under U2-reorientations, and viceversa
© different gauge-invariant description of subregion Agﬁs + Agﬁlg.z

o APhys phys

S|U;

(also, relation-conditional ones)
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SUBSYSTEM RELATIVITY IN GAUGE THEORY

— 51
-
Yy

[Carrozza, HOohn, Kirklin, FMM, to appear]

Non unique edge mode frame fields (e.g. different systems of Wilson lines)

Change of relational observables relative to frames U1 and U2:

Of|U1(gl) > Of|U2(92)

(91_192 g21) o

relation-conditional frame reorientation

—1
g21 = Uy Uy
‘ M | M
"l' “s F
0
1 PN _
. . . _ internal gauge-
invariant under reorientations of both frames inv. observables A




CONCLUSION

® We discussed internal dynamical frames in finite-dim. (quantum) systems and (classical) gauge field theories (edge modes)

® Gauge-invariant/relational notion of subsystems depend on the frame =—» frame-relativity of (gauge-invariant) properties of subsystems

® Alternative proposal for entanglement entropy in constrained systems and gauge theories
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Colafranceschi, and C. Rovelli]
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OUTLOOK

Subsystem relativity in gauge theory (quantum) [work in progress with S. Carrozza, P. A. Hohn, and J. Kirklin

L _ + work in progress with P. A. HOhn, L. Marchetti, J. De Vuyst]
Gravitational subregions

\' minisuperspaces, ... [with F. Sartini and P. A. Hohn]

Quantum gravity:
—» Relational subsystems in spin networks, entanglement & quant. therm. in LQG

— Diffeo-inv. & relationalism in full QG and gravitational entropy [ongoing work with M. Bruno, E.
Colafranceschi, and C. Rovelli] THANK YOU FOR YOUR ATTENTION !



