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Brief summary

� causal fermion systems can describe non-smooth

spacetime structures;

in particular, spacetimes involving fluctuating fields

� causal action principle describes nonlinear dynamics

Main message of this talk:

gives rise to a effective collapse model,

has similarities with CSL model.

� Has been worked out in detail in the non-relavitivistic limit
with Johannes Kleiner and Claudio Paganini

� “Causal fermion systems as an effective collapse theory,”

arXiv:2405.19254 [math-ph]

� Collapse theory derived from first principles.
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Effective description by nonlocal Dirac equation

� Consider causal fermion system in Minkowski space:

Thus Minkowski space, spacetime points (t , ~x)
ψ1(t , ~x), . . . , ψf (t , ~x) family of spinorial wave functions

� causal action principle describes the interaction of all these

wave functions

� the linearized interaction can be described effectively by a
nonlocal Dirac equation

� F.F., “Solving the linearized field equations of the causal
action principle in Minkowski space,” arXiv:2304.00965

[math-ph], to appear in Adv. Theor. Math. Phys. (2024)

� There are nonlinear corrections.
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Effective description by nonlocal Dirac equation

� Begin in one-particle description (Fock spaces later).

� Describe the dynamics of the causal action principle in

terms of a nonlocal Dirac equation

(

i∂/+B− m
)

ψ = 0

(

Bψ
)

(x) =

ˆ

M

B(x , y)ψ(y) d4y

B(x , y) =

N
∑

a=1

γj A
j
a

(x + y

2

)

La(y − x)
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Linearized fields in Minkowski space

B(x , y) =

N
∑

a=1

γj A
j
a

(x + y

2

)

La(y − x)

� The kernels La(y − x) are nonlocal on the scale ℓmin with

ℓPlanck ≪ ℓmin ≪ ℓmacro

(and ℓPlanck denotes the Planck scale)

La(ξ) = 0 if |ξ0|+ |~ξ| & ℓmin

� The number N of fields scales like

N ≃ ℓmin

ε

� multitiude of vectorial potentials A
j
a, a = 1, . . . ,N,

will later be described stochastically

� All potentials satisfy the homogeneous wave equation

2A
j
a = 0
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Linearized fields in Minkowski space

p

−ωmin

ϑ−1

ε

ϑ =
1√

ℓmin ωmin
with ϑmin =

√

ℓPlanck

ℓmin
.

� Different wave functions “feel” different potentials.

� The low-energy wave functions (i.e. |ω| . ℓ−1
Planck) “feel all

the potentials at the same time”.
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Conserved Scalar Product

� Noether-like theorem: conservation law for scalar product

〈ψ|φ〉t :=

ˆ

≺ψ | γ0 φ≻(t,~x) d3x

− i

ˆ

x0<t

d4x

ˆ

y0>t

d4y ≺ψ(x) |B(x , y)φ(y)≻x

+ i

ˆ

x0>t

d4x

ˆ

y0<t

d4y ≺ψ(x) |B(x , y)φ(y)≻x

Has structure of surface layer integral.

� Generalizes probability integral, gives probabilistic

interpretation.

� Note: Scalar product depends on stochastic potentials!
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The Non-Relativistic Limit

laboratory

∆t =
ℓ

c

t

~x

ℓ

Assume potentials are Gaussian and Markovian,

≪A
j
a(x)≫ = 0

≪A
j
a(x)Ak

b(x)≫ = δ(x0 − y0) δab C jk (~y − ~x)
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The non-relativistic limit

� However, the nonlocality of the potential must be taken into

account. (Otherwise, no collapse occurs.)
(

i∂/+B− m
)

ψ = 0

Hamiltonian formulation:

i∂tψ =
(

H0 + V
)

ψ

H0 = −iγ0~γ~∇

(Vψ)(t) =

ˆ ∞

−∞

V (t , t ′) ψ(t ′) dt ′

(V (t , t ′)ψ)(~x) =

ˆ

R3

(

− γ0
B
(

(t , ~x), (t ′, ~y)
)

ψ(~y) d3y
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The non-local Dyson series

i∂tψ =
(

H0 + V
)

ψ

Can be solved with nonlocal Dyson series

ψ(t) = ψ(t0) +

ˆ t

t0

ψ̇(τ) dτ = ψ(t0)− i

ˆ t

t0

(Vψ)(τ) dτ

= · · · = (apply iteratively)

= ψ(t0) +

ˆ t

t0

dτ

ˆ ∞

−∞

dζ
(

− iV (τ, ζ)
)

ψ(t0)

+

ˆ t

t0

dτ1

ˆ ∞

−∞

dζ1

(

− iV (τ1, ζ1)
)

×
ˆ ζ1

t0

dτ2

ˆ ∞

−∞

dζ2

(

− iV (τ2, ζ2)
)

ψ(t0)

+ · · ·
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The non-local Dyson series

t t
τ1

ζ1

t0

τ2
ζ2

τ3

ζ3

V

V
V

∼ ℓmin

∼ ℓmin
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Gaussian pairings

B(x , y) =

N
∑

a=1

γj A
j
a

(x + y

2

)

La(y − x)

≪A
j
a(x)Ak

b(x)≫ = δ(x0 − y0) δab C jk (~y − ~x)

∣

∣

∣
ψ
)

t

t + ζ

t + 2ζ

t + ζ + ν

t + ζ − ν

Xκ Yκ

� Nonlocality in time desribed by ζ. Can be treated as

additional parameter of the effective collapse model.
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Gaussian pairings

� Take into account pairings between bra and ket

∣

∣

∣
ψ
〉〈

ψ
∣

∣

∣t
t + ζ

t

t + 2ζ

t + ζ − ν

t + ζ + ν

Z
†
κXκ

� Example in higher order

∼ ℓmin

Felix Finster Causal Fermion Systems as an Effective Collapse Theory



Main results of analysis

� Statistical operator σt has time evolution of

Kossakowski-Lindblad form

dσt

dt
= −i[H, σt ]−

1

2

∑

ˆ

κ

[

Kκ, [Kκ, σt ]
]

(

1 + O
(

ℓmin ‖V‖
)

)

κ := (a, ζ, . . .)

� There is dynamical state reduction, in agreement with

Born’s rule.

� Similar to CSL model, but not the same, due to nonlocality

in time.
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Derivation of Lindblad dynamics

� Note: Standard scalar product

(ψ|φ)t :=

ˆ

≺ψ | γ0 φ≻(t,~x) d3x

is not conserved in time.

� Only the modified scalar product is conserved,

〈ψ|φ〉t = (ψ|φ)t

− i

ˆ

x0<t

d4x

ˆ

y0>t

d4y ≺ψ(x) |B(x , y)φ(y)≻x

+ i

ˆ

x0>t

d4x

ˆ

y0<t

d4y ≺ψ(x) |B(x , y)φ(y)≻x

.
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Derivation of Lindblad dynamics

Transform one into the other:

〈ψ|φ〉t0 =
(

ψ | (11 + St0)φ
)

t0
for all ψ, φ ∈ Hm

ψ 7→ ψ̃ :=
√

11 + St0 ψ

〈ψ|φ〉t0= (ψ̃|φ̃)t0

Working with ψ̃, one can use the standard scalar product.

statistical operator σt := ≪ |ψ〉〈ψ| ≫ = ≪ |ψ̃)(ψ̃| ≫

Now compute

d

dt
σt = ≪ d

dt

(

|ψ̃)(ψ̃|
)

≫ = · · ·

to leading order in ℓmin ‖B‖.
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Reduction of the state vector

Try to use standard assumption:

� Observable O commutes with Hamiltonian.

� Typical example: Position measurement, use locality of

time evolution.

Problem: Operator St is nonlocal! Therefore:

� Work with the original (untilded) wave functions.

� Makes it necessary to also work with the time-dependent

scalar product 〈.|.〉t .
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Reduction of the state vector

Consider situation similar to a scattering process and rescale

the wave functions,

ψres(t) := c(t) ψ(t) with c(t) :=
1

√

≪(ψ(t)|ψ(t))≫

t0

t1

St = 0

St = 0

St 6= 0

ψ̃ = ψ = ψres

ψ̃ = ψ = ψres

ψ̃ 6= ψ 6= ψres
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Reduction of the state vector

d

dt
≪(ψres(t)|ψres(t))≫ = 0

d

dt
≪(ψres | Oψres)≫ = 0

d

dt
≪(ψres | O2 ψres)− (ψres | Oψres)2≫ ≤ 0

and strictly negative unless ψres is an eigenstate.

� Shows collapse

� Proves Born rule
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Effective description in Fock spaces

� System can be described at any time t by a

Quantum state ωt : A → C ,

where A is the algebra of observables.

� can be represented on Fock space F (fermionic and

bosonic)

ωt(A) = TrF
(

σtA)
if pure state

= <Ψ|A|Ψ>

� F.F. and Kamran, N., “Fermionic Fock spaces and quantum states for

causal fermion systems,” arXiv:2101.10793 [math-ph],

Ann. Henri Poincaré 23 (2022) 1359–1398

� F.F., Kamran, N. and Reintjes, M., “Entangled quantum states of causal

fermion systems and unitary group integrals,” arXiv:2207.13157

[math-ph], to appear in Adv. Theor. Math. Phys. (2024)

� Is ongoing work with C. Dappiaggi, N. Kamran, M. Reintjes.
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Effective description in Fock spaces

For our purpose, it suffices to consider Hartree-Fock state

Ψ = ψ1 ∧ · · · ∧ ψq

� Dynamics again described by the nonlocal Dirac equation

� Collapse happens as soon as one one-particle wave

function collapses.

� Thus also here: Collapse phenomena are predominant for

mesoscopic and macroscopic systems
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Parameters of the model

� The length scale ℓmin. Equivalently, the number N of fields

related to ℓmin by

N ≃ ℓmin

ε

� The strength of the stochastic field as described by the

covariance,

≪A
j
a(x)Ak

b(x)≫ = δ(x0 − y0) δab C jk (~y − ~x)

and the nonlocal kernels La(y − x)
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The nonlinear term

Interestingly, it does not need to be specified. Description on

various levels possible:

� Take into account nonlinear coupling,

−2(Aa)
k = e2Jk

a

Jk
a (z) =

ˆ

M

≺ψ(x)|γk La(x , y)ψ(y)≻
∣

∣

x=z−ξ/2, y=z+ξ/2
d4ξ

� Take the many-particle perspective:

Hartree-Fock state Ψ = ψ1 ∧ · · · ∧ ψq

In the causal fermion system description, the potential B is

encoded in this family of wave functions. Therefore, Dirac

equation for Ψ is nonlinear.
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The Nature of the Collapse

� It is not the gravitational field which triggers the collapse.

� Instead, it is a multitude of bosonic fields, specific to the

causal action principle

� Remark:

This multitude of fields can be described effectively by a
second-quantized electromagnetic field.

Therefore: collapse is closely related to the electromagnetic
interaction in QFT

� But: length scale of nonlocality comes into play. Related to

Planck scale. Also gives connection to strength of

gravitational field.
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Outlook: Next Steps

� Compute the energy spectrum of radiation emitted in

collapse.

Felix Finster Causal Fermion Systems as an Effective Collapse Theory



Outlook: The Relativistic Model

ongoing work also with Simone Murro

� Dirac equation is already relativistic.

� Stochastic background fields break Lorentz invariance.

Concept: Stochastic background fields originate from the

early universe and/or are generated by the matter on earth
and of the surrounding stars and galaxies.

� Replace Markov property by propagation with speed of

light. Also gives rise to “smearing in time.”
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Summary

� Consider causal fermion systems in Minkowski space

� Described by family of fermionic wave functions, encoded

in wave evaluation operator Ψ

� Causal action principle gives rise to plethora of fields

� Coupling of these fields to the Dirac equation is nonlocal

on a scale ℓmin ≪ m−1.

� Similar to CSL model, we obtain a stochastic and a

nonlinear term.

� But: has a different mathematical structure, due to

nonlocality in time and different form of conserved current.

� Further consequences are work in progress . . .
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www.causal-fermion-system.com

Thank you for your attention!
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