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Entanglement entropy in QM

m Entropy quantifies the amount of information an observer has access to
m For a system in a pure state |V), everything is known < entropy is zero

m For a generic state described by density matrix p, define von Neumann entropy
Sin(p) = —tr(plnp) >0 (since 0 < p < 1)

m For a system in a pure state |V), but with the observer having access only to degrees
of freedom within some region A, define density matrix pa = tr. |W)(W| (trace over
degrees of freedom of the complement region A')

m Entanglement entropy: S(A) = Sun(pa) = —tr(palnpa)
m Other entropy measures: Tsallis entropy Sg(p) = ﬁ(l — trp9), Rényi entropy
SR(p) = ﬁ Intrp®, and limg_;1 SJ(p) = Sin(p) = lima—1 SR(p)

m Thermal density matrix p = % exp(—pH) with inverse temperature 3, Z = exp(—[(F)
with free energy F gives Syn = S((H) — F) = S (thermodynamic entropy)
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Entanglement entropy in QFT

In QFT in d 4+ 1 dimensions, density matrices only exist formally and the trace is
infinite, both due to the infinite number of degrees of freedom

Compute regularised entanglement entropies with UV cutoff e:

S(A) = gg_1[0Ale @1 ... 4 g1 [0A]e L + go[0A] In € + So(A) + O(€), where the g;
are homogeneous functions depending on the boundary 0A (area law in 4D)

Source of divergences: high-energy vacuum fluctuations of the fields

= differences in entropies between different states are finite

Relative entropy (Kullback-Leibler divergence): S(p|lo) =tr(pInp —plno)

Relative Rényi entropy: SR(pllo) = -5 Intr(p®o! =)

a-z-Rényi entropy (generalized quantum Rényi div.): SRS(pllo) = %5 In tr(p%al_Ta>

[e%

and limg—1 SS(PHU) = S(pllo) = lima,z1 SS,E(PHU)



Relative entropy in de Sitter spacetime

‘— Tomita—Takesaki theory

Tomita—Takesaki theory



Relative entropy in de Sitter spacetime

Tomita—Takesaki theory

m Mathematically, difference between QM and QFT is the type of (factors of) von
Neumann algebra of operators (I, I, III)

m Tomita—Takesaki theory gives information on structure of vN algebra 20 C B(#) acting
on Hilbert space H, given a cyclic and separating vector Q € H

m Tomita operator S is the closure of the map Sp: aQ — a'Q for a € A

m Polar decomposition S = JA3 gives positive modular operator A = STS >0 and
antilinear modular conjugation J

m Modular flow o5(a) = Aa A= € A for a € A
m State w defined by Q is a thermal (KMS) state: w(os(a)b) = (£, 0s(a)b2) satisfies
w(os—i(a)b) = w(bos(a)), with inverse temperature normalised to 8 =1

= Both J and A3 map 2 to commutant 2
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Tomita—Takesaki theory

m Relative Tomita operator S¢y is closure of map a® — a'V for a € A and cyclic and
separating vectors ®, W € H, relative modular operator Ag|y and relative modular

conjugation Jo|y defined by polar decomposition Sejy = Jojw A<11>/|?u

m Araki formula relates relative modular Hamiltonian In Agy to relative entropy:
S(®[|w) = —(@,In Agy®) (well-defined and finite)

m Important case: ® = uu/Q and ¥ = w/Q for unitary operators u,v € 2 and v/, v/ € A’
commuting with u and v

B = Agpy = UvAqvi(J)! and S(O||V) = —(vTuQ, In AQVTUQ>

m Relative entropy between two “excited” states relative to a “vacuum” state € can be

computed using only the modular Hamiltonian In Ag of the “vacuum” state, e.g., for
coherent state with u = ¢ = v/ = 1 and v = exp[i¢(f)]
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Modular Hamiltonians

m (Relative) modular Hamiltonian In Ag only known in
special cases

m Minkowski vacuum state €2 and algebra 2f generated by
fields restricted to (right) Minkowski wedge
Wy = {x! > |x%|}: In Aq = iMp1, the generator of
boosts

m Modular conjugation maps fields between left and right
wedge

m Result for arbitrary (Wightman) quantum fields,
including interacting ones

(Bisognano/Wichmann, On the duality condition for a Hermitian scalar field 1975,
On the duality condition for quantum fields 1976)
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Modular Hamiltonians

m Minkowski vacuum state €2 and algebra 2l generated by
free massless scalar fields restricted to future lightcone
with tip (7,0): InAq = 27(D — 7H), a linear
combination of time translations and dilations

m Modular conjugation maps to past lightcone

(Buchholz, On the structure of local quantum fields with non-trivial interaction 1977,
for 7 =0)
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Modular Hamiltonians

m Minkowski vacuum state €2 and algebra 2l generated by
free massless scalar fields restricted to diamond of size ¢
with center (7,0): InAq = F[((? — 72)H +2rD + K], a
linear combination of time translations, dilations and
special conformal transformations

m Modular conjugation maps in future/past lightcone and
spacelike separated region

(Hislop/Longo, Modular structure of the local algebras associated with the free
massless scalar field theory 1982,

Hislop, Conformal Covariance, Modular Structure, and Duality for Local Algebras in
Free Massless Quantum Field Theories 1988, for 7 = 0)
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Modular Hamiltonians

m Many more examples for free, massless fermions and CFTs in 1+1 dimensions
(Casini/Huerta/Rehren/Hollands/Tonni/Peschel/...), Schwarzschild
(Kay/Sewell /Wald), see arXiv:2308.14797 for list

m Massive fields (even free) much more complicated

m Recent result (Cadamuro/Fréb/Minz arXiv:2312.04629): algebra 2 of free fermions of
small mass in 141 dimensions inside diamond of size ¢, Minkowski vacuum state

minAg =572 ab=1// 1/13(X)Hab(x y)¥p(y)dxdy (on Cauchy hypersurface t = 0)
m Hii(x,y) = —Hx(x,y) = it Xyé’(x y) +O(m?Inm)
m Hia(x,y) = —Ha(x,y) = 27r|m£K12(x y) + O(m?In m)
2,02 2_y2_
m Kia(x,y) = In(m€z 57 ,u,) T (5(X—|-y) #]X y|— 242 d(x—y)— 2 o7 Pf#|x+y|
m Generically a non-local operator, contrary to the wedge or massless fields
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De Sitter spacetime

m d-dimensional de Sitter is embedded in (d + 1)-dimensional

Minkowski space as hyperboloid 7ag XA X8 = H—2 X0
m Expanding half of dS (Poincaré patch) with metric -—
ds? = nag dXAdXB = — dt? + e2Ht dx? describes primordial

inflation and current accelerated expansion of our universe

m Maximally symmetric solution of Einstein's equations with X4
cosmological constant A = (d — 1)H?

>

m Generator of boosts is tangent to hyperboloid: My; =
XoOxs = Xj0xo = — 5k (H?x? = e=2Ht 1 1) — ;0 + Hx;x0;
m Modular Hamiltonian is known for dS vacuum state €2 and
algebra 2 generated by fields restricted to intersection of
hyperboloid and wedge Wi = {X*: X! > |X%|}: InAq = iMoy
(Borchers/Buchholz, Global properties of vacuum states in de Sitter space 1999)
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m Compute relative entropy S(Q||Wy) for coherent state Wr = e?()Q via Araki formula
(= relative entanglement entropy, with entanglement region A the intersection of

hyperboloid and wedge A = {(t,x): 2Hx! > ’1 —e2Ht 4 H2x2’}, and supp f C A)
m S(Q|V¢) = in(A(Moif), Af) with commutator function A(x,y) = i[¢(x), #(y)] and
symplectic product (f, g) = i/{f*( x)g(t,x) — g(t,x)f*(t,x)} t_:oddflx
m Further manipulations:

N 1 A . A A
S(Q|vy) = 2r / [xlﬂ(f,x) + S HROROF Hxlx'a,-fatf} d%x with
t=0

flx) = /A(X,y)f(y)x/—g d?y and H(g, x) = 3 (82 + e 2M0g0'g + mg?) the
Hamiltonian density = not manifestly positive!

m However, correct flat-space limit H — 0
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m Solution: evaluate symplectic product on different Cauchy surface
¥ = {(t,x): 2Ht + In(1 + H?x?) = 0} instead of just t = 0

n S(Q|Vy) = 271'/ O(F)(1+H*x) ¥ Lx with

Q(h) = 573575z [OnhOnh + [(1 + H2x2)0M — H2XX!]| Ohdih + m2h?] > 0

m Q(h) = —nﬂgg)TW(h) with n,, normal to ¥, f,(,l) Killing vector associated to boosts:
Mp1 = §ﬁ)8u, and T, canonical stress tensor

m Q is a Noether charge density, compare Wald (Black hole entropy is the Noether
charge 1993) and Floerchinger (Lectures on quantum fields and information theory)

m Relative entropy is also convex: AS(Q[|Wr) + (1 — A)S(Q[|Wg) > S(QV g+ (1-)n) for
suppf,g C Aand X € [0,1]
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De Sitter spacetime, static patch

However, not all of Poincaré patch is accessible to
a single observer

Relevant patch: static patch with metric ds® =
—(1=H?R?)dT? + (1 - H?R?>)"1dR? + R? d93_2
Cosmological horizon at R=1/H or r = —n

Modular Hamiltonian is known for dS vacuum
state Q and algebra 2 generated by fields
restricted to the static patch:

iln Ag, ¢(x)] = 2rH 107 ¢(x)
(Figari/Hoegh-Krohn /Nappi, Interacting Relativistic Boson Fields in the De Sitter
Universe with Two Space-Time Dimensions 1975, Gibbons/Hawking, Cosmological
event horizons, thermodynamics, and particle creation 1977, Chandrasekaran/
Longo/Penington/Witten, An algebra of observables for de Sitter space 2023)
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De Sitter spacetime, static patch

n=0
m Recent result: Modular Hamiltonian dS vacuum state Q2 °
and algebra 2l generated by massless, conformally « <
coupled fields of dimension A restricted to diamonds of A A N o,
size / inside the static patch N NN
m InAg = —27D + 7/¢K, a linear combination of dilations R ‘ L
and special conformal transformations % L T2
mi[lnAq, O(x)] = 2rH1870(x) — '
—HT A
Hi%\/f_;.lisz[aT_H(l_Hsz)(RaR—FA)]O(X) | o

(Frob, arXiv:2308.14797)
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Relative entropy in de Sitter diamonds

= Compute relative entropy S(Q||W¢) for coherent state V¢ = e?(F)Q, now for diamonds

m Computation easier in conformally flat coordinates (7, x) of expanding Poincaré patch

= S(QUCOQ) = Z [, [ (2 = x2)(9y(AE)Iy(AL)+O(AL)I (AL))+2(AL)] d
with f,(x) = (- Hn)A 4f(x)

m Manifestly positive S(QHe'q’(f ) >0

m Convex under shrinking of the size of the diamond: 838(Q\|ei¢(f)§2> >0
(D'Angelo/Frob/Galanda/Meda/Much /Papadopoulos, arXiv:2311.13990)

m Example of half-sided modular inclusion of algebras: e7"2 g, e "M A Ay, for
> 0, where 2, is the subalgebra of fields with support inside the smaller diamond
and In A the modular Hamiltonian of the bigger one
(Borchers, On revolutionizing quantum field theory with Tomita's modular theory
2000, Ciolli/Longo/Ranallo/Ruzzi, Relative entropy and curved spacetimes 2022)
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Entropy—area law

m Consider backreaction of quantum fields on spacetime
via semiclassical Einstein equations

m Evaluate relative entropy on horizon (characteristic
surface) instead of Cauchy surface:
S(Qle®*NQ) = —27 [, [ Tuu|,_yu(u+2¢)dQdu

m Raychaudhuri equation relates change of area of the null

s

surface with stress tensor: djf? ‘v 0= —327GN Tyus

where §O is the geodesic expansizn of the horizon
m Result: S(QHeiq’(f)Q) = &% 125, 6Au(u) du with
horizon cross-sectional area Ap(u) = [ /7(u)dfde

(D'Angelo/Frob/Galanda/Meda/Much /Papadopoulos, arXiv:2311.13990)
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Local temperature

m Consider observer with proper time t, four-velocity v* = —g"”0,t, crossing Cauchy
surface ¥ normally such that VM|Z = n, with normal vector n,

m Observer measures relative entropy S(QHe'q’(f ) =[x Tuw(Af)EH " 3L = [+ sd3E
with entropy density s, and energy density e = v#v¥ T,

m First law of thermodynamics: ds = 3de with inverse temperature 5 = § = 0t/I(—7)
with 7 the parameter of the modular flow, £#0,, = 0;

m Agrees with thermal time hypothesis (Connes/Rovelli/Martinetti/Longo/Rehren/...)
m Result: g = 2# 1-— e_H(TT_Tmi")} with T, static time of observer, Tmin = —% In(2HY)
static time of lower tip of the diamond (D'Angelo et al., arXiv:2311.13990)

m For large diamonds ¢ — oo we have Tn,in — —oo and recover the (known) temperature
of the static patch fBy4s = 27/H, for finite-size diamonds subleading corrections that
decay exponentially fast
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Thank you for your attention

Questions?
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