The fearful symmetry of quantum billiards

Alberto Enciso

Instituto de Ciencias Matemáticas, CSIC

Tyger, tyger, burning bright, In the forests of the night; What immortal hand or eye, Could frame thy fearful symmetry? W. Blake

Eigenfunctions of a planar domain

Given a smooth bounded domain $\Omega \subset \mathbb{R}^2$, consider its *Neumann eigenvalues* μ_n and *eigenfunctions* $u_n : \overline{\Omega} \to \mathbb{R}$ (not identically 0):

$$\Delta u_n + \mu_n u_n = 0 \quad \text{in } \Omega, \qquad \qquad \nu \cdot \nabla u_n = 0 \quad \text{on } \partial \Omega.$$

There are infinitely many eigenvalues $0 = \mu_0 < \mu_1 \le \mu_2 \le \cdots \to \infty$ (the *spectrum* of Ω). All the eigenfunctions are smooth.

Eigenfunctions of a planar domain

Given a smooth bounded domain $\Omega \subset \mathbb{R}^2$, consider its *Neumann eigenvalues* μ_n and *eigenfunctions* $u_n : \overline{\Omega} \to \mathbb{R}$ (not identically 0):

$$\Delta u_n + \mu_n u_n = 0 \quad \text{in } \Omega, \qquad \qquad \nu \cdot \nabla u_n = 0 \quad \text{on } \partial \Omega.$$

There are infinitely many eigenvalues $0 = \mu_0 < \mu_1 \le \mu_2 \le \cdots \to \infty$ (the *spectrum* of Ω). All the eigenfunctions are smooth.

Mechanical interpretation: quantum billiards

- Eigenfunctions are the stationary states of the *free Schrödinger equation* on Ω. The dynamics is written off explicitly in terms of the spectral data.
- The classical counterpart is the *classical billiard* of shape Ω, which is an area-preserving diffeomorphism on a surface.
- The dynamical properties of the classical billiard has a major impact on high-frequency quantum dynamics (and on high energy eigenfunctions).

Principle: The spectrum encodes much geometric information on the domain Ω .

Example: Weyl's law / heat kernel asymptotics / wave invariants:

$$\sum_{n=0}^{\infty} e^{-t\mu_n} = \frac{|\Omega|}{4\pi} t^{-1} + \frac{|\partial\Omega|}{8\sqrt{8}} + t^{-\frac{1}{2}} \int_{\partial\Omega} \frac{\kappa}{12\pi} ds + t^{\frac{1}{2}} \int_{\partial\Omega} \frac{\kappa^2}{256\sqrt{\pi}} ds + \cdots$$
(W)

Here κ is the curvature. Similarly for Dirichlet / on Riemannian manifolds. Furthermore, isometric domains are isospectral. **Principle:** The spectrum encodes much geometric information on the domain Ω .

Example: Weyl's law / heat kernel asymptotics / wave invariants:

$$\sum_{n=0}^{\infty} e^{-t\mu_n} = \frac{|\Omega|}{4\pi} t^{-1} + \frac{|\partial\Omega|}{8\sqrt{8}} + t^{-\frac{1}{2}} \int_{\partial\Omega} \frac{\kappa}{12\pi} ds + t^{\frac{1}{2}} \int_{\partial\Omega} \frac{\kappa^2}{256\sqrt{\pi}} ds + \cdots$$
(W)

Here κ is the curvature. Similarly for Dirichlet / on Riemannian manifolds. Furthermore, isometric domains are isospectral.

Question (Kac, 1967): Can one hear the shape of a drum?

- The key question (*which we will* **not** *consider here*) of when a domain is determined by its spectrum (modulo a rigid motion) is **wide open**.
- True within the class of analytic Z₂-symmetric convex domains (Zelditch, 2009). The only known counterexamples are non-convex polygons (Gordon, Webb & Wolpert, 1992).
- Disks are "special": in particular, their spectral determination follows immediately from (W) and the *isoperimetric inequality*. A sort of "three-term isoperimetric inequality" shows that regular *N*-sided polygons are spectrally determined too (E. & Gómez-Serrano, 2022).

Disks are indeed special. For starters, they are the extremizers of the first eigenvalue (Faber–Krahn, Szegö):

 $|\Omega|\,\mu_1(\Omega) \leq |\mathbb{D}|\,\mu_1(\mathbb{D})\,.$

Furthermore, everything can be written down explicitly. If we label the eigenvalues of the disk \mathbb{D} with two integers, $\{\mu_{km}\}$, then $\sqrt{\mu_{km}}$ is the m^{th} positive zero of the function J'_k (Bessel). The corresponding eigenspace has dim 2 and is spanned by

 $u_{km} := J_k(\sqrt{\mu_{km}}r)\cos k\theta$, $\widetilde{u}_{km} := J_k(\sqrt{\mu_{km}}r)\sin k\theta$

Obviously u_{0m} is **radial**, and therefore **constant** on $\partial \mathbb{D}$, for any *m*.

But what we are really interested in is Schiffer's conjecture.

Reveling in roundness: Schiffer's conjecture

Schiffer's conjecture (1950s):

On a bounded domain $\Omega \subset \mathbb{R}^2$, suppose that there exists a Neumann eigenvalue μ and a corresponding Neumann eigenfunction u that is **constant** on $\partial \Omega$. Then Ω is a **disk** and u is **radial**.

Schiffer's conjecture (1950s):

On a bounded domain $\Omega \subset \mathbb{R}^2$, suppose that there exists a Neumann eigenvalue μ and a corresponding Neumann eigenfunction u that is **constant** on $\partial \Omega$. Then Ω is a **disk** and u is **radial**.

The known **rigidity** properties are essentially the following:

- $\partial \Omega$ must be analytic (Kinderlehrer & Nirenberg, 1977).
- If *infinitely many* l.i. eigenfunctions are constant on the boundary, $\Omega = \text{disk}$ (Berenstein, 1980).
- If μ is small enough (specifically, $\mu \le \mu_6(\Omega)$), $\Omega = \text{disk}$ (Avilés, 1986).

Furthermore, it is connected with the **Pompeiu problem**: a simply connected domain Ω satisfies the Schiffer overdetermined condition iff there exists a function $f \in C(\mathbb{R}^2) \setminus \{0\}$ (here, e.g. $f(x) := \sin(\mu^{1/2}x_1)$) such that

$$\int_{\mathcal{R}(\Omega)} f \, dx = 0 \qquad \text{for any rigid motion } \mathcal{R}.$$

Alas, we do not have much to say about the Schiffer conjecture.

The Neumann spectrum of an annulus

On an annulus $\Omega_a := \{a < r < 1\}$, with $a \in (0, 1)$, we can compute the spectrum pretty much as in the case of disk:

• We label the eigenvalues with two indices: $\{\mu_{km}(a)\}$. Then $\mu_{km}(a)$ is the m^{th} smallest positive number for which the Bessel ODE

$$\mathcal{J}_{km}^{\prime\prime}(r) + \frac{\mathcal{J}_{km}^{\prime}(r)}{r} + \left(\mu_{km}(a) - \frac{l^2}{r^2}\right)\mathcal{J}_{km}(r) = 0$$

has a solution with $\mathcal{J}'_{km}(a) = \mathcal{J}'_{km}(1) = 0.$

• The corresponding basis of eigenfunctions is then

$$u_{km}^a := \mathcal{J}_{km}(r) \cos k\theta$$
, $\widetilde{u}_{km}^a := \mathcal{J}_{km}(r) \sin k\theta$.

Yet the eigenspaces are not necessarily 2-dimensional: one can have $\mu_{km}(a) = \mu_{k'm'}(a)$ with $(k, m) \neq (k', m')$.

• Anyhow, u_{0m}^a is **radial**, and therefore **locally constant** on the boundary (i.e., constant of each connected component of $\partial \Omega_a$), for any *m* and any *a*.

Relaxing the hypotheses: the "almost Schiffer" problem

A conjecture for disks and annuli:

On a bounded domain $\Omega \subset \mathbb{R}^2$, suppose that there exists a Neumann eigenvalue μ and a corresponding Neumann eigenfunction u that is **locally constant** on $\partial \Omega$ (*i.e., constant on each component of the boundary*). Then Ω is a **disk or annulus** and u is **radial**.

A conjecture for disks and annuli:

On a bounded domain $\Omega \subset \mathbb{R}^2$, suppose that there exists a Neumann eigenvalue μ and a corresponding Neumann eigenfunction u that is **locally constant** on $\partial \Omega$ (*i.e., constant on each component of the boundary*). Then Ω is a **disk or annulus** and u is **radial**.

One can show the **rigidity** properties are essentially the same:

- $\partial \Omega$ must be analytic (by Kinderlehrer & Nirenberg, 1977).
- If *infinitely many* l.i. eigenfunctions are locally constant on the boundary, $\Omega = \text{disk}$ or annulus (essentially as in Berenstein, 1980).
- If μ is small enough (specifically, $\mu \le \mu_3(\Omega)$), $\Omega = \text{disk or annulus}$.

Furthermore, it is connected with a nontrivial **Pompeiu-type integral**: if Ω is doubly connected, the function $f(x) := \sin(\mu^{1/2}x_1)$ satisfies

$$\int_{\mathcal{R}(\Omega)} f \, dx - c \int_{\mathcal{R}(\Omega')} f \, dx = 0 \qquad \text{for any rigid motion } \mathcal{R},$$

where Ω' is the "hole" and *c* is certain constant.

Yet we can show this conjecture is as false as a 3 dollar bill!

Theorem (E., Fernández, Sicbaldi & Ruiz, 2023)

There are nonradial domains Ω diffeomorphic to an annulus where the equation

 $\Delta u + \mu u = 0 \quad in \ \Omega, \qquad \nabla u = 0 \quad on \ \partial \Omega.$

admits a nontrivial solution, for some Neumann eigenvalue µ.

(The domains are small \mathbb{Z}_l -symmetric perturbations of thin annuli.)

Idea of the proof:

- In each annulus $\Omega_a := \{a < r < 1\}$, take a *radial Neumann* eigenfunction $u_{0m}^a(r)$, with eigenvalue $\mu_{m0}(a)$. This is a **family of trivial (i.e., radial) solutions** smoothly depending on the parameter $a \in (0, 1)$.
- So use **bifurcation** to get nontrivial solutions! (Note the difference with Schiffer's conjecture)

Pitchfork bifurcation on infinite dimensional spaces

Theorem (Crandall & Rabinowitz, 1971)

"Under suitable technical hypotheses, a family of **nontrivial** solutions can bifurcate from a family of **trivial** solutions." Key example: $F(v, a) := v(a - v^2)$, bifurcating from a = 0.

Specifically: given a C^2 function F(v, a) between Banach spaces, assume that:

- F(0, a) = 0 for all values of the parameter $a \in (0, 1)$.
- dim Ker $(D_v F)_{(0,a_*)}$ = codim Ran $(D_v F)_{(0,a_*)}$ = 1 for some $a_* \in (0, 1)$.
- $(D_v D_a F)_{(0,a_*)}[\operatorname{Ker}(D_v F)_{(0,a_*)}] \not\subset \operatorname{Ran}(D_v F)_{(0,a_*)}.$

Then there is a branch ($\equiv C^1$ curve) of nontrivial solutions { $(v_s, a_s) : |s| < s_0$ } to the equation F(v, a) = 0 which bifurcate from the point (v_0, a_0) = ($0, a_*$).

Attempt to formalize the argument (a.k.a. the devil is in the details)

• To deform the annuli $\Omega_a := \{a < r < 1\}$, for each "small" $V \in C^{k,\alpha}(\mathbb{T}, \mathbb{R}^2)$, set $\Omega_a^V := \{(a + V_1(\theta) < r < 1 + V_2(\theta)\}.$

If $u_a(r)$ is the third radial Neumann eigenfunction (with eigenvalue μ_a), the IFT ensures the existence of the corresponding eigenfunction $u_a^V(r, \theta)$ on Ω_a^V with eigenvalue μ_a^V .

Attempt to formalize the argument (a.k.a. the devil is in the details)

• To deform the annuli $\Omega_a := \{a < r < 1\}$, for each "small" $V \in C^{k,\alpha}(\mathbb{T}, \mathbb{R}^2)$, set $\Omega_a^V := \{(a + V_1(\theta) < r < 1 + V_2(\theta)\}.$

If $u_a(r)$ is the third radial Neumann eigenfunction (with eigenvalue μ_a), the IFT ensures the existence of the corresponding eigenfunction $u_a^V(r, \theta)$ on Ω_a^V with eigenvalue μ_a^V .

- Since we want to choose $a, V \neq 0$ so that u_a^V is constant on Ω_a^V , we look for zeros of $F(V, a) := u_a^V|_{\partial \Omega_a^V}$. By elliptic regularity, F maps an open subset of $C^{k,\alpha}(\mathbb{T}, \mathbb{R}^2) \times (0, 1)$ to $C^{k,\alpha}(\mathbb{T}, \mathbb{R}^2)$ (but no better).
- We have F(0, a) = 0 for all *a*. The derivative is (with some $c_i(a) \in \mathbb{R}$):

 $(D_V F)_{(0,a)} W := (c_1(a)\psi_W(a,\theta), c_2(a)\psi_W(a,\theta))$

where $\psi_W(r, \theta)$ is the only solution to the Neumann problem

$$\Delta \psi_W + \mu_a \psi_W = 0 \quad \text{in } \Omega_a, \qquad \partial_r \psi_W(r, \theta) = \begin{cases} W_1(\theta) & \text{on } r = a, \\ W_2(\theta) & \text{on } r = 1. \end{cases}$$

Attempt to formalize the argument (a.k.a. the devil is in the details)

• To deform the annuli $\Omega_a := \{a < r < 1\}$, for each "small" $V \in C^{k,\alpha}(\mathbb{T}, \mathbb{R}^2)$, set $\Omega_a^V := \{(a + V_1(\theta) < r < 1 + V_2(\theta)\}.$

If $u_a(r)$ is the third radial Neumann eigenfunction (with eigenvalue μ_a), the IFT ensures the existence of the corresponding eigenfunction $u_a^V(r, \theta)$ on Ω_a^V with eigenvalue μ_a^V .

- Since we want to choose $a, V \neq 0$ so that u_a^V is constant on Ω_a^V , we look for zeros of $F(V, a) := u_a^V|_{\partial \Omega_a^V}$. By elliptic regularity, F maps an open subset of $C^{k,\alpha}(\mathbb{T}, \mathbb{R}^2) \times (0, 1)$ to $C^{k,\alpha}(\mathbb{T}, \mathbb{R}^2)$ (but no better).
- We have F(0, a) = 0 for all *a*. The derivative is (with some $c_i(a) \in \mathbb{R}$):

 $(D_V F)_{(0,a)} W := (c_1(a)\psi_W(a,\theta), c_2(a)\psi_W(a,\theta))$

where $\psi_W(r, \theta)$ is the only solution to the Neumann problem

$$\Delta \psi_W + \mu_a \psi_W = 0 \quad \text{in } \Omega_a, \qquad \partial_r \psi_W(r, \theta) = \begin{cases} W_1(\theta) & \text{on } r = a, \\ W_2(\theta) & \text{on } r = 1. \end{cases}$$

Big bad problem — **loss of derivatives:** $(D_V F)_{(0,a)}$ maps $C^{k,\alpha} \to C^{k+1,\alpha}$, so codim Ran $(D_V F)_{(0,a)} = \infty$. All bifurcation theorems break down. (And this is a really bad case; we do not how to fix it using Nash–Moser.)

A great idea of Mindlend, Fall & Weth — Schiffer on spheres and cylinders!

How to avoid the loss of derivatives problem (Fall, Mindlend & Weth, 2023)

The basic unknown is not $V(\theta) \in C^{k,\alpha}(\mathbb{T}, \mathbb{R}^2)$ (used to parametrize the boundary), but a "Dirichlet" function $v(r, \theta) \in C_{\mathrm{D}}^{k,\alpha}(\Omega_{1/2})$ (i.e., $v|_{\partial\Omega_{1/2}} = 0$).

In turn, we use *v* to parametrize the boundary by a map $v \mapsto V_v \in C^{k,\alpha}(\mathbb{T}, \mathbb{R}^2)$ and to correct the eigenfunction using a "Dirichlet + Neumann" function $v \mapsto w_v \in C^{k,\alpha}(\Omega_{1/2})$ with $w = \partial_r w = 0$ on $\partial \Omega_{1/2}$.

• The function we consider is

$$F(v,a) := \left\{ [\Delta + \mu_{02}(a)] \left[(u_{02}^a \circ \Phi_a^0 + w_v) \circ (\Phi_a^{V_v})^{-1} \right] \right\} \circ \Phi_a^{V_v},$$

where $\Phi_a^V : \Omega_a^V \to \Omega_{1/2}$ is a family of diffeomorphisms.

- Then $F(v, a) = 0 \implies \exists$ solution to "almost Schiffer" on Ω_a^V .
- F(0, a) = 0 for all *a* and the differential is

$$(D_v F)_{(0,a)} w = \left\{ \left[\Delta + \mu_{02}(a) \right] \left[w \circ (\Phi_a^0)^{-1} \right] \right\} \circ \Phi_a^0$$

• Key observation — no loss of derivatives: For any integer l, $F : \mathcal{X} \to \mathcal{Y}$ is Fredholm of index 0, with the anisotropic spaces of \mathbb{Z}_l -symmetric functions $\mathcal{X} := \{u \in C_D^{k,\alpha} : \partial_r u \in C^{k,\alpha}\}/\mathbb{Z}_l, \qquad \mathcal{Y} := (C^{k-1,\alpha} + C_D^{k-2,\alpha})/\mathbb{Z}_l.$

$$\begin{split} F(v,a) &:= \left\{ [\Delta + \mu_{0,2}(a)] \left[(u_{02}^a \circ \Phi_a^0 + w_v) \circ (\Phi_a^{V_v})^{-1} \right] \right\} \circ \Phi_a^{V_v}, \qquad v \in C_{\mathrm{D}}^{k,\alpha}(\Omega_{1/2}), \\ (D_v F)_{(0,a)} w &= \left\{ [\Delta + \mu_{0,2}(a)] \left[w \circ (\Phi_a^0)^{-1} \right] \right\} \circ \Phi_a^0, \qquad w \in C_{\mathrm{D}}^{k,\alpha}(\Omega_{1/2}). \end{split}$$

- 1. F(0, a) = 0 for all $a \in (0, 1)$, by definition.
- 2. dim Ker $(D_v F)_{(0,a)}$ = codim Ran $(D_v F)_{(0,a)}$ for all $a \in (0,1)$, because $D_v F$ is Fredholm.
- 3. **One-dimensional kernel TO DO:** dim Ker $(D_v F)_{(0,a_{l,*})} = 1$ for some $a_l \in (0, 1)$. Since \mathcal{X} consist of "Dirichlet" functions, to have dim Ker $(D_v F)_{(0,a_l)} = 1$ we will show that the Dirichlet eigenvalues $\lambda_{ln}(a_l)$ of an annulus Ω_{a_l} satisfy the crossing condition

 $\mu_{0,2}(a_l)) = \lambda_{l,0}(a_l) \neq \lambda_{ml,n}(a_l) \qquad \forall (m,n) \neq (1,0).$

Note we need $l \neq 1$ to ensure (by elementary computations) that the resulting "almost Schiffer" domains will not be radially symmetric.

4. Transversality — TO DO: $(D_v D_a F)_{(0,a_l)} [\text{Ker}(D_v F)_{(0,a_l)}] \not\subset \text{Ran}(D_v F)_{(0,a_l)}$. This boils down to demanding $\mu'_{0,2}(a_{l,*}) \neq \lambda'_{l,0}(a_{l,*})$.

So we just have to analyze the spectrum of annuli! ¹²

The crossing condition

Lemma

For all $l \ge 4$, there exists some $a_l \in (0, 1)$ such that

$$\mu_{0,2}(a_l)) = \lambda_{l,0}(a_l) \neq \lambda_{ml,n}(a_l) \qquad \forall \, (m,n) \neq (1,0).$$

- It is easy to prove that the Dirichlet and Neumann eigenvalues of Ω_a converge to those of the disk as a → 0 (essentially because points have zero capacity). Therefore, λ_{l,0}(a) ≥ λ_{4,0}(a) > μ_{0,2}(a) for a close to 0.
- Suppose now that *a* is close to 1, so $h := (1 a)/\pi \ll 1$. Then, with $\varphi \in H_0^1((0, \pi) \setminus \{0\} \text{ and } x := (1 r)/h \in (0, \pi),$

$$\begin{split} \lambda_{l,0}(a) &= \inf_{\varphi} \frac{h^{-2} \int_{0}^{\pi} \psi'(x)^{2} (1-hx) \, dx + l^{2} \int_{0}^{\pi} \frac{\psi(x)^{2}}{(1-hx)} \, dx}{\int_{0}^{\pi} \psi(x)^{2} (1-hx) \, dx} \\ &= h^{-2} \left[\inf_{\varphi} \frac{\int_{0}^{\pi} \psi'^{2} \, dx}{\int_{0}^{\pi} \psi^{2} \, dx} + O(h) \right] + l^{2} (1+O(h)) = h^{-2} + O(l^{2} + h^{-1}). \end{split}$$

Likewise, $\mu_{0,2}(a) = 4h^{-2} + O(h^{-1})$. Hence $\lambda_{l,0}(a) < \mu_{0,2}(a)$ for any fixed *l* and *a* close to 1, and the eigenvalues must cross.

The transversality condition

Lemma

For $l \gg 1$ (or l = 4), $\mu'_{0,2}(a_l) \neq \lambda'_{l,0}(a_l)$. Furthermore, $a_l = 1 - \frac{\sqrt{3}\pi}{l} + O(l^{-2})$.

- From the equation $\mu_{0,2}(a_l) = \lambda_{l,0}(a_l) > l^2 \gg 1$, it is easy to see that $h_l := (1 a_l)/\pi \ll 1$. In fact, one has $\mu_{0,2}(a_l) = 4h_l^{-2} + O(h_l^{-1})$ and $\lambda_{l,0}(a_l) = h_l^{-2} + l^2 + O(h_l^{-1} + l)$, so $h_l = \sqrt{3} l^{-2} + O(l^{-1})$.
- The result is proven by means of a "second order asymptotic expansion" in *l* for μ_{0,2}(*a*_l) and λ_{l,0}(*a*_l), which relies on the analytic dependence of the Dirichlet and Neumann eigenvalues of the operators

$$T_{\eta,\delta} := \partial_x^2 - \frac{\eta(1 - \frac{\pi}{2}\eta(1 + \delta))}{1 - \eta(1 - \frac{\pi}{2}\eta(1 + \delta))x} \partial_x - \frac{3(1 - \frac{\pi}{2}\eta(1 + \delta))^2}{(1 - \eta(1 - \frac{\pi}{2}\eta(1 + \delta))x)^2},$$

$$\widetilde{T}_{\eta,\delta} := \partial_x^2 - \frac{\eta(1 - \frac{\pi}{2}\eta(1 + \delta))}{1 - \eta(1 - \frac{\pi}{2}\eta(1 + \delta))x} \partial_x,$$

on the parameters (η , δ).

A Schiffer problem for classical billiards?

Question:

Let Ω be a smooth convex billiard. Suppose that there is a sequence of periodic trajectories $\left\{ \left(s_n^{(j)}, \theta_n^{(j)} \right) \right\}_{n=1}^{N_j}$, with minimal periods $N_j \to \infty$, for which the angles are constant: $\theta_n^{(j)} = c_j \forall n$.

Does this imply $\Omega = \text{disk}$?

Muchas gracias!