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Tyger, tyger, burning bright,

In the forests of the night;

What immortal hand or eye,

Could frame thy fearful symmetry?

W. Blake



Eigenfunctions of a planar domain

Given a smooth bounded domain Q c IR?, consider its Neumann eigenvalues py,
and eigenfunctions u, : Q — R (not identically 0):

Auy + ppuy =0 in Q, v-Vu, =0 ondQ.

There are infinitely many eigenvalues 0 = pg < pt1 < pip <--- — co (the spectrum
of Q). All the eigenfunctions are smooth.
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Given a smooth bounded domain Q c IR?, consider its Neumann eigenvalues py,
and eigenfunctions u, : Q — R (not identically 0):

Auy + ppuy =0 in Q, v-Vu, =0 ondQ.

There are infinitely many eigenvalues 0 = pg < pt1 < pip <--- — co (the spectrum
of Q). All the eigenfunctions are smooth.

Mechanical interpretation: quantum billiards
 Eigenfunctions are the stationary states of the free Schrodinger equation
on Q) . The dynamics is written off explicitly in terms of the spectral data.
 The classical counterpart is the classical billiard of shape (), which is an
area-preserving diffeomorphism on a surface.
* The dynamical properties of the classical billiard has a major impact on
high-frequency quantum dynamics (and on high energy eigenfunctions).



Spectral geometry

‘ Principle: The spectrum encodes much geometric information on the domain Q). ‘

Example: Weyl’s law / heat kernel asymptotics / wave invariants:
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Here « is the curvature. Similarly for Dirichlet / on Riemannian manifolds.
Furthermore, isometric domains are isospectral.
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Furthermore, isometric domains are isospectral.

Question (Kac, 1967): Can one hear the shape of a drum?

* The key question (which we will not consider here) of when a domain is
determined by its spectrum (modulo a rigid motion) is wide open.

* True within the class of analytic Z,-symmetric convex domains (Zelditch,
2009). The only known counterexamples are non-convex polygons
(Gordon, Webb & Wolpert, 1992).

. : in particular, their spectral determination follows
immediately from (W) and the isoperimetric inequality.
A sort of “three-term isoperimetric inequality” shows that regular N-sided
polygons are spectrally determined too (E. & Gémez-Serrano, 2022).



Reveling in roundness: eigenfunctions of the disk

Disks are indeed special. For starters, they are the extremizers of the first
eigenvalue (Faber-Krahn, Szeg6):

Q] 11 (QQ) < D] 1 (D).
Furthermore, everything can be written down explicitly. If we label the
eigenvalues of the disk ID with two integers, {1}, then \/fik, is the mth

positive zero of the function ]]2 (Bessel). The corresponding eigenspace has dim
2 and is spanned by

Ukm = Jk(\Hkm?) cosko, Uk = Ji(Vpkmr) sinko

Obviously u,, is radial, and therefore constant on JID , for any m.

But what we are really interested in is Schiffer’s conjecture.



Reveling in roundness: Schiffer’s conjecture

Schiffer’s conjecture (1950s):

On a bounded domain Q C R?, suppose that there exists a Neumann eigenvalue p
and a corresponding Neumann eigenfunction u that is constant on dQ. Then Q) is
a disk and u is radial.



Reveling in roundness: Schiffer’s conjecture

Schiffer’s conjecture (1950s):

On a bounded domain Q C R?, suppose that there exists a Neumann eigenvalue p
and a corresponding Neumann eigenfunction u that is constant on dQ. Then Q) is
a disk and u is radial.

The known rigidity properties are essentially the following:

* JQ must be analytic (Kinderlehrer & Nirenberg, 1977).
o If infinitely many 1.i. eigenfunctions are constant on the boundary, Q) = disk
(Berenstein, 1980).
e If p is small enough (specifically, y < pg(Q1)), Q = disk (Avilés, 1986).
Furthermore, it is connected with the Pompeiu problem: a simply connected

domain Q) satisfies the Schiffer overdetermined condition iff there exists a
function f € C(RR?)\{0} (here, e.g. f(x):= sin(yl/le )) such that

J fdx=0 for any rigid motion R.

Alas, we do not have much to say about the Schiffer conjecture.



The Neumann spectrum of an annulus

On an annulus O, := {a <7 < 1}, with a € (0,1), we can compute the spectrum
pretty much as in the case of disk:

* We label the eigenvalues with two indices: {j/,,,(2)}. Then pi,,(a) is the mth

smallest positive number for which the Bessel ODE

;1)

12
T )+ =R

+ (.ukm(“) - r_z)jkm(r) =0
has a solution with jk’m(u) = jk'm(l) =0.

* The corresponding basis of eigenfunctions is then

uzm 1= Jim(r) cosk, aZm := Jkm(r) sink@.

Yet the eigenspaces are not necessarily 2-dimensional: one can have
Hkm(a) = Py (@) with (k, m) = (K7, m’).

* Anyhow, ug, is radial, and therefore locally constant on the boundary
(i.e., constant of each connected component of dQ),), for any m and any a.



Relaxing the hypotheses: the “almost Schiffer” problem

A conjecture for disks and annuli:

On a bounded domain Q C R?, suppose that there exists a Neumann eigenvalue
and a corresponding Neumann eigenfunction u that is locally constant on 0Q

(i.e., constant on each component of the boundary). Then Q) is a disk or annulus
and u is radial.
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Relaxing the hypotheses: the “almost Schiffer” problem

A conjecture for disks and annuli:

On a bounded domain Q C R?, suppose that there exists a Neumann eigenvalue p
and a corresponding Neumann eigenfunction u that is locally constant on 0Q
(i.e., constant on each component of the boundary). Then Q) is a disk or annulus
and u is radial.

One can show the rigidity properties are essentially the same:

e JQ must be analytic (by Kinderlehrer & Nirenberg, 1977).

o If infinitely many 1.i. eigenfunctions are locally constant on the boundary,
Q) = disk or annulus (essentially as in Berenstein, 1980).

e If pis small enough (specifically, u < pu3(Q))), Q = disk or annulus.

Furthermore, it is connected with a nontrivial Pompeiu-type integral: if () is
doubly connected, the function f(x) := sin(yl/le) satisfies

j fdx— cj fdx=0 for any rigid motion R,
R(Q) R(QY)
where ()’ is the “hole” and c is certain constant.

Yet we can show this conjecture is as false as a 3 dollar bill!



Theorem (E., Fernandez, Sicbaldi & Ruiz, 2023)

There are nonradial domains Q) diffeomorphic to an annulus where the equation
Au+pu=0 inQ, Vu=0 ondQ.

admits a nontrivial solution, for some Neumann eigenvalue .

(The domains are small Zj-symmetric perturbations of thin annuli.)

Idea of the proof:

* In each annulus Q) := {a <r < 1}, take a radial Neumann eigenfunction
ugm(r), with eigenvalue py;,0(a). This is a family of trivial (i.e., radial)
solutions smoothly depending on the parameter a € (0, 1).

* So use bifurcation to get nontrivial solutions! (Note the difference with
Schiffer’s conjecture)



Pitchfork bifurcation on infinite dimensional spaces

Theorem (Crandall & Rabinowitz, 1971)
“Under suitable technical hypotheses, a family of nontrivial solutions can bifurcate

from a family of trivial solutions.”
Key example: F(v,a) :=v(a— v?2), bifurcating from a = 0.
Specifically: given a C? function F(v,a) between Banach spaces, assume that:

* F(0,a) =0 for all values of the parameter a € (0,1).
¢ dimKer(Dy F)(g,4,) = codimRan(Dy F) g,q,) = 1 for some a. € (0, 1).
* (DyDgF)(0,4,)[Ker(DyF)(0,4,)] € Ran(Dy F)(q,q,)-

Then there is a branch (= C! curve) of nontrivial solutions {(vs,as) : |s| < sg} to
the equation F(v,a) = 0 which bifurcate from the point (vg,ag) = (0, a.).

/ nontrivial solution curve
< trivial solution line

Parameter a 9




Attempt to formalize the argument (a.k.a. the devil is in the details)

 To deform the annuli Q) := {a <r <1}, for each “small” V e Ccha (T, R?), set
QY :={(a+V1(0) <r<1+V(0)).

If u,4(r) is the third radial Neumann eigenfunction (with eigenvalue y,), the
IFT ensures the existence of the corresponding eigenfunction 1) (r,0)
on Q) with eigenvalue 1./ .
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 To deform the annuli Q) := {a <r <1}, for each “small” V e Ccha (T, R?), set
QY :={(a+V1(0) <r<1+V(0)).
If u,4(r) is the third radial Neumann eigenfunction (with eigenvalue y,), the
IFT ensures the existence of the corresponding eigenfunction 1) (r,0)
on Q) with eigenvalue 1./ .

* Since we want to choose a, V = 0 so that u) is constant on Q) , we look for
zeros of F(V,a) := u) |,y - By elliptic regularity, F maps an open subset of
cka(T,R?) x (0,1) to CK(T, R?) (but no better).

* We have F(0,a) = 0 for all a. The derivative is (with some c;j(a) € R):

(Dy F)0,q)W = (c1(a)iPw (a,0),c2(a) Py (a,0))
where ¢y (r,0) is the only solution to the Neumann problem
Wi(0) onr=a,

A aln =0 inQ y 0 1’,6):
Yw + HaPw a rPw ( {Wz(Q) onr=1.
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Attempt to formalize the argument (a.k.a. the devil is in the details)

* To deform the annuli Q, := {a < r < 1}, for each “small” V € CF%(T,R?), set
QY :={(a+V1(0) <r<1+V(0)).
If u,4(r) is the third radial Neumann eigenfunction (with eigenvalue y,), the
IFT ensures the existence of the corresponding eigenfunction 1) (r,0)
on Q) with eigenvalue 1./ .

* Since we want to choose a, V = 0 so that u) is constant on Q) , we look for
zeros of F(V,a) := u) |,y - By elliptic regularity, F maps an open subset of
cka(T,R?) x (0,1) to CK(T, R?) (but no better).

* We have F(0,a) = 0 for all a. The derivative is (with some c;j(a) € R):

(DyF)o,q)W = (c1(a) Py (a,0),c2(a)Pyy (a, 0))
where ¢y (r,0) is the only solution to the Neumann problem

. Wi(0) onr=a,
Apw +papw =0 in Q, Iy (r,0) =

Wy(0) onr=1.
Big bad problem — loss of derivatives: (Dy F)(q,,) maps it gl g
codimRan(Dy F) g, 4) = co. All bifurcation theorems break down. (And this

is a really bad case; we do not how to fix it using Nash—Moser.) 1



A great idea of Mindlend, Fall & Weth — Schiffer on spheres and cylinders!

How to avoid the loss of derivatives problem (Fall, Mindlend & Weth, 2023)

The basic unknown is not V(60) € Ck’“("ll",le) (used to parametrize the
boundary), but a “Dirichlet” function v(r, 0) € CI/‘)'“ (Q1/7) (ie., v|991/2 =0).

In turn, we use v to parametrize the boundary by a map v + V,, € Cb®(T,R?)
and to correct the eigenfunction using a “Dirichlet + Neumann” function
Vi w, € Ck’a(Ql/z) with w =d,w=0o0n dQ;/.

¢ The function we consider is
v, _ v,
Fiv,a) = {[A+ po2(a)) [ a8y 0 @0 +wy) 0 (@) o3,

where ®Y : QY — Q1 , is a family of diffeomorphisms.
e Then F(v,a) =0 = d solution to “almost Schiffer” on QX.
e F(0,a) = 0 for all a and the differential is

(DyF)g.qpw = {[A+ o2 ()] [wo (@)~ [} o @

* Key observation — no loss of derivatives: For any integer [, F: X — ) is
Fredholm of index 0, with the anisotropic spaces of Z;-symmetric functions

X:={ueCk®:oueckeyz, y=(cklic5)z,.
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Verifying the hypotheses of Crandall-Rabinowitz

Voy— Vy ,
F(v,a)::{[/\Jr/{“'g(a)][(ugzo®g+wv)o(®a ) 1]}0% . vecChkr Q)

) — k,
(L)[‘[‘)(Ola)w:{[AJﬁIII()Y_ﬂ,({I)][WO(q)g) 1]}0@2, weCDa(Ql/z).

1. F(0,a) =0 for all a € (0,1), by definition. v’

2. dimKer(D,F)(g 4) = codimRan(D, F) g ,) for all a € (0,1), because D, F is
Fredholm. v~
3. One-dimensional kernel —TO DO: dim Ker(D, F)( , =1 for some

ay € (0,1). Since X consist of “Dirichlet” functions, to have
dimKer(Dy F)(q,q,) = 1 we will show that the Dirichlet eigenvalues Aj;,(a;) of
an annulus (), satisfy the crossing condition

Ho,2(a1)) = Ao(ar) # Ay n(ag) Y (m,n)=(1,0).
Note we need [ # 1 to ensure (by elementary computations) that the
resulting “almost Schiffer” domains will not be radially symmetric.

4. Transversality — TO DO: (D, D, F) g 4,)[Ker(Dy F)(0,4)] € Ran(Dy F)(g,4))
This boils down to demanding ., olag.) # A olar)-

So we just have to analyze the spectrum of annuli! 12



The crossing condition

Lemma

For all | > 4, there exists some a; € (0,1) such that

mo2(ar)) = Apolar) = Ay p(ar)  ¥(mn)=(1,0).

* It is easy to prove that the Dirichlet and Neumann eigenvalues of (),
converge to those of the disk as 2 — 0 (essentially because points have zero
capacity). Therefore, A; o(a) > A4 o(a) > po 2 (a) for a close to 0.

* Suppose now that a is close to 1, so h:= (1 —a)/ < 1. Then, with
¢ € H}((0,7)\{0} and x := (1~ r)/h € (0, 70),

- 2 (™ p)?
mfh J P'(x)2(1 = hx)dx +1 JO (l—hx)dx

Aro(a
J (x)%(1 - hx)dx
T2 dx
=h2 [infj"nl’b—z +O(h)|+ 121+ 0(h)=h2+0(%+h71).
' IO P dx
Likewise, g 2(a) = 4h=2 + O(h™1). Hence A} ((a) < pp2(a) for any fixed I and

. 13
a close to 1, and the eigenvalues must cross.



The transversality condition

Lemma

For I 1 (orl=4), uy,(a) # A ;(a)). Furthermore, a; = 1 - @ +0(172).

e From the equation pg>(a;) = Ajo(ay) > 12> 1,itis easy to see that
hp:=(1- al)/n < 1. In fact, one has pg 2(a;) = 4hl_2 + O(hl_l) and
Apolar) = hy2 +12+ O(hy +1), 50 hy = V3172 + O(I° 1),

e The result is proven by means of a “second order asymptotic expansion”
in [ for pg(ay) and Ajo(a;), which relies on the analytic dependence of the
Dirichlet and Neumann eigenvalues of the operators

n(1-%Fy+8) _  3(1-Fn(1+9)?
L-n(1=Fn+8)x ™ (1-n(1-Fn(1+8)x)?’

= oo n1-5n(1+o)
OO T (- Ty o)x

2
77 , ax

on the parameters (17, 9).




A Schiffer problem for classical billiards?

Question:

Let Q) be a smooth convex billiard. Suppose that there is a sequence of
. AN
periodic trajectories {(si{), 6,(1]))} ! , with minimal periods N;j — co, for which
n=1

the angles are constant: 6,(1]) =cj Vn.

Does this imply Q) = disk?
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Muchas gracias!
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