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Tyger, tyger, burning bright,
In the forests of the night;

What immortal hand or eye,
Could frame thy fearful symmetry?

W. Blake



Eigenfunctions of a planar domain

Given a smooth bounded domain Ω ⊂ R2, consider its Neumann eigenvalues µn
and eigenfunctions un :Ω→ R (not identically 0):

∆un +µnun = 0 in Ω, ν ·∇un = 0 on ∂Ω .

There are infinitely many eigenvalues 0 = µ0 < µ1 ≤ µ2 ≤ · · ·→∞ (the spectrum
of Ω). All the eigenfunctions are smooth.
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Eigenfunctions of a planar domain

Given a smooth bounded domain Ω ⊂ R2, consider its Neumann eigenvalues µn
and eigenfunctions un :Ω→ R (not identically 0):

∆un +µnun = 0 in Ω, ν ·∇un = 0 on ∂Ω .

There are infinitely many eigenvalues 0 = µ0 < µ1 ≤ µ2 ≤ · · ·→∞ (the spectrum
of Ω). All the eigenfunctions are smooth.

Mechanical interpretation: quantum billiards

• Eigenfunctions are the stationary states of the free Schrödinger equation
on Ω . The dynamics is written off explicitly in terms of the spectral data.

• The classical counterpart is the classical billiard of shape Ω, which is an
area-preserving diffeomorphism on a surface.

• The dynamical properties of the classical billiard has a major impact on
high-frequency quantum dynamics (and on high energy eigenfunctions).
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Spectral geometry

Principle: The spectrum encodes much geometric information on the domain Ω.

Example: Weyl’s law / heat kernel asymptotics / wave invariants:
∞󰁛

n=0

e−tµn =
|Ω|
4π

t−1 +
|∂Ω|
8
√
8
+ t−

1
2

󰁝

∂Ω

κ
12π

ds + t
1
2

󰁝

∂Ω

κ2

256
√
π
ds + · · · (W)

Here κ is the curvature. Similarly for Dirichlet / on Riemannian manifolds.
Furthermore, isometric domains are isospectral.
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Question (Kac, 1967): Can one hear the shape of a drum?

• The key question (which we will not consider here) of when a domain is
determined by its spectrum (modulo a rigid motion) is wide open.

• True within the class of analytic Z2-symmetric convex domains (Zelditch,
2009). The only known counterexamples are non-convex polygons
(Gordon, Webb & Wolpert, 1992).

• Disks are “special”: in particular, their spectral determination follows
immediately from (W) and the isoperimetric inequality.
A sort of “three-term isoperimetric inequality” shows that regular N -sided
polygons are spectrally determined too (E. & Gómez-Serrano, 2022).
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Reveling in roundness: eigenfunctions of the disk

Disks are indeed special. For starters, they are the extremizers of the first
eigenvalue (Faber–Krahn, Szegö):

|Ω|µ1(Ω) ≤ |D|µ1(D) .

Furthermore, everything can be written down explicitly. If we label the
eigenvalues of the disk D with two integers, {µkm}, then

√
µkm is the mth

positive zero of the function J ′k (Bessel). The corresponding eigenspace has dim
2 and is spanned by

ukm := Jk(
√
µkmr) coskθ , 󰁨ukm := Jk(

√
µkmr) sinkθ

Obviously u0m is radial, and therefore constant on ∂D , for any m.

But what we are really interested in is Schiffer’s conjecture.
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Reveling in roundness: Schiffer’s conjecture

Schiffer’s conjecture (1950s):

On a bounded domain Ω ⊂ R2, suppose that there exists a Neumann eigenvalue µ
and a corresponding Neumann eigenfunction u that is constant on ∂Ω. Then Ω is
a disk and u is radial.
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Reveling in roundness: Schiffer’s conjecture

Schiffer’s conjecture (1950s):

On a bounded domain Ω ⊂ R2, suppose that there exists a Neumann eigenvalue µ
and a corresponding Neumann eigenfunction u that is constant on ∂Ω. Then Ω is
a disk and u is radial.

The known rigidity properties are essentially the following:

• ∂Ω must be analytic (Kinderlehrer & Nirenberg, 1977).
• If infinitely many l.i. eigenfunctions are constant on the boundary, Ω = disk
(Berenstein, 1980).

• If µ is small enough (specifically, µ ≤ µ6(Ω)), Ω = disk (Avilés, 1986).

Furthermore, it is connected with the Pompeiu problem: a simply connected
domain Ω satisfies the Schiffer overdetermined condition iff there exists a
function f ∈ C(R2)\{0} (here, e.g. f (x) := sin(µ1/2x1)) such that

󰁝

R(Ω)
f dx = 0 for any rigid motion R.

Alas, we do not have much to say about the Schiffer conjecture.
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The Neumann spectrum of an annulus

On an annulus Ωa := {a < r < 1}, with a ∈ (0,1), we can compute the spectrum
pretty much as in the case of disk:

• We label the eigenvalues with two indices: {µkm(a)}. Then µkm(a) is the mth

smallest positive number for which the Bessel ODE

J ′′km(r) +
J ′km(r)

r
+
󰀣
µkm(a)− l2

r2

󰀤
Jkm(r) = 0

has a solution with J ′km(a) = J ′km(1) = 0.

• The corresponding basis of eigenfunctions is then

uakm := Jkm(r) coskθ , 󰁨uakm := Jkm(r) sinkθ .

Yet the eigenspaces are not necessarily 2-dimensional: one can have
µkm(a) = µk′m′ (a) with (k,m) 󲧰 (k′ ,m′).

• Anyhow, ua0m is radial, and therefore locally constant on the boundary
(i.e., constant of each connected component of ∂Ωa), for any m and any a.
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Relaxing the hypotheses: the “almost Schiffer” problem

A conjecture for disks and annuli:

On a bounded domain Ω ⊂ R2, suppose that there exists a Neumann eigenvalue µ
and a corresponding Neumann eigenfunction u that is locally constant on ∂Ω

(i.e., constant on each component of the boundary). Then Ω is a disk or annulus
and u is radial.
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Relaxing the hypotheses: the “almost Schiffer” problem

A conjecture for disks and annuli:

On a bounded domain Ω ⊂ R2, suppose that there exists a Neumann eigenvalue µ
and a corresponding Neumann eigenfunction u that is locally constant on ∂Ω

(i.e., constant on each component of the boundary). Then Ω is a disk or annulus
and u is radial.

One can show the rigidity properties are essentially the same:

• ∂Ω must be analytic (by Kinderlehrer & Nirenberg, 1977).
• If infinitely many l.i. eigenfunctions are locally constant on the boundary,
Ω = disk or annulus (essentially as in Berenstein, 1980).

• If µ is small enough (specifically, µ ≤ µ3(Ω)), Ω = disk or annulus.

Furthermore, it is connected with a nontrivial Pompeiu-type integral: if Ω is
doubly connected, the function f (x) := sin(µ1/2x1) satisfies󰁝

R(Ω)
f dx − c

󰁝

R(Ω′)
f dx = 0 for any rigid motion R,

where Ω′ is the “hole” and c is certain constant.

Yet we can show this conjecture is as false as a 3 dollar bill! 7



Main result

Theorem (E., Fernández, Sicbaldi & Ruiz, 2023)

There are nonradial domains Ω diffeomorphic to an annulus where the equation

∆u +µu = 0 in Ω , ∇u = 0 on ∂Ω .

admits a nontrivial solution, for some Neumann eigenvalue µ.

(The domains are small Zl -symmetric perturbations of thin annuli.)

Idea of the proof:

• In each annulus Ωa := {a < r < 1}, take a radial Neumann eigenfunction
ua0m(r), with eigenvalue µm0(a). This is a family of trivial (i.e., radial)
solutions smoothly depending on the parameter a ∈ (0,1).

• So use bifurcation to get nontrivial solutions! (Note the difference with
Schiffer’s conjecture)
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Pitchfork bifurcation on infinite dimensional spaces

Theorem (Crandall & Rabinowitz, 1971)

“Under suitable technical hypotheses, a family of nontrivial solutions can bifurcate
from a family of trivial solutions.”
Key example: F(v,a) := v(a− v2), bifurcating from a = 0.

Specifically: given a C2 function F(v,a) between Banach spaces, assume that:

• F(0, a) = 0 for all values of the parameter a ∈ (0,1).
• dimKer(DvF)(0,a∗) = codimRan(DvF)(0,a∗) = 1 for some a∗ ∈ (0,1).
• (DvDaF)(0,a∗)[Ker(DvF)(0,a∗)] 󲧵 Ran(DvF)(0,a∗).

Then there is a branch (≡ C1 curve) of nontrivial solutions {(vs , as) : |s| < s0} to
the equation F(v,a) = 0 which bifurcate from the point (v0, a0) = (0, a∗).
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Attempt to formalize the argument (a.k.a. the devil is in the details)

• To deform the annuli Ωa := {a < r < 1}, for each “small” V ∈ Ck,α(T,R2), set

ΩV
a := {(a+V1(θ) < r < 1+V2(θ)} .

If ua(r) is the third radial Neumann eigenfunction (with eigenvalue µa), the
IFT ensures the existence of the corresponding eigenfunction uVa (r,θ)
on ΩV

a with eigenvalue µVa .
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Attempt to formalize the argument (a.k.a. the devil is in the details)

• To deform the annuli Ωa := {a < r < 1}, for each “small” V ∈ Ck,α(T,R2), set

ΩV
a := {(a+V1(θ) < r < 1+V2(θ)} .

If ua(r) is the third radial Neumann eigenfunction (with eigenvalue µa), the
IFT ensures the existence of the corresponding eigenfunction uVa (r,θ)
on ΩV

a with eigenvalue µVa .
• Since we want to choose a,V 󲧰 0 so that uVa is constant on ΩV

a , we look for
zeros of F(V ,a) := uVa |∂ΩV

a
. By elliptic regularity, F maps an open subset of

Ck,α(T,R2)× (0,1) to Ck,α(T,R2) (but no better).
• We have F(0, a) = 0 for all a. The derivative is (with some cj (a) ∈ R):

(DV F)(0,a)W := (c1(a)ψW (a,θ), c2(a)ψW (a,θ))

where ψW (r,θ) is the only solution to the Neumann problem

∆ψW +µaψW = 0 in Ωa , ∂rψW (r,θ) =

󰀻󰁁󰁁󰀿󰁁󰁁󰀽
W1(θ) on r = a ,

W2(θ) on r = 1 .
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a , we look for
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a
. By elliptic regularity, F maps an open subset of

Ck,α(T,R2)× (0,1) to Ck,α(T,R2) (but no better).
• We have F(0, a) = 0 for all a. The derivative is (with some cj (a) ∈ R):

(DV F)(0,a)W := (c1(a)ψW (a,θ), c2(a)ψW (a,θ))

where ψW (r,θ) is the only solution to the Neumann problem

∆ψW +µaψW = 0 in Ωa , ∂rψW (r,θ) =

󰀻󰁁󰁁󰀿󰁁󰁁󰀽
W1(θ) on r = a ,

W2(θ) on r = 1 .

Big bad problem— loss of derivatives: (DV F)(0,a) maps Ck,α → Ck+1,α , so
codimRan(DV F)(0,a) =∞. All bifurcation theorems break down. (And this
is a really bad case; we do not how to fix it using Nash–Moser.)
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A great idea of Mindlend, Fall &Weth— Schiffer on spheres and cylinders!

How to avoid the loss of derivatives problem (Fall, Mindlend &Weth, 2023)

The basic unknown is not V (θ) ∈ Ck,α(T,R2) (used to parametrize the
boundary), but a “Dirichlet” function v(r,θ) ∈ Ck,α

D (Ω1/2) (i.e., v|∂Ω1/2
= 0).

In turn, we use v to parametrize the boundary by a map v 󰀁→ Vv ∈ Ck,α(T,R2)
and to correct the eigenfunction using a “Dirichlet + Neumann” function
v 󰀁→ wv ∈ Ck,α(Ω1/2) with w = ∂rw = 0 on ∂Ω1/2.

• The function we consider is

F(v,a) :=
󰀝
[∆+µ02(a)]

󰀗
(ua02 ◦Φ

0
a +wv ) ◦ (Φ

Vv
a )−1

󰀘󰀞
◦ΦVv

a ,

where ΦV
a :ΩV

a →Ω1/2 is a family of diffeomorphisms.
• Then F(v,a) = 0 =⇒ ∃ solution to “almost Schiffer” on ΩV

a .
• F(0, a) = 0 for all a and the differential is

(DvF)(0,a)w =
󰁱
[∆+µ02(a)]

󰁫
w ◦ (Φ0

a )
−1󰁬󰁲 ◦Φ0

a

• Key observation — no loss of derivatives: For any integer l, F : X → Y is
Fredholm of index 0, with the anisotropic spaces of Zl -symmetric functions

X := {u ∈ Ck,α
D : ∂ru ∈ Ck,α}/Zl , Y :=

󰀓
Ck−1,α +Ck−2,α

D

󰀔
/Zl . 11



Verifying the hypotheses of Crandall–Rabinowitz

F(v,a) :=
󰀝
[∆+µ0,2(a)]

󰀗
(ua02 ◦Φ

0
a +wv ) ◦ (Φ

Vv
a )−1

󰀘󰀞
◦ΦVv

a , v ∈ Ck,α
D (Ω1/2) ,

(DvF)(0,a)w =
󰁱
[∆+µ0,2(a)]

󰁫
w ◦ (Φ0

a )
−1󰁬󰁲 ◦Φ0

a , w ∈ Ck,α
D (Ω1/2) .

1. F(0, a) = 0 for all a ∈ (0,1), by definition.
2. dimKer(DvF)(0,a) = codimRan(DvF)(0,a) for all a ∈ (0,1), because DvF is

Fredholm.
3. One-dimensional kernel — TO DO: dimKer(DvF)(0,al,∗) = 1 for some

al ∈ (0,1). Since X consist of “Dirichlet” functions, to have
dimKer(DvF)(0,al ) = 1 we will show that the Dirichlet eigenvalues λln(al ) of
an annulus Ωal satisfy the crossing condition

µ0,2(al )) = λl,0(al ) 󲧰 λml,n(al ) ∀ (m,n) 󲧰 (1,0) .

Note we need l 󲧰 1 to ensure (by elementary computations) that the
resulting “almost Schiffer” domains will not be radially symmetric.

4. Transversality — TO DO: (DvDaF)(0,al )[Ker(DvF)(0,al )] 󲧵 Ran(DvF)(0,al ).
This boils down to demanding µ′0,2(al,∗) 󲧰 λ

′
l,0(al,∗).

So we just have to analyze the spectrum of annuli! 12



The crossing condition

Lemma

For all l ≥ 4, there exists some al ∈ (0,1) such that

µ0,2(al )) = λl,0(al ) 󲧰 λml,n(al ) ∀ (m,n) 󲧰 (1,0) .

• It is easy to prove that the Dirichlet and Neumann eigenvalues of Ωa

converge to those of the disk as a→ 0 (essentially because points have zero
capacity). Therefore, λl,0(a) ≥ λ4,0(a) > µ0,2(a) for a close to 0.

• Suppose now that a is close to 1, so h := (1− a)/π≪ 1. Then, with
ϕ ∈H1

0 ((0,π)\{0} and x := (1− r)/h ∈ (0,π),

λl,0(a) = inf
ϕ

h−2
󰁝 π

0
ψ′(x)2(1− hx)dx + l2

󰁝 π

0

ψ(x)2

(1− hx) dx
󰁝 π

0
ψ(x)2(1− hx)dx

= h−2
󰀵
󰀹󰀹󰀹󰀹󰀹󰀷infϕ

󰁕 π
0 ψ′2 dx
󰁕 π
0 ψ2 dx

+O(h)

󰀶
󰀺󰀺󰀺󰀺󰀺󰀸+ l2(1 +O(h)) = h−2 +O(l2 + h−1) .

Likewise, µ0,2(a) = 4h−2 +O(h−1). Hence λl,0(a) < µ0,2(a) for any fixed l and
a close to 1, and the eigenvalues must cross. 13



The transversality condition

Lemma

For l ≫ 1 (or l = 4), µ′0,2(al ) 󲧰 λ
′
l,0(al ). Furthermore, al = 1−

√
3π
l +O(l−2).

• From the equation µ0,2(al ) = λl,0(al ) > l2≫ 1, it is easy to see that
hl := (1− al )/π≪ 1. In fact, one has µ0,2(al ) = 4h−2l +O(h−1l ) and
λl,0(al ) = h−2l + l2 +O(h−1l + l), so hl =

√
3 l−2 +O(l−1).

• The result is proven by means of a “second order asymptotic expansion”
in l for µ0,2(al ) and λl,0(al ), which relies on the analytic dependence of the
Dirichlet and Neumann eigenvalues of the operators

Tη,δ := ∂2x −
η(1− π

2 η(1 + δ))

1− η(1− π
2 η(1 + δ))x

∂x −
3(1− π

2 η(1 + δ))2

(1− η(1− π
2 η(1 + δ))x)2

,

󰁨Tη,δ := ∂2x −
η(1− π

2 η(1 + δ))

1− η(1− π
2 η(1 + δ))x

∂x ,

on the parameters (η,δ).
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A Schiffer problem for classical billiards?

Question:

Let Ω be a smooth convex billiard. Suppose that there is a sequence of

periodic trajectories
󰀝󰀕
s
(j)
n ,θ

(j)
n

󰀖󰀞Nj

n=1
, with minimal periods Nj →∞, for which

the angles are constant: θ
(j)
n = cj ∀n.

Does this imply Ω = disk?
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Muchas gracias!
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