The fearful symmetry of quantum billiards

Alberto Enciso
Instituto de Ciencias Matemáticas, CSIC

Tyger, tyger, burning bright, In the forests of the night;
What immortal hand or eye, Could frame thy fearful symmetry?
W. Blake

Eigenfunctions of a planar domain

Given a smooth bounded domain $\Omega \subset \mathbb{R}^{2}$, consider its Neumann eigenvalues μ_{n} and eigenfunctions $u_{n}: \bar{\Omega} \rightarrow \mathbb{R}$ (not identically 0):

$$
\Delta u_{n}+\mu_{n} u_{n}=0 \quad \text { in } \Omega, \quad \quad v \cdot \nabla u_{n}=0 \quad \text { on } \partial \Omega
$$

There are infinitely many eigenvalues $0=\mu_{0}<\mu_{1} \leq \mu_{2} \leq \cdots \rightarrow \infty$ (the spectrum of Ω). All the eigenfunctions are smooth.

Eigenfunctions of a planar domain

Given a smooth bounded domain $\Omega \subset \mathbb{R}^{2}$, consider its Neumann eigenvalues μ_{n} and eigenfunctions $u_{n}: \bar{\Omega} \rightarrow \mathbb{R}$ (not identically 0):

$$
\Delta u_{n}+\mu_{n} u_{n}=0 \quad \text { in } \Omega, \quad v \cdot \nabla u_{n}=0 \quad \text { on } \partial \Omega .
$$

There are infinitely many eigenvalues $0=\mu_{0}<\mu_{1} \leq \mu_{2} \leq \cdots \rightarrow \infty$ (the spectrum of Ω). All the eigenfunctions are smooth.

Mechanical interpretation: quantum billiards

- Eigenfunctions are the stationary states of the free Schrödinger equation on Ω. The dynamics is written off explicitly in terms of the spectral data.
- The classical counterpart is the classical billiard of shape Ω, which is an area-preserving diffeomorphism on a surface.
- The dynamical properties of the classical billiard has a major impact on high-frequency quantum dynamics (and on high energy eigenfunctions).

Spectral geometry

Principle: The spectrum encodes much geometric information on the domain Ω.
Example: Weyl's law / heat kernel asymptotics / wave invariants:

$$
\begin{equation*}
\sum_{n=0}^{\infty} e^{-t \mu_{n}}=\frac{|\Omega|}{4 \pi} t^{-1}+\frac{|\partial \Omega|}{8 \sqrt{8}}+t^{-\frac{1}{2}} \int_{\partial \Omega} \frac{\kappa}{12 \pi} d s+t^{\frac{1}{2}} \int_{\partial \Omega} \frac{\kappa^{2}}{256 \sqrt{\pi}} d s+\cdots \tag{W}
\end{equation*}
$$

Here $\mathcal{\kappa}$ is the curvature. Similarly for Dirichlet / on Riemannian manifolds. Furthermore, isometric domains are isospectral.

Spectral geometry

Principle: The spectrum encodes much geometric information on the domain Ω.
Example: Weyl's law / heat kernel asymptotics / wave invariants:

$$
\begin{equation*}
\sum_{n=0}^{\infty} e^{-t \mu_{n}}=\frac{|\Omega|}{4 \pi} t^{-1}+\frac{|\partial \Omega|}{8 \sqrt{8}}+t^{-\frac{1}{2}} \int_{\partial \Omega} \frac{\kappa}{12 \pi} d s+t^{\frac{1}{2}} \int_{\partial \Omega} \frac{\kappa^{2}}{256 \sqrt{\pi}} d s+\cdots \tag{W}
\end{equation*}
$$

Here κ is the curvature. Similarly for Dirichlet / on Riemannian manifolds. Furthermore, isometric domains are isospectral.

Question (Kac, 1967): Can one hear the shape of a drum?

- The key question (which we will not consider here) of when a domain is determined by its spectrum (modulo a rigid motion) is wide open.
- True within the class of analytic \mathbb{Z}_{2}-symmetric convex domains (Zelditch, 2009). The only known counterexamples are non-convex polygons (Gordon, Webb \& Wolpert, 1992).
- Disks are "special": in particular, their spectral determination follows immediately from (W) and the isoperimetric inequality.
A sort of "three-term isoperimetric inequality" shows that regular N-sided polygons are spectrally determined too (E. \& Gómez-Serrano, 2022).

Reveling in roundness: eigenfunctions of the disk

Disks are indeed special. For starters, they are the extremizers of the first eigenvalue (Faber-Krahn, Szegö):

$$
|\Omega| \mu_{1}(\Omega) \leq|\mathbb{D}| \mu_{1}(\mathbb{D}) .
$$

Furthermore, everything can be written down explicitly. If we label the eigenvalues of the disk \mathbb{D} with two integers, $\left\{\mu_{k m}\right\}$, then $\sqrt{\mu_{k m}}$ is the $m^{\text {th }}$ positive zero of the function J_{k}^{\prime} (Bessel). The corresponding eigenspace has dim 2 and is spanned by

$$
u_{k m}:=J_{k}\left(\sqrt{\mu_{k m}} r\right) \cos k \theta, \quad \widetilde{u}_{k m}:=J_{k}\left(\sqrt{\mu_{k m}} r\right) \sin k \theta
$$

Obviously $u_{0 m}$ is radial, and therefore constant on $\partial \mathbb{D}$, for any m.

Reveling in roundness: Schiffer's conjecture

Schiffer's conjecture (1950s):
On a bounded domain $\Omega \subset \mathbb{R}^{2}$, suppose that there exists a Neumann eigenvalue μ and a corresponding Neumann eigenfunction u that is constant on $\partial \Omega$. Then Ω is a disk and u is radial.

Reveling in roundness: Schiffer's conjecture

Schiffer's conjecture (1950s):

On a bounded domain $\Omega \subset \mathbb{R}^{2}$, suppose that there exists a Neumann eigenvalue μ and a corresponding Neumann eigenfunction u that is constant on $\partial \Omega$. Then Ω is a disk and u is radial.

The known rigidity properties are essentially the following:

- $\partial \Omega$ must be analytic (Kinderlehrer \& Nirenberg, 1977).
- If infinitely many l.i. eigenfunctions are constant on the boundary, $\Omega=\operatorname{disk}$ (Berenstein, 1980).
- If μ is small enough (specifically, $\mu \leq \mu_{6}(\Omega)$), $\Omega=\operatorname{disk}$ (Avilés, 1986).

Furthermore, it is connected with the Pompeiu problem: a simply connected domain Ω satisfies the Schiffer overdetermined condition iff there exists a function $f \in C\left(\mathbb{R}^{2}\right) \backslash\{0\}$ (here, e.g. $\left.f(x):=\sin \left(\mu^{1 / 2} x_{1}\right)\right)$ such that

$$
\int_{\mathcal{R}(\Omega)} f d x=0 \quad \text { for any rigid motion } \mathcal{R}
$$

Alas, we do not have much to say about the Schiffer conjecture.

The Neumann spectrum of an annulus

On an annulus $\Omega_{a}:=\{a<r<1\}$, with $a \in(0,1)$, we can compute the spectrum pretty much as in the case of disk:

- We label the eigenvalues with two indices: $\left\{\mu_{k m}(a)\right\}$. Then $\mu_{k m}(a)$ is the $m^{\text {th }}$ smallest positive number for which the Bessel ODE

$$
\mathcal{J}_{k m}^{\prime \prime}(r)+\frac{\mathcal{J}_{k m}^{\prime}(r)}{r}+\left(\mu_{k m}(a)-\frac{l^{2}}{r^{2}}\right) \mathcal{J}_{k m}(r)=0
$$

has a solution with $\mathcal{J}_{k m}^{\prime}(a)=\mathcal{J}_{k m}^{\prime}(1)=0$.

- The corresponding basis of eigenfunctions is then

$$
u_{k m}^{a}:=\mathcal{J}_{k m}(r) \cos k \theta, \quad \widetilde{u}_{k m}^{a}:=\mathcal{J}_{k m}(r) \sin k \theta
$$

Yet the eigenspaces are not necessarily 2-dimensional: one can have $\mu_{k m}(a)=\mu_{k^{\prime} m^{\prime}}(a)$ with $(k, m) \neq\left(k^{\prime}, m^{\prime}\right)$.

- Anyhow, $u_{0 m}^{a}$ is radial, and therefore locally constant on the boundary (i.e., constant of each connected component of $\partial \Omega_{a}$), for any m and any a.

Relaxing the hypotheses: the "almost Schiffer" problem

A conjecture for disks and annuli:

On a bounded domain $\Omega \subset \mathbb{R}^{2}$, suppose that there exists a Neumann eigenvalue μ and a corresponding Neumann eigenfunction u that is locally constant on $\partial \Omega$ (i.e., constant on each component of the boundary). Then Ω is a disk or annulus and u is radial.

Relaxing the hypotheses: the "almost Schiffer" problem

A conjecture for disks and annuli:

On a bounded domain $\Omega \subset \mathbb{R}^{2}$, suppose that there exists a Neumann eigenvalue μ and a corresponding Neumann eigenfunction u that is locally constant on $\partial \Omega$ (i.e., constant on each component of the boundary). Then Ω is a disk or annulus and u is radial.

One can show the rigidity properties are essentially the same:

- $\partial \Omega$ must be analytic (by Kinderlehrer \& Nirenberg, 1977).
- If infinitely many l.i. eigenfunctions are locally constant on the boundary, $\Omega=$ disk or annulus (essentially as in Berenstein, 1980).
- If μ is small enough (specifically, $\mu \leq \mu_{3}(\Omega)$), $\Omega=$ disk or annulus.

Furthermore, it is connected with a nontrivial Pompeiu-type integral: if Ω is doubly connected, the function $f(x):=\sin \left(\mu^{1 / 2} x_{1}\right)$ satisfies

$$
\int_{\mathcal{R}(\Omega)} f d x-c \int_{\mathcal{R}\left(\Omega^{\prime}\right)} f d x=0 \quad \text { for any rigid motion } \mathcal{R}
$$

where Ω^{\prime} is the "hole" and c is certain constant.

Main result

Theorem (E., Fernández, Sicbaldi \& Ruiz, 2023)

There are nonradial domains Ω diffeomorphic to an annulus where the equation

$$
\Delta u+\mu u=0 \quad \text { in } \Omega, \quad \nabla u=0 \quad \text { on } \partial \Omega
$$

admits a nontrivial solution, for some Neumann eigenvalue μ.
(The domains are small \mathbb{Z}_{l}-symmetric perturbations of thin annuli.)

Idea of the proof:

- In each annulus $\Omega_{a}:=\{a<r<1\}$, take a radial Neumann eigenfunction $u_{0 m}^{a}(r)$, with eigenvalue $\mu_{m 0}(a)$. This is a family of trivial (i.e., radial) solutions smoothly depending on the parameter $a \in(0,1)$.
- So use bifurcation to get nontrivial solutions! (Note the difference with Schiffer's conjecture)

Pitchfork bifurcation on infinite dimensional spaces

Theorem (Crandall \& Rabinowitz, 1971)

"Under suitable technical hypotheses, a family of nontrivial solutions can bifurcate from a family of trivial solutions."
Key example: $F(v, a):=v\left(a-v^{2}\right)$, bifurcating from $a=0$.

Specifically: given a C^{2} function $F(v, a)$ between Banach spaces, assume that:

- $F(0, a)=0$ for all values of the parameter $a \in(0,1)$.
- $\operatorname{dim} \operatorname{Ker}\left(D_{v} F\right)_{\left(0, a_{*}\right)}=\operatorname{codim} \operatorname{Ran}\left(D_{v} F\right)_{\left(0, a_{*}\right)}=1$ for some $a_{*} \in(0,1)$.
- $\left(D_{v} D_{a} F\right)_{\left(0, a_{*}\right)}\left[\operatorname{Ker}\left(D_{v} F\right)_{\left(0, a_{*}\right)}\right] \not \subset \operatorname{Ran}\left(D_{v} F\right)_{\left(0, a_{*}\right)}$.

Then there is a branch ($\equiv C^{1}$ curve) of nontrivial solutions $\left\{\left(v_{s}, a_{s}\right):|s|<s_{0}\right\}$ to the equation $F(v, a)=0$ which bifurcate from the point $\left(v_{0}, a_{0}\right)=\left(0, a_{*}\right)$.

Attempt to formalize the argument (a.k.a. the devil is in the details)

- To deform the annuli $\Omega_{a}:=\{a<r<1\}$, for each "small" $V \in C^{k, \alpha}\left(\mathbb{T}, \mathbb{R}^{2}\right)$, set

$$
\Omega_{a}^{V}:=\left\{\left(a+V_{1}(\theta)<r<1+V_{2}(\theta)\right\} .\right.
$$

If $u_{a}(r)$ is the third radial Neumann eigenfunction (with eigenvalue μ_{a}), the IFT ensures the existence of the corresponding eigenfunction $u_{a}^{V}(r, \theta)$ on Ω_{a}^{V} with eigenvalue μ_{a}^{V}.

Attempt to formalize the argument (a.k.a. the devil is in the details)

- To deform the annuli $\Omega_{a}:=\{a<r<1\}$, for each "small" $V \in C^{k, \alpha}\left(\mathbb{T}, \mathbb{R}^{2}\right)$, set

$$
\Omega_{a}^{V}:=\left\{\left(a+V_{1}(\theta)<r<1+V_{2}(\theta)\right\} .\right.
$$

If $u_{a}(r)$ is the third radial Neumann eigenfunction (with eigenvalue μ_{a}), the IFT ensures the existence of the corresponding eigenfunction $u_{a}^{V}(r, \theta)$ on Ω_{a}^{V} with eigenvalue μ_{a}^{V}.

- Since we want to choose $a, V \neq 0$ so that u_{a}^{V} is constant on Ω_{a}^{V}, we look for zeros of $F(V, a):=\left.u_{a}^{V}\right|_{\partial \Omega_{a}^{V}}$. By elliptic regularity, F maps an open subset of $C^{k, \alpha}\left(\mathbb{T}, \mathbb{R}^{2}\right) \times(0,1)$ to $C^{k, \alpha}\left(\mathbb{T}, \mathbb{R}^{2}\right)$ (but no better).
- We have $F(0, a)=0$ for all a. The derivative is (with some $c_{j}(a) \in \mathbb{R}$):

$$
\left(D_{V} F\right)_{(0, a)} W:=\left(c_{1}(a) \psi_{W}(a, \theta), c_{2}(a) \psi_{W}(a, \theta)\right)
$$

where $\psi_{W}(r, \theta)$ is the only solution to the Neumann problem

$$
\Delta \psi_{W}+\mu_{a} \psi_{W}=0 \quad \text { in } \Omega_{a}, \quad \partial_{r} \psi_{W}(r, \theta)= \begin{cases}W_{1}(\theta) & \text { on } r=a \\ W_{2}(\theta) & \text { on } r=1\end{cases}
$$

Attempt to formalize the argument (a.k.a. the devil is in the details)

- To deform the annuli $\Omega_{a}:=\{a<r<1\}$, for each "small" $V \in C^{k, \alpha}\left(\mathbb{T}, \mathbb{R}^{2}\right)$, set

$$
\Omega_{a}^{V}:=\left\{\left(a+V_{1}(\theta)<r<1+V_{2}(\theta)\right\} .\right.
$$

If $u_{a}(r)$ is the third radial Neumann eigenfunction (with eigenvalue μ_{a}), the IFT ensures the existence of the corresponding eigenfunction $u_{a}^{V}(r, \theta)$ on Ω_{a}^{V} with eigenvalue μ_{a}^{V}.

- Since we want to choose $a, V \neq 0$ so that u_{a}^{V} is constant on Ω_{a}^{V}, we look for zeros of $F(V, a):=\left.u_{a}^{V}\right|_{\partial \Omega_{a}^{V}}$. By elliptic regularity, F maps an open subset of $C^{k, \alpha}\left(\mathbb{T}, \mathbb{R}^{2}\right) \times(0,1)$ to $C^{k, \alpha}\left(\mathbb{T}, \mathbb{R}^{2}\right)$ (but no better).
- We have $F(0, a)=0$ for all a. The derivative is (with some $c_{j}(a) \in \mathbb{R}$):

$$
\left(D_{V} F\right)_{(0, a)} W:=\left(c_{1}(a) \psi_{W}(a, \theta), c_{2}(a) \psi_{W}(a, \theta)\right)
$$

where $\psi_{W}(r, \theta)$ is the only solution to the Neumann problem

$$
\Delta \psi_{W}+\mu_{a} \psi_{W}=0 \quad \text { in } \Omega_{a}, \quad \partial_{r} \psi_{W}(r, \theta)= \begin{cases}W_{1}(\theta) & \text { on } r=a \\ W_{2}(\theta) & \text { on } r=1\end{cases}
$$

Big bad problem - loss of derivatives: $\left(D_{V} F\right)_{(0, a)}$ maps $C^{k, \alpha} \rightarrow C^{k+1, \alpha}$, so codim $\operatorname{Ran}\left(D_{V} F\right)_{(0, a)}=\infty$. All bifurcation theorems break down. (And this is a really bad case; we do not how to fix it using Nash-Moser.)

A great idea of Mindlend, Fall \& Weth — Schiffer on spheres and cylinders!

How to avoid the loss of derivatives problem (Fall, Mindlend \& Weth, 2023) The basic unknown is not $V(\theta) \in C^{k, \alpha}\left(\mathbb{T}, \mathbb{R}^{2}\right)$ (used to parametrize the boundary), but a "Dirichlet" function $v(r, \theta) \in C_{\mathrm{D}}^{k, \alpha}\left(\Omega_{1 / 2}\right)$ (i.e., $\left.v\right|_{\partial \Omega_{1 / 2}}=0$).

In turn, we use v to parametrize the boundary by a map $v \mapsto V_{v} \in C^{k, \alpha}\left(\mathbb{T}, \mathbb{R}^{2}\right)$ and to correct the eigenfunction using a "Dirichlet + Neumann" function $v \mapsto w_{v} \in C^{k, \alpha}\left(\Omega_{1 / 2}\right)$ with $w=\partial_{r} w=0$ on $\partial \Omega_{1 / 2}$.

- The function we consider is

$$
F(v, a):=\left\{\left[\Delta+\mu_{02}(a)\right]\left[\left(u_{02}^{a} \circ \Phi_{a}^{0}+w_{v}\right) \circ\left(\Phi_{a}^{V_{v}}\right)^{-1}\right]\right\} \circ \Phi_{a}^{V_{v}},
$$

where $\Phi_{a}^{V}: \Omega_{a}^{V} \rightarrow \Omega_{1 / 2}$ is a family of diffeomorphisms.

- Then $F(v, a)=0 \Longrightarrow \exists$ solution to "almost Schiffer" on Ω_{a}^{V}.
- $F(0, a)=0$ for all a and the differential is

$$
\left(D_{v} F\right)_{(0, a)} w=\left\{\left[\Delta+\mu_{02}(a)\right]\left[w \circ\left(\Phi_{a}^{0}\right)^{-1}\right]\right\} \circ \Phi_{a}^{0}
$$

- Key observation - no loss of derivatives: For any integer l, $F: \mathcal{X} \rightarrow \mathcal{Y}$ is Fredholm of index 0 , with the anisotropic spaces of \mathbb{Z}_{l}-symmetric functions

$$
\mathcal{X}:=\left\{u \in C_{\mathrm{D}}^{k, \alpha}: \partial_{r} u \in C^{k, \alpha}\right\} / \mathbb{Z}_{l}, \quad \mathcal{Y}:=\left(C^{k-1, \alpha}+C_{\mathrm{D}}^{k-2, \alpha}\right) / \mathbb{Z}_{l}
$$

Verifying the hypotheses of Crandall-Rabinowitz

$F(v, a):=\left\{\left[\Delta+\mu_{0,2}(a)\right]\left[\left(u_{02}^{a} \circ \Phi_{a}^{0}+w_{v}\right) \circ\left(\Phi_{a}^{V_{v}}\right)^{-1}\right]\right\} \circ \Phi_{a}^{V_{v}}, \quad v \in C_{D}^{k, \alpha}\left(\Omega_{1 / 2}\right)$,
$\left(D_{v} F\right)_{(0, a)} w=\left\{\left[\Delta+\mu_{0,2}(a)\right]\left[w \circ\left(\Phi_{a}^{0}\right)^{-1}\right]\right\} \circ \Phi_{a}^{0}$,
$w \in C_{\mathrm{D}}^{k, \alpha}\left(\Omega_{1 / 2}\right)$.

1. $F(0, a)=0$ for all $a \in(0,1)$, by definition.
2. $\operatorname{dim} \operatorname{Ker}\left(D_{v} F\right)_{(0, a)}=\operatorname{codim} \operatorname{Ran}\left(D_{v} F\right)_{(0, a)}$ for all $a \in(0,1)$, because $D_{v} F$ is Fredholm.
3. One-dimensional kernel - TO DO: $\operatorname{dim} \operatorname{Ker}\left(D_{v} F\right)_{\left(0, a_{l, *}\right)}=1$ for some $a_{l} \in(0,1)$. Since \mathcal{X} consist of "Dirichlet" functions, to have $\operatorname{dim} \operatorname{Ker}\left(D_{v} F\right)_{\left(0, a_{l}\right)}=1$ we will show that the Dirichlet eigenvalues $\lambda_{l n}\left(a_{l}\right)$ of an annulus $\Omega_{a_{l}}$ satisfy the crossing condition

$$
\left.\mu_{0,2}\left(a_{l}\right)\right)=\lambda_{l, 0}\left(a_{l}\right) \neq \lambda_{m l, n}\left(a_{l}\right) \quad \forall(m, n) \neq(1,0) .
$$

Note we need $l \neq 1$ to ensure (by elementary computations) that the resulting "almost Schiffer" domains will not be radially symmetric.
4. Transversality - TO DO: $\left(D_{v} D_{a} F\right)_{\left(0, a_{l}\right)}\left[\operatorname{Ker}\left(D_{v} F\right)_{\left(0, a_{l}\right)}\right] \not \subset \operatorname{Ran}\left(D_{v} F\right)_{\left(0, a_{l}\right)}$. This boils down to demanding $\mu_{0,2}^{\prime}\left(a_{l, *}\right) \neq \lambda_{l, 0}^{\prime}\left(a_{l, *}\right)$.

The crossing condition

Lemma

For all $l \geq 4$, there exists some $a_{l} \in(0,1)$ such that

$$
\left.\mu_{0,2}\left(a_{l}\right)\right)=\lambda_{l, 0}\left(a_{l}\right) \neq \lambda_{m l, n}\left(a_{l}\right) \quad \forall(m, n) \neq(1,0) .
$$

- It is easy to prove that the Dirichlet and Neumann eigenvalues of Ω_{a} converge to those of the disk as $a \rightarrow 0$ (essentially because points have zero capacity). Therefore, $\lambda_{l, 0}(a) \geq \lambda_{4,0}(a)>\mu_{0,2}(a)$ for a close to 0 .
- Suppose now that a is close to 1 , so $h:=(1-a) / \pi \ll 1$. Then, with $\varphi \in H_{0}^{1}((0, \pi) \backslash\{0\}$ and $x:=(1-r) / h \in(0, \pi)$,

$$
\begin{aligned}
\lambda_{l, 0}(a) & =\inf _{\varphi} \frac{h^{-2} \int_{0}^{\pi} \psi^{\prime}(x)^{2}(1-h x) d x+l^{2} \int_{0}^{\pi} \frac{\psi(x)^{2}}{(1-h x)} d x}{\int_{0}^{\pi} \psi(x)^{2}(1-h x) d x} \\
& =h^{-2}\left[\inf _{\varphi} \frac{\int_{0}^{\pi} \psi^{2} d x}{\int_{0}^{\pi} \psi^{2} d x}+O(h)\right]+l^{2}(1+O(h))=h^{-2}+O\left(l^{2}+h^{-1}\right)
\end{aligned}
$$

Likewise, $\mu_{0,2}(a)=4 h^{-2}+O\left(h^{-1}\right)$. Hence $\lambda_{l, 0}(a)<\mu_{0,2}(a)$ for any fixed l and a close to 1 , and the eigenvalues must cross.

The transversality condition

Lemma

For $l \gg 1($ or $l=4), \mu_{0,2}^{\prime}\left(a_{l}\right) \neq \lambda_{l, 0}^{\prime}\left(a_{l}\right)$. Furthermore, $a_{l}=1-\frac{\sqrt{3} \pi}{l}+O\left(l^{-2}\right)$.

- From the equation $\mu_{0,2}\left(a_{l}\right)=\lambda_{l, 0}\left(a_{l}\right)>l^{2} \gg 1$, it is easy to see that $h_{l}:=\left(1-a_{l}\right) / \pi \ll 1$. In fact, one has $\mu_{0,2}\left(a_{l}\right)=4 h_{l}^{-2}+O\left(h_{l}^{-1}\right)$ and $\lambda_{l, 0}\left(a_{l}\right)=h_{l}^{-2}+l^{2}+O\left(h_{l}^{-1}+l\right)$, so $h_{l}=\sqrt{3} l^{-2}+O\left(l^{-1}\right)$.
- The result is proven by means of a "second order asymptotic expansion" in l for $\mu_{0,2}\left(a_{l}\right)$ and $\lambda_{l, 0}\left(a_{l}\right)$, which relies on the analytic dependence of the Dirichlet and Neumann eigenvalues of the operators

$$
\begin{aligned}
& T_{\eta, \delta}:=\partial_{x}^{2}-\frac{\eta\left(1-\frac{\pi}{2} \eta(1+\delta)\right)}{1-\eta\left(1-\frac{\pi}{2} \eta(1+\delta)\right) x} \partial_{x}-\frac{3\left(1-\frac{\pi}{2} \eta(1+\delta)\right)^{2}}{\left(1-\eta\left(1-\frac{\pi}{2} \eta(1+\delta)\right) x\right)^{2}} \\
& \widetilde{T}_{\eta, \delta}:=\partial_{x}^{2}-\frac{\eta\left(1-\frac{\pi}{2} \eta(1+\delta)\right)}{1-\eta\left(1-\frac{\pi}{2} \eta(1+\delta)\right) x} \partial_{x}
\end{aligned}
$$

on the parameters (η, δ).

A Schiffer problem for classical billiards?

Question:

Let Ω be a smooth convex billiard. Suppose that there is a sequence of periodic trajectories $\left\{\left(s_{n}^{(j)}, \theta_{n}^{(j)}\right)\right\}_{n=1}^{N_{j}}$, with minimal periods $N_{j} \rightarrow \infty$, for which the angles are constant: $\theta_{n}^{(j)}=c_{j} \forall n$.

Does this imply $\Omega=$ disk?

Muchas gracias!

