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The Dirichlet-to-Neumann map and the Steklov spectrum

Let
M = [0, 1]× Sd−1 , (1)

and consider the Dirichlet problem{
−△u + q u = 0, on M ,

u = ψ ∈ H
1
2 (∂M), on ∂M ,

(2)

When q ∈ L∞(M) and zero is not a Dirichlet eigenvalue, (2) has a unique
solution u ∈ H1(M).

The Dirichlet-to-Neumann (DN) map Λq : H1/2(∂M) to H−1/2(∂M) is
defined by

Λqψ = (∂νu)|∂M , (3)
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The DN map is a self-adjoint operator on L2(∂M = Sd−1, dSg ).

Its spectrum, the Steklov spectrum, is discrete

0 = σ0 < σ1 ≤ σ2 ≤ · · · ≤ σk → ∞ .

Assume q is radial,
q = q(r) ,

and replace r ∈ (0, 1] by

x = − log r ∈ [0,∞) ,

so that ∂M corresponds to x = 0. The Euclidean metric

g = dr2 + r2dΩ2 ,

then takes the form

g = f (x)4(dx2 + dΩ2) , f (x) = exp(−x/2) .
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Setting v = f d−2u, the Dirichlet problem (2) becomes{
[−∂2x −△S + Q(x)]v = − (d−2)2

4 v , on M ,
v = f d−2ψ, on ∂M ,

(4)

where △S denotes the Laplacian on the boundary sphere Sd−1, where

Q(x) := e−2xq(e−x) .
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We use separation of variables and the Fourier decomposition of L2(Sd−1)
to reduce (4) to an infinite sequence of radial ODEs. Let {Yk , k ≥ 0} an
orthonormal basis of L2(Sd−1) of eigenfunctions of △S ,

−△SYk = αkYk , αk = k(k + d − 2) ,

and let

v =
∞∑
k=0

vk(x) Yk .

We obtain

−v ′′k + Qvk = −(αk +
(d − 2)2

4
)vk = −κ2kvk ,

where

κk := k +
d − 2

2
, k ≥ 0 .
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The Weyl-Titchmarsh function M

We now assume that
Q ∈ L2(0,∞) . (5)

Under this assumption, it is well-known that

L = − d2

dx2
+ Q ,

is of limit point-type at infinity, i.e. for all z ∈ C \ [−β,∞) with
β >> 1, there exists, up to a zon-zero multiplicative constant, a unique
solution u(x , z) of

−u′′ + Qu = zu , z ∈ C ,

which is L2 at ∞. The Weyl-Titchmarsh (WT) function M(z) is then
defined by

M(z) :=
u′(0, z)

u(0, z)
for all z ∈ C \ [−β,∞) . (6)
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Note that the L2 hypothesis (5) on Q does not guarantee that the initial
potential q ∈ L∞(M). Thus, the definition (3) of the DN map is not
directly applicable in this L2 setting. We overcome this problem by using
the separation of variables:

ψ =
∞∑
k=0

ψkYk ,

and define the DN map Λq as a sum of operators Λk
q by

Λqψ =
∞∑
k=0

(Λk
qψk)Yk , (7)
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where the Λk
q are multiplication operators

Λk
qψk = −(d − 2)

2
vk(0)− v ′k(0) .

The Λk
q , k ≥ 0 can be expressed in terms of the WT function M evaluated

at the points −κ2k ,

Λk
qψk =

(
−(d − 2)

2
−M(−κ2k)

)
ψk ,

thus providing the expression of the Steklov spectrum {σk , k ≥ 0} in
terms of M

σk = −(d − 2)

4
−M(−κ2k) .
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The Simon amplitude function A

There is an important representation formula due to B. Simon for M in
terms of the Laplace transform of a unique amplitude function A, under
the hypothesis that Q ∈ L1(0,∞):

M(−κ2) = −κ−
∫ ∞

0
A(α)e−2καdα , ∀κ > 1

2
||Q||1 ,

see B. Simon, A new approach to inverse spectral theory, I. Fundamental
formalism, Annals of Mathematics 150, (1999), 1029-1057.

We shall use a slightly refined version of this formula which applies in our
L2-setting.
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The stability problem - Main result

We denote {σ̃k , k ≥ 0} the Steklov spectrum associated to a potential Q̃.
Since M(−κ2k) = −κk + o(1), as k → ∞, we have
{σk − σ̃k , k ≥ 0} ∈ ℓ∞(N). We assume that

||σ̃k − σk ||ℓ∞(N) =: ϵ. (8)

Our main goal is to estimate the difference Q̃ − Q of the potentials.

We shall obtain stability estimates in the space L2(0,T ) for any T > 0,
meaning that

||Q̃ − Q||L2(0,T ) ≤ CT g(ϵ) , (9)

where g(ϵ) → 0 when ϵ→ 0, and CT is a constant depending only on T .
More precisely, we have:
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Theorem

Let Q ∈ L2(0,∞) with Simon amplitude A. Let δ ≥ 3− d and
µk := λk + δ where λk = 2k + d − 3. Let {ck ≤ 0, k ≥ 0} be such the
series

∑
k≥0 ckt

λk has radius of convergence R > 1. Then the function

Ã(α) = A(α) +
∑
k≥0

cke
−µkα , α > 0 , (10)

is the Simon amplitude of a potential Q̃ ∈ L2(0,∞). Moreover, for any
fixed T > 0, there exists CT > 0 such that

||Q̃ − Q||L2(0,T ) ≤ CT

(
||σ̃k − σk ||ℓ∞(N)

)θ

, (11)

where the Hölder exponent θ ∈ (0, 12 ] is independent of T and is given by

θ =
1

2
min{1, logR/log(9M0

2
)}, M0 = max{2, 4(d − 3 + δ) + 1} . (12)
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Remarks:

When R ≥ 9M0
2 , we can take as Hölder exponent θ = 1

2 .

When the initial potential is the trivial potential Q = 0, the perturbed
potentials Q̃ can be seen as a generalization of the so-called
Bargmann potentials.

With respect to the original Schrödinger operator, the type of
perturbation being considered for the amplitude function A amounts
to the introduction of a finite number of negative eigenvalues

−µ2
k
4 for k = 1, ...,N, (corresponding to the case where µk is

negative), and of a countable set of real resonances − |µk |
2 which

are equally spaced on the negative real axis (for k greater than some
k0). These resonances are quantified explicitly in terms of the
parameter δ and the eigenvalues of the Laplace Beltrami operator ∆S

on the boundary sphere.
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Generically, the best one can expect are logarithmic stability results
for the inverse Steklov problem, see T. Daudé, N. Kamran N and F.
Nicoleau, Stability in the inverse Steklov problem on warped product
Riemannian manifolds J. Geom. Anal. 31 (2021), no. 2, 1821-1854.
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Hölder stability for the Calderón problem

As a byproduct, we also obtain local Hölder stability estimates for the
Calderón problem for radial Schrödinger operators on the unit ball.

Corollary

Let q ∈ L2((0, 1), r3dr) be a fixed radial potential and let q̃ be the
potential associated with Q̃ given in Theorem 1. Then, Λq − Λq̃ is a
bounded operator on L2(Sd−1), and for any fixed T > 0, there exists a
positive constant CT such that

||q̃ − q||L2((e−T ,1),r3)dr ≤ CT ||Λq̃ − Λq||θB(L2(Sd−1)) ,

where θ ∈ (0, 12 ] is the Hölder exponent given above.
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Sketch of proof

Making the change of variables α = − log t, our hypothesis on the
difference of the Steklov spectra takes the form

|
∫ 1

0
t−δ
(
A(− log t)− Ã(− log t)

)
t2k+d−3+δdt| ≤ ϵ .

We see that this is a Hausdorff moment problem, so we do not expect
better than logarithmic stability estimates.

Nevertheless, one can approach the stability problem differently by working
directly with perturbations of the amplitude A by exponential series
obtained from power series of Müntz type. We shall see that his leads to
our Hölder stability results.
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We set for k ≥ 0
λk := 2k + d − 3 + δ ,

where δ ≥ 3− d is an arbitrary fixed real parameter (so that λk ≥ 0), and

h(t) = t−δ
(
Ã(− log t)− A(− log t)

)
We define formally a new amplitude Ã by adding to A a power series

Ã(α) = A(α) +
∑
k≥0

cke
−(λk+δ)α , (13)
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or equivalently

h(t) =
∑
k≥0

ckt
λk .

We assume that the series defining h(t) has a radius of convergence
R > 1, so that h ∈ C 0([0, 1]). Furthermore we assume that h is such that
our starting hypothesis holds, that is

|
∫ 1

0
h(t) tλkdt| ≤ ϵ , ∀k ≥ 0 .

Niky Kamran (McGill University) Local Hölder Stability Regensburg, December 13, 2023 17 / 45



Our goal is to obtain a good approximation of Hölder type for ||h||22. We
use results from G. Still, On the approximation of Müntz series by Müntz
polynomials, J. Approx. Theory 45, (1985), 26-54, and the polynomial
approximation techniques of our 2021 JGA paper.

Theorem

Given ϵ > 0 and R > 1 as above and letting
M0 = max{2, 4(d − 3 + δ) + 1}, we have, for some universal constant
B > 0, the estimate

||h||22 ≤ B2ϵ+ R1−dϵ

log R

log(
9M0
2 ) . (14)

We note that the estimate (14) is generally a Hölder type estimate for
||h||22, but that if R > 9M0

2 , this estimate is Lipschitz.
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Given a sequence Λ∞ := (λn)n≥0 of integers such that 0 ≤ λ0 < λ1 < · · ·
and λk → ∞ as k → ∞, we define for fixed n ≥ 1 the finite sequence

Λn := 0 ≤ λ0 < λ1 < ... < λn ,

giving rise to the vector space M(Λ) of ”Müntz polynomials of degree λn”:

M(Λn) = {P | P(t) =
n∑

k=0

ak tλk} .

Recall that according to the Müntz-Szász’s Theorem, if Λ∞ is a sequence
of positive real numbers as above, then span {tλ0 , tλ1 , ...} is dense in
L2([0, 1]) if and only if

∞∑
k=1

1

λk
= ∞ .
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Given now a function f in C 0([0, 1]) or in L2([0, 1]), the error of
approximation of f with respect to M(Λn) is defined by

Ek(f ,Λn) := inf
P∈M(Λn)

||f − P||k ,

where k = 2 or k = ∞ depending on whether f ∈ C 0([0, 1]) or
f ∈ L2([0, 1]). For our application, we have λk := 2k + d − 3 + δ, giving
λk+1 − λk = 2 > 0, so by Theorem 2 of Still, we know that

E∞(h,Λn) ≤ CR−λn+1 , (15)

for some positive constant C .
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We have, denoting by πn the orthogonal projection onto the subspace
M(Λn),

||h||22 = ||πn(h)||22 + ||h − πn(h)||22 .

Our next step is to combine a certain estimate from our JGA paper with
the estimate (15) to obtain an estimate for the norm of πn(h). In order to
do so, we use the Gram-Schmidt process to obtain polynomials (Lm(t))
with L0(t) = 1, and for m ≥ 1,

Lm(t) =
m∑
j=0

Cmj t
λj ,

where we have set

Cmj =
√
2λm + 1

∏m−1
r=0 (λj + λr + 1)∏m
r=0,r ̸=j(λj − λr )

.

The family (Lm(t)) defines an orthonormal Hilbert basis of L2([0, 1]).
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We may now recall the following estimate from JGA,

||πn(h)||22 ≤ ϵ2
n∑

k=0

 k∑
p=0

|Ckp|

2

,

which gives immediately

||h||22 ≤ ϵ2
n∑

k=0

 k∑
p=0

|Ckp|

2

+ CR−λn+1 , (16)

using (15) and the inequality

||h − πn(h)||22 = E2(h,Λn) ≤ E∞(h,Λn) .
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Now, according to another estimate from JGA, we have

||πnh||22 ≤ B2ϵ2 g(n)2 ,

where B is a positive constant and g : [0,+∞) is a monotone increasing
function defined for t ∈ [0,+∞) by

g(t) =
3

2

1√(
9M0
2

)2
− 1

√
2t + 1

(
9M0

2

)t+1

, (17)

where
M0 = max{2, 4(d − 3 + δ) + 1}
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Now, we choose n as a function of ϵ so as to control the norm of the
projection ||πnh||22 of h and thus set

n(ϵ) := [ (g−1(
1√
ϵ
))]

where square brackets denote the integral part function. Since g is a
monotone increasing function, we have

g(n(ϵ)) ≤ 1√
ϵ
, (18)

so we obtain immediately:

||πn(ϵ)h||22 ≤ B2ϵ. (19)
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Our next task is now to estimate the size of n(ϵ) relative to ϵ so as to
obtain the Hölder estimate we seek for ||h||22. From (17), we obtain that

g(t) ∼ (t + 1) log(
9M0

2
) ,

as t → ∞, which combined with (18) leads to

n(ϵ) =
log( 1√

ϵ
)

log(9M0
2 )

.

Plugging this into (16) gives

||h||22 ≤ B2ϵ+ CR−λn(ϵ)+1 .
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Now, using the expression λk = 2k + d − 3 + δ, we have

R−λn(ϵ)+1 = R1−d−δR−2n(ϵ) ∼ R1−d−δR
−

2 log 1√
ϵ

log(
9M0
2 ) ∼ R1−d−δϵ

log R

log(
9M0
2 ) ,

and obtain In terms of the amplitude function A in the variable
α ∈ (0,∞), using the relation

||h||22 =
∫ 1

0
t−2δ(A(− log t)− Ã(− log t))2 dt ,

we obtain∫ ∞

0
e(2δ−1)α(A(α)− Ã(α))2 dα ≤ B2ϵ+ R1−d−δϵ

log R

log(
9M0
2 ) ,

as claimed.
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From the perturbed amplitude Ã to Q̃ ∈ L2(0,∞)

We want to prove the existence of square-integrable potentials Q̃
associated to perturbed amplitudes Ã as defined in (13). This will require
additional hypotheses on the perturbation.

We set for k ≥ 0,

µk := λk + δ = 2k + d − 3 + 2δ

so that
Ã(α) = A(α) +

∑
k≥0

cke
−µkα , α > 0 . (20)
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If d ≥ 3, the µk may be negative; so we split the series in (20) as

Ã(α) = A(α) +
N−1∑
k=0

cke
−µkα +

∑
k≥N

cke
−µkα , α > 0 , (21)

such that for k = 0, ...,N − 1, µk < 0 and for k ≥ N + 1, µk ≥ 0, with
the convention that the first sum in (21) does not appear if all the µk ’s
are positive (i.e if N = 0). Rewrite (21) as:

Ã(α)− A(α) =
N−1∑
k=0

2ck sinh(|µk |α) +
∑
k≥0

cke
−|µk | α. (22)

We shall see that the first sum in the (RHS) of (22) corresponds to the

introduction of negative eigenvalues −µ2
k
4 for k = 0, ...,N − 1, while the

second sum corresponds to the introduction of real resonances − |µk |
2 for

k ≥ 0.
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We have:

Theorem

Let Q ∈ L2(0,∞) be a square-integrable potential with amplitude function
A, let {ck , k ≥ 0} be a sequence of real numbers such that

i) For all k ≥ 0, ck ≤ 0.

ii) the power series
∑

k≥0 ckt
λk has a radius of convergence R > 1.

Then the function Ã defined by

Ã(α) = A(α) +
∑
k≥0

cke
−µkα , α > 0 ,

is the amplitude function of a potential Q̃ ∈ L2(0,∞).
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To prove the theorem, we first compute the difference of the spectral
measures of Q and Q̃ in terms of the data contained in Ã.

The WT function M is a function of Herglotz type, that is
Im z > 0 =⇒ ImM(z) > 0. This implies

M(z) = c + dz +

∫
R

( 1

λ− z
− 1

1 + λ2
)
dρ(λ) ,

where c = Re(M(i), d = limy→+∞
M(iy)

y = 0, and dρ(λ) is the (positive)
spectral measure associated to L,

dρ(E ) = lim
ϵ↓0

1

π
Im (M(E + iϵ)) dE . (23)

We denote by M̃(−κ2) the putative WT function associated with the
amplitude Ã(α), so we have formally and for suitable κ,

M̃(−κ2)−M(−κ2) = −
∫ ∞

0

(
Ã(α)− A(α)

)
e−2κα dα. (24)
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Now, using (22), we obtain

M̃(−κ2)−M(−κ2) = −2
N−1∑
k=0

ck
|µk |

4κ2 − µ2k
−
∑
k≥0

ck
2κ+ |µk |

. (25)

We note that the above series is indeed convergent since by hypothesis the
power series

∑
k≥0 ckt

λk has radius of convergence R > 1 so that in
particular

∑
k≥0 |ck | <∞.

Now, using (23), we are able to define the difference of the spectral
measures d ρ̃(E )− dρ(E )

For E ≥ 0,

d ρ̃(E ) = dρ(E )− 2

π

∑
k≥0

ck

√
E

4E + µ2k
dE ,

and for E < 0,

d ρ̃(E ) = dρ(E )− 1

2

N−1∑
k=0

ck |µk | δ(·+
µ2k
4
) dE ,
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It is proved in F. Gesztesy and B. Simon, A new approach of inverse
spectral theory, II. General potentials and the connection to the spectral
measure, Annals of mathematics 152, (2000), 593-643 that this
corresponds to the introduction of a finite number of negative

eigenvalues −µ2
k
4 for k = 0, ...,N − 1, and of real resonances − |µk |

2 for
k ≥ 0.

Now we use the results of R. Killip and B. Simon, Sum rules and spectral
measures of Schrödinger operators with L2 potentials, Ann. of Math. 170
(2009), no. 2, 739-782, to show that there exists a potential Q̃ ∈ L2(0,∞)
associated to the spectral measure d ρ̃(E ), allowing us to define the WT
function M̃(z) for z ∈ C\[−β̃,+∞[ for β̃ >> 1. The amplitude function
associated to M̃(z) is automatically given by Ã(α) thanks to the
uniqueness of the inverse Laplace transform and analytic continuation.
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First Example
We define for α ≥ 0,

Ã(α) = 2(γ2 − β2) e−2γα,

where β > 0 and γ ∈ [0, β). It corresponds to a Müntz series with a single
term, c0 = 2(γ2 − β2) < 0 and µ0 = 2γ ≥ 0.

Thus, we take δ = γ + 3−d
2 ≥ 3− d since d ≥ 3 by hypothesis and obtain

Q̃(x) = −8β2
(
β − γ

β + γ

)
e−2βx

(1 + β−γ
β+γ e−2βx)2

The associated Jost function is given in the variable κ = −ik by

ψ(0, κ) =
κ+ γ

κ+ β
,

and is holomorphic in Re κ > −β. The unique root of the Jost function is
given by κ = −γ which is a real resonance.
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Second Example

For α > 0, we define the amplitude

Ã(α) = −2c1
κ1

sinh(2κ1α),

where c1 > 0 and κ1 > 0. It corresponds to a Müntz series with two terms
and with two µk of different sign. The associated potential is given by

Q̃(x) = −2
d2

dx2
log

(
1 +

c1
κ21

∫ x

0
sinh2(κ1y) dy

)
,

The Jost function has the form in the κ variable

ψ(0, κ) =
κ− κ1
κ+ κ1

.

We note that the Jost function is vanishing at κ = κ1 which corresponds
to the single negative eigenvalue −κ21.
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Local Hölder stability for the potentials

In this section, we deduce from the estimates for the difference of the
amplitudes A− Ã a set of new Hölder local stability estimates for the
difference of the associated potentials Q − Q̃. By local stability, we mean
that we are able to control the norm ||Q − Q̃||L2(0,T ) with respect to ϵ, if
the Steklov spectra of the underlying Schrödinger operators are close up to
ϵ as in (8).

We choose a fixed Q ∈ L2(0,∞) is fixed and assume that Q̃ ∈ L2(0,∞)
belongs to the infinite dimensional class for which

Ã(α) = A(α) +
∑
k≥0

cke
−µkα , α > 0 ,

Moreover, we assume that ck ≤ 0 for all k ≥ 0 and the power series∑
k≥0 ckt

λk has a radius of convergence R > 1.
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To obtain thelocal stability estimates, we use of the local version of the
classical Gel’fand-Levitan equations. For 0 ≤ x ≤ t ≤ T , we consider
the integral equation

V (x , t) +

∫ T

x
K (t, s)V (x , s) ds = −K (x , t), (26)

where the integral kernel K (t, s) is given by

K (t, s) = p(2T − t − s)− p(|t − s|), (27)

and

p(t) = −1

2

∫ t
2

0
A(α) dα.

These integral equations are uniquely solvable for all x ∈ (0,T ) and we
can recover the underlying potential using the relation:

Q(T − x) = −2
d

dx
(V (x , x)) . (28)
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We have:

Lemma

Under the hypotheses of Theorem 1, there exists a constant CT depending
only on T such that

||p − p̃||(C0(0,2T ),||·||∞) ≤ CT f (ϵ), (29)

where

f (ϵ) =

(
B2ϵ+ R1−d ϵ

log R

log(
9M0
2 )

) 1
2

Niky Kamran (McGill University) Local Hölder Stability Regensburg, December 13, 2023 37 / 45



Now, let us introduce some notation to simplify the presentation below. In
what follows, the parameters x and T are assumed to be fixed and t is a
variable lying in the interval [x ,T ]. We denote by K the integral operator
on L2(x ,T ) with kernel K (t, s),

(Kf )(t) =

∫ T

x
K (t, s) f (s) ds,

and set
d(t) := p(t − x)− p(2T − x − t).

Thus, the solution V (x , .) of the integral equation (26) can be written as

V := V (x , .) = (I +K)−1d . (30)

Using (30) and the usual resolvent identity, one obtains

Ṽ − V = (I + K̃)−1
(
d̃ − d + (K − K̃)(I +K)−1d

)
(31)
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By Lemma 5, one has the uniform estimate for t, s ∈ [0,T ],

|d̃(t)− d(t)| ≤ CT f (ϵ) , |K̃ (t, s)− K (t, s)| ≤ CT f (ϵ),

thus using Schur’s lemma, one gets

||K̃ − K|| ≤ CT f (ϵ), (32)

in the sense of the operator norm on L2(x ,T ). As a consequence for ϵ > 0
sufficiently small, the operator I + (I +K)−1(K̃ − K) is invertible, and
using again the resolvent identity, one obtains easily

(I + K̃)−1 =
(
I + (I +K)−1(K̃ − K)

)−1
(I +K)−1.

It follows that, for ϵ << 1, the operator norm of (I + K̃ )−1 is uniformly
bounded:

||(I + K̃)−1|| ≤ 2 ||(I +K)−1||. (33)

Thus, thanks to (31) , (32) and (33), one has:

||Ṽ − V ||L2(x ,T ) ≤ CT f (ϵ)
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In the same way, differentiating the integral equation (26) with respect to
x , one obtains

||∂Ṽ
∂x

− ∂V

∂x
||L2(x ,T ) ≤ CT f (ϵ).

Finally, one has for all 0 ≤ x ≤ T ,

|| d
dx

(
Ṽ (x , x)

)
− d

dx
(V (x , x)) ||L2(x ,T ) ≤ CT f (ϵ).

Then taking x = 0 and using (28), we see that

||Q̃ − Q||L2(x ,T ) ≤ CT f (ϵ),

and the proof of Theorem 1 is complete.
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Proof of Corollary

First, it is easy to see that Λq −Λq̃ ∈ B(L2(Sd−1)). Indeed, the orthogonal
projection of the DN map onto the space of homogeneous harmonic
polynomials od degree k in Rd restricted to Sd−1 the spherical harmonics
space of homogeneous harmonic polynomials of degree k satisfies

Λk
qψk = σkψk .

Thus,

||(Λq̃ − Λq)ψ||2L2 = ||
∑
k

(σ̃k − σk)ψkYk ||2L2

=
∑
k

|σ̃k − σk ||ψk |2

≤ ||σ̃k − σk ||l∞(N) ||ψ||L2 .
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So, we deduce that ||Λq̃ − Λq||B(L2(Sd−1)) = ||σ̃k − σk ||l∞(N). It follows
that the local Hölder stabililty estimates obtained in Theorem 1 imply that
for any T > 0, there exists a positive constant CT such that

||Q̃ − Q||L2(0,T ) ≤ CT

(
||Λq̃ − Λ||B(L2(Sd−1))

)θ
,

or equivalently,

||q̃ − q||L2((e−T ,1),r3dr) ≤ CT

(
||Λq̃ − Λq||B(L2(Sd−1))

)θ
.
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Hölder stability for regular metrics on closed deformed balls

Consider on M = (0, 1]× Sd−1 the warped product metric

g = c4(r)[dr2 + r2gS ] . (34)

The metric g is regular if and only if c(2k+1)(0) = 0 and gS = dΩ2.

Change coordinates to x = − log r ∈ [0,+∞). In these new coordinates,
the metric g has the form

g = f 4(x)[dx2 + gS ] , (35)

where f (x) = c(e−x)e−
x
2 .
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Laplace’s equation −△gu = 0 reads

[−∂2x −△gS + qf (x)]v = −(d − 2)2

4
v , (36)

where v = f d−2u and qf is given by

qf (x) =
(f d−2)′′(x)

f d−2(x)
− (d − 2)2

4
.

Question: Can we find Q ∈ L2(0,∞) such that Q = qf with c defined by
f (x) = c(e−x)e−

x
2 satisfying the regularity conditions c(2k+1)(0) = 0?

The answer is yes! In fact one has explicit parametrized families. These
give Riemannian metrics corresponding to a deformation of the closed
Euclidean unit ball for which the Steklov spectrum is Hölder stable.
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Thank you for your attention!
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