THE QUANTIZATION OF MAXWELL THEORY IN THE CAUCHY RADIATION GAUGE

Simone Murro

Department of Mathematics University of Genoa

Working Seminar Mathematical Physics

November 29, 2023

[ΙΝδΑΜ]

Motivation

MOTIVATION

- Consider a globally hyperbolic 4-manifold $M = (\mathbb{R} \times \Sigma, g = -\beta^2 dt^2 + h_t)$
- A gauge theory is a quadruple (V_0, V_1, P, K) consisting of:
 - (I) two Hermitian bundles V_0, V_1 over M;
- (II) a formally self-adjoint differential operator $P \colon \Gamma(V_1) \to \Gamma(V_1)$;
- (III) a linear differential operator $K\colon \Gamma(V_0)\to \Gamma(V_1)$ with $K\neq 0$ such that
 - (i) $P \circ K = 0$ (gauge transformation)
 - (ii) $D_1 := P + KK^* \colon \Gamma(V_1) \to \Gamma(V_1)$ is Green hyperbolic;
 - (iii) $D_0 := K^*K \colon \Gamma(V_0) \to \Gamma(V_0)$ is Green hyperbolic,

Equivalently, we can work at the level of initial data

(I') V_{ρ_i} are the bundle of initial data for D_i

(III')
$$\mathsf{K}_{\Sigma} := \rho_1 \mathcal{K} \mathcal{U}_0 \quad \mathsf{K}_{\Sigma}^{\dagger} := \rho_0 \mathcal{K}^* \mathcal{U}_1 \quad \mathsf{G}_i = (\rho_i \mathsf{G}_i)^* \mathsf{G}_{i,\Sigma}(\rho_i \mathsf{G}_i)$$

where ρ_i and U_i are the Cauchy data and the Cauchy evolution operator and $(\rho_i G_i)^*$ is the adjoint of $(\rho_i G_i)$

HOW CAN WE QUANTIZE IT?

Step 1: Construct the classical phase space

$$i(\cdot, \mathsf{G}_{1} \cdot)_{\mathsf{V}_{1}} =: q_{1}, \ \mathcal{V}_{\mathsf{P}} := \frac{\ker(\mathsf{K}^{*})}{\operatorname{ran}(\mathsf{P})} \xrightarrow{[\mathsf{G}_{1}]} \xrightarrow{\operatorname{ker}(\mathsf{P})}{\operatorname{ran}(\mathsf{K})}$$

$$\underset{i(\cdot, \mathsf{G}_{1_{\Sigma}} \cdot)_{\mathsf{V}_{\rho_{1}}} =: q_{1_{\Sigma}}, \ \mathcal{V}_{\Sigma} := \frac{\ker(\mathsf{K}_{\Sigma}^{\dagger})}{\operatorname{ran}(\mathsf{K}_{\Sigma})} \xrightarrow{[\mathcal{U}_{1}]} \xrightarrow{\operatorname{ker}(\mathsf{D}_{1}) \cap \operatorname{ker}(\mathsf{K}^{*})}{\operatorname{K}(\operatorname{ker}(\mathsf{D}_{0}))}$$

and assign $\forall v \in \mathcal{V}_P$ an element of the abstract unital *-algebra $\mathrm{CCR}(\mathcal{V}_P, q_1)$

generators:
$$\Phi(v) \quad \Phi^*(v) \quad \mathbb{1}$$

CCR relations: $\begin{bmatrix} \Phi(v), \Phi(w) \end{bmatrix} = \begin{bmatrix} \Phi^*(v), \Phi^*(w) \end{bmatrix} = 0$
 $\begin{bmatrix} \Phi(v), \Phi^*(w) \end{bmatrix} = q_1(v, w) \mathbb{1}$

Step 2: Construct an Hadamard states $\omega : CCR(\mathcal{V}_P, q_1) \to \mathbb{C}$ defined by

 $\begin{array}{ll} \mbox{covariances:} & \Lambda^+(v,w) := \omega(\Phi(v)\Phi^*(w)) & \Lambda^-(v,w) := \omega(\Phi^*(w)\Phi(v)) \\ \mbox{Hadamard conditions:} & {\sf WF}'(\Lambda^\pm) \subset \mathcal{N}^\pm \times \mathcal{N}^\pm & \mbox{where:} & \mathcal{N} = \mathcal{N}^+ \cup \mathcal{N}^- \end{array}$

Motivation

Intermezzo I: microlocal methods in AQFT

DEFINITION: Let $u \in D'(M)$ be a distribution. We call

• singular support of u

 $singsupp(u) = \{ p \in M \mid \exists O \ni p \text{ such that } u |_O \in C^{\infty}(O) \}.$

• wavefront set of u

 $WF(u) = \{(p, k) \in T^*M \setminus \{0\} \mid p \in singsupp(u) \text{ and } k \in \Sigma_p(u)\},$ where $\Sigma_p(u) = \cap_p \Sigma(\rho u)$ with $\rho(p) \neq 0$ and $\Sigma(\rho u) = \{k \in \mathbb{R}^n \setminus \{0\} \mid \not\exists \text{ a conic } V \ni k \text{ such that}$ $|\widehat{\rho u}|(k') \leq C_N(1 + |k'|)^{-N}, \forall N \in \mathbb{N} \text{ and } \forall k' \in V\}.$

EXAMPLE: Dirac delta distribution $\delta(x)$:

4

$$\begin{cases} singsupp(\delta) = \{0\} \\ \widehat{(\rho\delta)}(k) = \rho(0) \end{cases} \implies WF(\delta) = \{(0,k)\} \end{cases}$$

Intermezzo I: microlocal methods in AQFT

DEFINITION: Let $u \in D'(M)$ be a distribution. We call

• singular support of u

 $singsupp(u) = \{ p \in M \mid \exists O \ni p \text{ such that } u |_O \in C^{\infty}(O) \}.$

• wavefront set of u

 $WF(u) = \{(p, k) \in T^*M \setminus \{0\} \mid p \in singsupp(u) \text{ and } k \in \Sigma_p(u)\},$ where $\Sigma_p(u) = \cap_p \Sigma(\rho u)$ with $\rho(p) \neq 0$ and $\Sigma(\rho u) = \{k \in \mathbb{R}^n \setminus \{0\} \mid \not\exists \text{ a conic } V \ni k \text{ such that}$ $|\widehat{\rho u}|(k') \leq C_N(1 + |k'|)^{-N}, \forall N \in \mathbb{N} \text{ and } \forall k' \in V\}.$

EXAMPLE: Covariance of an Hadamard state Λ^{\pm}

$$WF(\Lambda^{\pm}) = \{(x, k_x, y, k_y) \in T^*M \times T^*M \setminus \{0\} \mid (x, k_x) \sim (y, -k_y), \pm k_x \triangleright 0\}$$
$$WF'(\Lambda^{\pm}) := \{(x, k_x, y, -k_y) \in T^*M \times T^*M \setminus \{0\} \mid (x, k_x, y, k_y) \in WF(\Lambda^{\pm})\}$$

PROPOSITION [Gérard-Wrochna]: let
$$c^{\pm} : \Gamma(V_{\rho_1}) \rightarrow \Gamma(V_{\rho_1})$$
 be
(i) $c^{\pm}(\operatorname{ran}(K_{\Sigma})) \subset \operatorname{ran}(K_{\Sigma})$ and $(c^{\pm})^{\dagger} = c^{\pm}$ (w.r.t. $q_{1,\Sigma}$);
(ii) $(c^{+} + c^{-})f = f$ mod $\operatorname{ran}K_{\Sigma} \forall f \in \ker(K_{\Sigma}^{\dagger})$;
(iii) $q_{1,\Sigma}(f, c^{\pm}f) = i(f, G_{1,\Sigma}c^{\pm}f)_{V_{\rho_1}} \ge 0 \quad \forall f \in \ker(K_{\Sigma}^{\dagger})$.
(iv) $WF'(U_1c^{\pm}) \subset (\mathcal{N}^{\pm} \cup F) \times T^*\Sigma$ for $F \subset T^*M$
Then $\Lambda^{\pm}([s], [t]) := (s, \lambda^{\pm}t)_{V_1}$ where $\lambda^{\pm} := (\rho_1G_1)^*iG_{1,\Sigma}c^{\pm}(\rho_1G_1)$
are pseudo-covariances for a quasifree Hadamard state $\omega : \operatorname{CCR}(\mathcal{V}_P, q_1) \rightarrow \mathbb{C}$.

Difficulties:

- the fiber metric on V_{\rho_1} may in general be not positive definite \Longrightarrow the positivity (iii) is difficult to achieve
- pseudodifferential calculus works nice with the Hadamard condition (iv), but interact badly with gauge invariance (i) and positivity (iii)

HOW CAN WE CONSTRUCT HADAMARD STATES?

 \hookrightarrow gauge fixing the degrees of freedom

OUTLINE

- (I) The Cauchy radiation gauge
- (II) Hodge-decomposition in Sobolev spaces
- (III) The complete gauge fixing and the pPhase space
- (IV) Hadamard states in the Cauchy radiation gauge

Joint project with Gabriel Schmid, Ph.D. student in Genoa

MAXWELL THEORY AS A GAUGE THEORY

(I)
$$V_0 = \left(\mathsf{M} \times \mathbb{C}, (\cdot, \cdot)_{V_0} \right)$$
 and $V_1 = \left(\mathsf{T}^* \mathsf{M} \otimes_{\mathbb{R}} \mathbb{C}, (\cdot, \cdot)_{V_1} \right)$ where
 $(\cdot, \cdot)_{V_1} := \int_{\mathsf{M}} g^{-1}(\overline{\cdot}, \cdot) \operatorname{vol}_g$

(II) set $P =: \delta d$, K = d and $K^* = \delta \Longrightarrow D_1 := \delta d + d\delta$ and $D_0 = \delta d$

Because ker P is invariant under conformal rescaling we can set

$$\mathsf{M} = \mathbb{R} \times \Sigma \qquad g = -dt^2 + h_t \,.$$

DEFINITION: $A = A_0 dt + A_{\Sigma}$ satisfies Cauchy radiation gauge on a Σ if

$$\delta A = 0$$
 (Lorenz gauge) and $A_0|_{\Sigma} = \partial_t A_0|_{\Sigma} = 0$

REMARK: On ultrastatic spacetimes, the following gauge are equivalent:

- (i) A satisfies the Cauchy radiation gauge;
- (ii) A satisfies the *temporal gauge* $A_0 = 0$ and the *Coulomb gauge* $\delta_{\Sigma}A_{\Sigma} = 0$;
- (iii) The fiber metric g^{-1} reduces to h^{-1} in the Cauchy radiation gauge

$$g^{-1}(A, A) = -(A_0, A_0) + h^{-1}(A_{\Sigma}, A_{\Sigma}) = h^{-1}(A_{\Sigma}, A_{\Sigma}) \ge 0$$

HOW TO ACHIEVE THE CAUCHY RADIATION GAUGE?

- Decompose $A = A_0 dt + A_{\Sigma}$

- A' = A + df satisfies the Cauchy radiation gauge if we can solve the system

$$\begin{cases} \mathsf{D}_0 f &= -\delta A \\ \nabla_t f|_{\Sigma} &= -A_0|_{\Sigma} \\ \nabla_t^2 f|_{\Sigma} &= -\nabla_t A_0|_{\Sigma} \end{cases} \iff \begin{cases} \mathsf{D}_0 f &= -\delta A \\ \nabla_t f|_{\Sigma} &= -A_0|_{\Sigma} \\ \Delta_0 f|_{\Sigma} &= -\delta_{\Sigma} A_{\Sigma}|_{\Sigma} \end{cases}$$

- if Σ is compact, by the Hodge decomposition ${\it A}_{\Sigma}=\delta\alpha+{\it d}g+{\it h}$

$$\begin{cases} \mathsf{D}_0 f &= -\delta A \\ f|_{\Sigma} &= -g|_{\Sigma} \\ \nabla_t f|_{\Sigma} &= -A_0 \end{cases}$$

- Since D_0 is normally hyperbolic $\implies \exists ! f$ satisfying the Cauchy problem

IF THE MANIFOLD IS NOT COMPACT?

 $\hookrightarrow {\tt Hodge-decomposition \ in \ Sobolev \ space}$

- (Σ, h) be complete *d*-dimensional Riemannian manifold and set

$$L^2_k(\Sigma) := \overline{\Omega^k_c(\Sigma;\mathbb{C})}^{\|\cdot\|_2} \qquad \langle\cdot,\cdot\rangle_2 := \int_{\mathsf{M}} h^{-1}_{(k)}(\bar{\cdot},\cdot) \operatorname{vol}_{\Sigma}$$

- $\Delta_k = \delta d + d\delta$ is symmetric, positive and essentially self-adjoint and we define

$$\mathsf{E}_k := (\mathbb{1} + \overline{\Delta}_k) \colon \mathcal{D}(\overline{\Delta}_k) \to L^2_k(\Sigma)$$

- We can define the Sobolev space of degree $s \in \mathbb{R}$ to be the Hilbert space

$$\mathsf{H}^{s}_{k}(\Sigma):=\mathcal{D}(\mathsf{E}^{s/2}_{k}), \qquad \langle\cdot,\cdot\rangle_{\mathsf{H}^{s}}:=\langle\mathsf{E}^{s/2}_{k}\cdot,\mathsf{E}^{s/2}_{k}\cdot\rangle_{L^{2}}\,.$$

- Finally set

$$\Omega^k_s(\Sigma) := \Omega^k(\Sigma; \mathbb{C}) \cap \mathsf{H}^s_k(\Sigma) \qquad \text{and} \qquad \mathsf{H}^\infty_k(\Sigma) := \bigcap_{s \in \mathbb{R}} \mathsf{H}^s_k(\Sigma)$$

THEOREM [M.-Schmid]: For complete Riemannian manifolds (Σ, h) it holds

$$\mathsf{H}^{s}_{k}(\Sigma) \cong \operatorname{Har}^{s}_{k}(\Sigma) \oplus \overline{\mathrm{d}\Omega^{k-1}_{\infty}(\Sigma)} \oplus \overline{\delta\Omega^{k+1}_{\infty}(\Sigma)},$$

where $\operatorname{Har}^{s}_{k}(\mathsf{M}):=\ker(\overline{\operatorname{d}_{k}})\cap\ker(\overline{\delta_{k}})$ and the closures are taken w.r.t. $\|\cdot\|_{\mathsf{H}^{s}}.$

Sketch of the proof (1) d: $\Omega_{\infty}^{k} \to \Omega_{\infty}^{k+1}$ and $\delta : \Omega_{\infty}^{k+1} \to \Omega_{\infty}^{k}$ are closable and H_{\bullet}^{s} -adjoint, i.e. $(\overline{\delta}^{*}A, A')_{H_{b}^{s}} = (A, \overline{d}A')_{H_{b+1}^{s}}$

(2) The sequence

$$0 \to \mathcal{D}_{s}(\overline{\mathrm{d}_{0}}) \xrightarrow{\overline{\mathrm{d}_{0}}} \mathcal{D}_{s}(\overline{\mathrm{d}_{1}}) \xrightarrow{\overline{\mathrm{d}_{1}}} \dots \xrightarrow{\overline{\mathrm{d}_{d-1}}} \mathcal{D}_{s}(\overline{\mathrm{d}_{d}}) \xrightarrow{\overline{\mathrm{d}_{d}}} 0$$

is a well-defined co-chain complex and using that \overline{d} is closed in H^s,

$$\begin{aligned} \mathsf{H}_{k}^{s}(\boldsymbol{\Sigma}) &\cong \ker(\overline{\mathrm{d}}_{k})^{\perp} \oplus \ker(\overline{\mathrm{d}}_{k}) \\ &= \ker(\overline{\mathrm{d}}_{k})^{\perp} \oplus \overline{\operatorname{ran}(\overline{\mathrm{d}}_{k-1})} \oplus (\ker(\overline{\mathrm{d}}_{k}) \cap \operatorname{ran}(\overline{\mathrm{d}}_{k-1})^{\perp}) \\ &= \overline{\operatorname{ran}(\delta_{k+1})} \oplus \overline{\operatorname{ran}(\mathrm{d}_{k-1})} \oplus (\ker(\overline{\mathrm{d}}_{k}) \cap \ker(\overline{\delta}_{k})) \,. \end{aligned}$$

where we used $\ker(P^*)^{\perp} = \overline{\operatorname{ran}(P)}$ and $\operatorname{ran}(P)^{\perp} = \ker(P^*)$

REMARK:

(i)
$$\Omega^k_s(\Sigma) := \Omega^k \cap \mathsf{H}^s_k(\Sigma) \cong \operatorname{Har}^s_k(\Sigma) \oplus \left(\Omega^k \cap \overline{\mathrm{d}\Omega^{k-1}_{\infty}(\Sigma)}\right) \oplus \left(\Omega^k \cap \overline{\delta\Omega^{k+1}_{\infty}(\Sigma)}\right)$$

(ii) If (Σ, h) is of bounded geometry, H^s coincides with W^{s,2}

(iii) Any form $\alpha \in \Omega^k(\Sigma) \cap \overline{\mathrm{d}\Omega^{k-1}_{\infty}(\Sigma)}$ is exact

COROLLARY: For any $\omega \in \Omega^1_s(\Sigma)$, the Poisson equation

$$\Delta_0 f = \delta \omega$$

has a unique solution on the space $\{f \in C^{\infty}(\Sigma; \mathbb{C}) \mid \mathrm{d}f \in \overline{\mathrm{d}\Omega_{\infty}^{0}(\Sigma)}^{\mathsf{H}^{\mathsf{s}}}\}$

For $A = A_0 dt + A_{\Sigma}$ we introduce the spaces

$${\sf \Gamma}_s({\sf V}_k):=\Omega^k_s({\sf M};{\Bbb C}):={\it C}^\inftyig({\Bbb R},\Omega^{k-1}_s({\Sigma})ig)\oplus{\it C}^\inftyig({\Bbb R},\Omega^k_s({\Sigma})ig)$$

COROLLARY: For any $A \in \Gamma_s(V_1)$ there exists $f \in \Gamma(V_0)$ w. $df|_{\Sigma_t} \in \overline{\mathrm{d}\Omega^0_{\infty}(\Sigma_t)}^{H^3}$ such that A' = A + df satisfies the Cauchy radiation gauge. **THEOREM** [M.-Schmid]: - (M, g) is a globally hyperbolic manifold - (Σ, h_t) are complete Riemannian manifolds \implies The Cauchy problem for D₁ is well-posed: for any

$$\forall (h_0,h_1,f) \in \left(\Omega^{k-1}_s(\Sigma)\oplus\Omega^k_s(\Sigma)\right) \oplus \left(\Omega^{k-1}_s(\Sigma)\oplus\Omega^k_s(\Sigma)\right) \oplus \Gamma_{\mathrm{tc},s-1}(\mathsf{V}_k)$$

there exists a unique solution

$$A\in {\sf \Gamma}_{s}({\sf V}_{k})={\sf C}^{\infty}\big(\mathbb{R},\Omega^{k-1}_{s}(\Sigma)\big)\oplus {\sf C}^{\infty}\big(\mathbb{R},\Omega^{k}_{s}(\Sigma)\big)$$

to the initial value problem

$$\begin{cases} \mathsf{D}_k A = f \\ \mathsf{A}|_{\Sigma_{t_0}} = h_0 \\ (\mathrm{i}^{-1}\partial_t A)|_{\Sigma_{t_0}} = h_1 \end{cases}$$

Ideas behind the proof

The energy $\mathcal{E}_k(\omega, t) := \|\omega|_{\Sigma_t}\|_{\mathcal{H}^s(\Sigma_t)} + \|\partial_t \omega|_{\Sigma_t}\|_{\mathcal{H}^{s-1}(\Sigma_t)}$ is bounded:

$$\mathcal{E}_k(\omega, t_1) \leq \mathcal{E}_k(\omega, t_0) \cdot e^{C(t_1 - t_0)} + \int_{t_0}^{t_1} e^{C(t_1 - \tau)} \|\Box_k \omega|_{\Sigma_{\tau}} \|_{\mathcal{H}^{s-1}(\Sigma_{\tau})} \, \mathrm{d}\tau$$

Simone Murro (University of Genoa)

The quantization of Maxwell theory

REMARK: f is unique (up to a constant), so the gauge is fixed completely, *i.e.* $\frac{\text{ker}(\mathsf{P})}{\text{ran}(\mathsf{K})} \simeq \text{ker}(\mathsf{D}_1) \cap \text{ker}(\mathsf{K}^*) \cap \text{ker}(\mathsf{R})$ where $\mathsf{R} = U_1\mathsf{R}_\Sigma\rho_1$ and $\mathsf{R}_\Sigma(a_0, \pi_0, a_\Sigma, \pi_\Sigma) := (a_0, \pi_0, 0, 0)$

THE GAUGE-FIXED PHASE SPACE

PROPOSITION (phase space): The following diagram is commutative

We conclude the classical theory, by endowing $V_{\rm R}$ with an Hermitian form $q_{\Sigma,R}$

- Decomposing
$$A = A_0 dt + A_{\Sigma}$$
, we set

$$\rho_{0} \colon f \mapsto \begin{pmatrix} f|_{\Sigma} \\ \frac{1}{i} \partial_{t} f|_{\Sigma} \end{pmatrix} \quad \text{and} \quad \rho_{1} \colon A \mapsto \begin{pmatrix} A_{0}|_{\Sigma} \\ \frac{1}{i} \partial_{t} A_{0}|_{\Sigma} \\ A_{\Sigma}|_{\Sigma} \\ \frac{1}{i} \partial_{t} A_{\Sigma}|_{\Sigma} \end{pmatrix}$$

- By construction $[\rho_1 G_1]: (\mathcal{V}_P, q_1) \rightarrow (\mathcal{V}_{\Sigma}, q_{1,\Sigma})$ is an unitary isomorphism

$$q_{1,\Sigma}([\cdot],[\cdot]) = i([\cdot], G_{1,\Sigma}[\cdot])_{V_{\rho_1}} \qquad G_{1,\Sigma} = \frac{1}{i} \begin{pmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

- We define $q_{\Sigma,R}$ such that $\mathsf{T}_{\Sigma} : (\mathcal{V}_{\Sigma}, q_{1,\Sigma}) \to (\mathcal{V}_{R}, q_{\Sigma,R})$ is unitary

Summing up: unitary isomorphisms $(\mathcal{V}_{\mathrm{P}}, q_1) \simeq (\mathcal{V}_{\Sigma}, q_{1,\Sigma}) \simeq (\mathcal{V}_{\mathrm{R}}, q_{\Sigma,\mathsf{R}})$

HOW TO CONTROL THE MICROLOCAL BEHAVIOUR OF $\mathsf{T}_\Sigma?$

To compute T_Σ we follows this ansatz

$$\mathcal{T}_{\Sigma} = \mathbb{1} - \mathsf{K}_{\Sigma}(\mathsf{R}_{\Sigma}\mathsf{K}_{\Sigma})^{-1}\mathsf{R}_{\Sigma}$$

PROPOSITION: Let (Σ, h) be a Riemannian manifold and $\pi_{\delta} := \mathbb{1} - d_{\Sigma} \Delta_0^{-1} \delta_{\Sigma}$. There exists a map $\mathsf{T}_{\Sigma} : \mathcal{V}_{\Sigma} \to \mathcal{V}_{\Sigma}$ defined by

$$T_{\Sigma} = \begin{pmatrix} 0_{2 \times 2} & 0_{2 \times 2} \\ 0_{2 \times 2} & \begin{pmatrix} \pi_{\delta} & 0 \\ 0 & \pi_{\delta} \end{pmatrix} \end{pmatrix}$$

satisfies the following properties

WE CAN NOW CONSTRUCT HADAMARD STATES

 $\mathbf{0}$)By the standard deformation argument, we assume

(M, g) to be ultrastatic and of bounded geometry

1) Replace the phase space $(\mathcal{V}_{\rm P},q)$ with the space of initial data $(\mathcal{V}_{\Sigma},q_{\Sigma})$

$$\rho G : (\mathcal{V}_{\mathrm{P}}, \mathrm{q}) \xrightarrow{\simeq} (\mathcal{V}_{\Sigma}, \mathrm{q}_{\Sigma}) \qquad \mathrm{q}_{\Sigma}(\cdot, \cdot) := (\cdot, \mathrm{i} \mathsf{G}_{\Sigma} \cdot) \quad \mathsf{G} = (\rho G)^* \mathsf{G}_{\Sigma}(\rho G)$$

2) Construct an 'approximate' square root of the Hodge-Laplacian:

microlocal factorization of $U_{\Box} = U_{(\partial_t + i\varepsilon)}\pi^+ + U_{(\partial_t - i\varepsilon)}\pi^-$

Intermezzo II: pseudodifferential calculus I/II

The differential operator $d/dx: \mathcal{S}(\mathbb{R}) o \mathcal{S}(\mathbb{R})$ can be written as

$$rac{d}{dx}f(x) = rac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}e^{ikx}k\hat{f}(k)\,dk$$

hence a m-order differential operator A with constant coefficient reads as

$$Pf(x) = rac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ikx} p(x,k) \hat{f}(k) dk \qquad p(x,k) = \sum_{\alpha \leq m} a_{\alpha}(x) k^{\alpha}$$

The Kohn-Nirenberg quantization is the natural generalization

$$S_{1,0}^{m} \ni p(x,k) \mapsto P\left(x,\frac{d}{dx}\right) := Op(p) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{ik(x-y)} p(x,k) f(y) dy \, dk \in \Psi^{m}(\mathbb{R})$$

where the symbol p(x, k) is promoted to a smooth function in the class

$$S_{1,0}^{m} := \left\{ p \in C^{\infty}(\mathbb{R} \times \mathbb{R}) \left| \left| \frac{d^{\alpha}}{dx^{\alpha}} \frac{d^{\beta}}{dk^{\beta}}(p(x,k)) \right| \leq C_{\alpha\beta} \langle k \rangle^{m-|\beta|} \ \forall \alpha, \beta \in \mathbb{N} \right\} \right\}$$

Intermezzo II: pseudodifferential calculus II/II

NICE PROPERTIES:

- The Ψ DO–calculus transforms covariantly under local diffeomorphisms:
 - $\psi: \mathbb{R}^n \to \mathbb{R}^n$ differomorphism
 - $U_i \subset \mathbb{R}^n$ precompact open sets and $\chi_i \in C^\infty_c(\mathbb{R}^n)$ s.t. $\chi_i|_{U_i} = 1$
 - \Rightarrow For $A \in \Psi^m(U_1)$ we have $\chi_1 A \psi^*(\chi_2 u) = B u \in \Psi^m(U_2)$
 - \Rightarrow the definition of ΨDO extends on smooth manifolds

• Let
$$S^{-\infty} := \bigcap_m S^m_{1,0}$$
 and $\Psi^{-\infty}(M)$ accordingly:
 $\Rightarrow A : D'(M) \to C^{\infty}(M)$ is smoothing if and only if $A \in \Psi^{-\infty}(M)$
 $\Rightarrow WF(Au) = \emptyset$ for any $u \in D'(M)$

- If M compact and $A \in \Psi^m(M)$ and $B \in \Psi^n(M)$
 - $\Rightarrow A \circ B \in \Psi^{m+n}$
 - \Rightarrow For polyhomogeneous symbols i.e. $\sigma_P \sim \sum_j \alpha_j k^j \Rightarrow \sigma_{AB} = \sigma_A \circ \sigma_B \in S_{ph}^{m+n}$

The Ψ DO-calculus can be extended on *manifolds of bounded geometry*

CONSTRUCTION OF AN 'APPROXIMATE' SQUARE ROOT OF THE LAPLACIAN

(sketch of the proof)

- Let $M = \mathbb{R} \times \Sigma$ with Σ of bounded geometry
- The closure of the Laplacian $\overline{\Delta}$ with domain $H^2(\Sigma)$ is self-adjoint on $L^2(\Sigma)$
- We fix $\chi \in C^\infty_c(\mathbb{R})$ with $\chi(0) = 1$ and set $\chi_R(\lambda) = \chi(R^{-1}\lambda)$ for $R \ge 1$
- We get $\chi_R(\overline{\Delta}) \in \Psi^{-\infty}(\Sigma)$ and we set $r_{-\infty} = R\chi_R(\overline{\Delta})$
- By the spectral calculus we find R>1 s. t. $\overline{\Delta}+r_{-\infty}$ is *m*-accreative
- By standard results of Kato, $\overline{\Delta} + r_{-\infty}$ has a unique *m*-accreative square root

$$\varepsilon = \varepsilon^*$$
 $\exists ! \varepsilon^{-1} \in \Psi^{-1}$ $\varepsilon^2 = \Delta + r_{-\infty}$

3) The square root ϵ_i of the Hodge-Laplacian Δ_i has to satisfy

 $\epsilon_i \pi_\delta = \pi_\delta \varepsilon_i \mod \Psi^{-\infty}$

where again $\pi_{\delta} = \mathbb{1} - d_{\Sigma} \Delta_0^{-1} \delta_{\Sigma}$

4) Finally consider the pseudodifferential projectors π^{\pm} defined by

$$\pi^{\pm} := \frac{1}{2} \begin{pmatrix} 1 & \pm \varepsilon_0^{-1} & 0 & 0 \\ \pm \varepsilon_0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \pm \varepsilon_1^{-1} \\ 0 & 0 & \pm \varepsilon_1 & 1 \end{pmatrix}$$

THEOREM [S.M., Schmid] Consider the operators $c^{\pm} := \mathsf{T}_{\Sigma} \pi^{\pm} \mathsf{T}_{\Sigma}$. Then $\lambda^{\pm} := (\rho_1 \mathsf{G}_1)^* \lambda_{\Sigma}^{\pm} (\rho_1 \mathsf{G}_1) \quad \text{where} \quad \lambda_{\Sigma}^{\pm} := \pm \mathrm{i} \mathsf{G}_{1,\Sigma} c^{\pm}$

are the pseudo-covariances of a quasi-free Hadamard state on ${\rm CCR}({\mathcal V}_{\rm P}, q_1).$

Sketch of the proof

(i) Since $\varepsilon_i = \varepsilon_i^*$ are formally self-adjoint w.r.t the Hodge-inner product on Σ

$$(\pi^{\pm})^{\dagger} = \mathsf{G}_{\mathbf{1},\Sigma}^{-1}(\pi^{\pm})^*\mathsf{G}_{\mathbf{1},\Sigma} = \pi^{\pm} \,,$$

Then π^{\pm} , T_{Σ} and also c^{\pm} are formally self-adjoint w.r.t. $\sigma_{1,\Sigma}$. (ii) $\pi^{+} + \pi^{-} = 1$ and hence

$$(c^+ + c^-)\mathfrak{f} = \mathit{T}_{\Sigma}^2\mathfrak{f} = \mathit{T}_{\Sigma}\mathfrak{f} = \mathfrak{f} \quad \text{mod} \quad \text{ran}(\mathsf{K}_{\Sigma}|_{\Gamma_{\mathbf{H}}^{\infty}})$$

for all $\mathfrak{f} \in \text{ker}(\mathsf{K}_{\Sigma}^{\dagger})$, where in the last step we used that T_{Σ} is a bijection between \mathcal{V}_{P} and \mathcal{V}_{Σ} together with $\mathcal{T}_{\Sigma} = \mathbb{1}$ on kerR_{Σ} .

(iii) we compute

$$\pm q_{1,\Sigma}(\mathfrak{f}, c^{\pm}f) = \pm q_{1,\Sigma}(\mathfrak{f}, \mathsf{T}_{\Sigma}\pi^{\pm}\mathsf{T}_{\Sigma}f) = \pm q_{\Sigma,\mathsf{R}}(\mathsf{T}_{\Sigma}\mathfrak{f}, \pi^{\pm}\mathsf{T}_{\Sigma}f) \geq 0$$

(iv) follows because π^\pm commutes with T_Σ modulo a smooth kernel and π^\pm satisfies the Hadamard condition

Outlook

WHAT WE HAVE SEEN AND WHAT COMES NEXT?

MAXWELL'S THEORY:

- Gauge fixing is useful for getting positivity and gauge invariance, but "the price to pay" is working with smooth, Sobolev initial data

- For generic manifold , we can construct Hadamard projectors π^{\pm} , but it is not clear that they commute with T_{Σ} (even modulo smoothing)

FUTURE WORK: LINEARIZED GRAVITY

- Gauge fixing completely the linearized gravity on the level of initial data: *Synchronous, de Donder, traceless-gauge, ...*

- Constructing T_Σ is very challenging from a technical point of view (two-tensors can make life miserable very fast)

- We cannot use the deformation argument, so we need to modify π^{\pm} such that the operators $c^{\pm} = T_{\Sigma}\pi^{\pm}T_{\Sigma}$ satisfies the Hadamard conditions

THANKS for your attention!