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The quantum state

! observable algebra A

(unital ∗-algebra generated by field operators)

! quantum state ω

ω : A → C with ω(A∗A) ≥ 0 for all A ∈ A .

! assume representation of A on Fock space (F , 〈.|.〉F )
! represent state by density operator W ,

ω(A) = trF
(

WA
)

for all A ∈ A

W is positive and has trace one.
pure state: W = |Ψ〉〈Ψ|, projection operator of rank one
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Notions of entropy

! von Neumann entropy

S := −tr
(

W log(W )
)

vanishes for pure state; quantifies “mixture” of state

! Rényi entropy

Sκ :=
1

1 − κ
tr
(

log(Wκ)
)

(κ (= 1)

limiting case κ→ 1 gives back von Neumann entropy
most of our results also apply to Renyi entropy
in the talk: focus on von Neumann entropy
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Relative entropy and entanglement entropy

! Relative entropy: Two density operators W and W0,

Srel := −trF
(

W (logW − logW0)
)

! entanglement entropy: Bi-partite system: F = FA ⊗ FB,

WA := trB(W ) : FA → FA

Sent := tr
(

WA log(WA)
)

− tr
(

W log(W )
)

If W is a pure state, this simplifies to

Sent := tr
(

WA log(WA)
)
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The quasi-free fermionic case

We now specialize the setting.

! Consider fermion field in globally hyperbolic spacetime:
A generated by fermionic field operators satisfying CAR

{

Ψ(f ),Ψ†(g)
}

= k
(

f ,g
)

= <f |kg>
{

Ψ(φ),Ψ(φ′)
}

= 0 =
{

Ψ†(φ),Ψ†(φ′)
}

k := G+ − G− is causal propagator and
f ,g ∈ C∞

0 (M,SM).
! Assume quasi-free state: All n-point distributions can be

computed in terms of the 2-point distribution using Wick
rules.

ω2n+1

(

h1, . . . ,h2n+1

)

= 0

ω2n

(

h1, . . . ,h2n

)

=
∑

σ∈S′

2n

(−1)sign(σ)
n
∏

i=1

ω2

(

hσ(2i−1),hσ(2i)

)

here S′
2n denotes the ordered permutations
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The quasi-free fermionic case

! Introduce one-particle Hilbert space,

ψ := kf solutions of Dirac equation

〈ψ|ψ′〉H := k(f , f ′) corresponding scalar product

scalar product can be evaluated on any Cauchy surface
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Reduction to the one-particle density operator

! reduced one-particle density operator D is defined by

ω2

(

f , f ′
)

= 〈ψ |D ψ′〉H ,

is linear operator on H with 0 ≤ D ≤ 1.

! von Neumann entropy can be expressed in terms of D,

S = trH
(

η(D)
)

η(t) := −t log t − (1 − t) log(1 − t)

! likewise for relative entropy and entanglement entropy

Srel = −trH
(

D logD0 + (11 − D) log
(

11 − D0

)

)

Sent = trH
(

η
(

χΛ D χΛ

)

− χΛ η(D)χΛ

)

where χΛ is typically projection operator on H.
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Area laws

This setting has been studied for the non-relativistic Fermi gas,
and area laws have been proved.

! Widom, and later Hajo Leschke, Robert Helling,
Alexander Sobolev, Wolfgang Spitzer, . . .

The idea of area law:

Λ ⊂ R
d typically bounded spatial region

χΛ : Ψ(x) ,→ χΛ(x)Ψ(x) multiplication by characteristic function

scale region by L > 0:

Sent(LΛ) = area(Λ) Ld−1 + o(Ld−1) area law

Sent(LΛ) = area(Λ) Ld log(L) + o(Ld) enhanced area law
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Example: Two-Dimensional Rindler Spacetime

! joint work with Magdalena Lottner (Regensburg),
Albert Much (Leipzig) and Simone Murro (Genova)

Consider two-dimensional Minkowski space M = R1,1

Dirac equation (D − m)ψ = 0

(ψ|φ)M =

ˆ ∞

−∞
≺ψ|γ0φ. |(0,x) dx

! Choose one-particle density for regularized vacuum,

D = Π−
ε

integral operator with integral kernel (ω(k) :=
√

k2 + m2)

Πε(x , y) =
1

2

ˆ ∞

−∞

dk

2π

(

1−
1

ω(k)

(

−k m
m k

))

e−εω(k)eik(x−y)
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Example: Two-Dimensional Rindler Spacetime

Note:

! If ε = 0, this is projection operator to all negative-energy
solutions, corresponds to a
quasi-free Hadamard state (usual vacuum state)

! If ε > 0, of regularized Hadamard form

Rindler space R :=
{

(t , x) ∈ M with |t | < x
}

Thus on Cauchy surface at fixed time t = 0,

Λ = R
+

THEOREM

For small ε,

Sent(Πε,Λ) =
1

6
log ε+ O(ε0)

This is an enhanced area law for a zero-dimensional area.
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Example: Spatial subsets in Minkowski space

! joint work with Magdalena Lottner (Regensburg)
and Alexander Sobolev (University College London)

Consider four-dimensional Minkowski space M = R1,1

Dirac equation (D − m)ψ = 0

(ψ|φ)M =

ˆ

R3

≺ψ|γ0φ. |(0,%x) d3x

! Again regularized Dirac vacuum,

Πε(*k) =
1

2

(

11 +

∑3
β=1 kβγβγ0 − mγ0

√

|*k |2 + m2

)

e−ε
√

|%k|2+m2

! Choose Λ as a bounded domain with C1-boundary
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Example: Spatial subsets in Minkowski space

Two parameters L (scaling) and ε (regularization length)

THEOREM

Consider asymptotics Lε−1 → ∞ and ε↘ 0. Then

lim
ε2

L2
Sent(Πε,LΛ) = M > 0

If ε > 0 stays bounded away from zero, then

lim
ε2

L2
Sent(Πε,LΛ) = Mε > 0

and
lim
ε↘0

Mε = M

The constants M and Mε can be given explicitly.
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Example: The Schwarzschild event horizon

! F.F., M. Lottner, “The fermionic entanglement entropy of the vacuum
state of a Schwarzschild black hole horizon,” arXiv:2302.07212
[math-ph]

Consider the exterior Schwarzschild geometry
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Example: The Schwarzschild event horizon

! ω vacuum state of observer at infinity

! ultraviolet regularization in Killing direction, and
a finite number of angular modes (more details later)

! based on the integral representation of the Dirac
propagator derived in
! F.F., N. Kamran, J. Smoller and S.-T. Yau, “The long-time

dynamics of Dirac particles in the Kerr-Newman black hole
geometry,” arXiv:gr-qc/0005088, Adv. Theor. Math. Phys. 7

(2003) 25-52
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Example: The Schwarzschild event horizon

(Πε)(x , y) :=
1

π

∑

k ,n

ˆ 0

−∞
dω eεω

2
∑

a,b=1

tknω
ab X knω

a (x)〈X knω
b (y)|

k ,n are angular modes (spin-weighted spherical
harmonics)

X is composed of solutions of radial and angular ODEs

tknω
ab formed of reflection and transmission coefficients.
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Example: The Schwarzschild event horizon

! How to choose Λ:

in Regge-Wheeler coordinates:

Λ = (u0 − ρ,u0)× S2 with u0 → −∞, ρ→ ∞
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Example: The Schwarzschild event horizon

THEOREM

lim
ε↘0

1

logM/ε
lim
ρ→∞

lim
u0→−∞

Sent(Πε,Λ) =
∑

k , n occupied

1

6
.

Interpretation of this result:

! Entanglement entropy gives the area of even horizon.

! Similar to string theory and loop quantum gravity, area is
“quantized”

! Total area is obtained by counting the number of occupied
states.
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Remark on proofs

! Adapt methods by Widom, Sobolev and others

! Non-smooth pseudo-differential operators, functional
analytic methods, estimates of Schatten norms
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Connection to modular theory

! The relative entanglement entropy can be computed using
modular theory
Araki, Longo, Bisognano, Wichmann, Hollands, Sanders,
Lechner, Cadamuro, Galanda, Much, Verch, . . .

Here I cannot explain the connection in detail.
General connection to formulation in Fock spaces:

! E. Witten, “Notes on some entanglement properties of quantum field
theory,” arXiv:1803.04993 [hep-h]

Using this connection for quasi-free states, one use
alternatively the above formula

Srel := −trF
(

W (logW − logW0)
)

! This should work even in cases when no modular group
action present.
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Connection to causal fermion systems

Here I cannot give a self-contained introduction. Just a few
remarks

! approach to fundamental physics

! novel mathematical model of spacetime

! physical equations are formulated in generalized
spacetimes

! Different limiting cases:
Continuum limit: Quantized fermionic fields interacting via
classical bosonic fields

QFT limit: fermionic and bosonic quantum fields
(ongoing, more towards the end of the talk)

! For overview, more details (papers, books, videos, online
course), applications to cosmology and black holes, . . .

www.causal-fermion-system.com
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Connection to causal fermion systems

! spacetime and all structures therein are described by a
measure ρ on a set of linear operators on a Hilbert space,

spacetime M := supp ρ ⊂ L(H)

! Hilbert space scalar product formulated by a surface layer
integral,

(ψ|φ)t
ρ = −2i

(
ˆ

Ωt
dρ(x)

ˆ

M\Ωt
dρ(y)−

ˆ

M\Ωt
dρ(x)

ˆ

Ωt
dρ(y)

)

× ≺ψ(x) | Q(x , y)φ(y).x
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Connection to causal fermion systems

Choose V ⊂ M and “localize” the scalar product,

Nt

t M

V

Ωt

(u|u)t
V ,ρ :=

(
ˆ

Ωt∩V
dρ(x)

ˆ

M\Ωt

dρ(y) +

ˆ

Ωt

dρ(x)

ˆ

V\Ωt

dρ(y)

)

× ≺ψ(x) | Q(x , y)φ(y).x ,
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Connection to causal fermion systems

! Represent the “localized” scalar product with respect to the
full scalar product,

(u|u)t
V ,ρ = (u |σV u)t

ρ for all u ∈ H
f ;

! This gives reduced one-particle density operator

! Now define fermionic entanglement entropy as before,

Sent = −trHf

(

σV log(σV )
)

− trHf

(

(11 − σV ) log
(

(11 − σV )
))
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Connection to causal fermion systems

! Remark: There is another notion of entropy for causal
fermion systems,

includes bosonic and fermionic parts
quantifies the “disorder” of the system at time t.

! Goal: Understand better how all these entropies are
related to each other. Which properties do they have, . . .

! F.F., “A notion of entropy for causal fermion systems,” arXiv:2103.14980
[math-ph], Lett. Math. Phys. 111 (2021) 129
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www.causal-fermion-system.com

Thank you for your attention!
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