# The fermionic entanglement entropy and area laws

#### Felix Finster





Johannes-Kepler-Forschungszentrum für Mathematik, Regensburg

Fakultät für Mathematik Universität Regensburg

#### 47<sup>th</sup> LQP Workshop, Poznan, Poland September 2023

#### The quantum state

- observable algebra A (unital \*-algebra generated by field operators)
- > quantum state  $\omega$

 $\omega: \mathscr{A} \to \mathbb{C}$  with  $\omega(A^*A) \ge 0$  for all  $A \in \mathscr{A}$ .

- ► assume representation of  $\mathscr{A}$  on Fock space  $(\mathcal{F}, \langle . | . \rangle_{\mathcal{F}})$
- represent state by density operator W,

$$\omega(A) = \operatorname{tr}_{\mathcal{F}}(WA)$$
 for all  $A \in \mathscr{A}$ 

W is positive and has trace one.

• pure state:  $W = |\Psi\rangle\langle\Psi|$ , projection operator of rank one

von Neumann entropy

 $S := -\mathrm{tr}(W \log(W))$ 

vanishes for pure state; quantifies "mixture" of stateRényi entropy

$$S_{\kappa} := rac{1}{1-\kappa} \operatorname{tr} (\log(W^{\kappa})) \qquad (\kappa 
eq 1)$$

- limiting case  $\kappa \rightarrow 1$  gives back von Neumann entropy
- most of our results also apply to Renyi entropy
- in the talk: focus on von Neumann entropy

#### Relative entropy and entanglement entropy

**Relative entropy**: Two density operators W and  $W_0$ ,

$$\mathcal{S}^{\mathsf{rel}} := -\mathsf{tr}_{\mathcal{F}} ig( \mathsf{W} ig( \log \mathcal{W} - \log \mathcal{W}_0 ig) ig)$$

• entanglement entropy: Bi-partite system:  $\mathcal{F} = \mathcal{F}_A \otimes \mathcal{F}_B$ ,

$$W_A := \operatorname{tr}_B(W) : \mathcal{F}_A \to \mathcal{F}_A$$

 $S^{\mathsf{ent}} := \mathsf{tr}(W_A \log(W_A)) - \mathsf{tr}(W \log(W))$ 

If W is a pure state, this simplifies to

$$S^{\mathsf{ent}} := \mathsf{tr}(W_A \log(W_A))$$

#### The quasi-free fermionic case

We now specialize the setting.

- Consider fermion field in globally hyperbolic spacetime:
  - ${\mathscr A}$  generated by fermionic field operators satisfying CAR

$$egin{aligned} & \left\{ \Psi(\overline{f}), \Psi^{\dagger}(g) 
ight\} = kig(\overline{f}, gig) = <\!\!\! f | kg > \ & \left\{ \Psi(\overline{\phi}), \Psi(\overline{\phi'}) 
ight\} = 0 = \left\{ \Psi^{\dagger}(\phi), \Psi^{\dagger}(\phi') 
ight\} \end{aligned}$$

 $k:=G_+-G_-$  is causal propagator and  $f,g\in C_0^\infty(\mathscr{M},S\mathscr{M}).$ 

 Assume quasi-free state: All *n*-point distributions can be computed in terms of the 2-point distribution using Wick rules.

$$\omega_{2n+1}(h_1,\ldots,h_{2n+1}) = 0$$
$$\omega_{2n}(h_1,\ldots,h_{2n}) = \sum_{\sigma \in S'_{2n}} (-1)^{\operatorname{sign}(\sigma)} \prod_{i=1}^n \omega_2(h_{\sigma(2i-1)},h_{\sigma(2i)})$$

here  $S'_{2n}$  denotes the ordered permutations

Introduce one-particle Hilbert space,

 $\psi := kf$  solutions of Dirac equation  $\langle \psi | \psi' \rangle_{\mathcal{H}} := k(\overline{f}, f')$  corresponding scalar product

scalar product can be evaluated on any Cauchy surface

## Reduction to the one-particle density operator

reduced one-particle density operator D is defined by

$$\omega_{\mathsf{2}}(\overline{f}, f') = \langle \psi \, | \, \mathbf{D} \, \psi' \rangle_{\mathcal{H}} \,,$$

is linear operator on  $\mathcal{H}$  with  $0 \leq D \leq 1$ .

von Neumann entropy can be expressed in terms of D,

$$\frac{S}{\eta(t)} = \operatorname{tr}_{\mathcal{H}}(\eta(D))$$
$$\eta(t) := -t \log t - (1-t) \log(1-t)$$

likewise for relative entropy and entanglement entropy

$$\begin{split} \boldsymbol{S}^{\mathsf{rel}} &= -\mathsf{tr}_{\mathcal{H}} \Big( \boldsymbol{D} \log \boldsymbol{D}_0 + (1 - \boldsymbol{D}) \, \log \left( 1 - \boldsymbol{D}_0 \right) \Big) \\ \boldsymbol{S}^{\mathsf{ent}} &= \mathsf{tr}_{\mathcal{H}} \big( \eta \big( \chi_{\Lambda} \, \boldsymbol{D} \, \chi_{\Lambda} \big) - \chi_{\Lambda} \, \eta(\boldsymbol{D}) \, \chi_{\Lambda} \big) \end{split}$$

where  $\chi_{\Lambda}$  is typically projection operator on  $\mathcal{H}$ .

#### Area laws

This setting has been studied for the non-relativistic Fermi gas, and area laws have been proved.

Widom, and later Hajo Leschke, Robert Helling, Alexander Sobolev, Wolfgang Spitzer, ...

The idea of area law:

 $\Lambda \subset \mathbb{R}^d$  typically bounded spatial region  $\chi_{\Lambda} : \Psi(x) \mapsto \chi_{\Lambda}(x)\Psi(x)$  multiplication by characteristic function

scale region by L > 0:



 $S^{ent}(L\Lambda) = area(\Lambda) L^{d-1} + o(L^{d-1})$  area law  $S^{ent}(L\Lambda) = area(\Lambda) L^{d} \log(L) + o(L^{d})$  enhanced area law

#### Example: Two-Dimensional Rindler Spacetime

 joint work with Magdalena Lottner (Regensburg), Albert Much (Leipzig) and Simone Murro (Genova)

Consider two-dimensional Minkowski space  $\mathcal{M} = \mathbb{R}^{1,1}$ 

Dirac equation  $(\mathcal{D} - m)\psi = 0$ 

$$(\psi|\phi)_{\mathcal{M}} = \int_{-\infty}^{\infty} \prec \psi|\gamma^{0}\phi \succ|_{(0,x)} dx$$

Choose one-particle density for regularized vacuum,

$$D = \Pi_{\varepsilon}^{-}$$

integral operator with integral kernel ( $\omega(k) := \sqrt{k^2 + m^2}$ )

$$\Pi^{\varepsilon}(x,y) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dk}{2\pi} \left( 1 - \frac{1}{\omega(k)} \begin{pmatrix} -k & m \\ m & k \end{pmatrix} \right) e^{-\varepsilon \omega(k)} e^{ik(x-y)}$$

## Example: Two-Dimensional Rindler Spacetime

Note:

- If ε = 0, this is projection operator to all negative-energy solutions, corresponds to a quasi-free Hadamard state (usual vacuum state)
- If  $\varepsilon > 0$ , of regularized Hadamard form

**Rindler space**  $\mathscr{R} := \{(t, x) \in \mathscr{M} \text{ with } |t| < x\}$ 

Thus on Cauchy surface at fixed time t = 0,

 $\Lambda = \mathbb{R}^+$ 

#### THEOREM

For small  $\varepsilon$ ,

$$S^{ent}(\Pi^{\varepsilon},\Lambda) = \frac{1}{6} \log \varepsilon + \mathcal{O}(\varepsilon^{0})$$

#### This is an enhanced area law for a zero-dimensional area.

## Example: Spatial subsets in Minkowski space

 joint work with Magdalena Lottner (Regensburg) and Alexander Sobolev (University College London)

Consider four-dimensional Minkowski space  $\mathcal{M} = \mathbb{R}^{1,3}$ 

Dirac equation 
$$(\mathcal{D} - m)\psi = 0$$
  
 $(\psi|\phi)_{\mathcal{M}} = \int_{\mathbb{R}^3} \prec \psi |\gamma^0 \phi \succ |_{(0,\vec{x})} d^3x$ 

► Again regularized Dirac vacuum,

$$\Pi^{\varepsilon}(\vec{k}) = \frac{1}{2} \left( 1 + \frac{\sum_{\beta=1}^{3} k_{\beta} \gamma^{\beta} \gamma^{0} - m \gamma^{0}}{\sqrt{|\vec{k}|^{2} + m^{2}}} \right) e^{-\varepsilon \sqrt{|\vec{k}|^{2} + m^{2}}}$$

• Choose  $\Lambda$  as a bounded domain with  $C^1$ -boundary

## Example: Spatial subsets in Minkowski space

Two parameters L (scaling) and  $\varepsilon$  (regularization length)

#### THEOREM

Consider asymptotics  $L\varepsilon^{-1} \to \infty$  and  $\varepsilon \searrow 0$ . Then

$$\lim \, \frac{\varepsilon^2}{L^2} \, \mathcal{S}^{ent}(\Pi^{\varepsilon}, L\Lambda) = \mathfrak{M} > 0$$

If  $\varepsilon > 0$  stays bounded away from zero, then

$$\lim \frac{\varepsilon^2}{L^2} \, S^{ent}(\Pi^{\varepsilon}, L\Lambda) = \mathfrak{M}_{\varepsilon} > 0$$

and

$$\lim_{\varepsilon\searrow 0}\mathfrak{M}_{\varepsilon}=\mathfrak{M}$$

The constants  $\mathfrak{M}$  and  $\mathfrak{M}_{\varepsilon}$  can be given explicitly.

 F.F., M. Lottner, "The fermionic entanglement entropy of the vacuum state of a Schwarzschild black hole horizon," arXiv:2302.07212 [math-ph]

#### Consider the exterior Schwarzschild geometry



- $\blacktriangleright \omega$  vacuum state of observer at infinity
- ultraviolet regularization in Killing direction, and a finite number of angular modes (more details later)
- based on the integral representation of the Dirac propagator derived in
  - F.F., N. Kamran, J. Smoller and S.-T. Yau, "The long-time dynamics of Dirac particles in the Kerr-Newman black hole geometry," arXiv:gr-qc/0005088, *Adv. Theor. Math. Phys.* 7 (2003) 25-52

$$(\Pi^{\varepsilon})(x,y) := \frac{1}{\pi} \sum_{k,n} \int_{-\infty}^{0} d\omega \ e^{\varepsilon \omega} \sum_{a,b=1}^{2} t_{ab}^{kn\omega} X_{a}^{kn\omega}(x) \langle X_{b}^{kn\omega}(y) |$$

- *k*, *n* are angular modes (spin-weighted spherical harmonics)
- X is composed of solutions of radial and angular ODEs
- $t_{ab}^{kn\omega}$  formed of reflection and transmission coefficients.



in Regge-Wheeler coordinates:

 $\Lambda = (u_0 - \rho, u_0) \times S^2$  with  $u_0 \to -\infty, \rho \to \infty$ 

## THEOREM $\lim_{\varepsilon \searrow 0} \frac{1}{\log M/\varepsilon} \lim_{\rho \to \infty} \lim_{u_0 \to -\infty} S^{ent}(\Pi^{\varepsilon}, \Lambda) = \sum_{k, n \text{ occupied}} \frac{1}{6}.$

Interpretation of this result:

- ► Entanglement entropy gives the area of even horizon.
- Similar to string theory and loop quantum gravity, area is "quantized"
- Total area is obtained by counting the number of occupied states.

- Adapt methods by Widom, Sobolev and others
- Non-smooth pseudo-differential operators, functional analytic methods, estimates of Schatten norms

## Connection to modular theory

The relative entanglement entropy can be computed using modular theory Araki, Longo, Bisognano, Wichmann, Hollands, Sanders, Lechner, Cadamuro, Galanda, Much, Verch, ...

Here I cannot explain the connection in detail. General connection to formulation in Fock spaces:

 E. Witten, "Notes on some entanglement properties of quantum field theory," arXiv:1803.04993 [hep-h]

Using this connection for quasi-free states, one use alternatively the above formula

$$\mathcal{S}^{\mathsf{rel}} := -\mathsf{tr}_{\mathcal{F}}(\mathcal{W}(\log \mathcal{W} - \log \mathcal{W}_0))$$

This should work even in cases when no modular group action present.

Here I cannot give a self-contained introduction. Just a few remarks

- approach to fundamental physics
- novel mathematical model of spacetime
- physical equations are formulated in generalized spacetimes
- Different limiting cases:
  - Continuum limit: Quantized fermionic fields interacting via classical bosonic fields
  - QFT limit: fermionic and bosonic quantum fields (ongoing, more towards the end of the talk)
- For overview, more details (papers, books, videos, online course), applications to cosmology and black holes, ...

## www.causal-fermion-system.com

 spacetime and all structures therein are described by a measure ρ on a set of linear operators on a Hilbert space,

spacetime  $M := \text{supp } \rho \subset L(\mathcal{H})$ 

 Hilbert space scalar product formulated by a surface layer integral,



Choose  $V \subset M$  and "localize" the scalar product,



$$\begin{aligned} (\boldsymbol{u}|\boldsymbol{u})_{\boldsymbol{V},\rho}^t &:= \left(\int_{\Omega^t \cap \boldsymbol{V}} \boldsymbol{d}\rho(\boldsymbol{x}) \int_{\boldsymbol{M} \setminus \Omega^t} \boldsymbol{d}\rho(\boldsymbol{y}) + \int_{\Omega^t} \boldsymbol{d}\rho(\boldsymbol{x}) \int_{\boldsymbol{V} \setminus \Omega^t} \boldsymbol{d}\rho(\boldsymbol{y}) \right) \\ &\times \prec \psi(\boldsymbol{x}) \mid \boldsymbol{Q}(\boldsymbol{x},\boldsymbol{y}) \, \phi(\boldsymbol{y}) \succ_{\boldsymbol{x}} \,, \end{aligned}$$

 Represent the "localized" scalar product with respect to the full scalar product,

$$(u|u)_{oldsymbol{V},
ho}^t=(u\,|\,\sigma_{oldsymbol{V}}\,u)_
ho^t \qquad ext{for all } u\in\mathfrak{H}^{ ext{f}}\,;$$

- This gives reduced one-particle density operator
- ► Now define fermionic entanglement entropy as before,

$$S^{\mathsf{ent}} = -\mathsf{tr}_{\mathcal{H}^{\mathrm{f}}}\big(\sigma_{V}\log(\sigma_{V})\big) - \mathsf{tr}_{\mathcal{H}^{\mathrm{f}}}\big((1\!\!1 - \sigma_{V})\log\big((1\!\!1 - \sigma_{V})\big)\big)$$

- Remark: There is another notion of entropy for causal fermion systems,
  - includes bosonic and fermionic parts
  - quantifies the "disorder" of the system at time *t*.
- Goal: Understand better how all these entropies are related to each other. Which properties do they have, ...

 F.F., "A notion of entropy for causal fermion systems," arXiv:2103.14980 [math-ph], Lett. Math. Phys. 111 (2021) 129

#### www.causal-fermion-system.com

## Thank you for your attention!

Felix Finster The fermionic entanglement entropy and area laws