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Layout of the talk

Introduction - Motivations and preliminaries intuitions from GR

Possible interaction between modi�ed gravity/e�ective �eld theories
and Q-curvature analysis;

The Q-curvature/stationary limit of a fourth order energy

A positive energy theorem (PET);

Positive mass for the Paneitz operator.

AE Q-singular manifolds - some rigidity results.
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Motivations - The General Problem

During this talk we shall be interested in the analysis of a notion of energy
canonically associated to certain fourth-order gravitational theories. These are
theories on space-times of the form (V

.
= M × R, ḡ) described by the action

functionals

S(ḡ) =

∫
V

(
αR2

ḡ + β⟨Ricḡ ,Ricḡ ⟩ḡ
)
dVḡ , (1)

where α and β are free parameters of the problem. Imposing asymptotic condi-
tions so that the functional ḡ 7→ S(ḡ) is well-de�ned, we have its Euler-Lagrange
equations:

Aḡ
.
= β□ḡRicḡ + (

1

2
β + 2α)□ḡRḡ ḡ − (2α+ β)∇̄2Rḡ − 2βRicḡ ·Riemḡ

+ 2αRḡRicḡ − 1

2
αR2

ḡ ḡ − 1

2
β⟨Ricḡ ,Ricḡ ⟩ḡ ḡ = 0.

(2)

In this setting, among other things, one is interested in the analysis of conserved
(�ADM-like�) quantities related to these theories.
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Intuitions from GR I

De�nition

An (n+1)-dimensional general relativistic space-time is de�ned to be an (n+1)-
dimensional Lorentzian manifold (V , ḡ) satisfying the Einstein equations:

Ric(ḡ)− 1

2
R(ḡ)ḡ = T (ḡ , ψ̄) (3)

where, Ric(ḡ) and R(ḡ) represent the Ricci tensor and Ricci scalar of ḡ , respec-
tively, and T represents some (0, 2)-tensor �eld, called the energy-momentum
tensor, depending on ḡ and (possibly) on a collection of �elds, collectively de-
noted by ψ̄, representing other physical �elds.

The idea of conserved quantities in GR is quite complex in general. It is
particularly well-understood for isolated systems, which are systems with
controlled asymptotic geometry;

Furthermore, considering the above space-times (V , ḡ) as globally hyper-
bolic developments of initial data sets (Mn, g ,K) on a Cauchy-hypersurface
M, such conserved quantities are expected to be evaluated on the initial
data set;
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Intuitions from GR II

Recall: An initial data set (Mn, g ,K) for the Einstein equations consists
of a Riemannian manifold (Mn, g) and a symmetric (0, 2)-tensor �eld K ,
satisfying the Einstein constraint equations:

R(g)− |K |2g + (trgK)2 = 2ϵ

divgK − dtrgK = J,
(4)

where ϵ
.
= T (n, n)|t=0 and J = −T (n, ·).

It is a remarkable fact that, for many sources of interest (scalar �elds, per-
fect �uids, Einstein-Maxwell among others), the constraint equations (4)
are a necessary and su�cient condition to guarantee a (short-time) devel-
opment of the initial data set into a space-time satisfying the associated
Einstein equations;

In such a space-time (V = Mn × [0,T ), ḡ), (g ,K) stand as the induced
metric and extrinsic curvature of the initial manifold Mn as an embedded
hypersurface in (V , ḡ).
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Intuitions from GR III

In this context, an isolated system is modelled by initial data sets which are
asymptotically Euclidean:

De�nition (AE manifolds)

We will say that (M, g) is asymptotically Euclidean (AE) of order τ > 0 if there
is a compact set K ⊂ M and a di�eomorphism Φ : M\K 7→ Rn\B̄ such that, in
these coordinates, gij − δij = O(|x |−τ ).

Remark: The above de�nitions refers to Riemmanian manifolds (Mn, g) and
makes no reference to K . Along the lines of this de�nition, an AE initial data set
involves also a decay assumption for K , typically of the form Kij = O(|x |−τ−1).

Typically, we will also demand derivatives of the metric (and K) to decay
at certain rates.

Since such rates can depend on the speci�c problem at hand, we will
impose these requirement explicitly whenever necessary.
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Intuitions from GR IV

In the case of AE initial data sets, there are well-established notions of energy
and momentum:

E
.
=

1

16π
lim
r→∞

∫
Sr

(∂igij − ∂jgii ) ν
jdωr ; Pi

.
=

1

8π
lim
r→∞

∫
Sr

πijν
jdωr , (5)

where π = K − trgK g .

Remark (Well-known...)

Although (E ,P) don't seem to be well-de�ned geometric quantities, for AE
manifolds of order τ > n

2
− 1 with L1-integrable sources, they are well-de�ned,

independent of the sequence of compacts and �independent� of the structure of
in�nity used to compute them.

The analysis of the above ADM quantities has had a remarkable impact within
geometric analysis. For instance, through the positive mass (energy) theorems
(PMTs) in GR; the resolution of the Yamabe problem; rigidity phenomena as-
sociated to scalar curvature; geometric foliations associated to center of mass;
gluing constructions, etc.
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The fourth order problem - Conserved Quantities

Motivations:

1 The interplay between conserved quantities in GR and deep problems in
geometric analysis motivates a conjectured interplay between the corre-
sponding quantities in higher-order theories and higher-order problems in
geometric analysis;

2 Higher-order gravitational theories seem to be well-motivated by modern
theoretical physics (e�ective �eld theories, improving renormalisation of
GR, conformal gravity, etc);

3 Also, fourth-order problems in geometric analysis have proven to be highly
interesting. In particular, Q-curvature analysis has received plenty of at-
tention due to analytical subtleties and its role in understanding the link
between a conformal class and the topology of the underlying manifold.

Remark

The GR approach to conserved quantities can be paralleled in any theory pro-
duced via a Lagrangian. Doing this for our quadratic action functional produces
a set of energies Eα,β(ḡ). In special limits, these energies are tractable and their
analysis relates to known problems.
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A Q-curvature PET - Stationary Solutions

Let us consider stationary solutions (Mn × I , ḡ), with I ⊂ R, such that

ḡ = −N2dt2 + g̃ ,

where g̃ stands for a time-independent tensor �eld which restricts to the same
Riemannian metric g when applied to tangent vectors to M, so that (M, g ,N)
is a Riemannian manifold, with metric g and N : M 7→ R is a positive function.
If we also set β = −2α, we get a purely Riemannian situation, where

Eα(g)
.
= Eα,−2α(ḡ) = −α lim

r→∞

∫
Sn−1
r

(∂j∂i∂igaa − ∂j∂u∂igui ) ν
jdωr . (6)

We will �x α = −1 and denote by E(g) .= E−1(g). In this context, the following
results deal with the basic properties of E(g). First, let us recall the de�nition
of the Q-curvature of a Riemannian manifold (M, g):

Qg = − 1

2(n − 1)
∆gRg − 2

(n − 2)2
|Ricg |2g +

n3 − 4n2 + 16n − 16

8(n − 1)2(n − 2)2
R2

g . (7)
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Proposition

Let (Mn, g) be an AE manifold of dimension n ≥ 3 satisfying the following
conditions

1 There are rectangular end coordinates, given by a structure of in�nity Φ,
where gij = δij + O4(r

−τ ), where τ > τn
.
= max{0, n−4

2
};

2 The Q-curvature of g is in L1(M, dVg ).

Then, given an exhaustion of M by compact sets Ωk such that Sk
.
= Φ(∂Ωk)

are smooth connected (n − 1)-dimensional manifolds without boundary in Rn

satisfying

Rk
.
= inf{|x | : x ∈ Sk} −−−→

k→∞
∞,

R
−(n−1)
k area(Sk) is bounded as k → ∞,

(8)

the limit

E (Φ)(g) = lim
k→∞

∫
Sk

(∂j∂i∂igaa − ∂j∂u∂igui ) ν
jdS , (9)

exists and is independent of the sequence of {Sk} used to compute it.
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Theorem (Positivity/Rigidity)

Let (Mn, g) be an n-dimensional AE manifold, with n ≥ 3, which satis�es
the decaying conditions i) and ii) of Proposition 1 and such that Qg ≥ 0 and
Y ([g ]) > 0, then E(g) ≥ 0 with equality holding if and only if (M, g) is isometric
to (Rn, ·).

Remark: In this AE-setting, the Yamabe invariant is de�ned as the following
conformal invariant:

Y ([g ])
.
= inf

u∈C∞
0 (M)

∫
M
(an|∇u|2g + Rgu

2)dVg

∥u∥2
L

2n
n−2

, (10)

where an
.
= 4(n−1)

n−2
and [g ] denotes the conformal class of g .

Idea of the proof:

The Yamabe condition implies the existence of a conformal deformation

g̃ = u
4

n−2 g to zero scalar curvature. That is, u satis�es

∆gu − cnRgu = 0, (11)

where cn = n−2

4(n−1)
.

Consider the case n ̸= 4. Set Φ
.
= u− n−4

n−2 so that g = Φ
4

n−4 g̃ .
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Apply the conformal transformation rule for Q-curvature:

n − 4

2
Φ

n+4
n−4Qg = Pg̃Φ,

where Pg is the Paneitz operator de�ned by

Pg̃u = ∆2

g̃u + divg̃

((
4

n − 2
Ricg̃ − n2 − 4n + 8

2(n − 1)(n − 2)
Rg̃ g̃

)
(∇u, ·)

)
+

n − 4

2
Qg̃u, for any u ∈ C∞(M).

Since Rg̃ = 0, we have that Qg̃ = − 2

(n−2)2
|Ricg̃ |2g̃ , and the above implies:

∫
Dr

n − 4

2
Φ

n+4
n−4Qg +

(n − 4)

(n − 2)2
|Ricg̃ |2g̃Φ dvg̃ =

∫
Sr

g̃(∇̃∆g̃Φ, ν̃)dωg̃

+
4

n − 2

∫
Sr

Ricg̃ (∇Φ, ν̃)dωg̃︸ ︷︷ ︸
−−−→
r→∞

n−4
4(n−1)

E(g)

11 / 29



Passing to the limit, we get that E(g) ≥ 0 with equality i� Qg ≡ 0 and g
is conformal to (Rn, ·).
In the rigidity case, the above conditions together with the decay conditions
and the maximum principle imply that g = δ.

The case n = 4 is similar, but using the appropriate relation between Q
and Paneitz.

Obs: 1) The Q-curvature condition cannot be relaxed while keeping the rigidity;

2) The above theorems imply some curvature-topology rigidity corollaries in di-
mensions 3 and 4.
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The positive mass theorem of Paneitz I

Let us consider a closed manifold (Mn, g) with n ≥ 5.

If the Panietz operator satis�es

Y4([g ]) = inf
u∈H2(M) ; ∥u∥

2#
=1

∫
M

Pg (u)u dvg > 0,

where 2# = 2

n−4
, then it admits a Green function GPg .

This last in�mum is conformally invariant and it plays a similar role to the
Yamabe invariant for the Q-curvature.

Through this section, we will assume that Y4([g ]) > 0 and therefore GPg

exists for every g ∈ [g ].

Contrary to the conformal Laplacian, nothing here guarantees that GPg is
positive. This will be one of our assumptions, which is in particular satis�ed
if Y ([g ]) ≥ 0 and Qg̃ is semi-positive for some conformal metric g̃ .
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The positive mass theorem of Paneitz II

Let us focus on the expansion of the Green function around a singularity. If we
assume that 5 ≤ n ≤ 7 or g is locally conformally �at, then, in conformal normal
coordinates {x i} for the conformal metric g̃ , the Green function GP of Pg̃ admits
an expansion of the form

GP(p, x) =
γn
rn−4

+ α+ O4(r), (12)

where r(x)
.
= dg̃ (p, x), γn

.
= 1

2(n−2)(n−4)ωn−1
and α is a constant called the mass.

Obs:The sign of α is conformally invariant.

In the above context, the sign of α is crucial for the conformal prescription
problem for Q-curvature.

The importance is analogous to that of the corresponding constant for the
conformal Laplacian in Schoen's resolution of the Yamabe problem.

In the Yamabe problem, the sign of the mass is a consequence of the PMT
of GR.

In the Q-curvature case, the positivity of α has been established through
the work of di�erent authors and the following theorem is known to hold.
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The positive mass theorem of Paneitz III

Theorem (Hang-Yang)

Let (M, g) be a closed n-dimensional Riemannian manifold, with 5 ≤ n ≤ 7 or
n ≥ 8 and locally conformally �at around some point p ∈ M. If Y ([g ]) ≥ 0
and (M, g) admits a conformal metric with semi-positive Q-curvature, then the
mass of GP at p is non-negative and vanishes if and only if (M, g) is conformal
to the standard sphere.

The above theorem was initially proven by Humbert-Raulot in the conformally-
�at case:

E. Humbert and S. Raulot, Positive mass theorem for the Paneitz-Branson

operator, Calc. Var. Partial Di�erential Equations, 36, 4, 525-531, (2009).

Under the conditions Rg ≥ 0 and Qg semi-positive, this was generalised by
Gursky-Malchiodi to incorporate 5 ≤ n ≤ 7:

M. J. Gursky and A. Malchiodi, A strong maximum principle for the

Paneitz operator and a non-local �ow for the Q-curvature, J. Eur. Math.

Soc., 17, 9, 2137-2173 (2015).

Finally,the scalar curvature condition was relaxed to Y ([g ]) > 0 by Hang-
Yang:
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The positive mass theorem of Paneitz IV

F. Hang and P. C. Yang, Sign of Green's function of Paneitz operators and

the Q curvature, Int. Math. Res. Not., 19, 9775-9791 (2015).

The above Theorem was used by Hang-Yang to solve the positive conformal
Q-curvature prescription in an analogue manner to Schoen's solution to the
Yamabe problem:

F. Hang and P. C. Yang, Q-curvature on a class of manifolds with

dimension at least 5, Comm. Pure Appl. Math., LXIX:1452-1491 (2016).

The above Theorem is an easy consequence of the fourth order positive
energy theorem!

In fact, the following two propositions hold:

Proposition

Let (Mn, g) be a closed manifold satisfying n ≥ 5 and whose Panietz operator
admits a positive Green function GP with an expansion as (12) around some

point p ∈ M. Then, the manifold (M̂
.
= M\{p}, ĝ .

= GP(p, ·)
4

n−4 g) is an AE
manifold of order τ = 1 if n = 5 and τ = 2 if n > 5. Furthermore, either if
5 ≤ n ≤ 7 or g is �at around p, then E(ĝ) = 8(n − 1)(n − 2)ωn−1γnα.
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The positive mass theorem of Paneitz V

If we knew that ĝ = GP(p, ·)
4

n−4 g satis�es the hypotheses of the PET,
then we could deduce the positivity and rigidity properties of α (the mass
of Paneitz) from those of E ;
The main non-trivial property to be checked is that Y ([ĝ ]) > 0, which is
established in the proposition below.

Proposition

Consider a closed Riemannian manifold (Mn, g), with n ≥ 5, which admits a
conformal metric with positive Q-curvature such that Y ([g ]) ≥ 0. Then, there
exists a conformal metric g̃ such that the AE manifold (M̂ = M\{p}, ĝ =

G
4

n−4

Pg̃
g̃) satis�es Y ([ĝ ]) > 0 and Qĝ ≡ 0.

The above two proposition imply that (M̂ = M\{p}, ĝ = G
4

n−4

Pg̃
g̃) satis�es all the

hypotheses of the positive energy theorem and thus 8(n − 1)(n − 2)ωn−1γnα =
E(ĝ) ≥ 0 with equality i� (M, g) is conformal to (Sn, gSn ).
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Rigidity of Q-singular spaces I

Let �rst introduce a fourth-order tensor �eld, which serves as a fourth-order
analogue of the Ricci-tensor. Considering the Q-curvature as a non-linear fourth-
order operator on the set Met(M) of Riemannian metrics on M:

Q : Met(M) → C∞(M),

g 7→ Qg .

if we denote by S2M the bundle of symmetric (0, 2)-tensor �elds over M, then
the linearisation DQg of Q at the metric g is given by a map

DQg : S2M → C∞(M),

and its formal L2-adjoint is then given by a map DQ∗
g : C∞(M) → S2M. In

this setting, one has a (0, 2)-tensor �eld canonically associated to Q-curvature,
given by

Jg
.
= −1

2
DQ∗

g (1). (13)
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Rigidity of Q-singular spaces II

This tensor �eld satis�es local conservation law (Schur-type lemma)

divg (Jg − 1

4
Qg g) = 0. (14)

Remark

When one applies the above procedure to the scalar curvature map g 7→ Rg

instead of Qg , one obtains D∗Rg (1) = −Ricg .

The above relations make Jg a fourth order �analogue� of the Ricci tensor, and
thus one de�nes

GJg
.
= Jg − 1

4
Qg g (15)

as the J-Einstein tensor. To make things more explicit, let us write down Jg in
terms of known tensor:

Jg
.
=

1

n
Qgg − 1

n − 2
Bg − n − 4

4(n − 1)(n − 2)
Tg , (16)
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Rigidity of Q-singular spaces III

where above Bg stands for the Bach tensor, while Tg is de�ned as

Tg = (n − 2)(∇2
trgSg − 1

n
g∆g trgSg )

+ 4(n − 1)(Sg × Sg − 1

n
|Sg |2gg)− n2(trgSg )

◦
Sg )

(17)

where Sg
.
= 1

n−2

(
Ricg − 1

2(n−2)
Rgg

)
stands for the Schoutten tensor,

◦
Sg stands

for its traceless part, and (Sg × Sg )ij
.
= Sk

i Skj .

In this setting, Riemannian manifolds for whichKer(DQ∗
g ) ̸= {0} are called Q-singular.

Rigidity of Q-singular manifolds has been recently studied, partially inspired by
rigidity properties of static manifolds, i.e, Ker(DR∗

g ) ̸= {0}.

In this context, and pressing on the analogy between Jg and Ricg , we intend to
prove a fourth-order analogue of the following well-known result:

A Ricci-�at AE manifold is isometric to Euclidean space.
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Rigidity of Q-singular spaces IV

Remark:The above statement is strongly related to the rigidity part of the positive
energy theorem in GR.

The �st important ingredient to pursue our rigidity claim for J-�at AE manifolds
is the following theorem:

Theorem

Let (Mn, g) be an AE manifold of order τ > max{0, n−4

2
} satisfying Qg ∈

L1(M, dVg ). Then, the following identity holds

n − 4

8(n − 1)
E(g) = − lim

r→∞

∫
Sr

GJg (X , νδ)dωδ, (18)

where X = r∂r . In particular, the limit in the right-hand side exists and is �nite.

Remark

In the case of GR, there is an exact analogue of this result, where GJg is replaced
by the usual Einstein tensor.
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Rigidity of Q-singular spaces V

Idea of the proof.

The proof starts by transferring the problem to Rn. For this, consider the annulus
ΩR = BR(0)\B R

4
(0) ⊂ Rn\B1(0) and one choose a cut-o� function χR satisfying

(R taken to be a large number)

χR(x) =

{
0, if |x | < R

2
,

1, if |x | > 3R
4
.

Then, denote by ĝ = χRg + (1 − χR)δ an associated AE metric on Rn, which
by construction:

is exactly Euclidean in a neighbourhood of the inner boundary of ΩR ;

It agrees with g in a neighbourhood of the outer boundary of ΩR .

From to the local conservation law obeyed by GJĝ we �nd that
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Rigidity of Q-singular spaces VI∫
∂ΩR

GJĝ (X , ν)dωĝ =
1

2

∫
ΩR

⟨GJĝ ,¿ĝ,confX ⟩ĝdVĝ +
4− n

4n

∫
ΩR

QĝdivĝXdVĝ ,

(19)

for any X ∈ Γ(TM). Taking X = r∂r and appealing to the AE condition, one
�nds

∣∣ ∫
ΩR

⟨GJĝ ,¿ĝ,confX ⟩ĝdVĝ

∣∣ = O(Rn−2τ−4) = o(1). (20)

Dealing with the last term in (19) is more subtle and relies on explicit expressions
for Ker(DQ∗

δ ). In the end, one gets

∫
ΩR

QĝdivĝXdVĝ −−−−→
R→∞

n

2(n − 1)
E(g) (21)
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Rigidity of Q-singular spaces VII

Corollary

Under the same conditions as in the above theorem, if Jg = 0, then E = 0.

Proof.

Since trg (Jg ) = Qg , Jg = 0 implies Qg = 0 and thus that GJg = 0, which yields
E(g) = 0 from (18).

Remark: If one guarantees Jg = 0 and g satis�es the hypotheses of the PET,
then (Mn, g) ∼= En from the statement of the PET. Therefore, below, we will
actually work towards proving that Jg controls the asymptotic decay of g . In
particular, if Jg = 0, then g satis�es the PET. Once more, the Ricci-tensor has
this same optimal control.

To address the problem presented above, one needs to appeal to some elliptic
theory on weighted spaces, and thus, we shall re�ne our de�nition of AE mani-
folds as follows.
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Rigidity of Q-singular spaces VIII

De�nition (Weighted Sobolev spaces)

Let E → Rn be vector bundle over Rn. The weighted Sobolev space W k,p
δ , with

k a non-negative integer, 1 < p < ∞ and δ ∈ R, of sections u of E , is de�ned
as the subset of W k,p

loc for which the norm

∥u∥
W

k,p
δ

(Rn)

.
=

∑
|α|≤k

∥σ−δ− n
p
+|α|

∂αu∥Lp(Rn) (22)

is �nite, where σ(x)
.
= (1+ |x |2)

1
2 and α denotes an arbitrary multi-index.

De�nition (W k,p
−τ -AE manifolds)

Let (Mn, g) be a complete, smooth, connected, n-dimensional Riemannian man-
ifold and let τ > 0. We say that (M, g) is an Asymptotically Euclidean (AE)
manifold of class W k,p

−τ if:

1. There exists a compact set K ⊂ M and a di�eomorphism Φ : M\K 7→
Rn\B1(0);

2. For each integer i ≤ m, k, l ≤ n (Φ∗g)kl − δkl ∈ W k,p
−τ (R

n\B1(0)).
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Rigidity of Q-singular spaces IX

Remark: Using a partition of unity one extends the de�nition of W k,p
δ -spaces to

an arbitrary AE manifold.

Theorem (Rigidity for J-�at AE spaces)

Let (Mn, g) be a smooth AE manifold of class W 3,p
−τ with p > n. If Jg = 0 and

Y ([g ]) > 0, then (Mn, g) is isometric to the Euclidean space (Rn, δ).

Idea of the proof:

The proof relies on a decay improvement due to elliptic theory, which has the
following form:

Let (Mn, g) is an AE manifold of class W k−1,p
−τ , k ≥ 2 and p > n. Then

If a function f ∈ Lp
−δ(M) and ∆g f ∈ W k−2,p

−δ−2
(M) =⇒ f ∈ W k,p

−δ (M), (23)

combined with

Assume that (M, g) is AE of class W k,p
−τ , k ≥ 2, 0 < δ < n − 2 and p > n

k
.

If, τ ≤ δ, f ∈ W 2,p
−τ (M), ∆g f ∈ W k−2,p

−δ−2
(M) then f ∈ W k,p

−δ (M). (24)
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Rigidity of Q-singular spaces X

The moral of the above two results is that once f has some decay, if ∆g f has
better decay, this bootstraps (up to a critical value) the decay on f !

Then, recall the structure of Jg

Jg
.
=

1

n
Qgg − 1

n − 2
Bg − n − 4

4(n − 1)(n − 2)
Tg︸ ︷︷ ︸

traceless

,

Qg = trgJg

(25)

The proof then relies on a successive improvement of the decay �rst of Qg ,
then Rg , then Tg , then Bg , then Ricg and �nally gij − δij ;

In this sequence, the bootstrap (23) improves the number of derivatives
that decay, while (24) improves the order of decay;

The �rst key point is that an improvement on the decay on Qg translates
into an improvement on ∆gRg , which then bootstraps to Rg .

Using the structure of Tg , such an improvement on Rg translates into Tg .
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Rigidity of Q-singular spaces XI

Having better decay for J,Q and T , implies better decay for Bg , which
reads:

Buv =
1

n − 2
∆gRicuv −

1

2(n − 1)(n − 2)
∆gRgguv −

1

2(n − 1)
∇uvRg

− 2RiemauvbS
ab − (n − 4)Sa

uSav − |Sg |2 guv − 2Tr(Sg )Suv ,

All the above translates into an improvement on ∆gRicuv , which bootstraps
into Ricg .

Finally, using harmonic coordinates where the Ricci reads

Ricij = g ab∂abgij + fij(g , ∂g)

with fij(g , ∂g) quadratic on ∂g . One has a priori control of fij due to Sobolev
multiplication properties, and then on g ab∂ab(gij − δij), which bootstraps
into an improved control on gij − δij ;

Once we achieve gij − δij ∈ W 5,p
−σ , with max{0, n−4

2
} < σ < n−2, we apply

the PET to conclude.
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Thank you for your attention!
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