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What is a causal fermion system?

approach to fundamental physics
novel mathematical model of spacetime

physical equations are formulated in generalized
spacetimes

Different limiting cases:

@ Continuum limit: Quantized fermionic fields interacting via
classical bosonic fields

@ QFT limit: fermionic and bosonic quantum fields
(ongoing, more towards the end of the talk)

For overview, more details (papers, books, videos, online
course), applications to cosmology and black holes, ...

www.causal-fermion-system.com
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Which spacetime structures are fundamental?

» Clearly, there are personal preferences.

» Ultimately: Which formulation is capable to describe all
known physical phenomena plus quantum gravity?
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Which spacetime structures are fundamental?

» Hypothesis: Consider quantum mechanical wave functions
as the basic physical objects (QFT later)

@ ¢ describes quantum mechanical particle
(only wave character, no point particle)

@ is physical reality even without measurements

o the wave functions have a dynamics as described in the
simplest case by Schrodinger equation (or Dirac equation,
collapse model, ...)

» Vector ¢ in a Hilbert space (3, {.|.)5().
» This is not quite the right description:

@ Phase has no significance: ¢ — e}
instead of ¢) consider ray generated by
@ Local gauge invariance

P(t, X) — M0 (1, X)

Therefore, only |¢(t, X)|? is of physical significance;
interpretation: probability density
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Which spacetime structures are fundamental?

» Thus: Consider |+/(t, X)|? of all quantum mechanical wave
functions as the basic physical objects.

» General question: Suppose we know [1/(t, X)|? for all the
wave functions of the system, what can we say about the
spacetime structures (causality, metric, fields, ...)

» Try to probe spacetime by looking at [+/(t, X)|?.

Here “probing” should be thought of as a mathematical
operation; no collapse of the wave function involved.
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Which spacetime structures are fundamental?

@ Begin in Minkowski space (usual spacetime structures)
x = (t, %), teR, X e R3

(curved spacetime works similarly)
@ Consider scalar particle (no spin)

[W(x)|? (local density)
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Which spacetime structures are fundamental?

First step: Allow for preparation of the “initial state” at time ¢.
» Allows for detecting the causal structure of spacetime:

N\

» Allows for detecting an electromagnetic field:
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Which spacetime structures are fundamental?

Second step: Do not allow for preparation of the “initial state”.
Instead: Get by with the wave function already present.

» Probing still works, provided that there are “sufficiently
many” wave functions around.

¢,
L A

) ( )

» The more wave functions there are, the more information
we have on spacetime
(spacetime resolution, bandwidth, ...)
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Physical picture: Dirac’s hole theory

particles

k

Dirac sea
anti—particles
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Formalize this idea: The local correlation operator

» Consider wave functions 91, ..., : M — C (with f < o)
» Are vectors in a Hilbert space, orthonormalize,
(Vklbr) = o,

gives f-dim Hilbert space (I, (.|.))-
basic object: for any lattice point x introduce

local correlation operator F(x) : H — H
» define matrix elements by

(FOOY, = G0)0k(x)
basis invariant:
(W, F(X) @)gc = (X)) d(X) forally, ¢ € H

» Hermitian matrix = symmetric operator
» Has rank at most one, is positive semi-definite

F(x)=e"e  with e H—-C, 9vr—y(x)




The local correlation map

F(x) € 9 :={F rank at most one, positive semi-definite }

We obtain mapping x = F(x) e F C L(H)
F C L(H)

t M F
— =

» The right side contains all the information which can be
retrieved from the wave functions.
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The local correlation map

F(x) € 9 :={F rank at most one, positive semi-definite }

We obtain mapping x = F(x) e F C L(H)
F C L(H)

t M F
— =

» The right side contains all the information which can be
retrieved from the wave functions.

» We consider the objects on the right as the basic physical
objects.
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Spacetime as the set of all local correlation operators

general strategy:

» disregard objects on the left
(Minkowski space, causal structure, Dirac spinors, ...)

» work instead exclusively with the objects on the right
(only local correlation operators)

F C L(K)
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A volume measure on spacetime

» One important structure is missing: Volume measure on
spacetime.
F C L(H)
t M F

Take push-forward measure of F : M — T,

pi=Fulpa) (e p(Q) = pu(F1(Q))

(where djyq = d*x)
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A volume measure on spacetime

F CL(H)

» image of F (more precisely, its closure) recovered as the
support of the measure,

M :=supp p={F € F| p(Q) # 0
for every open neighborhood Q of x}
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Causal Fermion Systems

Definition (Causal fermion system)

Let (K, (.].)s¢) be Hilbert space
Given parameter n € N (“spin dimension”)

&= {x € L(3{) with the properties:
» X is symmetric and has finite rank
» x has at most n positive
and at most n negative eigenvalues }

p ameasure on &
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Example: Dirac spinors in Minkowski space

Space-time is Minkowski space, signature (+ — — —)

» free Dirac equation (ivk0x —m)y =0
» spin inner product <¢|y>= = ¢t with ¢ := ¢1°,
is indefinite of signature (2,2)

» probability density 1y = <1 |10,
gives rise to a scalar product:

Wlo) = [ <w]20(t.%) X

time independent due to current conservation
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Example: Dirac spinors in Minkowski space

» Choose H as a subspace of the solution space,

H= Span(w'lv' . ﬂﬂf)

» To x € R* associate a local correlation operator

F(x)j = — <i(X)[1hj(x)=  in ONB (1;)j—1,.. s
(WV|IF(x)¢) = = <p(X)|p(x)= Vi, ¢ € H

Is symmetric, rank < 4
at most two positive and at most two negative eigenvalues
» Here ultraviolet regularization may be necessary:

(WIF(X)¢) = = <(RY)N)|(R0)(x)~ Vi, 9 eH
R 1 H— CO, Su) regularization operators
e > 0 : regularization scale (Planck length)
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Example: Dirac spinors in Minkowski space

» Thus F(x) € ¥ where
F = {F € L(H) with the properties:

> F is symmetric and has rank < 4
> F has at most 2 positive

and at most 2 negative eigenvalues }
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Example: Dirac spinors in Minkowski space

We obtain mapping x— F(x) e ¥ C L(K)
F C L(K)

t M F
— T

Take push-forward measure

p=Flpa) (e p(Q) = pa(F(Q))
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Example: Dirac spinors in Lorentzian space-time

F C L(K)

We thus obtain a causal fermion system of spin dimension two.

» Remark: This construction works similarly in curved
spacetimes
(i.e. globally hyperbolic Lorentzian spin manifold)
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The causal action principle

» How can one formulate physical equations in this setting?

@ Intuitive picture: wave functions “organize themselves” in
such a way that the Dirac sea configuration is a minimizer.

@ In interacting situation the wave functions organize to
solutions of the Dirac equation

(W0; + e/ Aj(x) = m)p =0

This should serve as the definition of A.
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Causal action principle

Let x,y € F. Then x and y are linear operators.

x-y € L(H):

@ rank < 2n

@ in general not symmetric: (x-y)* =y-x #x-y
thus non-trivial complex eigenvalues A}, ..., A3}
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Causal action principle

. . . Xy Xy
Nontrivial eigenvalues of xy: A{",..., \57 € C

2n
. 1 2
Lagrangian  L(x,y) = £~ > (A1 - AT >0
=
action S= ff L(x,y) dp(x) dp(y) € [0, ]
FxF

Minimize S under variations of p, with constraints

volume constraint: p(F) = const

trace constraint: / tr(x) dp(x) = const
F

2n
boundedness constraint: H > NP dp(x)dp(y) < C
FxF i=1

» F.F., “Causal variational principles on measure spaces,”’
J. Reine Angew. Math. 646 (2010) 141-194
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A few general remarks

One basic object: measure p on set F of linear operators on H,
describes spacetime as well as all objects therein

» Underlying structure: family of fermionic wave functions
» Geometric structures encoded in these wave functions

Matter encodes geometry
Quantum spacetime

» Causal action principle describes spacetime as a whole
(similar to Einstein-Hilbert action in GR)

» Causal action principle is a nonlinear variational principle
(similar to Einstein-Hilbert action or classical field theory)

» Linear dynamics of quantum theory recovered in limiting
case
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Comparison with non-commutative geometry

» Similarities between NCG and causal fermion systems:

@ spacetime emerges from more fundamental structures

» Differences of causal fermion systems:

@ instead of the Dirac operator, the wave functions are the
central objedts (this is more general, because Dirac
operator no longer needs to exist)

@ the setup is Lorentzian

o from technical point of view, causal action resembles a
Lorentzian version of the spectral action;
heat kernel expansion is replaced by light-cone expansion
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Interpretation in terms of spacetime events

» operators in F can be interpreted as
“possible local correlation operators”
or simply as possible events

» operators in M are the events realized in spacetime
» spacetime is made up of all the realized events
» the physical equations relate the events to each other

For details on this connection:

» F.F, J. Fréhlich, C. Paganini, C. and M. Oppio,
“Causal fermion systems and the ETH approach to quantum theory,”
arXiv:2004.11785 [math-ph] (2020)
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Inherent structures of a causal fermion system

Let (p, F, H) be a causal fermion of spin dimension n,
spacetime M := suppp.

[ spacetime points are linear operators on H ]

» For x € M, consider eigenspaces of x.
» Forx,y e M,

@ consider operator products xy
@ project eigenspaces of x to eigenspaces of y

Gives rise to:

» quantum objects (spinors, wave functions)
» geometric structures (connection, curvature)
» causal structure, analytic structures
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Causal structure
Let x,y € M. Then

x-y € L(H) has non-trivial complex eigenvalues A}, ..., A3
Definition (causal structure)
The points x, y € J are called

spacelike separated  if |A}‘y| =\ |forallj,k=1,....2n

timelike separated ~ if XY, ..., A} are all real
and |)\j’.‘y| # [N | for some j, k

lightlike separated otherwise

» Lagrangian is compatible with causal structure:
2n

. 1 X Xy |\ 2
Lagrangian L£(x,y) = an > (1A= IA))° > 0
ij=1

thus x, y spacelike separated = L(x,y)=0
“points with spacelike separation do not interact”
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A distinguished time direction

X(H) cH subspace of dimension < 2n

Introduce the functional
C: MxM-—-R, C(x,y) ::itr(yXﬂyﬂX—Xyﬂxﬂy)
For timelike separated points x, y € M,

y likes in the future of x  if C(x,y) >0
y likes in the past of x if C(x,y) <0

» The resulting relation “lies in the future of” is not
necessarily transitive.
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Quantum spacetimes

General question: How does an interacting measure look like?

» In more mathematical terms: What is the structure of
minimizing measures?

M
a classical spacetime: \
d

M diffeomorphic to manifol
.

a quantum spacetime:
M~ x B

» integrating over additional “degrees of freedom” 5
resembles path integral
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Quantum spacetimes

Complicated non-smooth structure expected:

X =AYl
A B '/ "n v 4-:\““75"" ‘;'A‘—'
wivp AN

AVZ arei ‘«1'41LC‘, s ! §'1‘—‘

This accounts for macroscopic superpositions and

entanglement:
cat dead
1 3
62 : -rAL‘Ct' ‘,‘ ‘-ﬂ
cat alive
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Quantum spacetimes

» Quantum field theory limit is work in progress. So far:

@ Construction of quantum state at any time ¢
@ Proof of general entanglement
@ Next step: Dynamics of quantum state.

» F.F., N. Kamran, “Complex structures on jet spaces and bosonic Fock
space dynamics for causal variational principles,”’
arXiv:1808.03177 [math-ph], Pure Appl. Math. Q. 17 (2021) 55-140

» F.F. and Kamran, N., “Fermionic Fock spaces and quantum states for
causal fermion systems,”
arXiv:2101.10793 [math-ph], Ann. Henri Poincaré 23 (2022) 1359-1398

» FF, Kamran, N. and Reintjes, M., “Entangled quantum states of causal
fermion systems and unitary group integrals,” arXiv:2207.13157
[math-ph]

Felix Finster Causal fermion systems



The continuum limit

Causal fermion system

» abstract mathematical framework
» quantum geometry, causal action

ﬂ continuum limit

description in the continuum limit
@ Dirac fields
@ strong and electroweak gauge fields
@ gravitational field

» fermion field: second-quantized
» bosonic field: classical
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The causal action principle in the continuum limit

Fundamental Theories of Physics 186

*

Felix Fmster ’_

Fundamental Theories

The Contlnuum | of Physics 186
Limit of Causal

Springer, 2016
, 548+xi pages
Fermion

Systems | arXiv:1605.04742 [math-ph]

From Planck Scale Structures to
Macroscopic Physics

@ Springer
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The causal action principle in the continuum limit

» specify vacuum as sum of Dirac seas,

Z Psea

4

PR ) =/ ﬁ

B labels “generations” of elementary particles

(K + mg) 6(k® — m%) O(—kO) g~ k(x-¥)
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The causal action principle in the continuum limit

» Model involving neutrinos and quarks:

3
P(X7y) = ZPfsneﬁa(X7y)@@Pfsrleﬁa(X?y)@P%eﬁa(X7y)
B=1

7 identical direct summands

@ again three generations
@ 4 x 8 = 32-component wave functions
@ spin dimension 16
» Regularize on the scale ¢ (Planck scale),
regularization of neutrinos breaks chiral symmetry
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The causal action principle in the continuum limit

Results:

» The direct summands form pairs, spontaneous block
formation

» gauge group U(1) x SU(2) x SU(3)

» coupling to the fermions exactly as in the standard model:

@ Uckm, Uuns-mixing matrices
@ SU(2) gauge fields left-handed and massive

» Einstein equations
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The causal action principle in the continuum limit

Remarks on methods for analyzing the continuum limit:
» Consider the Dirac equation in an external potential

(i9+B-—mY)=0.

» Question: Are the EL equations of causal action principle
satisfied in the limit ¢ \,07?

» Answer: Yes, if and only if 5 has a certain structure and
satisfies the classical field equations.
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Connection to octonions

» Octonions: O = {ey,...,e7}
» form a non-associative algebra; on the other hand:
operator algebras are associative

» Form complex octonions

7
C®0 > a:chen
i—0

» Form chains a(b(c---))).
This gives an associative algebra, the -
so-called complex octonionic chain algebra C ® O.
@ is associative
e Ox(Cw® %) - C® © action of octonions on algebra
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Connection to octonions

» Let the octonions act on the vacuum measure:

ZPsea X y)@ fas) Prsnea(X,y) @P%e:(xa.y)

7 identical direct summands

@ eight direct summands; identify with C ® 6
@ use above action O x (C ® 5) S Co0
» Is an approximate symmetry transformation.
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Connection to octonions

» We have three generations. For interacting systems, they
give rise to direct sums of sectors,

3

PaUX(X’y) = @ P,S;%a(x,y) DD P,S;%a(x,y) @Prs?]eﬁa(xa.y)
B=1

7 identical direct summands

P2 0 0
Hr- ( pin o)

0 0 P

» This leads to 3 x 3-matrices with octonionic entries.
Exceptional Jordan algebras.

» Possibly much more ...

Felix Finster Causal fermion systems



www.causal-fermion-system.com

Thank you for your attention!
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Underlying physical principles

» local gauge principle:
freedom to perform local unitary transformations of the
spinors

» Pauli exclusion principle:
Choose orthonormal basis v, ..., of H. Set

V=11 A Ay,

gives equivalent description by Hartree-Fock state.

» the “equivalence principle”:
symmetry under “diffeomorphisms” of M
(note: M merely is a topological measure space)

Spacetime and causal structure are emergent
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Inherent structures of a causal fermion system

» Spinors

SxM = x(H) C H “spin space”, dim SyM < 2n
<Ulv>-x = —(U| x v)sc “spin scalar product”,
inner product of signature (< n, < n)

SyM SxM
Hilbert space H
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Inherent structures in spacetime

» Physical wave functions
PU(x) =mxu withu e H  physical wave function

mx: H—=>H orthogonal projection on x(3)

SyM u

/
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Inherent structures in spacetime

» The kernel of the fermionic projector:

P(y,x) =my x|gm : SxM — SyM

f
P(y,x) ==Y [¥%(y)= <4 (x)| where (e;) ONB of 3
i=1
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Inherent structures in spacetime

» Geometric structures
@ P(x,y) : §yM — S¢M yields relations between spin

spaces.
Using a polar decomposition (..., ...) one gets:
Dy, : SyM — S¢M unitary “spin connection”

@ tangent space Ty, carries Lorentzian metric,
Vxy + Ty = Ty corresponding “metric connection”
@ holonomy of connection gives curvature

R(vaaz) = vX,y vy,z Vz,x Ty — Tx
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Objects in space

» In our daily experience: objects in space (densities, . ..),
spatial integrals (integral over densities, .. .).
» Arise in causal fermion systems as surface layer integrals,

iy M

v -
/; 2

/ dp(x) [ dp(y) (--)L(x,)
Q MQ

» FF, J. Kleiner, “Noether-like theorems for causal variational principles,”
arXiv:1506.09076 [math-ph], Calc. Var. Partial Differential Equations
55:35 (2016)

» FF, J. Kleiner, “A class of conserved surface layer integrals for causal
variational principles,” arXiv:1801.08715 [math-ph], Calc. Var. Partial
Differential Equations 58:38 (2019)
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