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Overview

globally hyperbolic causal fermion systems
Lorentzian geometry

static spacetimes, static causal
ultrastatic spacetimes fermion systems

causal variational principles

! Begin with setting of causal variational principles

! The red arrow will be explained at the end of the talk
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General setup of causal variational principles

! Let G be a manifold of dimG ! 4
(or locally compact topological space, no smoothness!)

! Lagrangian L : G× G → R
+
0

• continuous (or lower semi-continuous)
• L(x , y) = L(y , x) (symmetric)
• L(x , x) > 0 for all x ∈ G (strictly positive on diagonal)

! Let µ be a regular Borel measure (= Radon measure) on G

action S(µ) :=

∫

G

dµ(x)

∫

G

dµ(y) L(x , y)

Causal variational principle

Minimize S under variations of µ,
keeping the total volume µ(G) fixed.

How to keep the total volume fixed if µ(G) = ∞?
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General setup of causal variational principles

Definition (minimizer under variations of finite volume)

The measure µ is a minimizer under variations of finite volume
if for all µ̂ with

|µ − µ̂| < ∞ and (µ− µ̂)(G) = 0 ,

the difference of actions is non-negative, S(µ̂)− S(µ) ≥ 0.

0 = S(µ̂)− S(µ) = S
(

µ+ (µ̂− µ)
)

− S(µ)

:= 2

∫

G

d(µ̂− µ)(x)

∫

G

dµ(y) L(x , y)

+

∫

G

d(µ̂− µ)(x)

∫

G

d(µ̂− µ)(y) L(x , y)

! Minimizers exist under general assumptions
F.F, C. Langer, “Causal Variational Principles in the σ-Locally Compact
Setting: Existence of Minimizers,” arXiv:2002.04412 [math-ph],
Adv. Calc. Var. 15 (2022) 551–575
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General setup of causal variational principles

Typical example:

! N := supp µ space (no smoothness!)
Typically, N is contained in a low-dimensional subset of G.
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General setup of causal variational principles

What does minimality mean?

! Let µ be a minimizing measure, N := supp µ

! Choose Ω ⊂ N of finite volume (µ(Ω) < ∞).

! Choose x ∈ G.

! For τ ∈ [0,1] consider family

µ̂τ := χN\Ω µ+ (1 − τ)χΩ µ+ τ µ(Ω) δx

satisfies the volume constraint

! Therefore,

0 ≤ S(µ̂τ )− S(µ) for all τ

=⇒ 0 ≤
d

dτ

(

S(µ̂τ )− S(µ)
)∣

∣

∣

τ=0
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General setup of causal variational principles

Working this out gives the following result:

$(x) :=

∫

G

L(x , y) dµ(y)− s

Lemma (The Euler-Lagrange equations)

Let µ be a minimizer of the causal action. Then for suitable
s > 0,

$|M ≡ inf
F
$ = 0

$

GN
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A nonlinear positive functional

Ongoing work with Niky Kamran (McGill, Montréal)

! Let µ again be minimizer (vacuum), N := supp µ

! Let µ̃ be critical (interacting or curved space), Ñ := supp µ̃

! Choose Ω ⊂ N, Ω̃ ⊂ Ñ,
of the same volume: µ(Ω) = µ̃(Ω̃)

! “Take out” Ω and “glue in” Ω̃ into N,

µ̂ := χN\Ω µ+ χ
Ω̃
µ̃
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A nonlinear positive functional

µ̂ := χN\Ωµ+ χ
Ω̃
µ̃

! satisfies volume constraint

Therefore,

0 ≤ S(µ̂)− S(µ) = · · · =

= 2

∫

Ω̃

d µ̃(x)

∫

M\Ω
dµ(y) L(x , y)

−

∫

Ω̃

d µ̃(x)

∫

M̃\Ω̃
d µ̃(y) L(x , y)−

∫

Ω

dµ(x)

∫

M\Ω
dµ(y) L(x , y)

What does this mean?
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A nonlinear positive functional

! V := µ(Ω) volume

! A :=

∫

Ω

dµ(x)

∫

N\Ω
dµ(y) L(x , y) area

surface layer integral

!

∫

Ω̃

d µ̃(x)

∫

M\Ω
dµ(y) L(x , y)

is a nonlinear surface layer integral comparing spacetimes
near ∂Ω and ∂Ω̃

Felix Finster Causal variational principles

den Frage
wie

-

Am
y 2N



More general positive functionals

V =

∫

Ω

dµ volume

A =

∫

Ω

dµ(x)

∫

N\Ω
dµ(y) L(x , y) area

! With volume constraint and µ̃ critical:

2

∫

Ω̃

d µ̃(x)

∫

N\Ω
dµ(y) L(x , y)− Ã − A ≥ 0

! Remove volume constraint:

M(Ω̃,Ω) := 2

∫

Ω̃

d µ̃(x)

∫

N\Ω
dµ(y)L(x , y)−Ã−A − s

(

Ṽ − V
)

≥ 0

! Remove criticality of µ̃:

N(Ω̃,Ω) := M(Ω̃,Ω) − s Ṽ +

∫

Ω̃

d µ̃(x)

∫

Ñ
d µ̃(y) L(x , y) ≥ 0
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The total mass

! Let (Ωn)n∈N be exhaustion of N by compact sets,
(Ω̃n)n∈N exhaustion of Ñ with

µ(Ωn) = µ̃(Ω̃n) for all n

M := lim
n→∞

M(Ω̃,Ω)

This gives back the total mass introduced in

! F.F, A. Platzer,
“A positive mass theorem for static causal fermion systems,”
arXiv:1912.12995 [math-ph],
Adv. Theor. Math. Phys. 25 (2021) 1735–1818
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The total mass

Theorem

M ≥ 0

Thus we get the positive mass theorem without a local
energy condition!
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A positive mass theorem without volume constraint

• The condition

µ(Ωn) = µ̃(Ω̃n) for all n

seems somewhat artificial. It can indeed be removed!
Instead, Ω and Ω̃ must be asymptotically aligned
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A quasi-local mass

Given Ω̃ ⊂ Ñ define

M(Ω̃) := inf
Ω⊂M

inf
I
M(Ω̃, IΩ)

with I : G → G isometry of the Lagrangian, i.e.

L(x , y) = L(Ix , Iy) for all x , y ∈ G

Gives close connection to Brown-York mass

choose ι : ∂Ω̃ ↪→ ∂Ω ⊂ R
3 isometric

MBY =

∫

∂Ω̃

H̃ dµ∂Ω̃ −

∫

∂Ω

H dµ∂Ω

! Brown-York (1993), Shi-Tam (2002), Liu-Wang-Yau, . . .
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Synthetic scalar curvature

! If Ω̃ and Ω are “sufficiently close”, we can linearize:

∫

Ω̃

g d µ̃(x) ≈

∫

Ω

(1 +∇vg)dµ(x)

∇vg(x) = a(x)g(x) +
(

Dvg
)

Then the so-called linearized field operator ∆ comes into play

M(Ω̃) = −

∫

N

(

∆v
)

(x) dµ(x)

(

∆v
)

(x) :=

∫

N
dµ(y)

(

∇1,v +∇2,v

)

L(x , y)−∇v s
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Synthetic scalar curvature

Therefore, define scalar curvature by

scal(x) := −
(

∆v
)

(x) .

Then, in the linearized setting, the quasi-local mass is given as
in Newtonian gravity by

M(Ω̃) =

∫

N
scal(x) dµ(x)

! The so-defined scalar curvature can be positive or
negative.
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From spin geometry to causal variational principles

Let M be a Lorentzian space-time,
for simplicity 4-dimensional, globally hyperbolic,
ultrastatic, i.e.

M = R× N

ds2 = dt2 −
3

∑

α,β=1

gαβ dxα dxβ

with complete Riemannian metric g on N

Then automatically spin,

(SM,≺.|./) spinor bundle

! SpM 0 C4

! spin inner product

≺.|./p : SpM × SpM → C

is indefinite of signature (2,2)
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From spin geometry to causal variational principles

(D − m)ψm = 0 Dirac equation

Dirac equation in Hamiltonian formulation,

i∂tψ = Hψ

H self-adjoint operator on Hm := L2(N ,SM)

ψ(t , x) = e−itH ψ(0, x) .
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From spin geometry to causal variational principles

! Choose H as a subspace of all negative-frequency
solutions,

H = rgχ−∞,0(H) ⊂ Hm

! introduce an ultraviolet regularization on scale ε (Planck
length)

Rε : H → C0(M,SM) regularization operators

for example Rε = eεH

! Define local correlation operator F (t , x) ∈ L(H) by

〈ψ|F (t , x)φ〉 = −≺(Rεψ)(t , x)|(Rεφ)(t , x)/ ∀ψ,φ ∈ H

Is self-adjoint, rank ≤ 4
at most two positive and at most two negative eigenvalues
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From spin geometry to causal variational principles

! Thus F (t , x) ∈ F where

F :=
{

F ∈ L(H) with the properties:

+ F is self-adjoint and has rank ≤ 4
+ F has at most 2 positive

and at most 2 negative eigenvalues
}
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From spin geometry to causal variational principles

We obtain mapping (t , x) 4→ F (t , x) ∈ F ⊂ L(H)

Ft

,x

F ⊂ L(H)

! push-forward measure ρ := F∗(µM), is measure on F,

ρ(Ω) := µM

(

F−1(Ω)
)

! support of the measure is closure of image of F .
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From spin geometry to causal variational principles

Definition (Causal fermion system)

Let (H, 〈.|.〉H) be Hilbert space
Given parameter n ∈ N (“spin dimension”)

F :=
{

x ∈ L(H) with the properties:

! x is self-adjoint and has finite rank

! x has at most n positive

and at most n negative eigenvalues
}

ρ a measure on F

M
M := supp ρ space-time
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From spin geometry to causal variational principles

Starting from an ultrastatic spacetime,

Ut := e−itH one-parameter group of symmetries

F (t , x) = Ut F (0, x)U−1
t

ρ
(

Ut ΩU−1
t

)

= ρ(Ω)

M := supp ρ = R× N

dρ = dt dµ , N = supp µ .

• define G := F/R

• there is an explicitly given static Lagrangian

L : G× G → R
+
0
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From spin geometry to causal variational principles

Let X ,Y ∈ F. Then X and Y are linear operators.

X ·Y ∈ L(H):

• rank ≤ 4

• in general not self-adjoint: (X ·Y )∗ = Y ·X 5= X ·Y

thus non-trivial complex eigenvalues λ1, . . . ,λ4

Lagrangian L(t , x ; t , y) =
1

4n

4
∑

i ,j=1

(

|λi |− |λj |
)2

≥ 0

static Lagrangian L(x , y) :=

∫ ∞

−∞
L(0, x ; t , y) dt

(constraints of causal action principle built in by fixing the trace
and adding a Lagrange multiplier term)
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From spin geometry to causal variational principles

Summary

ultrastatic spactime R× N with (N ,g) Riemannian manifold

family of spinorial wave functions

& integration measure dµ =
√

det g d3x

encode information in measure µ on G

Lagrangian L on G× G via eigenvalues of operator products

S(µ) =

∫

G

dµ(x)

∫

G

dµ(y) L(x , y)
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www.causal-fermion-system.com

Thank you for your attention!
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