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Overview

Causal fermion system

» approach to describe fundamental physics
» candidate for a unified physical theory

» novel approach to describe space and space-time,
as well as structures therein:

“‘quantum space-time,” “qguantum geometry”

» dynamics described by causal action principle
@ intrinsic, no space-time presupposed
@ space-time emerges by minimizing the causal action
@ generally covariant
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Overview: limiting cases

Causal fermion system

» abstract mathematical framework
» quantum geometry, causal action

ﬂ continuum limit

description in the continuum limit
@ Dirac fields
@ strong and electroweak gauge fields
@ gravitational field

arXiv:1409.2568 [math-ph]

» fermion field: second-quantized
» bosonic field: classical
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Overview: limiting cases

[ Causal fermion system }

ﬂ continuum limit

~ description in the continuum limit |

ﬂ one patrticle

Dirac equation:  (iY/9; + B — m)i) =0

ﬂ non-relativistic limit
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Overview: limiting cases

[ Causal fermion system }

ﬂ continuum limit

_description in the continuum limit |

ﬂ microscopic mixing

arXiv:1409.2568 [math-ph], J. Math. Phys. 55 (2014) 042301
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Overview: limiting cases

| Causal fermion system |

ﬂ continuum limit

description in the classical Yang-Mills theory,
continuum limit general relativity

Ll

QM QFT
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Overview: limiting cases

| Causal fermion system | }nonlinear

ﬂ continuum limit
descr_iption il:l tf.le N YM nonlinear
continuum limit GR

QM QFT }Iinear
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Towards causal fermion systems

[ Space-time point is a linear operator on a Hilbert space ]

Thus we need
» Hilbert space (X, (.|.)5)
» a collection of linear operators on H
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Example: Dirac spinors in Minkowski space

Space-time is Minkowski space, signature (+ — ——)

space-time point x € R*%, need to associate operator F(x)
» free Dirac equation  (iv% 9k —m)v =0
» probability density oty = )70,
gives rise to a scalar product:

(W16 = /, @R dF

time independent due to current conservation
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Example: Dirac spinors in Minkowski space

» Consider a collection of one-particle wave functions

(PR
(Pauli exclusion principle, .. ., later)
» orthonormalize: (Vk|vr) = o

» For space-time point x introduce

F(x )kz—w,( Yk(x) local correlation matrix

@ Hermitian f x f-matrix
e rank at most four: Gram matrix or

F(x)=eec, 6 :H=Ch v y(x)

e at most two positive and at most two negative eigenvalues
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Example: Dirac spinors in Minkowski space

» similarly basis independent:

Ho=<ahy,. .., > Hilbert space

(WIF(x)¢) = —b(x)e(x) VY, ¢ e H

local correlation operator, is self-adjoint operator in L(J)

» Thus F(x) € ¥ where
F = {F € L(%) with the properties:

> F is self-adjoint and has rank < 4
> F has at most 2 positive

and at most 2 negative eigenvalues }
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Example: Dirac spinors in Minkowski space

We obtain mapping x— F(x) e F CL(K)
F C L(H)

t F
— T

Concept:
» disregard the left side
» work exclusively with objects on the right.
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Example: Dirac spinors in Minkowski space

one more thing: The space-time volume
F C L(H)

t F

F1(Q)

X

p(Q) = / d*x = u(F(Q)
F=1(Q)
» push-forward measure, is measure on F.

» image of F recovered as the support of the measure,

M :=supp p={F € F| p(Q) #0
for every open neighborhood €2 of x}
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Example: Dirac spinors in Minkowski space

resulting structure: measure p on F C L(K)

F C L(H)
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Example: A space-time lattice

F C L(KH)
/_\ .
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Example: A space-time lattice

F C L(KH)
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Example: curved space-time

F C L(H)

F C L(KH)
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Definition (Causal fermion system)

Let (K, (.|.)s¢) be Hilbert space (“particle space”)
Given parameter n € N (“spin dimension”)

& = {x € L(H) with the properties:
> x is self-adjoint and has finite rank
> x has at most n positive
and at most n negative eigenvalues }

p a measure on ¥ (“universal measure”)

(p, F,H) is a causal fermion system.

F C L(K)

space-time M := supp p
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F C L(K)

space-time M := supp p

Advantage of general framework:

» “Spinors on singular spaces ...,
F-Kamran, arXiv:1403.7885 [math-ph]

» UV-regularized space-times
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Inherent structures in space-time

Let (p, F, H) be a causal fermion system,
space-time defined by M := suppp.

[ Space-time points are linear operators on H ]

» For x € M, consider eigenspaces of x.
» For x,y € M consider

@ consider operator products xy
@ project eigenspaces of x to eigenspaces of y

Gives rise to:
» quantum objects (spinors, wave functions)
» geometric structures (connection, curvature)
» causal structure, analytic structures

Felix Finster Causal fermion systems



Causal structure

Let x,y € M. Then

x-y € L(H):
@ rank < 2n
@ in general not self-adjoint: (x-y)* =y-x # x-y
thus non-trivial complex eigenvalues Ay, ..., A3/
Definition (causal structure)
The points x, y € J are called
timelike separated  if AY,..., A} are all real

spacelike separated  if A}, ..., A3} are all non-real
XY XY .
and |\;7| = |)\j | Vi,j
lightlike separated otherwise
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Causal action principle

12n

Lagrangian  L[Ay] = .~ > (I - |>\j)~(y|)2 >0
=1
action S= ff L[Axy] dp(x) dp(y)
X, yeM

Minimize S under variations of p, impose suitable constraints.
Gives mathematically well-defined variational principles.

» Lagrangian is compatible with causal structure, i.e.
X, y spacelike separated = L(x,y)=0
“points with spacelike separation do not interact”
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Inherent structures

» Spinors
Sx == x(H) CH “spin space”, dim Sy < 2n
<Uulvx = —(u| x vy “spin scalar product”,

is indefinite of signature (< n, < n)

» Space of one-particle wave functions

V:xeM— V(x)e S “wave function”

wave functions form Krein space (K, (.|.)):
(V]|o) ::/ <W(x)|®(x)>x dp(x) indefinite inner product
M

H%Z)Hz:/MW(X)HXW(X))&c dp(x) norm, induces topology
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Inherent structures

» Physical wave functions and the fermionic operator

Y(x) =mxyp withy € H physical wave function
P(x,y)=mxy : Sy — S« “kernel of fermionic operator”

f
= Z [i(x)= <vi(y)| where v; basis of H
=1

The fermionic operator was indeed the starting point:

e Principle
of the “The Principle of the Fermionic Projector”

Fermionic o
AMS/IP Studies in Advanced Math. 35 (2006)

Projector

Felix Finster
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Inherent structures

» Geometric structures

e P(x,y) : S, — Syyields relations between spin spaces.
Using a polar decomposition (..., ...) one gets:

Dy, : Sy — S unitary “spin connection”

e tangent space Ty, carries Lorentzian metric,

Viy 1 Ty = Tx corresponding “metric connection”
e a distinguished time direction
e holonomy of connection gives curvature

R(X,%Z) =VxyVyzVzx: T = Tx.
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Inherent structures

» Local gauge freedom
Choose pseudo-orthonormal basis (e,) of Sy, i.e.
<eqleg= = Sa0ap With S1,....8p =1, Spi1,...,8p1q = —1
Then ¥ € K can be written in components as
p+q

D(x) =Y U (X) ealx)
a=1

The basis (¢, ) can be chosen freely at every x:

p+q
ea = > (U)Jeg mitUeU(p,q)
B=1

p+q
(X)) = 3 U3 6 (x)
B=1

interpretation: local gauge freedom with group U(p, q)
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Underlying physical principles

» Pauli exclusion principle:
Choose orthonormal basis 91, ..., 9 of H. Set

V=1 A Ay,

gives equivalent description by Hartree-Fock state.
» local gauge principle:
freedom to perform local unitary transformations.

» the “equivalence principle”:
symmetry under “diffeomorphisms” of M
(note: M merely is a topological measure space)

but no locality
causality and time direction not preassumed but emergent
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The causal action principle in the continuum limit

Specify vacuum:

» Choose H as the space of all negative-energy solutions,
hence “Dirac sea”

®
\ /410165

N

k

Dirac sea
anti—particles

Fixes length scale (“Compton length”)

» Introduce ultraviolet regularization, “quantum geometry”
Fixes length scale (“Planck length”)
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The causal action principle in the continuum limit

» specify vacuum as sum of Dirac seas,

Z Psea

4 .
Pe(x.y) = / (;’)‘4 (K-+ ms) 5(K2 — ) ©(—K") &+

B labels “generations” of elementary particles

= Dynamical equations only if three generations (g = 3)
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The causal action principle in the continuum limit

» Model involving neutrinos and quarks:

Z PSR, Y) @+ © PEA(x,y) DPE3(X, )

7 identical dlrect summands

(thus 4 x 8 = 32-component wave functions)
again three generations

» Regularize the neutrinos suitably
(shear and general surface states), break chiral symmetry
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The causal action principle in the continuum limit

Results:

» The direct summands form pairs, spontaneous block
formation

» gauge group U(1) x SU(2) x SU(3)

» coupling to the fermions exactly as in the standard model:

@ Ucxy, Uuns-mixing matrices
e SU(2) gauge fields left-handed and massive

» Einstein equations
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The causal action principle in the continuum limit

Remarks on methods for analyzing the continuum limit:

» The Dirac sea vacuum is a critical point of the causal action
(in a well-defined mathematical sense)

» Vary the fermionic projector:
Consider the Dirac equation in an external potential

(ig+B—-mY)y=0.
e Singularities of P(x, y) drop out of EL equations,
no counter terms needed!

e Non-perturbative method for constructing P(x, y):
mass oscillation property (F-Reintjes 2013).
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Thank you for your attention!
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Example: the Minkowski vacuum

Theorem (F-Grotz, 2011)
There are regularizations P¢(x,y) such that in the limit \, 0:
@ The causal structure goes over to that of Minkowski space
@ (Sx, <.|.>x) can be identified with the usual spinor space,
<|p-x = Y(X)p(x)

@ The spin connection Dy , becomes trivial.

x-y~a(y—xyy+b withabeR (Lorentzsymmetry)

XY = b= fal\/(y — x)(y - x)
are real if y — x timelike
form complex conjugate pair if y — x spacelike
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Example: a globally hyperbolic space-time

Analogous result in presence of gravitational field:

Theorem (F-Grotz, 2011)

Let (M, g) be a globally hyperbolic Lorentzian manifold. There
are regularizations P*(x, y) such that in the limite \, 0:

@ Dy, goes over to the metric spin connection.
Curvatures gives the Riemann curvature tensor.

||m ||m DX X DX X A DX X
N— oo E\{O N>AN—1 N—1,AN-2 1,40

=0t +o(un 720 (1-+0(35)
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The mechanism of microscopic mixing

Decompose the universal measure as

Pﬂ

The action becomes

L
S0 =13 3 [] £0x.y) d(Ver)(x) dVen)(y)

a,b=1FxF

&_Fifoﬁxy p)(x) d(Vip)(y) -

a£bFxF

“Mixed terms” can be made small by dephasing (decoherence).
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The mechanism of microscopic mixing

» Leads to decompositino of space-time
M= M; UM, with MinM =&

“fine-grained on microscopic scale”

» Effective description using Fock spaces
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