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Overview

Causal fermion system

� approach to describe fundamental physics
� candidate for a unified physical theory

� novel approach to describe space and space-time,
as well as structures therein:

“quantum space-time,” “quantum geometry”

� dynamics described by causal action principle
intrinsic, no space-time presupposed
space-time emerges by minimizing the causal action
generally covariant
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Overview: limiting cases

Causal fermion system

� abstract mathematical framework
� quantum geometry, causal action

www� continuum limit

description in the continuum limit
Dirac fields
strong and electroweak gauge fields
gravitational field

arXiv:1409.2568 [math-ph]

� fermion field: second-quantized
� bosonic field: classical
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Overview: limiting cases

Causal fermion systemww� continuum limit

description in the continuum limitww� one particle

Dirac equation: (iγ j∂j + B−m)ψ = 0ww� non-relativistic limit

Schrödinger equation: i∂tψ = Hψ

quantum mechanics
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Overview: limiting cases

Causal fermion systemww� continuum limit

description in the continuum limitww� microscopic mixing

also second-quantized bosonic field
loop diagrams, renormalization, . . . (work in progress)

relativistic quantum field theory

arXiv:1409.2568 [math-ph], J. Math. Phys. 55 (2014) 042301
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Overview: limiting cases

Causal fermion systemww� continuum limit

description in the
continuum limit

=⇒
classical Yang-Mills theory,

general relativityww� ww�
QM QFT
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Overview: limiting cases

Causal fermion systemww� continuum limit

description in the
continuum limit

=⇒ YM
GRww� ww�

QM QFT

}
nonlinear

}
nonlinear

}
linear
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Towards causal fermion systems

Space-time point is a linear operator on a Hilbert space

Thus we need
� Hilbert space (H, 〈.|.〉H)

� a collection of linear operators on H

Felix Finster Causal fermion systems



Example: Dirac spinors in Minkowski space

Space-time is Minkowski space, signature (+−−−)

space-time point x ∈ R4, need to associate operator F (x)

� free Dirac equation (iγk∂k −m)ψ = 0
� probability density ψ†ψ = ψγ0ψ,

gives rise to a scalar product:

〈ψ|φ〉 =

∫
t=const

(ψγ0φ)(t , ~x) d~x

time independent due to current conservation
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Example: Dirac spinors in Minkowski space

� Consider a collection of one-particle wave functions

ψ1, . . . , ψf

(Pauli exclusion principle, . . . , later)
� orthonormalize: 〈ψk |ψl〉 = δkl

� For space-time point x introduce

F (x)j
k = −ψj(x)ψk (x) local correlation matrix

Hermitian f × f -matrix
rank at most four: Gram matrix or

F (x) = e∗
x ex , ex : H→ C4, ψ 7→ ψ(x)

at most two positive and at most two negative eigenvalues
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Example: Dirac spinors in Minkowski space

� similarly basis independent:

H := <ψ1, . . . , ψf> Hilbert space

〈ψ|F (x)φ〉 = −ψ(x)φ(x) ∀ψ, φ ∈ H

local correlation operator, is self-adjoint operator in L(H)

� Thus F (x) ∈ F where
F :=

{
F ∈ L(H) with the properties:

. F is self-adjoint and has rank ≤ 4

. F has at most 2 positive
and at most 2 negative eigenvalues

}
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Example: Dirac spinors in Minkowski space

We obtain mapping x 7→ F (x) ∈ F ⊂ L(H)

Ft

~x

F ⊂ L(H)

Concept:
� disregard the left side
� work exclusively with objects on the right.
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Example: Dirac spinors in Minkowski space

one more thing: The space-time volume

Ft
F ⊂ L(H)

Ω

~x

F−1(Ω)

ρ(Ω) :=

∫
F−1(Ω)

d4x = µ
(
F−1(Ω)

)
� push-forward measure, is measure on F.
� image of F recovered as the support of the measure,

M := supp ρ =
{

F ∈ F | ρ(Ω) 6= 0
for every open neighborhood Ω of x

}
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Example: Dirac spinors in Minkowski space

resulting structure: measure ρ on F ⊂ L(H)

F ⊂ L(H)

M := suppρ
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Example: A space-time lattice

Ft

~x

F ⊂ L(H)
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Example: A space-time lattice

Ft

~x

F ⊂ L(H)

M := suppρ

F ⊂ L(H)
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Example: curved space-time

Ft

~x

F ⊂ L(H)

M := suppρ

F ⊂ L(H)
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Definition (Causal fermion system)

Let (H, 〈.|.〉H) be Hilbert space (“particle space”)
Given parameter n ∈ N (“spin dimension”)
F :=

{
x ∈ L(H) with the properties:

� x is self-adjoint and has finite rank
� x has at most n positive

and at most n negative eigenvalues
}

ρ a measure on F (“universal measure”)

(ρ,F,H) is a causal fermion system.

F ⊂ L(H)

space-time M := supp ρ
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F ⊂ L(H)

space-time M := supp ρ

Advantage of general framework:
� “Spinors on singular spaces . . . ,”

F-Kamran, arXiv:1403.7885 [math-ph]
� UV-regularized space-times,

similar to talk by Achim Kempf:

UV-regularized = bandlimited

regularized objects are considered as fundamental objects
framework for doing analysis and geometry in this setting
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Information theoretic point of view

Consider the setting from perspective of information theory:
Let (ρ,F,H) be a causal fermion system,
Encodes plenty of information:
� x ∈ F has eigenvalues
� operator products xy has eigenvalues
� integrate quantities over space-time,∫

F

· · · dρ

Connection to information theory remains to be developed:
� Right now: no operational point of view
� No definitions of entropy, temperature, . . .

Next: Try bring the information into a useful form.
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Inherent structures in space-time

Let (ρ,F,H) be a causal fermion system,
space-time defined by M := suppρ.

Space-time points are linear operators on H

� For x ∈ M, consider eigenspaces of x .
� For x , y ∈ M consider

consider operator products xy
project eigenspaces of x to eigenspaces of y

Gives rise to:

� quantum objects (spinors, wave functions)
� geometric structures (connection, curvature)
� causal structure, analytic structures
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Causal structure

Let x , y ∈ M. Then

x ·y ∈ L(H):
rank ≤ 2n
in general not self-adjoint: (x ·y)∗ = y ·x 6= x ·y

thus non-trivial complex eigenvalues λxy
1 , . . . , λ

xy
2n

Definition (causal structure)
The points x , y ∈ F are called

spacelike separated if |λxy
j | = |λxy

k | for all j , k = 1, . . . ,2n

timelike separated if λxy
1 , . . . , λ

xy
2n are all real

and |λxy
j | 6= |λ

xy
k | for some j , k

lightlike separated otherwise
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Causal action principle

Lagrangian L[Axy ] =
1

4n

2n∑
i,j=1

(
|λxy

i | − |λ
xy
j |
)2 ≥ 0

action S =
x

F×F

L[Axy ] dρ(x) dρ(y)

Minimize S under variations of ρ, impose suitable constraints.
Gives mathematically well-defined variational principles.

� Lagrangian is compatible with causal structure, i.e.
x , y spacelike separated ⇒ L(x , y) = 0

“points with spacelike separation do not interact”
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What does causality mean?

� There are causal relations:
distinction space-like, time-like
direction of time

� Locality holds:
Space-time regions with space-like separation

have independent dynamics
BUT
� relation “lies in the future of” not necessarily transitive
� no causation
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Inherent structures

� Spinors

Sx := x(H) ⊂ H “spin space”, dim Sx ≤ 2n
≺u|v�x := −〈u | x v〉H “spin scalar product”,

is indefinite of signature (≤ n,≤ n)

� Space of one-particle wave functions

Ψ : x ∈ M 7→ Ψ(x) ∈ Sx “wave function”

wave functions form Krein space (K, 〈.|.〉):

〈Ψ|Φ〉 :=

∫
M
≺Ψ(x)|Φ(x)�x dρ(x) indefinite inner product

|||ψ |||2 =

∫
M
〈ψ(x)| |x |ψ(x)〉H dρ(x) norm, induces topology
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Inherent structures

� Physical wave functions and the fermionic operator

ψ(x) = πx ψ with ψ ∈ H physical wave function
P(x , y) = πx y : Sy → Sx “kernel of fermionic operator”

= −
f∑

i=1

|ψi(x)�≺ψi(y)| where ψi basis of H

The fermionic operator was indeed the starting point:

“The Principle of the Fermionic Projector”
AMS/IP Studies in Advanced Math. 35 (2006)
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Inherent structures

� Geometric structures
P(x , y) : Sy → Sx yields relations between spin spaces.
Using a polar decomposition (. . . , . . . ) one gets:

Dx,y : Sy → Sx unitary “spin connection”

tangent space Tx , carries Lorentzian metric,

∇x,y : Ty → Tx corresponding “metric connection”

a distinguished time direction
holonomy of connection gives curvature

R(x , y , z) = ∇x,y ∇y,z ∇z,x : Tx → Tx .
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Inherent structures

� Local gauge freedom
Choose pseudo-orthonormal basis (eα) of Sx , i.e.

≺eα|eβ� = sαδαβ with s1, . . . , sp = 1, sp+1, . . . , sp+q = −1

Then Ψ ∈ K can be written in components as

ψ(x) =

p+q∑
α=1

ψα(x) eα(x)

The basis (eα) can be chosen freely at every x :

eα →
p+q∑
β=1

(U−1)βα eβ mit U ∈ U(p,q)

ψα(x) →
p+q∑
β=1

U(x)αβ ψ
β(x)

interpretation: local gauge freedom with group U(p,q)
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Underlying physical principles

� Pauli exclusion principle:
Choose orthonormal basis ψ1, . . . , ψf of H. Set

Ψ = ψ1 ∧ · · · ∧ ψf ,

gives equivalent description by Hartree-Fock state.
� local gauge principle:

freedom to perform local unitary transformations.
� the “equivalence principle”:

symmetry under “diffeomorphisms” of M
(note: M merely is a topological measure space)

locality, causality and time direction are emergent
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The causal action principle in the continuum limit

Specify vacuum:
� Choose H as the space of all negative-energy solutions,

hence “Dirac sea”
ω

k

anti−particles

particles

Dirac sea

Fixes length scale (“Compton length”)
� Introduce ultraviolet regularization, “quantum geometry”

Fixes length scale (“Planck length”)
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The Minkowski vacuum in the continuum limit

Theorem (F-Grotz, 2011)

There are regularizations Pε(x , y) such that in the limit ε↘ 0:
The causal structure goes over to that of Minkowski space
(Sx ,≺.|.�x ) can be identified with the usual spinor space,

≺ψ|φ�x = ψ(x)φ(x)

The spin connection Dx ,y becomes trivial.

In particular:
� The relation “lies in the future of” becomes transitive.
� For Dirac equation: Cauchy problem well-posed, causation
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Correspondence of the causal structure

x ·y ' a (y − x)jγj + b with a,b ∈ R (Lorentz symmetry)

λ
xy
i = b ± |a|

√
(y − x)j(y − x)j{

are real if y − x timelike
form complex conjugate pair if y − x spacelike
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The causal action principle in the continuum limit

� specify vacuum as sum of Dirac seas,

P(x , y) =

g∑
β=1

Psea
mβ

(x , y)

Psea
mβ

(x , y) =

∫
d4k

(2π)4 (k/+ mβ) δ(k2 −m2
β) Θ(−k0) e−ik(x−y)

β labels “generations” of elementary particles

=⇒ Dynamical equations only if three generations (g = 3)
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The causal action principle in the continuum limit

� Model involving neutrinos and quarks:

P(x , y) =
3∑

β=1

Psea
mβ

(x , y)⊕ · · · ⊕ Psea
mβ

(x , y)︸ ︷︷ ︸
7 identical direct summands

⊕Psea
m̃β

(x , y)

(thus 4× 8 = 32-component wave functions)
again three generations

� Regularize the neutrinos suitably
(shear and general surface states), break chiral symmetry
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The causal action principle in the continuum limit

Results:
� The direct summands form pairs, spontaneous block

formation
� gauge group U(1)× SU(2)× SU(3)

� coupling to the fermions exactly as in the standard model:
UCKM, UMNS-mixing matrices
SU(2) gauge fields left-handed and massive

� Einstein equations
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The causal action principle in the continuum limit

Remarks on methods for analyzing the continuum limit:
� The Dirac sea vacuum is a critical point of the causal action

(in a well-defined mathematical sense)
� Vary the fermionic projector:

Consider the Dirac equation in an external potential

(i∂/+ B −mY )ψ = 0 .

Singularities of P(x , y) drop out of EL equations,
no counter terms needed!
Non-perturbative method for constructing P(x , y):
mass oscillation property (F-Reintjes 2013).
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A few references
Survey articles:

� F.F., J. Kleiner, “Causal fermion systems as a candidate for a unified physical
theory,” arXiv:1502.03587 [math-ph]

� F.F., “A formulation of quantum field theory realizing a sea of interacting Dirac
particles,” arXiv:0911.2102 [hep-th], Lett. Math. Phys. 97 (2011) 165-183

For further reading:

� F.F., A. Grotz, “A Lorentzian quantum geometry,” arXiv:1107.2026 [math-ph],
Adv. Theor. Math. Phys. 16 (2012) 1197–1290

� F.F., “Perturbative quantum field theory in the framework of the fermionic
projector,” arXiv:1310.4121 [math-ph], J. Math. Phys. 55 (2014) 042301

� F.F., “Causal variational principles on measure spaces,” arXiv:0811.2666
[math-ph], J. Reine Angew. Math. 646 (2010) 141–194

� F.F., “The Principle of the Fermionic Projector,” hep-th/0001048, hep-th/0202059,
hep-th/0210121, AMS/IP Studies in Advanced Mathematics 35 (2006)

� F.F., “An action principle for an interacting fermion system and its analysis in the
continuum limit,” arXiv:0908.1542 [math-ph]

� F.F., “The continuum limit of a fermion system involving neutrinos: weak and
gravitational interactions,” arXiv:1211.3351 [math-ph]

� F.F., “The continuum limit of a fermion system involving leptons and quarks:
strong, electroweak and gravitational interactions,” arXiv:1409.2568 [math-ph]

Thank you for your attention!
Felix Finster Causal fermion systems



Example: a globally hyperbolic space-time

Analogous result in presence of gravitational field:

Theorem (F-Grotz, 2011)

Let (M,g) be a globally hyperbolic Lorentzian manifold. There
are regularizations Pε(x , y) such that in the limit ε↘ 0:

Dx ,y goes over to the metric spin connection.
Curvatures gives the Riemann curvature tensor.

x
0

x

x

1

N

lim
N→∞

lim
ε↘0

DxN ,xN−1 DxN−1,xN−2 · · · Dx1,x0

= DLC
x ,y + O

(
L(γ)

‖∇R‖
m2

)(
1 + O

(scal
m2

))
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The mechanism of microscopic mixing

Decompose the universal measure as

ρ̃ =
1
L

L∑
a=1

ρa .

The action becomes

S(ρ̃) =
1
L2

L∑
a,b=1

x

F×F

L(x , y) d(Vaρ)(x) d(Vbρ)(y)

=
S(ρ)

L
+

1
L2

∑
a6=b

x

F×F

L(x , y) d(Vaρ)(x) d(Vbρ)(y) .

“Mixed terms” can be made small by dephasing (decoherence).
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The mechanism of microscopic mixing

� Leads to decomposition of space-time

M = M1 ∪M2 with M1 ∩M2 = ∅

“fine-grained on microscopic scale”

t

� Effective description using Fock spaces
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