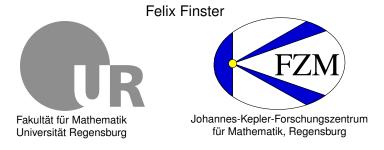
Causal fermion systems from an information theoretic perspective



Talk at Conference "Information Theoretic Foundations for Physics" Waterloo, Canada, 15 May 2015

Overview

Causal fermion system

- approach to describe fundamental physics
- candidate for a unified physical theory
- novel approach to describe space and space-time, as well as structures therein: "guestum space time," "guestum geometrum"
 - "quantum space-time," "quantum geometry"
- dynamics described by causal action principle
 - intrinsic, no space-time presupposed
 - space-time emerges by minimizing the causal action
 - generally covariant

Causal fermion system

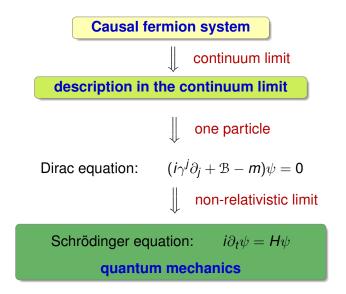
- abstract mathematical framework
- quantum geometry, causal action

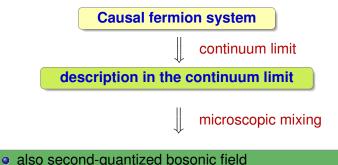
description in the continuum limit

- Dirac fields
- strong and electroweak gauge fields
- gravitational field

arXiv:1409.2568 [math-ph]

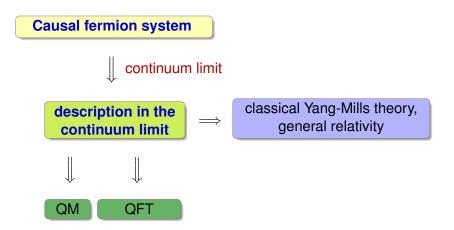
- fermion field: second-quantized
- bosonic field: classical

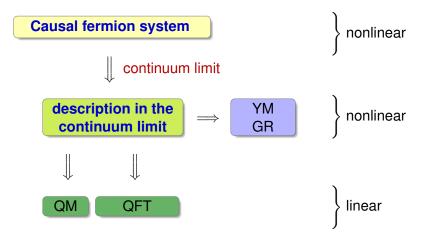




loop diagrams, renormalization, ... (work in progress)
 relativistic quantum field theory

arXiv:1409.2568 [math-ph], J. Math. Phys. 55 (2014) 042301





Space-time point is a linear operator on a Hilbert space

Thus we need

- Hilbert space $(\mathcal{H}, \langle . | . \rangle_{\mathcal{H}})$
- \blacktriangleright a collection of linear operators on ${\mathcal H}$

Space-time is Minkowski space, signature (+ - - -)

space-time point $x \in \mathbb{R}^4$, need to associate operator F(x)

- free Dirac equation $(i\gamma^k\partial_k m)\psi = 0$
- probability density $\psi^{\dagger}\psi = \overline{\psi}\gamma^{0}\psi$,

gives rise to a scalar product:

$$\langle \psi | \phi \rangle = \int_{t=\text{const}} (\overline{\psi} \gamma^0 \phi)(t, \vec{x}) \, d\vec{x}$$

time independent due to current conservation

Consider a collection of one-particle wave functions

 ψ_1,\ldots,ψ_f

(Pauli exclusion principle, ..., later)

- orthonormalize: $\langle \psi_k | \psi_l \rangle = \delta_{kl}$
- ► For space-time point *x* introduce

 $F(x)_{k}^{j} = -\overline{\psi_{j}(x)}\psi_{k}(x)$ local correlation matrix

- Hermitian $f \times f$ -matrix
- rank at most four: Gram matrix or

$$F(x) = e_x^* e_x$$
, $e_x : \mathcal{H} \to \mathbb{C}^4$, $\psi \mapsto \psi(x)$

at most two positive and at most two negative eigenvalues

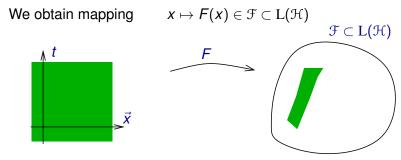
similarly basis independent:

 $\mathcal{H} := \langle \psi_1, \dots, \psi_f \rangle$ Hilbert space

 $\langle \psi | F(\mathbf{x}) \phi \rangle = -\overline{\psi(\mathbf{x})} \phi(\mathbf{x}) \qquad \forall \psi, \phi \in \mathcal{H}$

local correlation operator, is self-adjoint operator in $L(\mathcal{H})$

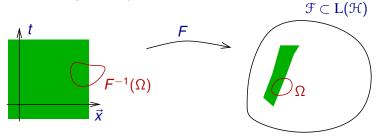
Thus F(x) ∈ 𝔅 where
 𝔅 = {F ∈ L(𝔅) with the properties:
 ▷ F is self-adjoint and has rank ≤ 4
 ▷ F has at most 2 positive
 and at most 2 negative eigenvalues }



Concept:

- disregard the left side
- work exclusively with objects on the right.

one more thing: The space-time volume



$$\rho(\Omega) := \int_{F^{-1}(\Omega)} d^4 x = \mu(F^{-1}(\Omega))$$

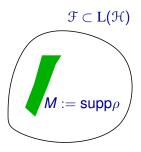
> push-forward measure, is measure on \mathcal{F} .

▶ image of *F* recovered as the support of the measure,

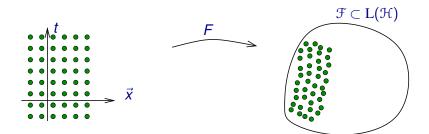
 $\boldsymbol{M} := \operatorname{supp} \rho = \big\{ \boldsymbol{F} \in \mathcal{F} \mid \rho(\Omega) \neq \boldsymbol{0} \}$

for every open neighborhood Ω of x }

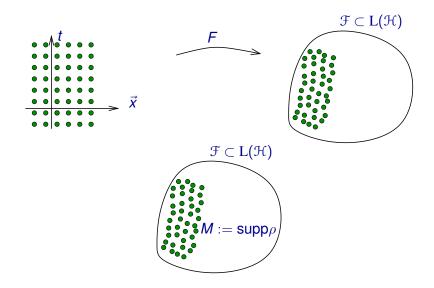
resulting structure: measure ρ on $\mathcal{F} \subset L(\mathcal{H})$



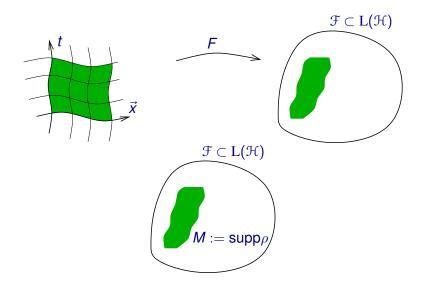
Example: A space-time lattice



Example: A space-time lattice



Example: curved space-time



Definition (Causal fermion system)

Let $(\mathcal{H}, \langle . | . \rangle_{\mathcal{H}})$ be Hilbert space ("particle space") Given parameter $n \in \mathbb{N}$ ("spin dimension")

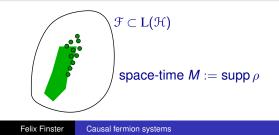
 $\mathfrak{F} := \left\{ x \in L(\mathfrak{H}) \text{ with the properties:} \right.$

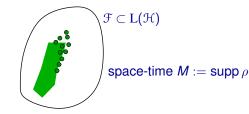
- \blacktriangleright x is self-adjoint and has finite rank
- x has at most n positive

and at most *n* negative eigenvalues }

 ρ a measure on \mathcal{F} ("universal measure")

 $(\rho, \mathfrak{F}, \mathfrak{H})$ is a causal fermion system.





Advantage of general framework:

- "Spinors on singular spaces ...,"
 F-Kamran, arXiv:1403.7885 [math-ph]
- UV-regularized space-times, similar to talk by Achim Kempf:

UV-regularized = bandlimited

regularized objects are considered as fundamental objects framework for doing analysis and geometry in this setting

Consider the setting from perspective of information theory: Let $(\rho, \mathcal{F}, \mathcal{H})$ be a causal fermion system, Encodes plenty of information:

- ▶ $x \in \mathcal{F}$ has eigenvalues
- operator products xy has eigenvalues
- integrate quantities over space-time,

$$\int_{\mathfrak{F}}\cdots d
ho$$

Connection to information theory remains to be developed:

- Right now: no operational point of view
- ► No definitions of entropy, temperature, ...

Next: Try bring the information into a useful form.

Let $(\rho, \mathcal{F}, \mathcal{H})$ be a causal fermion system, space-time defined by $M := \operatorname{supp} \rho$.

Space-time points are linear operators on $\ensuremath{\mathcal{H}}$

- For $x \in M$, consider eigenspaces of x.
- For $x, y \in M$ consider
 - consider operator products xy
 - project eigenspaces of x to eigenspaces of y

Gives rise to:

- quantum objects (spinors, wave functions)
- geometric structures (connection, curvature)
- causal structure, analytic structures

Causal structure

- Let $x, y \in M$. Then
 - $x \cdot y \in L(H)$:
 - Image: ank ≤ 2*n*

• in general not self-adjoint: $(x \cdot y)^* = y \cdot x \neq x \cdot y$

thus non-trivial complex eigenvalues $\lambda_1^{xy}, \ldots, \lambda_{2n}^{xy}$

Definition (causal structure)

The points $x, y \in \mathcal{F}$ are called

```
spacelike separated timelike separated
```

lightlike separated

if
$$|\lambda_j^{xy}| = |\lambda_k^{xy}|$$
 for all $j, k = 1, ..., 2n$
if $\lambda_1^{xy}, ..., \lambda_{2n}^{xy}$ are all real
and $|\lambda_j^{xy}| \neq |\lambda_k^{xy}|$ for some j, k
otherwise

Causal action principle

Lagrangian
$$\mathcal{L}[A_{xy}] = \frac{1}{4n} \sum_{i,j=1}^{2n} (|\lambda_i^{xy}| - |\lambda_j^{xy}|)^2 \ge 0$$

action $\mathcal{S} = \iint_{\mathfrak{F} \times \mathfrak{F}} \mathcal{L}[A_{xy}] d\rho(x) d\rho(y)$

Minimize S under variations of ρ , impose suitable constraints. Gives mathematically well-defined variational principles.

► Lagrangian is compatible with causal structure, i.e. x, y spacelike separated ⇒ L(x, y) = 0 "points with spacelike separation do not interact"

What does causality mean?

There are causal relations:

- distinction space-like, time-like
- direction of time
- Locality holds:

Space-time regions with space-like separation have independent dynamics

BUT

- relation "lies in the future of" not necessarily transitive
- no causation

Inherent structures

Spinors

$$\begin{split} S_{x} &:= x(\mathcal{H}) \subset \mathcal{H} \quad \text{"spin space", dim } S_{x} \leq 2n \\ \prec u | v \succ_{x} &:= -\langle u | x v \rangle_{\mathcal{H}} \quad \text{"spin scalar product",} \\ & \text{ is indefinite of signature } (\leq n, \leq n) \end{split}$$

Space of one-particle wave functions

 $\Psi: x \in M \mapsto \Psi(x) \in S_x$ "wave function"

wave functions form Krein space (\mathcal{K} , $\langle . | . \rangle$):

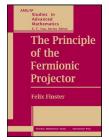
$$\langle \Psi | \Phi \rangle := \int_{M} \langle \Psi(x) | \Phi(x) \succ_{x} d\rho(x)$$
 indefinite inner product
 $\| \| \psi \| \|^{2} = \int_{M} \langle \psi(x) | |x| \psi(x) \rangle_{\mathcal{H}} d\rho(x)$ norm, induces topology

Inherent structures

Physical wave functions and the fermionic operator

$$\psi(x) = \pi_x \psi$$
 with $\psi \in \mathcal{H}$ physical wave function
 $P(x, y) = \pi_x y : S_y \to S_x$ "kernel of fermionic operator"
 $= -\sum_{i=1}^{f} |\psi_i(x) \succ \prec \psi_i(y)|$ where ψ_i basis of \mathcal{H}

The fermionic operator was indeed the starting point:



"The Principle of the Fermionic Projector" AMS/IP Studies in Advanced Math. 35 (2006)

Geometric structures

P(*x*, *y*) : *S_y* → *S_x* yields relations between spin spaces. Using a polar decomposition (..., ...) one gets:

 $D_{x,y}: S_y \to S_x$ unitary "spin connection"

• tangent space T_x , carries Lorentzian metric,

 $\nabla_{x,y}$: $T_y \rightarrow T_x$ corresponding "metric connection"

- a distinguished time direction
- holonomy of connection gives curvature

$$R(x,y,z) = \nabla_{x,y} \nabla_{y,z} \nabla_{z,x} : T_x \to T_x.$$

Inherent structures

Local gauge freedom

Choose pseudo-orthonormal basis (\mathfrak{e}_{α}) of S_{x} , i.e.

 $\prec \mathfrak{e}_{\alpha}|\mathfrak{e}_{\beta} \succ = s_{\alpha}\delta_{\alpha\beta}$ with $s_{1},\ldots,s_{p}=1, \ s_{p+1},\ldots,s_{p+q}=-1$

Then $\Psi\in \mathcal{K}$ can be written in components as

$$\psi(\mathbf{x}) = \sum_{\alpha=1}^{p+q} \psi^{\alpha}(\mathbf{x}) \, \mathfrak{e}_{\alpha}(\mathbf{x})$$

The basis (\mathfrak{e}_{α}) can be chosen freely at every *x*:

$$\mathfrak{e}_{lpha} o \sum_{eta=1}^{p+q} (U^{-1})^{eta}_{lpha} \, \mathfrak{e}_{eta} \quad ext{mit } U \in \mathrm{U}(p,q)$$
 $\psi^{lpha}(x) \, o \sum_{eta=1}^{p+q} oldsymbol{U}(x)^{lpha}_{eta} \, \psi^{eta}(x)$

interpretation: local gauge freedom with group U(p, q)

► Pauli exclusion principle:

Choose orthonormal basis ψ_1, \ldots, ψ_f of \mathcal{H} . Set

$$\Psi = \psi_1 \wedge \cdots \wedge \psi_f ,$$

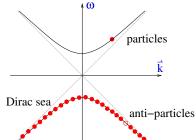
gives equivalent description by Hartree-Fock state.

- local gauge principle: freedom to perform local unitary transformations.
- the "equivalence principle": symmetry under "diffeomorphisms" of M (note: M merely is a topological measure space)

locality, causality and time direction are emergent

Specify vacuum:

Choose H as the space of all negative-energy solutions, hence "Dirac sea"



Fixes length scale ("Compton length")

 Introduce ultraviolet regularization, "quantum geometry" Fixes length scale ("Planck length")

Theorem (F-Grotz, 2011)

There are regularizations $P^{\varepsilon}(x, y)$ such that in the limit $\varepsilon \searrow 0$:

- The causal structure goes over to that of Minkowski space
- $(S_x, \prec . | . \succ_x)$ can be identified with the usual spinor space,

$$\prec \psi | \phi \succ_{\mathbf{X}} = \overline{\psi(\mathbf{X})} \phi(\mathbf{X})$$

• The spin connection D_{x,y} becomes trivial.

In particular:

- ► The relation "lies in the future of" becomes transitive.
- ▶ For Dirac equation: Cauchy problem well-posed, causation

$$egin{aligned} &x\cdot y\simeq a\,(y-x)^j\gamma_j+b & ext{with } a,b\in\mathbb{R} & ext{(Lorentz symmetry)}\ &\lambda_i^{xy}=b\pm |a|\sqrt{(y-x)_j(y-x)^j}\ & ext{ are real } & ext{if } y-x ext{ timelike }\ & ext{form complex conjugate pair } & ext{if } y-x ext{ spacelike } \end{aligned}$$

The causal action principle in the continuum limit

specify vacuum as sum of Dirac seas,

$$\begin{split} \boldsymbol{P}(\boldsymbol{x},\boldsymbol{y}) &= \sum_{\beta=1}^{g} \boldsymbol{P}_{m_{\beta}}^{\text{sea}}(\boldsymbol{x},\boldsymbol{y}) \\ \boldsymbol{P}_{m_{\beta}}^{\text{sea}}(\boldsymbol{x},\boldsymbol{y}) &= \int \frac{d^{4}k}{(2\pi)^{4}} \left(\not\!\!\!\! k + m_{\beta} \right) \delta(k^{2} - m_{\beta}^{2}) \,\Theta(-k^{0}) \, \boldsymbol{e}^{-ik(\boldsymbol{x}-\boldsymbol{y})} \end{split}$$

 β labels "generations" of elementary particles

 \implies Dynamical equations only if three generations (g = 3)

The causal action principle in the continuum limit

Model involving neutrinos and quarks:

$$P(x, y) = \sum_{\beta=1}^{3} \underbrace{P_{m_{\beta}}^{\text{sea}}(x, y) \oplus \cdots \oplus P_{m_{\beta}}^{\text{sea}}(x, y)}_{\text{7 identical direct summands}} \oplus P_{\tilde{m}_{\beta}}^{\text{sea}}(x, y)$$

(thus $4 \times 8 = 32$ -component wave functions) again three generations

 Regularize the neutrinos suitably (shear and general surface states), break chiral symmetry

Results:

- The direct summands form pairs, spontaneous block formation
- gauge group $U(1) \times SU(2) \times SU(3)$
- coupling to the fermions exactly as in the standard model:
 - U_{CKM}, U_{MNS}-mixing matrices
 - SU(2) gauge fields left-handed and massive
- Einstein equations

Remarks on methods for analyzing the continuum limit:

- The Dirac sea vacuum is a critical point of the causal action (in a well-defined mathematical sense)
- Vary the fermionic projector: Consider the Dirac equation in an external potential

 $(i\partial + \mathcal{B} - mY)\psi = 0.$

- Singularities of P(x, y) drop out of EL equations, no counter terms needed!
- Non-perturbative method for constructing P(x, y): mass oscillation property (F-Reintjes 2013).

A few references

Survey articles:

- F.F., J. Kleiner, "Causal fermion systems as a candidate for a unified physical theory," arXiv:1502.03587 [math-ph]
- ► F.F., "A formulation of quantum field theory realizing a sea of interacting Dirac particles," arXiv:0911.2102 [hep-th], *Lett. Math. Phys.* 97 (2011) 165-183

For further reading:

- F.F., A. Grotz, "A Lorentzian quantum geometry," arXiv:1107.2026 [math-ph], Adv. Theor. Math. Phys. 16 (2012) 1197–1290
- F.F., "Perturbative quantum field theory in the framework of the fermionic projector," arXiv:1310.4121 [math-ph], J. Math. Phys. 55 (2014) 042301
- F.F., "Causal variational principles on measure spaces," arXiv:0811.2666 [math-ph], J. Reine Angew. Math. 646 (2010) 141–194
- ► F.F., "The Principle of the Fermionic Projector," hep-th/0001048, hep-th/0202059, hep-th/0210121, *AMS/IP Studies in Advanced Mathematics* **35** (2006)
- ► F.F., "An action principle for an interacting fermion system and its analysis in the continuum limit," arXiv:0908.1542 [math-ph]
- ► F.F., "The continuum limit of a fermion system involving neutrinos: weak and gravitational interactions," arXiv:1211.3351 [math-ph]
- F.F., "The continuum limit of a fermion system involving leptons and quarks: strong, electroweak and gravitational interactions," arXiv:1409.2568 [math-ph]

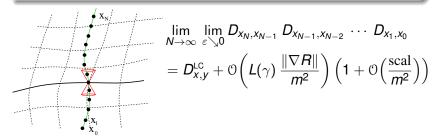
Thank you for your attention!

Analogous result in presence of gravitational field:

Theorem (F-Grotz, 2011)

Let (M, g) be a globally hyperbolic Lorentzian manifold. There are regularizations $P^{\varepsilon}(x, y)$ such that in the limit $\varepsilon \searrow 0$:

D_{x,y} goes over to the metric spin connection.
 Curvatures gives the Riemann curvature tensor.



The mechanism of microscopic mixing

Decompose the universal measure as

$$\tilde{\rho} = \frac{1}{L} \sum_{\mathfrak{a}=1}^{L} \rho_{\mathfrak{a}} \, .$$

The action becomes

$$\begin{split} \mathcal{S}(\tilde{\rho}) &= \frac{1}{L^2} \sum_{\mathfrak{a},\mathfrak{b}=1}^{L} \iint_{\mathfrak{F}\times\mathfrak{F}} \mathcal{L}(x,y) \, d(V_{\mathfrak{a}}\rho)(x) \, d(V_{\mathfrak{b}}\rho)(y) \\ &= \frac{\mathcal{S}(\rho)}{L} + \frac{1}{L^2} \sum_{\mathfrak{a}\neq\mathfrak{b}} \iint_{\mathfrak{F}\times\mathfrak{F}} \mathcal{L}(x,y) \, d(V_{\mathfrak{a}}\rho)(x) \, d(V_{\mathfrak{b}}\rho)(y) \, . \end{split}$$

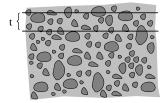
"Mixed terms" can be made small by dephasing (decoherence).

The mechanism of microscopic mixing

Leads to decomposition of space-time

 $M = M_1 \cup M_2$ with $M_1 \cap M_2 = \emptyset$

"fine-grained on microscopic scale"



Effective description using Fock spaces