Quantum field theory without quantisation from standard subspaces to observable algebras

Gandalf Lechner joint work with Ricardo Correa da Silva
arXiv:2212.02298

> 16th Colloquium "Mathematics \& Foundations of Quantum Theory" February 7, 2023

Plan of the talk

(1) Free QFT without quantisation
(2) Standard subspaces

Plan of the talk

(1) Free QFT without quantisation
(2) Standard subspaces
(3) Twisted Araki-Woods algebras: Derivation of crossing symmetry and Yang-Baxter equation

Free QFT
Typical setup of free QFT:

Free QFT

Typical setup of free QFT:

$$
\varphi_{\mathrm{cl}}(x)
$$
classical free field

Free QFT

Typical setup of free QFT:

$$
\begin{gathered}
\varphi_{\mathrm{cl}}(x) \leadsto \phi_{\mathrm{qu}}(x) \\
\text { quantum free field (distribution) }
\end{gathered}
$$

Free QFT

Typical setup of free QFT:

$$
\begin{gathered}
\varphi_{\mathrm{cl}}(x) \leadsto \phi_{\mathrm{qu}}(x) \leadsto \phi_{\mathrm{qu}}(f)=\int d x f(x) \phi(x) \\
\text { smeared quantum free field (operator) }
\end{gathered}
$$

Free QFT

Typical setup of free QFT:

$$
\varphi_{\mathrm{cl}}(x) \leadsto \phi_{\mathrm{qu}}(x) \leadsto \phi_{\mathrm{qu}}(f)=\int d x f(x) \phi(x) \leadsto e^{i \phi_{\mathrm{qu}}(f)}
$$

Weyl operators (bounded functions of quantum free field)

Free QFT

Typical setup of free QFT:

$$
\varphi_{\mathrm{cl}}(x) \leadsto \phi_{\mathrm{qu}}(x) \leadsto \phi_{\mathrm{qu}}(f)=\int d x f(x) \phi(x) \leadsto e^{i \phi_{\mathrm{qu}}(f)}
$$

Construction is based on a notion of "quantisation".

Free QFT

Typical setup of free QFT:

$$
\varphi_{\mathrm{cl}}(x) \leadsto \phi_{\mathrm{qu}}(x) \leadsto \phi_{\mathrm{qu}}(f)=\int d x f(x) \phi(x) \leadsto e^{i \phi_{\mathrm{qu}}(f)}
$$

Construction is based on a notion of "quantisation".

- Problematic from conceptual point of view: quantum theory should be more fundamental than classical theory.

Free QFT

Typical setup of free QFT:

$$
\varphi_{\mathrm{cl}}(x) \leadsto \phi_{\mathrm{qu}}(x) \leadsto \phi_{\mathrm{qu}}(f)=\int d x f(x) \phi(x) \leadsto e^{i \phi_{\mathrm{qu}}(f)}
$$

Construction is based on a notion of "quantisation".

- Problematic from conceptual point of view: quantum theory should be more fundamental than classical theory.
- Classical limit $\phi_{\mathrm{qu}} \rightarrow \varphi_{\mathrm{cl}}$ more meaningful than $\varphi_{\mathrm{cl}} \rightarrow \phi_{\mathrm{qu}}$

Free QFT

Typical setup of free QFT:

$$
\varphi_{\mathrm{cl}}(x) \leadsto \phi_{\mathrm{qu}}(x) \leadsto \phi_{\mathrm{qu}}(f)=\int d x f(x) \phi(x) \leadsto e^{i \phi_{\mathrm{qu}}(f)}
$$

Construction is based on a notion of "quantisation".

- Problematic from conceptual point of view: quantum theory should be more fundamental than classical theory.
- Classical limit $\phi_{\mathrm{qu}} \rightarrow \varphi_{\mathrm{cl}}$ more meaningful than $\varphi_{\mathrm{cl}} \rightarrow \phi_{\mathrm{qu}}$
- In free QFT, quantisation can be avoided completely.

Local Subspaces of a massive Klein-Gordon field

Two main ideas [Brunetti/Guido/Longo '02]:
(1) Base the construction on description of particle content (representation of Poincaré group \rightarrow masses, spins)
(2) Focus on "local subspaces". For $\mathcal{O} \subset \mathbb{R}^{d}$ (Minkowski space) consider

$$
\begin{aligned}
H(\mathcal{O}) & =\left\{\hat{f}=\phi_{\mathrm{qu}}(f) \Omega: \operatorname{supp}(f) \subset \mathcal{O}, \quad f \text { real }\right\}^{-} \\
\text {Ex.: } \quad(\boldsymbol{p} \mapsto \hat{f}(\boldsymbol{p}) & \left.=\tilde{f}\left(\sqrt{\|\boldsymbol{p}\|^{2}+m^{2}}, \boldsymbol{p}\right)\right) \in L^{2}\left(\mathbb{R}^{d-1}, \frac{d \boldsymbol{p}}{\sqrt{\|\boldsymbol{p}\|^{2}+m^{2}}}\right)
\end{aligned}
$$

Local Subspaces of a massive Klein-Gordon field

Two main ideas [Brunetti/Guido/Longo '02]:
(1) Base the construction on description of particle content (representation of Poincaré group \rightarrow masses, spins)
(2) Focus on "local subspaces". For $\mathcal{O} \subset \mathbb{R}^{d}$ (Minkowski space) consider

$$
\begin{aligned}
& H(\mathcal{O})=\left\{\hat{f}=\phi_{\mathrm{qu}}(f) \Omega: \operatorname{supp}(f) \subset \mathcal{O}, \quad f \text { real }\right\}^{-} \\
&\text {Ex.: } \left.^{(\boldsymbol{p} \mapsto \hat{f}(\boldsymbol{p})}=\tilde{f}\left(\sqrt{\|\boldsymbol{p}\|^{2}+m^{2}}, \boldsymbol{p}\right)\right) \in L^{2}\left(\mathbb{R}^{d-1}, \frac{d \boldsymbol{p}}{\sqrt{\|\boldsymbol{p}\|^{2}+m^{2}}}\right)
\end{aligned}
$$

Properties of the local subspaces $H(\mathcal{O})$:

- they are only real linear (real test functions) and closed.

Local Subspaces of a massive Klein-Gordon field

Two main ideas [Brunetti/Guido/Longo '02]:
(1) Base the construction on description of particle content (representation of Poincaré group \rightarrow masses, spins)
(2) Focus on "local subspaces". For $\mathcal{O} \subset \mathbb{R}^{d}$ (Minkowski space) consider

$$
\begin{aligned}
H(\mathcal{O}) & =\left\{\hat{f}=\phi_{\text {qu }}(f) \Omega: \operatorname{supp}(f) \subset \mathcal{O}, \quad f \text { real }\right\}^{-} \\
\text {Ex.: } \quad(\boldsymbol{p} \mapsto \hat{f}(\boldsymbol{p}) & \left.=\tilde{f}\left(\sqrt{\|\boldsymbol{p}\|^{2}+m^{2}}, \boldsymbol{p}\right)\right) \in L^{2}\left(\mathbb{R}^{d-1}, \frac{d \boldsymbol{p}}{\sqrt{\|\boldsymbol{p}\|^{2}+m^{2}}}\right)
\end{aligned}
$$

Properties of the local subspaces $H(\mathcal{O})$:

- they are only real linear (real test functions) and closed.
- For \mathcal{O}_{1} spacelike to \mathcal{O}_{2}, have

$$
\operatorname{lm}\left\langle h_{1}, h_{2}\right\rangle=0, \quad h_{1} \in H\left(\mathcal{O}_{1}\right), h_{2} \in H\left(\mathcal{O}_{2}\right) .
$$

Local Subspaces of a massive Klein-Gordon field

Two main ideas [Brunetti/Guido/Longo '02]:
(1) Base the construction on description of particle content (representation of Poincaré group \rightarrow masses, spins)
(2) Focus on "local subspaces". For $\mathcal{O} \subset \mathbb{R}^{d}$ (Minkowski space) consider

$$
\begin{aligned}
H(\mathcal{O}) & =\left\{\hat{f}=\phi_{\mathrm{qu}}(f) \Omega: \operatorname{supp}(f) \subset \mathcal{O}, \quad f \text { real }\right\}^{-} \\
\text {Ex.: } \quad(\boldsymbol{p} \mapsto \hat{f}(\boldsymbol{p}) & \left.=\tilde{f}\left(\sqrt{\|\boldsymbol{p}\|^{2}+m^{2}}, \boldsymbol{p}\right)\right) \in L^{2}\left(\mathbb{R}^{d-1}, \frac{d \boldsymbol{p}}{\sqrt{\|\boldsymbol{p}\|^{2}+m^{2}}}\right)
\end{aligned}
$$

Properties of the local subspaces $H(\mathcal{O})$:

- they are only real linear (real test functions) and closed.
- For \mathcal{O}_{1} spacelike to \mathcal{O}_{2}, have

$$
\operatorname{Im}\left\langle h_{1}, h_{2}\right\rangle=0, \quad h_{1} \in H\left(\mathcal{O}_{1}\right), h_{2} \in H\left(\mathcal{O}_{2}\right) .
$$

That is, $H\left(\mathcal{O}_{1}\right) \subset H\left(\mathcal{O}_{2}\right)^{\prime}$ (symplectic complement).

Local Subspaces of a massive Klein-Gordon field

Two main ideas [Brunetti/Guido/Longo '02]:
(1) Base the construction on description of particle content (representation of Poincaré group \rightarrow masses, spins)
(2) Focus on "local subspaces". For $\mathcal{O} \subset \mathbb{R}^{d}$ (Minkowski space) consider

$$
\begin{aligned}
& H(\mathcal{O})=\left\{\hat{f}=\phi_{\mathrm{qu}}(f) \Omega: \operatorname{supp}(f) \subset \mathcal{O}, \quad f \text { real }\right\}^{-} \\
&\text {Ex. } \left.: ~^{(\boldsymbol{p} \mapsto \hat{f}(\boldsymbol{p})}=\tilde{f}\left(\sqrt{\|\boldsymbol{p}\|^{2}+m^{2}}, \boldsymbol{p}\right)\right) \in L^{2}\left(\mathbb{R}^{d-1}, \frac{d \boldsymbol{p}}{\sqrt{\|\boldsymbol{p}\|^{2}+m^{2}}}\right)
\end{aligned}
$$

Properties of the local subspaces $H(\mathcal{O})$:

- they are only real linear (real test functions) and closed.
- For \mathcal{O}_{1} spacelike to \mathcal{O}_{2}, have

$$
\operatorname{Im}\left\langle h_{1}, h_{2}\right\rangle=0, \quad h_{1} \in H\left(\mathcal{O}_{1}\right), h_{2} \in H\left(\mathcal{O}_{2}\right) .
$$

That is, $H\left(\mathcal{O}_{1}\right) \subset H\left(\mathcal{O}_{2}\right)^{\prime}$ (symplectic complement).

- $H(\mathcal{O})+i H(\mathcal{O}) \subset \mathcal{H}$ is dense (Reeh-Schlieder property, cyclicity)
- $H(\mathcal{O}) \cap i H(\mathcal{O})=\{0\}$ separating

Standard subspaces

Definition: A standard subspace is a closed \mathbb{R}-linear subspace $H \subset \mathcal{H}$ of a complex Hilbert space \mathcal{H} such that $\overline{H+i H}=\mathcal{H}$ and $H \cap i H=\{0\}$.

Standard subspaces

Definition: A standard subspace is a closed \mathbb{R}-linear subspace $H \subset \mathcal{H}$ of a complex Hilbert space \mathcal{H} such that $\overline{H+i H}=\mathcal{H}$ and $H \cap i H=\{0\}$.

Examples:

- $\mathbb{R}^{n} \subset \mathbb{C}^{n}, L_{\mathbb{R}}^{2}(X) \subset L_{\mathbb{C}}^{2}(X)$

Standard subspaces

Definition: A standard subspace is a closed \mathbb{R}-linear subspace $H \subset \mathcal{H}$ of a complex Hilbert space \mathcal{H} such that $\overline{H+i H}=\mathcal{H}$ and $H \cap i H=\{0\}$.

Examples:

- $\mathbb{R}^{n} \subset \mathbb{C}^{n}, L_{\mathbb{R}}^{2}(X) \subset L_{\mathbb{C}}^{2}(X)$
- $\rho \in M_{n}$ invertible density matrix. $H:=\left\{A \rho: A=A^{*} \in M_{n}\right\} \subset M_{n}$
- $H(\mathcal{O})$

Standard subspaces

Definition: A standard subspace is a closed \mathbb{R}-linear subspace $H \subset \mathcal{H}$ of a complex Hilbert space \mathcal{H} such that $\overline{H+i H}=\mathcal{H}$ and $H \cap i H=\{0\}$.

Examples:

- $\mathbb{R}^{n} \subset \mathbb{C}^{n}, L_{\mathbb{R}}^{2}(X) \subset L_{\mathbb{C}}^{2}(X)$
- $\rho \in M_{n}$ invertible density matrix. $H:=\left\{A \rho: A=A^{*} \in M_{n}\right\} \subset M_{n}$
- $H(\mathcal{O})$
- Standard subspaces H are also mathematically interesting. Come with Tomita operator

$$
S_{H}: H+i H \rightarrow H+i H, \quad h_{1}+i h_{2} \mapsto h_{1}-i h_{2} .
$$

Polar decomposition $S_{H}=J_{H} \Delta_{H}^{1 / 2}$ yields an "internal dynamics" (unit. 1-par.grp $\Delta_{H}^{i t}$) and a "TCP operator" J_{H},

$$
\Delta_{H}^{i t} H=H, \quad J_{H} H=H^{\prime}, \quad H=\operatorname{ker}\left(1-J_{H} \Delta_{H}^{1 / 2}\right)
$$

H determines J_{H}, Δ_{H} and vice versa.

Main messages:

(1) In free QFT, local subspaces $H(\mathcal{O})$ can be completely described in terms of the underlying Poincaré representation.
(2) Once one has the local subspaces, the whole theory is fixed.

Main messages:

(1) In free QFT, local subspaces $H(\mathcal{O})$ can be completely described in terms of the underlying Poincaré representation.
(2) Once one has the local subspaces, the whole theory is fixed.

Actual construction: Take (..) positive energy rep U of Poincaré group.

Main messages:

(1) In free QFT, local subspaces $H(\mathcal{O})$ can be completely described in terms of the underlying Poincaré representation.
(2) Once one has the local subspaces, the whole theory is fixed.

Actual construction: Take (..) positive energy rep U of Poincaré group.

- Define: $H(W)=\operatorname{ker}\left(1-U\left(j_{W}\right) U\left(\lambda_{W}(i \pi)\right)\right)$ by reflection j_{W} at edge of W and boost λ_{W} in direction of W (with W a wedge region)
- For general \mathcal{O}, define $H(\mathcal{O})$ by intersections of wedge spaces.

Main messages:

(1) In free QFT, local subspaces $H(\mathcal{O})$ can be completely described in terms of the underlying Poincaré representation.
(2) Once one has the local subspaces, the whole theory is fixed.

Actual construction: Take (..) positive energy rep U of Poincaré group.

- Define: $H(W)=\operatorname{ker}\left(1-U\left(j_{W}\right) U\left(\lambda_{W}(i \pi)\right)\right)$ by reflection j_{W} at edge of W and boost λ_{W} in direction of W (with W a wedge region)
- For general \mathcal{O}, define $H(\mathcal{O})$ by intersections of wedge spaces.

This exactly describes the local subspaces of free QFT with representation U.

Main messages:

(1) In free QFT, local subspaces $H(\mathcal{O})$ can be completely described in terms of the underlying Poincaré representation.
(2) Once one has the local subspaces, the whole theory is fixed.

Actual construction: Take (..) positive energy rep U of Poincaré group.

- Define: $H(W)=\operatorname{ker}\left(1-U\left(j_{W}\right) U\left(\lambda_{W}(i \pi)\right)\right)$ by reflection j_{W} at edge of W and boost λ_{W} in direction of W (with W a wedge region)
- For general \mathcal{O}, define $H(\mathcal{O})$ by intersections of wedge spaces.

This exactly describes the local subspaces of free QFT with representation U.

- Rest of the construction: Second quantisation:

$$
\begin{aligned}
\mathcal{H} \supset H & \longrightarrow \mathcal{A}(H)=\{\operatorname{Weyl}(h): h \in H\}^{\prime \prime} \\
\text { spacetime } \supset \mathcal{O} & \longrightarrow \mathcal{A}(H(\mathcal{O}))
\end{aligned}
$$

Remark: Fock vacuum cyclic $(\mathcal{A}(H) \Omega$ dense) and separating $(\mathcal{A}(H)$ contains no annihilators)

Main messages:

(1) In free QFT, local subspaces $H(\mathcal{O})$ can be completely described in terms of the underlying Poincaré representation.
(2) Once one has the local subspaces, the whole theory is fixed.

Actual construction: Take (..) positive energy rep U of Poincaré group.

- Define: $H(W)=\operatorname{ker}\left(1-U\left(j_{W}\right) U\left(\lambda_{W}(i \pi)\right)\right)$ by reflection j_{W} at edge of W and boost λ_{W} in direction of W (with W a wedge region)
- For general \mathcal{O}, define $H(\mathcal{O})$ by intersections of wedge spaces.

This exactly describes the local subspaces of free QFT with representation U.

- Rest of the construction: Second quantisation:

$$
\begin{aligned}
\mathcal{H} \supset H & \longrightarrow \mathcal{A}(H)=\{\operatorname{Weyl}(h): h \in H\}^{\prime \prime} \\
\text { spacetime } \supset \mathcal{O} & \longrightarrow \mathcal{A}(H(\mathcal{O}))
\end{aligned}
$$

Remark: Fock vacuum cyclic $(\mathcal{A}(H) \Omega$ dense) and separating $(\mathcal{A}(H)$ contains no annihilators)

A free QFT can be defined entirely in terms of its one particle data (rep. U) and "second quantisation". No classical field theory or quantisation required. Standard subspace encode localisation.

Main messages:

(1) In free QFT, local subspaces $H(\mathcal{O})$ can be completely described in terms of the underlying Poincaré representation.
(2) Once one has the local subspaces, the whole theory is fixed.

Actual construction: Take (..) positive energy rep U of Poincaré group.

- Define: $H(W)=\operatorname{ker}\left(1-U\left(j_{W}\right) U\left(\lambda_{W}(i \pi)\right)\right)$ by reflection j_{W} at edge of W and boost λ_{W} in direction of W (with W a wedge region)
- For general \mathcal{O}, define $H(\mathcal{O})$ by intersections of wedge spaces.

This exactly describes the local subspaces of free QFT with representation U.

- Rest of the construction: Second quantisation:

$$
\begin{aligned}
\mathcal{H} \supset H & \longrightarrow \mathcal{A}(H)=\{\operatorname{Weyl}(h): h \in H\}^{\prime \prime} \\
\text { spacetime } \supset \mathcal{O} & \longrightarrow \mathcal{A}(H(\mathcal{O}))
\end{aligned}
$$

Remark: Fock vacuum cyclic $(\mathcal{A}(H) \Omega$ dense) and separating $(\mathcal{A}(H)$ contains no annihilators)

A free QFT can be defined entirely in terms of its one particle data (rep. U) and "second quantisation". No classical field theory or quantisation required. Standard subspace encode localisation.
"Standard subspaces $=$ localisation regions"

Main messages:

(1) In free QFT, local subspaces $H(\mathcal{O})$ can be completely described in terms of the underlying Poincaré representation.
(2) Once one has the local subspaces, the whole theory is fixed.

Actual construction: Take (..) positive energy rep U of Poincaré group.

- Define: $H(W)=\operatorname{ker}\left(1-U\left(j_{W}\right) U\left(\lambda_{W}(i \pi)\right)\right)$ by reflection j_{W} at edge of W and boost λ_{W} in direction of W (with W a wedge region)
- For general \mathcal{O}, define $H(\mathcal{O})$ by intersections of wedge spaces.

This exactly describes the local subspaces of free QFT with representation U.

- Rest of the construction: Second quantisation:

$$
\begin{aligned}
\mathcal{H} \supset H & \longrightarrow \mathcal{A}(H)=\{\operatorname{Weyl}(h): h \in H\}^{\prime \prime} \\
\text { spacetime } \supset \mathcal{O} & \longrightarrow \mathcal{A}(H(\mathcal{O}))
\end{aligned}
$$

Remark: Fock vacuum cyclic $(\mathcal{A}(H) \Omega$ dense) and separating $(\mathcal{A}(H)$ contains no annihilators)

A free QFT can be defined entirely in terms of its one particle data (rep. U) and "second quantisation". No classical field theory or quantisation required. Standard subspace encode localisation.

$$
\text { "Standard subspaces }=\text { localisation regions" }
$$

Not restricted to Minkowski space.

Interactions?

- BGL-construction is conceptually interesting, but describes "good old free field".

Interactions?

- BGL-construction is conceptually interesting, but describes "good old free field".
- Can we "twist" (deform, modify ...) it to introduce some interaction?

Interactions?

- BGL-construction is conceptually interesting, but describes "good old free field".
- Can we "twist" (deform, modify ...) it to introduce some interaction?
- Interacting theory should be based on single particle data and "interaction". So keep $\mathcal{O} \mapsto H(\mathcal{O})$, but change second quantisation.

Interactions?

- BGL-construction is conceptually interesting, but describes "good old free field".
- Can we "twist" (deform, modify ...) it to introduce some interaction?
- Interacting theory should be based on single particle data and "interaction". So keep $\mathcal{O} \mapsto H(\mathcal{O})$, but change second quantisation.
- Rest of talk: Sketch a particular approach. Others exist (e.g. [Buchholz/L/Summers '11])

General Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

- Setup: Fix one-particle Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.

General Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

- Setup: Fix one-particle Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- Idea: New scalar products $\langle\cdot, \cdot\rangle_{T, n}:=\left\langle\cdot, P_{T, n} \cdot\right\rangle$ on $\mathcal{H}^{\otimes n}$.

General Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

- Setup: Fix one-particle Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- Idea: New scalar products $\langle\cdot, \cdot\rangle_{T, n}:=\left\langle\cdot, P_{T, n} \cdot\right\rangle$ on $\mathcal{H}^{\otimes n}$.
- Notation:

$$
T_{k}:=1_{\mathcal{H}}^{\otimes(k-1)} \otimes T \otimes 1_{\mathcal{H}}^{\otimes(n-k-1)} \in \mathcal{B}\left(\mathcal{H}^{\otimes n}\right), \quad 1 \leq k \leq n-1
$$

- Kernels:

$$
\begin{aligned}
P_{T, 1} & =1, \quad P_{T, 2}=1+T, \quad P_{T, 3}=1+T_{1}+T_{2}+T_{1} T_{2}+T_{2} T_{1}+T_{2} T_{1} T_{2}, \\
P_{T, n+1} & =\left(1 \otimes P_{T, n}\right)\left(1+T_{1}+T_{1} T_{2}+\ldots+T_{1} \cdots T_{n}\right) .
\end{aligned}
$$

General Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

- Setup: Fix one-particle Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- Idea: New scalar products $\langle\cdot, \cdot\rangle_{T, n}:=\left\langle\cdot, P_{T, n} \cdot\right\rangle$ on $\mathcal{H}^{\otimes n}$.
- Notation:

$$
T_{k}:=1_{\mathcal{H}}^{\otimes(k-1)} \otimes T \otimes 1_{\mathcal{H}}^{\otimes(n-k-1)} \in \mathcal{B}\left(\mathcal{H}^{\otimes n}\right), \quad 1 \leq k \leq n-1
$$

- Kernels:

$$
\begin{aligned}
P_{T, 1} & =1, \quad P_{T, 2}=1+T, \quad P_{T, 3}=1+T_{1}+T_{2}+T_{1} T_{2}+T_{2} T_{1}+T_{2} T_{1} T_{2}, \\
P_{T, n+1} & =\left(1 \otimes P_{T, n}\right)\left(1+T_{1}+T_{1} T_{2}+\ldots+T_{1} \cdots T_{n}\right) .
\end{aligned}
$$

Definition

Twist: $T=T^{*},\|T\| \leq 1, P_{T, n} \geq 0$ for all n.

General Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

- Setup: Fix one-particle Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- Idea: New scalar products $\langle\cdot, \cdot\rangle_{T, n}:=\left\langle\cdot, P_{T, n} \cdot\right\rangle$ on $\mathcal{H}^{\otimes n}$.
- Notation:

$$
T_{k}:=1_{\mathcal{H}}^{\otimes(k-1)} \otimes T \otimes 1_{\mathcal{H}}^{\otimes(n-k-1)} \in \mathcal{B}\left(\mathcal{H}^{\otimes n}\right), \quad 1 \leq k \leq n-1
$$

- Kernels:

$$
\begin{aligned}
P_{T, 1} & =1, \quad P_{T, 2}=1+T, \quad P_{T, 3}=1+T_{1}+T_{2}+T_{1} T_{2}+T_{2} T_{1}+T_{2} T_{1} T_{2}, \\
P_{T, n+1} & =\left(1 \otimes P_{T, n}\right)\left(1+T_{1}+T_{1} T_{2}+\ldots+T_{1} \cdots T_{n}\right) .
\end{aligned}
$$

Definition

Twist: $T=T^{*},\|T\| \leq 1, P_{T, n} \geq 0$ for all n.

Definition

T-twisted Fock space

$$
\left.\mathcal{F}_{T}(\mathcal{H}):=\bigoplus_{n \geq 0} \overline{\mathcal{H}^{\otimes n} / \operatorname{ker} P_{T, n}} \cdot \cdot, \cdot\right\rangle_{T, n}
$$

- Sufficient conditions on T to be a twist are known (e.g. $\|T\| \leq \frac{1}{2}$ or $T \geq 0$) [Jørgensen/Schmitt/Werner; Bożejko/Speicher]
- Sufficient conditions on T to be a twist are known (e.g. $\|T\| \leq \frac{1}{2}$ or $T \geq 0$) [Jørgensen/Schmitt/Werner; Bożejko/Speicher]

Examples

- $T=F: v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose Fock space
- Sufficient conditions on T to be a twist are known (e.g. $\|T\| \leq \frac{1}{2}$ or $T \geq 0$) [Jørgensen/Schmitt/Werner; Bożejko/Speicher]

Examples

- $T=F: v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose Fock space
- $T=q F,-1 \leq q \leq 1: \mathcal{F}_{q F}(\mathcal{H})=q$-Fock space
- Sufficient conditions on T to be a twist are known (e.g. $\|T\| \leq \frac{1}{2}$ or $T \geq 0$) [Jørgensen/Schmitt/Werner; Bożejko/Speicher]

Examples

- $T=F: v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose Fock space
- $T=q F,-1 \leq q \leq 1: \mathcal{F}_{q F}(\mathcal{H})=q$-Fock space
- $T=0: \mathcal{F}_{0}(\mathcal{H})=$ full Fock space
- Sufficient conditions on T to be a twist are known (e.g. $\|T\| \leq \frac{1}{2}$ or $T \geq 0$) [Jørgensen/Schmitt/Werner; Bożejko/Speicher]

Examples

- $T=F: v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose Fock space
- $T=q F,-1 \leq q \leq 1: \mathcal{F}_{q F}(\mathcal{H})=q$-Fock space
- $T=0: \mathcal{F}_{0}(\mathcal{H})=$ full Fock space

An example from QFT

$\mathcal{H}=L^{2}(\mathbb{R}, d \theta), s: \mathbb{R} \rightarrow S^{1}, s(-\theta)=\overline{s(\theta)}$. Then
$(T f)\left(\theta_{1}, \theta_{2}\right)=s\left(\theta_{1}-\theta_{2}\right) \cdot f\left(\theta_{2}, \theta_{1}\right) \quad$ is a unitary twist.

- Sufficient conditions on T to be a twist are known (e.g. $\|T\| \leq \frac{1}{2}$ or $T \geq 0$) [Jørgensen/Schmitt/Werner; Bożejko/Speicher]

Examples

- $T=F: v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose Fock space
- $T=q F,-1 \leq q \leq 1: \mathcal{F}_{q F}(\mathcal{H})=q$-Fock space
- $T=0: \mathcal{F}_{0}(\mathcal{H})=$ full Fock space

An example from QFT

$\mathcal{H}=L^{2}(\mathbb{R} \rightarrow \mathcal{K}, d \theta), s: \mathbb{R} \rightarrow \mathcal{U}(\mathcal{K} \otimes \mathcal{K})$ solves YBE w.spec.par., $s(-\theta)=s(\theta)^{*}$.

$$
(T f)\left(\theta_{1}, \theta_{2}\right)=s\left(\theta_{1}-\theta_{2}\right) \cdot f\left(\theta_{2}, \theta_{1}\right) \quad \text { is a unitary twist. }
$$

- Sufficient conditions on T to be a twist are known (e.g. $\|T\| \leq \frac{1}{2}$ or $T \geq 0$) [Jørgensen/Schmitt/Werner; Bożejko/Speicher]

Examples

- $T=F: v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose Fock space
- $T=q F,-1 \leq q \leq 1: \mathcal{F}_{q F}(\mathcal{H})=q$-Fock space
- $T=0: \mathcal{F}_{0}(\mathcal{H})=$ full Fock space

An example from QFT

$\mathcal{H}=L^{2}(\mathbb{R} \rightarrow \mathcal{K}, d \theta), s: \mathbb{R} \rightarrow \mathcal{U}(\mathcal{K} \otimes \mathcal{K})$ solves YBE w.spec.par., $s(-\theta)=s(\theta)^{*}$.

$$
(T f)\left(\theta_{1}, \theta_{2}\right)=s\left(\theta_{1}-\theta_{2}\right) \cdot f\left(\theta_{2}, \theta_{1}\right) \quad \text { is a unitary twist. }
$$

Interpretation:

- Think of θ as rapidity and s as elastic two-body S-matrix.

From now on: \mathcal{H} Hilbert space, T twist.

From now on: \mathcal{H} Hilbert space, T twist.

- On $\mathcal{F}_{T}(\mathcal{H})$, have creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{array}{rlrl}
a_{L, T}^{\star}(\xi) \Omega & =\xi, \quad a_{L, T}(\xi) \Omega=0, & \Omega: \text { Fock vacuum } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & \Psi_{n} \in \mathcal{H}^{\otimes n}, \\
a_{L, T}(\xi)\left[\Psi_{n}\right] & =\left[a_{L, 0}(\xi)\left(1+T_{1}+\ldots+T_{1} \cdots T_{n-1}\right) \Psi_{n}\right]
\end{array}
$$

From now on: \mathcal{H} Hilbert space, T twist.

- On $\mathcal{F}_{T}(\mathcal{H})$, have creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{array}{rlrl}
a_{L, T}^{\star}(\xi) \Omega & =\xi, \quad a_{L, T}(\xi) \Omega=0, & \Omega: \text { Fock vacuum } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & \Psi_{n} \in \mathcal{H}^{\otimes n}, \\
a_{L, T}(\xi)\left[\Psi_{n}\right] & =\left[a_{L, 0}(\xi)\left(1+T_{1}+\ldots+T_{1} \cdots T_{n-1}\right) \Psi_{n}\right]
\end{array}
$$

- Quadratic exchange relations $a_{i} a_{j}^{\star}=T_{j l}^{i k} a_{k}^{\star} a_{l}+\delta_{i j} \cdot 1$ (with $\left.a_{i}:=a_{L, T}\left(e_{i}\right)\right)$

From now on: \mathcal{H} Hilbert space, T twist.

- On $\mathcal{F}_{T}(\mathcal{H})$, have creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{array}{rlrl}
a_{L, T}^{\star}(\xi) \Omega & =\xi, \quad a_{L, T}(\xi) \Omega=0, & \Omega: \text { Fock vacuum } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & \Psi_{n} \in \mathcal{H}^{\otimes n}, \\
a_{L, T}(\xi)\left[\Psi_{n}\right] & =\left[a_{L, 0}(\xi)\left(1+T_{1}+\ldots+T_{1} \cdots T_{n-1}\right) \Psi_{n}\right]
\end{array}
$$

- Quadratic exchange relations $a_{i} a_{j}^{\star}=T_{j l}^{i k} a_{k}^{\star} a_{l}+\delta_{i j} \cdot 1$ (with $\left.a_{i}:=a_{L, T}\left(e_{i}\right)\right)$

From now on: \mathcal{H} Hilbert space, T twist.

- On $\mathcal{F}_{T}(\mathcal{H})$, have creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{array}{rlrl}
a_{L, T}^{\star}(\xi) \Omega & =\xi, & a_{L, T}(\xi) \Omega=0, & \Omega: \text { Fock vacuum } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & \Psi_{n} \in \mathcal{H}^{\otimes n}, \\
a_{L, T}(\xi)\left[\Psi_{n}\right] & =\left[a_{L, 0}(\xi)\left(1+T_{1}+\ldots+T_{1} \cdots T_{n-1}\right) \Psi_{n}\right]
\end{array}
$$

- Quadratic exchange relations $a_{i} a_{j}^{\star}=T_{j l}^{i k} a_{k}^{\star} a_{l}+\delta_{i j} \cdot 1$ (with $\left.a_{i}:=a_{L, T}\left(e_{i}\right)\right)$
- "Left field operators:"

$$
\phi_{L, T}(\xi):=a_{L, T}^{\star}(\xi)+a_{L, T}(\xi) .
$$

(Left) twisted Araki-Woods Algebra

$$
\mathcal{L}_{T}(H):=\left\{\phi_{L, T}(h): h \in H\right\}^{\prime \prime} \subset \mathcal{B}\left(\mathcal{F}_{T}(\mathcal{H})\right)
$$

with $H \subset \mathcal{H}$ a standard subspace.
This coincides with the local observable algebras of the Klein-Gordon field for suitable $H=H(\mathcal{O})$ and $T=F$.

Questions

- Such von Neumann algebras are studied in physics (e.g. [L '06, Alazzawi/L '17], integrable models) and maths (e.g. [Voiculescu '80s, Kumar/Skalski/Wasilewski '23] (free probability, solution of factor problem for twist $q F,-1<q<1$) alike
- Does $\mathcal{L}_{T}(H)$ have the right properties for a QFT?

Questions

- Such von Neumann algebras are studied in physics (e.g. [L '06, Alazzawi/L '17], integrable models) and maths (e.g. [Voiculescu '80s, Kumar/Skalski/Wasilewski '23] (free probability, solution of factor problem for twist $q F,-1<q<1$) alike
- Does $\mathcal{L}_{T}(H)$ have the right properties for a QFT?

Localisation. Covariance. Vacuum properties. ...
First mathematical question: When is Ω cyclic (i.e. $\mathcal{L}_{T}(H)$ is "large enough for an observable algebra") and separating (i.e. allows for a large enough commutant).

Questions

- Such von Neumann algebras are studied in physics (e.g. [L '06, Alazzawi/L '17], integrable models) and maths (e.g. [Voiculescu '80s, Kumar/Skalski/Wasilewski '23] (free probability, solution of factor problem for twist $q F,-1<q<1$) alike
- Does $\mathcal{L}_{T}(H)$ have the right properties for a QFT?

Localisation. Covariance. Vacuum properties. ...
First mathematical question: When is Ω cyclic (i.e. $\mathcal{L}_{T}(H)$ is "large enough for an observable algebra") and separating (i.e. allows for a large enough commutant).

- Cyclicity: easy to show, holds always.
- Separating: not clear at all.

Questions

- Such von Neumann algebras are studied in physics (e.g. [L '06, Alazzawi/L '17], integrable models) and maths (e.g. [Voiculescu '80s, Kumar/Skalski/Wasilewski '23] (free probability, solution of factor problem for twist $q F,-1<q<1$) alike
- Does $\mathcal{L}_{T}(H)$ have the right properties for a QFT?

Localisation. Covariance. Vacuum properties. ...
First mathematical question: When is Ω cyclic (i.e. $\mathcal{L}_{T}(H)$ is "large enough for an observable algebra") and separating (i.e. allows for a large enough commutant).

- Cyclicity: easy to show, holds always.
- Separating: not clear at all.

In the following: $H \subset \mathcal{H}$ an arbitrary standard subspace (i.e. arbitrary modular group $\Delta_{H}^{i t}$), and T a twist.

Separating vacuum

Basic assumption: T and H are compatible in the sense $\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0$.
This means that the twist respects the symmetries of the setup.

Separating vacuum

Basic assumption: T and H are compatible in the sense $\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0$.
This means that the twist respects the symmetries of the setup.
\checkmark In order to have Ω separating for $\mathcal{L}_{T}(H)$, need KMS-property.

Separating vacuum

Basic assumption: T and H are compatible in the sense $\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0$.
This means that the twist respects the symmetries of the setup.

- In order to have Ω separating for $\mathcal{L}_{T}(H)$, need KMS-property.
- Analogous to Gibbs states: The function

$$
t \mapsto \operatorname{Tr}\left(e^{-\beta \text { Ham. }} A e^{\left.\left.i t \text { Ham. } B e^{-i t \text { Ham. }}\right)=\omega_{\beta}\left(A \alpha_{t}(B)\right), ~()^{2}\right)}\right.
$$

analytically continues to

Separating vacuum

Basic assumption: T and H are compatible in the sense $\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0$.
This means that the twist respects the symmetries of the setup.

- In order to have Ω separating for $\mathcal{L}_{T}(H)$, need KMS-property.
- Analogous to Gibbs states: The function

$$
t \mapsto \operatorname{Tr}\left(e^{-\beta \text { Ham. }} A e^{\left.\left.i t \text { Ham. } B e^{-i t \text { Ham. }}\right)=\omega_{\beta}\left(A \alpha_{t}(B)\right), ~()^{2}\right)}\right.
$$

analytically continues to

$$
t+i \beta \mapsto \operatorname{Tr}\left(A e^{-\beta \text { Ham. }} e^{\left.i t \text { Ham. } B e^{-i t \text { Ham. }}\right)=\omega_{\beta}\left(\alpha_{t}(B) A\right) ~}\right.
$$

- In our setting, consider n-point functions $\left(h_{1}, \ldots, h_{n} \in H\right)$

$$
f_{n}(t):=\left\langle\Omega, \phi_{L, T}\left(h_{1}\right) \cdots \phi_{L, T}\left(h_{n-1}\right) \Delta^{i t} \phi_{L, T}\left(h_{n}\right) \Omega\right\rangle_{T}=\left\langle 12 \ldots(n-1) n_{t}\right\rangle .
$$

Separating vacuum

Basic assumption: T and H are compatible in the sense $\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0$.
This means that the twist respects the symmetries of the setup.

- In order to have Ω separating for $\mathcal{L}_{T}(H)$, need KMS-property.
- Analogous to Gibbs states: The function

$$
t \mapsto \operatorname{Tr}\left(e^{-\beta \text { Ham. }} A e^{i t \text { Ham. }} B e^{-i t \text { Ham. }}\right)=\omega_{\beta}\left(A \alpha_{t}(B)\right)
$$

analytically continues to

- In our setting, consider n-point functions $\left(h_{1}, \ldots, h_{n} \in H\right)$

$$
f_{n}(t):=\left\langle\Omega, \phi_{L, T}\left(h_{1}\right) \cdots \phi_{L, T}\left(h_{n-1}\right) \Delta^{i t} \phi_{L, T}\left(h_{n}\right) \Omega\right\rangle_{T}=\left\langle 12 \ldots(n-1) n_{t}\right\rangle .
$$

Need

$$
f_{n}(-i)=\left\langle\Omega, \phi_{L, T}\left(h_{n}\right) \phi_{L, T}\left(h_{1}\right) \cdots \phi_{L, T}\left(h_{n-1}\right) \Omega\right\rangle_{T}=\langle n 12 \ldots(n-1)\rangle
$$

Separating vacuum

Basic assumption: T and H are compatible in the sense $\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0$.
This means that the twist respects the symmetries of the setup.

- In order to have Ω separating for $\mathcal{L}_{T}(H)$, need KMS-property.
- Analogous to Gibbs states: The function

$$
t \mapsto \operatorname{Tr}\left(e^{-\beta \text { Ham. }} A e^{\left.\left.i t \text { Ham. } B e^{-i t \text { Ham. }}\right)=\omega_{\beta}\left(A \alpha_{t}(B)\right), ~()^{2}\right)}\right.
$$

analytically continues to

- In our setting, consider n-point functions $\left(h_{1}, \ldots, h_{n} \in H\right)$

$$
f_{n}(t):=\left\langle\Omega, \phi_{L, T}\left(h_{1}\right) \cdots \phi_{L, T}\left(h_{n-1}\right) \Delta^{i t} \phi_{L, T}\left(h_{n}\right) \Omega\right\rangle_{T}=\left\langle 12 \ldots(n-1) n_{t}\right\rangle .
$$

Need

$$
f_{n}(-i)=\left\langle\Omega, \phi_{L, T}\left(h_{n}\right) \phi_{L, T}\left(h_{1}\right) \cdots \phi_{L, T}\left(h_{n-1}\right) \Omega\right\rangle_{T}=\langle n 12 \ldots(n-1)\rangle
$$

- Graphical notation

$$
\left\langle J_{H} h_{1}, \Delta_{H}^{i t} h_{2}\right\rangle, \quad\langle\overline{1}, 2\rangle \cdot\left\langle\overline{3}, \Delta_{H}^{i t} 4\right\rangle, \quad\left\langle\overline{3} \otimes T(\overline{2} \otimes \overline{1}), T(4 \otimes 5) \otimes 6_{t}\right\rangle
$$

Six-point function $\left\langle 12 \ldots 6_{t}\right\rangle$

By imposing the KMS condition, one can extract two properties of T :
(1) Crossing symmetry (analytic)
(2) Yang-Baxter equation (algebraic)

By imposing the KMS condition, one can extract two properties of T :
(1) Crossing symmetry (analytic)
(2) Yang-Baxter equation (algebraic)
(1) Analytic continuation of diagrams:

By imposing the KMS condition, one can extract two properties of T :
(1) Crossing symmetry (analytic)
(2) Yang-Baxter equation (algebraic)
(1) Analytic continuation of diagrams:

This is a condition on T.

Definition

T is called crossing-symmetric (w.r.t. H) if for all $\psi_{1}, \ldots, \psi_{4} \in \mathcal{H}$, the function

$$
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}(t):=\left\langle\psi_{2} \otimes \psi_{1},\left(\Delta_{H}^{i t} \otimes 1\right) T\left(1 \otimes \Delta_{H}^{-i t}\right)\left(\psi_{3} \otimes \psi_{4}\right)\right\rangle
$$

has an analytic continuation to the $0<\operatorname{Im}(t)<\frac{1}{2}(\ldots)$ and

$$
\begin{aligned}
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}\left(t+\frac{i}{2}\right) & =\left\langle\psi_{1} \otimes J_{H} \psi_{4},\left(1 \otimes \Delta_{H}^{i t}\right) T\left(\Delta_{H}^{-i t} \otimes 1\right)\left(J_{H} \psi_{2} \otimes \psi_{3}\right)\right\rangle \\
& =T_{J_{H} \psi_{2}, \psi_{3}}^{\psi_{1}, J_{H} \psi_{4}}(-t)
\end{aligned}
$$

Definition

T is called crossing-symmetric (w.r.t. H) if for all $\psi_{1}, \ldots, \psi_{4} \in \mathcal{H}$, the function

$$
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}(t):=\left\langle\psi_{2} \otimes \psi_{1},\left(\Delta_{H}^{i t} \otimes 1\right) T\left(1 \otimes \Delta_{H}^{-i t}\right)\left(\psi_{3} \otimes \psi_{4}\right)\right\rangle
$$

has an analytic continuation to the $0<\operatorname{Im}(t)<\frac{1}{2}(\ldots)$ and

$$
\begin{aligned}
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}\left(t+\frac{i}{2}\right) & =\left\langle\psi_{1} \otimes J_{H} \psi_{4},\left(1 \otimes \Delta_{H}^{i t}\right) T\left(\Delta_{H}^{-i t} \otimes 1\right)\left(J_{H} \psi_{2} \otimes \psi_{3}\right)\right\rangle \\
& =T_{J_{H} \psi_{2}, \psi_{3}}^{\psi_{1}, J_{H} \psi_{4}}(-t) .
\end{aligned}
$$

- Trivially satisfied for $T=q F$, trivially violated for $T=q 1$.

Definition

T is called crossing-symmetric (w.r.t. H) if for all $\psi_{1}, \ldots, \psi_{4} \in \mathcal{H}$, the function

$$
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}(t):=\left\langle\psi_{2} \otimes \psi_{1},\left(\Delta_{H}^{i t} \otimes 1\right) T\left(1 \otimes \Delta_{H}^{-i t}\right)\left(\psi_{3} \otimes \psi_{4}\right)\right\rangle
$$

has an analytic continuation to the $0<\operatorname{Im}(t)<\frac{1}{2}(\ldots)$ and

$$
\begin{aligned}
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}\left(t+\frac{i}{2}\right) & =\left\langle\psi_{1} \otimes J_{H} \psi_{4},\left(1 \otimes \Delta_{H}^{i t}\right) T\left(\Delta_{H}^{-i t} \otimes 1\right)\left(J_{H} \psi_{2} \otimes \psi_{3}\right)\right\rangle \\
& =T_{J_{H} \psi_{2}, \psi_{3}}^{\psi_{1}, J_{H} \psi_{4}}(-t) .
\end{aligned}
$$

- Trivially satisfied for $T=q F$, trivially violated for $T=q 1$.
- Specializes to crossing symmetry of scattering theory when:
- Twist is chosen as elastic S-matrix in 2d
- Standard subspaces are chosen to describe boosts and particle charges e.g. $H=H_{0} \otimes \mathbb{R}^{N} \subset L^{2}(\mathbb{R}, d \theta) \otimes \mathbb{C}^{N}$

Definition

T is called crossing-symmetric (w.r.t. H) if for all $\psi_{1}, \ldots, \psi_{4} \in \mathcal{H}$, the function

$$
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}(t):=\left\langle\psi_{2} \otimes \psi_{1},\left(\Delta_{H}^{i t} \otimes 1\right) T\left(1 \otimes \Delta_{H}^{-i t}\right)\left(\psi_{3} \otimes \psi_{4}\right)\right\rangle
$$

has an analytic continuation to the $0<\operatorname{Im}(t)<\frac{1}{2}(\ldots)$ and

$$
\begin{aligned}
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}\left(t+\frac{i}{2}\right) & =\left\langle\psi_{1} \otimes J_{H} \psi_{4},\left(1 \otimes \Delta_{H}^{i t}\right) T\left(\Delta_{H}^{-i t} \otimes 1\right)\left(J_{H} \psi_{2} \otimes \psi_{3}\right)\right\rangle \\
& =T_{J_{H} \psi_{2}, \psi_{3}}^{\psi_{1}, J_{H} \psi_{4}}(-t) .
\end{aligned}
$$

- Trivially satisfied for $T=q F$, trivially violated for $T=q 1$.
- Specializes to crossing symmetry of scattering theory when:
- Twist is chosen as elastic S-matrix in 2d
- Standard subspaces are chosen to describe boosts and particle charges e.g. $H=H_{0} \otimes \mathbb{R}^{N} \subset L^{2}(\mathbb{R}, d \theta) \otimes \mathbb{C}^{N}$

(2) Yang-Baxter equation
(2) Yang-Baxter equation

The two possible triple crossing terms in the 6-point function differ by a Reidemeister move of type III (\sim knot theory).

(2) Yang-Baxter equation

The two possible triple crossing terms in the 6-point function differ by a Reidemeister move of type III (\sim knot theory).

Interplay with crossing:

(2) Yang-Baxter equation

The two possible triple crossing terms in the 6-point function differ by a Reidemeister move of type III (\sim knot theory).

Interplay with crossing:

By exploiting KMS condition, one can show that one must have RHS = LHS

$$
T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2} \quad \text { Yang-Baxter equation }
$$

Theorem ([Correa da Silva/L '22])

Let $H \subset \mathcal{H}$ be a standard subspace and T a compatible twist. The following are equivalent:
a) Ω is separating for $\mathcal{L}_{T}(H)$.
b) T is crossing symmetric w.r.t. H and satisfies the Yang-Baxter equation.

Theorem ([Correa da Silva/L '22])

Let $H \subset \mathcal{H}$ be a standard subspace and T a compatible twist. The following are equivalent:
a) Ω is separating for $\mathcal{L}_{T}(H)$.
b) T is crossing symmetric w.r.t. H and satisfies the Yang-Baxter equation.

- Both crossing symmetry and Yang-Baxter equation have their origin in physics.
- Usually, they are assumed in various models

Theorem ([Correa da Silva/L '22])

Let $H \subset \mathcal{H}$ be a standard subspace and T a compatible twist. The following are equivalent:
a) Ω is separating for $\mathcal{L}_{T}(H)$.
b) T is crossing symmetric w.r.t. H and satisfies the Yang-Baxter equation.

- Both crossing symmetry and Yang-Baxter equation have their origin in physics.
- Usually, they are assumed in various models
- Here, we can derive both of them from localisation principles (modular theory)

Theorem ([Correa da Silva/L '22])

Let $H \subset \mathcal{H}$ be a standard subspace and T a compatible twist. The following are equivalent:
a) Ω is separating for $\mathcal{L}_{T}(H)$.
b) T is crossing symmetric w.r.t. H and satisfies the Yang-Baxter equation.

- Both crossing symmetry and Yang-Baxter equation have their origin in physics.
- Usually, they are assumed in various models
- Here, we can derive both of them from localisation principles (modular theory)
- In situation of theorem, also have right fields/algebras, and left-right duality

$$
\mathcal{L}_{T}(H)^{\prime}=\mathcal{R}_{T}\left(H^{\prime}\right)
$$

Outlook

... probably my time is up now.

Outlook

... probably my time is up now.

- Based on the described construction, one can build QFT models:
- integrable models in 2d [L, Alazzawi/L]. These are known to interact, solve the inverse scattering problem for factoried scattering, and are asymptotically complete.

Outlook

... probably my time is up now.

- Based on the described construction, one can build QFT models:
- integrable models in 2d [L, Alazzawi/L]. These are known to interact, solve the inverse scattering problem for factoried scattering, and are asymptotically complete.
- For $d>1+1$, we can control so far localisation in wedges and two-particle scattering [Grosse/L '07, L' 12, Buchholz/L/Summers '11] Have interaction models, but no pointlike fields.
- Recently, also n-particle scattering of these higher-dimensional models was understood, and proven to be asymptotically complete as well [Duell '18, Duell/Dybalski '22]

Outlook

... probably my time is up now.

- Based on the described construction, one can build QFT models:
- integrable models in 2d [L, Alazzawi/L]. These are known to interact, solve the inverse scattering problem for factoried scattering, and are asymptotically complete.
- For $d>1+1$, we can control so far localisation in wedges and two-particle scattering [Grosse/L '07, L' 12, Buchholz/L/Summers '11] Have interaction models, but no pointlike fields.
- Recently, also n-particle scattering of these higher-dimensional models was understood, and proven to be asymptotically complete as well [Duell '18, Duell/Dybalski '22]
- Deformations with $\|T\|<1$ are better accessible with operator algebra methods but more non-local (extreme case is $T=0$ - serve as non-local counterexamples)

