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Free QFT
Typical setup of free QFT:

Construction is based on a notion of “quantisation”.
▶ Problematic from conceptual point of view: quantum theory should

be more fundamental than classical theory.
▶ Classical limit ϕqu → φcl more meaningful than φcl → ϕqu

▶ In free QFT, quantisation can be avoided completely.
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Local Subspaces of a massive Klein-Gordon field
Two main ideas [Brunetti/Guido/Longo ’02]:

1 Base the construction on description of particle content
(representation of Poincaré group → masses, spins)

2 Focus on “local subspaces”. For O ⊂ Rd (Minkowski space) consider

H(O) = {f̂ = ϕqu(f)Ω ∶ supp(f) ⊂ O, f real}−

Ex.: (p↦ f̂(p) = f̃(
√
∥p∥2 +m2,p)) ∈ L2(Rd−1, dp√

∥p∥2+m2
)

Properties of the local subspaces H(O):
they are only real linear (real test functions) and closed.
For O1 spacelike to O2, have

Im⟨h1, h2⟩ = 0, h1 ∈H(O1), h2 ∈H(O2).

That is, H(O1) ⊂H(O2)′ (symplectic complement).
H(O) + iH(O) ⊂H is dense (Reeh-Schlieder property, cyclicity)
H(O) ∩ iH(O) = {0} separating
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Standard subspaces

Definition: A standard subspace is a closed R-linear subspace H ⊂H of a
complex Hilbert space H such that H + iH =H and H ∩ iH = {0}.

Examples:
Rn ⊂ Cn, L2

R(X) ⊂ L2
C(X)

ρ ∈Mn invertible density matrix. H ∶= {Aρ ∶ A = A∗ ∈Mn} ⊂Mn

H(O)

▶ Standard subspaces H are also mathematically interesting. Come with
Tomita operator

SH ∶H + iH →H + iH, h1 + ih2 ↦ h1 − ih2.

Polar decomposition SH = JH∆
1/2
H yields an “internal dynamics” (unit.

1-par.grp ∆it
H) and a “TCP operator” JH ,

∆it
HH =H, JHH =H ′, H = ker(1 − JH∆

1/2
H )

H determines JH ,∆H and vice versa.
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Main messages:
1 In free QFT, local subspaces H(O) can be completely described in terms

of the underlying Poincaré representation.
2 Once one has the local subspaces, the whole theory is fixed.

Actual construction: Take (..) positive energy rep U of Poincaré group.
Define: H(W ) = ker(1 −U(jW )U(λW (iπ))) by reflection jW at edge of
W and boost λW in direction of W (with W a wedge region)
For general O, define H(O) by intersections of wedge spaces.

This exactly describes the local subspaces of free QFT with representation U .
▶ Rest of the construction: Second quantisation:

H ⊃H Ð→ A(H) = {Weyl(h) ∶ h ∈H}′′

spacetime ⊃ O Ð→ A(H(O))
Remark: Fock vacuum cyclic (A(H)Ω dense) and separating (A(H)
contains no annihilators)

A free QFT can be defined entirely in terms of its one particle data (rep. U)
and “second quantisation”. No classical field theory or quantisation required.
Standard subspace encode localisation.

“Standard subspaces = localisation regions”
Not restricted to Minkowski space.
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Interactions?
▶ BGL-construction is conceptually interesting, but describes “good

old free field”.

▶ Can we “twist” (deform, modify ...) it to introduce some
interaction?

▶ Interacting theory should be based on single particle data and
“interaction”. So keep O ↦H(O), but change second quantisation.

Rest of talk: Sketch a particular approach. Others exist (e.g.
[Buchholz/L/Summers ’11])

7 / 18



Interactions?
▶ BGL-construction is conceptually interesting, but describes “good

old free field”.
▶ Can we “twist” (deform, modify ...) it to introduce some

interaction?

▶ Interacting theory should be based on single particle data and
“interaction”. So keep O ↦H(O), but change second quantisation.

Rest of talk: Sketch a particular approach. Others exist (e.g.
[Buchholz/L/Summers ’11])

7 / 18



Interactions?
▶ BGL-construction is conceptually interesting, but describes “good

old free field”.
▶ Can we “twist” (deform, modify ...) it to introduce some

interaction?
▶ Interacting theory should be based on single particle data and

“interaction”. So keep O ↦H(O), but change second quantisation.

Rest of talk: Sketch a particular approach. Others exist (e.g.
[Buchholz/L/Summers ’11])

7 / 18



Interactions?
▶ BGL-construction is conceptually interesting, but describes “good

old free field”.
▶ Can we “twist” (deform, modify ...) it to introduce some

interaction?
▶ Interacting theory should be based on single particle data and

“interaction”. So keep O ↦H(O), but change second quantisation.

Rest of talk: Sketch a particular approach. Others exist (e.g.
[Buchholz/L/Summers ’11])

7 / 18



General Fock spaces
[Bożejko/Speicher ’94; Jørgensen/Schmitt/Werner ’95]
▶ Setup: Fix one-particle Hilbert space H and T ∈ B(H⊗H).

▶ Idea: New scalar products ⟨ ⋅ , ⋅ ⟩T,n ∶= ⟨ ⋅ , PT,n ⋅ ⟩ on H⊗n.
▶ Notation:

Tk ∶= 1⊗(k−1)H ⊗ T ⊗ 1
⊗(n−k−1)
H ∈ B(H⊗n), 1 ≤ k ≤ n − 1

▶ Kernels:

PT,1 = 1, PT,2 = 1 + T, PT,3 = 1 + T1 + T2 + T1T2 + T2T1 + T2T1T2,

PT,n+1 = (1⊗ PT,n)(1 + T1 + T1T2 + . . . + T1⋯Tn).

Definition
Twist: T = T ∗, ∥T ∥ ≤ 1, PT,n ≥ 0 for all n.

Definition
T -twisted Fock space

FT (H) ∶=⊕
n≥0
H⊗n/kerPT,n

⟨ ⋅ , ⋅ ⟩T,n
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▶ Notation:
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▶ Sufficient conditions on T to be a twist are known (e.g. ∥T ∥ ≤ 1
2

or
T ≥ 0) [Jørgensen/Schmitt/Werner; Bożejko/Speicher]

Examples

T = F ∶ v ⊗w ↦ w ⊗ v (flip): FF (H) = Bose Fock space
T = qF , −1 ≤ q ≤ 1: FqF (H) = q-Fock space
T = 0: F0(H) = full Fock space
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(Tf)(θ1, θ2) = s(θ1 − θ2) ⋅ f(θ2, θ1) is a unitary twist.

Interpretation:
Think of θ as rapidity and s as elastic two-body S-matrix.
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From now on: H Hilbert space, T twist.

▶ On FT (H), have creation/annihilation operators aL,T (ξ), ξ ∈H:

a⋆L,T (ξ)Ω = ξ, aL,T (ξ)Ω = 0, Ω ∶ Fock vacuum
a⋆L,T (ξ)[Ψn] = [ξ ⊗Ψn], Ψn ∈H⊗n,
aL,T (ξ)[Ψn] = [aL,0(ξ)(1 + T1 + . . . + T1⋯Tn−1)Ψn]

▶
▶ “Left field operators:”

ϕL,T (ξ) ∶= a⋆L,T (ξ) + aL,T (ξ).

(Left) twisted Araki-Woods Algebra

LT (H) ∶= {ϕL,T (h) ∶ h ∈H}′′ ⊂ B(FT (H))

with H ⊂H a standard subspace.

This coincides with the local observable algebras of the Klein-Gordon field for
suitable H =H(O) and T = F .
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Questions
▶ Such von Neumann algebras are studied in physics (e.g. [L ’06,

Alazzawi/L ’17], integrable models) and maths (e.g. [Voiculescu ’80s,
Kumar/Skalski/Wasilewski ’23] (free probability, solution of factor
problem for twist qF , −1 < q < 1) alike

▶ Does LT (H) have the right properties for a QFT?

Localisation. Covariance. Vacuum properties. ...
First mathematical question: When is Ω cyclic (i.e. LT (H) is “large enough
for an observable algebra”) and separating (i.e. allows for a large enough
commutant).

Cyclicity: easy to show, holds always.
Separating: not clear at all.

In the following: H ⊂H an arbitrary standard subspace (i.e. arbitrary modular
group ∆it

H), and T a twist.
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Separating vacuum
Basic assumption: T and H are compatible in the sense [T,∆it

H ⊗∆it
H] = 0.

This means that the twist respects the symmetries of the setup.

▶ In order to have Ω separating for LT (H), need KMS-property.
▶ Analogous to Gibbs states: The function

t↦ Tr(e−βHam.AeitHam.Be−itHam.) = ωβ(Aαt(B))
analytically continues to

t + iβ ↦ Tr(Ae−βHam.eitHam.Be−itHam.) = ωβ(αt(B)A).

▶ In our setting, consider n-point functions (h1, . . . , hn ∈H)
fn(t) ∶= ⟨Ω, ϕL,T (h1)⋯ϕL,T (hn−1)∆itϕL,T (hn)Ω⟩T = ⟨12 . . . (n − 1)nt⟩.
Need
fn(−i) = ⟨Ω, ϕL,T (hn)ϕL,T (h1)⋯ϕL,T (hn−1)Ω⟩T = ⟨n12 . . . (n − 1)⟩

▶ Graphical notation

12t

1

23

4 1

2

34

5

6

⟨JHh1,∆
it
Hh2⟩, ⟨1̄,2⟩ ⋅ ⟨3̄,∆it

H4⟩, ⟨3̄⊗ T (2̄⊗ 1̄), T (4⊗ 5)⊗ 6t⟩
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Six-point function ⟨12 . . . 6t⟩
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By imposing the KMS condition, one can extract two properties of T :
1 Crossing symmetry (analytic)
2 Yang-Baxter equation (algebraic)

1 Analytic continuation of diagrams:

1

23

4t
t↝ t − i

12

3 4t 1

2

34

5

6t
t↝ t − i

1

23

4

5 6t

⟨2t ⊗ 1, T (3⊗ 4t)⟩ = T

2t 1

3 4t

t↝ t + i
2

T

2t 1

3 4t

= ⟨1⊗ 4̄t, T (2̄t ⊗ 3)⟩

This is a condition on T .

14 / 18



By imposing the KMS condition, one can extract two properties of T :
1 Crossing symmetry (analytic)
2 Yang-Baxter equation (algebraic)

1 Analytic continuation of diagrams:

1

23

4t
t↝ t − i

12

3 4t 1

2

34

5

6t
t↝ t − i

1

23

4

5 6t

⟨2t ⊗ 1, T (3⊗ 4t)⟩ = T

2t 1

3 4t

t↝ t + i
2

T

2t 1

3 4t

= ⟨1⊗ 4̄t, T (2̄t ⊗ 3)⟩

This is a condition on T .

14 / 18



By imposing the KMS condition, one can extract two properties of T :
1 Crossing symmetry (analytic)
2 Yang-Baxter equation (algebraic)

1 Analytic continuation of diagrams:

1

23

4t
t↝ t − i

12

3 4t 1

2

34

5

6t
t↝ t − i

1

23

4

5 6t

⟨2t ⊗ 1, T (3⊗ 4t)⟩ = T

2t 1

3 4t

t↝ t + i
2

T

2t 1

3 4t

= ⟨1⊗ 4̄t, T (2̄t ⊗ 3)⟩

This is a condition on T .

14 / 18



Definition
T is called crossing-symmetric (w.r.t. H) if for all ψ1, . . . , ψ4 ∈H, the function

Tψ2,ψ1
ψ3,ψ4

(t) ∶= ⟨ψ2 ⊗ψ1, (∆it
H ⊗ 1)T (1⊗∆−itH )(ψ3 ⊗ψ4)⟩

has an analytic continuation to the 0 < Im(t) < 1
2

(...) and

Tψ2,ψ1
ψ3,ψ4

(t + i
2
) = ⟨ψ1 ⊗ JHψ4, (1⊗∆it

H)T (∆−itH ⊗ 1)(JHψ2 ⊗ψ3)⟩

= Tψ1,JHψ4
JHψ2,ψ3

(−t).

Trivially satisfied for T = qF , trivially violated for T = q1.
Specializes to crossing symmetry of scattering theory when:
— Twist is chosen as elastic S-matrix in 2d
— Standard subspaces are chosen to describe boosts and particle charges
,
e.g. H =H0 ⊗RN ⊂ L2(R, dθ)⊗CN
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2 Yang-Baxter equation

The two possible triple crossing terms in the 6-point function differ by a
Reidemeister move of type III (↝ knot theory).

1

2

34

5

6 1

2

34

5

6

Interplay with crossing:

By exploiting KMS condition, one can show that one must have RHS =
LHS

T1T2T1 = T2T1T2 Yang-Baxter equation
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Theorem ([Correa da Silva/L ’22])
Let H ⊂H be a standard subspace and T a compatible twist. The following are
equivalent:

a) Ω is separating for LT (H).
b) T is crossing symmetric w.r.t. H and satisfies the Yang-Baxter equation.

Both crossing symmetry and Yang-Baxter equation have their origin in
physics.
Usually, they are assumed in various models
Here, we can derive both of them from localisation principles (modular
theory)
In situation of theorem, also have right fields/algebras, and left-right
duality

LT (H)′ =RT (H ′).
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Outlook
... probably my time is up now.

▶ Based on the described construction, one can build QFT models:
▶ integrable models in 2d [L, Alazzawi/L]. These are known to interact,

solve the inverse scattering problem for factoried scattering, and are
asymptotically complete.

▶ For d > 1+ 1, we can control so far localisation in wedges and two-particle
scattering [Grosse/L ’07, L’ 12, Buchholz/L/Summers ’11]
Have interaction models, but no pointlike fields.

▶ Recently, also n-particle scattering of these higher-dimensional models
was understood, and proven to be asymptotically complete as well [Duell
’18, Duell/Dybalski ’22]

▶ Deformations with ∥T ∥ < 1 are better accessible with operator algebra
methods but more non-local (extreme case is T = 0 — serve as non-local
counterexamples)
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