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1. Setup and Motivation



1. Setup and Motivation

Bose-Hubbard Hamiltonian in d Dimensions (n.n. = nearest neighbors):

— —JZ(a’ffaj +ajra +—Z ajajaj +Zejaa

n.n.

Bosonic Annihilation and Creation operators:

[a;,a]] = di

Cubic Lattice I':

=0 .dg) € {1,2,---,1} =T



1. Setup and Motivation: Quantities of Interest

Initial state: N particles at some lattice site jy

+\N
bo = ) g
' VNI
Time evolved state:
v = e "y

Number of particles (n;;) at lattice site j at some time t > 0:

(nje) = <1/1t73jraj V)

Already for just two lattice sites 1 and 2, quite complex behaviour, Example:



1. Setup and Motivation: Example Two Site Bose-Hubbard Model

Two Site Bose-Hubbard model:

_ + + 4+ + o+
H = c(afa, + aja; ) + u(afala;a + a3aza,a, )

N = 20 particles at lattice site jo = 1:

Plot (n1 ) = <wt,afal Yy) for

Zm-m
N m
SS "~
(&)
o
=)

with interaction strength

g € {0,%,2,%,3,1,15,20,25,3,4,5,25}
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g=1/2
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1. Setup and Motivation

Central Problem of Many Body Quantum Mechanics:

Calculate Density Matrix Elements or Correlation Functions

<wta a?_aj wt> ) <wna,.*afakagwt>,

this talk: new proposal for doing that



1. Setup and Motivation: Bargmann-Segal Representation

Bargmann-Segal representation:

acting on the Hilbert space of analytic functions of || = L9 complex variables:

F = { f=~1({z}): ' - c analytic

113 = (£ Fr < o0}

with scalar product

(f.g)r = f@\r\:Rz\r\ f(z) g(z) du(2)

du(z) = [I, e lal® Feadng



1. Setup and Motivation: Bargmann-Segal Representation
Hamiltonian:
2
h = ZEUZ"G% + uszzaa—zj2 =: hg + hint
ij J
We can allow for a general hopping matrix which should be real and symmetric:

ITIxIrT

e = (gjlijer € R €ij = Eji

For a nearest neighbor hopping J and on-diagonal trapping potentials ¢;:

—J if |i—jl=1
Ej = +e; if i=
0 otherwise .



1. Setup and Motivation: Coherent States and Number States

Coherent and Number states, A = {)\;} € CI'l :

beon(2) = Yeon({z}) = [ N7 e = & L
Qbnum(z) = wnum( {ZJ}) = N'N’V (Z )\ZJ) —- %

In both cases: t =0 expected number of particles at site j:

(Yo,afa;v0)r = [N

Thus: Total number of particles N:

SN = YiINE = P



2. Overall Strategy and Main Results



2. Overall Strategy and Main Results

1) Time Evolution of States as Fresnel Expectation Values, t = t, = kdt

ve(z) = (€7"o)(2) = Eglvo(Up,e2)]
with unitary evolution matrix
det(¢) — e—idtae—fDdt((bl) . e—fthe—iDdt(¢k) c C|r|><||—|
2) Correlation Functions as Fresnel Expectation Values

<wt 9 a;‘raj z/}t> = Ed’Ee[ FI:LijO(U(b:t’ U‘gxt) ]

3) Stochastic Differential Equation (SDE) for Unitary Evolution Matrix Uy ¢

dUy = —iU(edt + V2udx), dxige = Vdt dx



2. Overall Strategy and Main Results

4) Correlation Functions from SDEs, (v, %) = (U(;t)\, UQTJ\)

<wtva,—'i_aj ¢t>coh/num = EE[ Vit Vj,t Piﬂo(vtvt)] / Pwo(V0\70)

with dv, = —i(ev);jdt — iv2uv;dx
dv; = +i(ev)jdt + ivV2uvdy;, Peonjmum(x) = €* or x"1

5) Correlation Functions from Girsanov-Transformed SDEs
<¢t , a,—'i_aj ¢t >coh/num = EE[ Vit Vj,t]

with dvi = —i(ev)jdt — i2ulog Py, (vV) vjvjv; dt — ivV2uv;dx;
dv; = +i(ev)jdt + i2ulogPy,) (vv) vjvj v; dt + ivV2uV;dy;



2. Overall Strategy and Main Results

6) Large N Limit: g := uN fixed, (w,w) := (v,7)/v'N, then
(Ye,a]3; Vt)eonfmum = N x EE[wie W]
with dw; = —i(ew);dt — i2g [log Py wjwjwj dt — i\/2g/N w; dx;
dw; = +i(ew);dt + i2g [log Py) wjw; w; dt + i\/2g/N w; dy;
Large N Limit can be read off:
(Ve,a7a; Ve )corsmum = N x wi(t) w(t)
with w;, w; given by the ODE system ([log Peop/numl’ — 1)

W= —i(ew)j — 128 ww;w

B =+ i(ew); + i2g wity W,

which is the time dependent discrete Gross-Pitaevskii equation.



2. Overall Strategy: Additional Results (appendix has more detail)

o Various Exact PDE Representations (confirming stochastic calculus formalism)

o Collapse and Revivals can be obtained from an approximate ODE System

Black numbers are from exact diagonalization, the red curve comes from an analytical
calculation:

o Equivalence between Mathematical Pendulum and Quartic Double-Well Potential



3. Time Evolution of States as Fresnel Expectation Values



3. Time Evolution of States as Fresnel Expectation Values

Time evolution with Trotter formula, t = t, = kdt:

e ith — e ikdilhothn)  (gidtho g=idthip )k

Let's consider the action of e 7dtho and e/ dthint .



3. Time Evolution of States as Fresnel Expectation Values

Action of e~tho -

(e th f)(2) = f(e_"tgz)

since with z, 1= e ¢tz

%[f(zt)] = %[f(e_itaz)] = Zj 85? %(Zt) = Zj(_igzt)j%(zt)
— {—i jykaj,kzkg—zfj}(z:zt) = {—ihof}(zt)



3. Time Evolution of States as Fresnel Expectation Values

Action of e~/ thint -

: : R
(7t F)z) = [ (e P2) [T, e 5
RI i

with D;(¢) the |I'| x |I'| diagonal matrix

Di(¢) = diag({V2ut¢; — ut}jer) € RIXI



3. Time Evolution of States as Fresnel Expectation Values
Proof of (1):
hint H_,Z_,nj = {u ’Bz }HZ = {uZini(ni_l)}Hijnj
e—ith,-,,t HJ Zjnj _ e—iut Zj nj(nj—1) HJ Zjnj _ H_/ <e+iutnj e /utnj Zj )

s

Now use Fresnel integral (V/i:=e'%)

to obtain

2
¢

o it hint Hj ZJ{U - /er H_j (e+iut—i\/2ut¢jzj)nj H_j el \;f% .



3. Time Evolution of States as Fresnel Expectation Values

Thus, single Trotter step (¢? := > ¢J? ):

(e—idthf)(z) — [e—idthint(e—idthof)](z)

_idte ,—iDg 22 girl
= /erl fe /e Pul?z) &' (27Ti)\g/2



3. Time Evolution of States as Fresnel Expectation Values

Iterating, t = tx = kdt:

. . . k .¢2
(e—l kdthf)(z) — \/Rklr f( e dtsefl Dyt (1) . .. f/ dte 71 Dy:(dk) ) H J dlr\‘(fé‘,/2
= [ FUa()2) dF (o))

= E[f( U¢,kdtz)]

with notations (k,¢ € N time indices, j = (j1,- - ,jq) € I' lattice site index)
¢0 = ({&je}jer) € RN
6 = Y;¢, € R
de, = Tljdeje



3. Time Evolution of States as Fresnel Expectation Values

Theorem 1: Let h = hg + hj,: be the d-dimensional Bose-Hubbard hamiltonian with
cubic lattice I' = {1, ..., L}9, hopping matrix ¢ and interaction u. Then, for t = kdt,
the time evolution of some initial state o(z) is given by

(e " thyp)(2) = /ka Yo( Ukar(¢) 2) dF({oc}i_1) = E[vo(Usarz)]
with unitary evolution matrix

det(¢) = e_idtfe_iDdt(ff’l) . e_idtfe—fDdt(¢k) c C||—|><||—|
Dar(¢e) = diag({ﬂgﬁm — udt}er) € RITIXITI

and Fresnel measure given by

2
el-] = [ et = [ et i
RKITI RAIT| ™



4. Correlation Functions as Fresnel Expectation Values



4. Correlation Functions as Fresnel Expectation Values

Correlation Functions in Bargmann-Segal Representation:

<¢t7a,7L3j 1/1t> = <¢ta[aj 3?—5i,j]¢t>

Jor 2 Zi [We(2) P dp(z) — 61y

From Theorem 1,

Vrat(2) = Jgur Yo( Ugkdez ) dF ()

Vae(z) = [gur) Yo( Upkdez ) dF(0)

with

2
.0y

g - %% g
dF(¢) = Tlie®= ohsttn » dF(0) = Tliie = Gl




4. Correlation Functions as Fresnel Expectation Values

Thus, with t = kdt,

(esaafin) = [ 25 0P dulz)
ClIrl
- /C 5E [ olUe2) dF(9) | a(Us.2) dF(6) dn2)

RKIT

Lo L L L 5 ot O ante) ) o) aF @

The red integral is the expectation over the bosonic Fock space and can be calculated:



4. Correlation Functions as Fresnel Expectation Values

The integrand is:

For coherent states:

212 Yo(Up,ez) Yo(Up,ez) = zZ exp{A-Upez} exp{ X- Up:Z } e M

= zz exp{ U Nz} exp{ U X -2} e~ 1M
For number states:
- — -1 N <~ = _\N
21 Zi Yo(Up,ez) Yo(Upez) = 2 Zi wm (A Upez) (X- UpeZ)

= ijiW (U¢T,t)"Z)N( _OT,t;"E)N



4. Correlation Functions as Fresnel Expectation Values

H - - - _|2.12 dRez; dI ;
Using (with (A %) = (U] A, 0F %) and recall du(z) = [1; e~ /51" 9205 )

/ eAz+Xf d,u(z) _ e)x)\
CIrl

/@rlzjz, AN duz) = BN = () e
and
[ 09" G2V duz) = ()
1 /C 55 02" 02" du(z) = A B = AT R 4 6 ()Y

we find



4. Correlation Functions as Fresnel Expectation Values

Theorem 2: For t = kdt let EE[-] = [pur [gur - dF(¢) dF(0) . Then:

a) For an arbitrary initial state 1y,

’l]Z)t(Z) == (e_ith’lpo)(Z) == E[ 1/)0( Ud)’tZ) ] (reminder, same as Theorem 1)

b) For a coherent state to(z) = e?2e~1M/2

(Ve.afa; ve) = EE| (UL (07N exp{ UL A OF A} | /€™

c) For a number state vp(z) = (Az)V/VNINN

(Ve.a7a; b)) = EE[ UL (O (UL OF )" ]/ ojv



5. SDE Representation



5. SDE Representation: Reminder Brownian Motion and Wiener Measure

Standard Brownian motion in discrete time t = t, = kdt:

Xy, = V dt 25:1 gf)[ dxe, = X, — Xty _, = Vdt ¢y

Wiener measure in discrete time with fixed time horizon T = t, = ndt:

2
n 2 do n _ gy ) dx
— -5 A— te
dWw = él:ll e Ver T Kljl € 2dt V2m dt

Brownian motion calculation rule, basic to stochastic calculus:
(dx;)> = dt

For more background, see the appendix compact summary stochastic calculus in

https://arxiv.org/pdf/2205.02010.pdf


https://arxiv.org/pdf/2205.02010.pdf

5. SDE Representation: Fresnel Brownian Motion and Fresnel Measure

Then Fresnel Brownian motion is

Xt, = V dt 25:1 0] dxe, 1= xe, — X, = Vdt

with the ¢, to be integrated against Fresnel measure,

2
n L$2 n Oty —xp_q)
dF = ] el dbe [[e 2= dxt,
i—1 27 =1 V2mi dt

Fresnel Brownian motion calculation rule:
(dx:)> = idt

For more background, see the appendix compact summary stochastic calculus in

https://arxiv.org/pdf/2205.02010.pdf


https://arxiv.org/pdf/2205.02010.pdf

5. SDE Representation: Unitary Evolution Matrix Upg;

Unitary evolution matrix of Theorem 1,

e! the*’ Dge(¢1) . .. e ! dtee*’ Dyt () — U(kfl)dt e ! dtsefl Dy (¢k)

Ut =

with diagonal matrix Dg:(¢x) given by
Ddt(qbk) = diag({v2ux/$ gijk — Udt}jer)
= diag({v2u de,kdt — udt}jer)
= V2u dxygyy — udtld

and diagonal matrix of Fresnel Brownian motions

kadt = diag({dxj’kdt}jer) S erlxm

which satisfies the matrix equation (dxyq:)?> = idtld .



5. SDE Representation: Unitary Evolution Matrix Upg;

Up to terms O(dt3/?),

e Pal®) = 1 — iDy(dk) — 3 [Dar(dx)]?
— 1 — i[V2udxa — udtld] — 3 [V2udxg: — udtid]?
— 1 — iV2udwar + iudild — 1 [v2udxa ]’
= 1 — iV2udxige + iudtld — judtid
= 1 — iV2udxear
Thus, Ukie = Ugyae e 4ce7 Dl

= U(k 1)dt (1 — Ith) (1 - I'\/>kadt)
= U(k 1)dt (1 — idte — I\/i dxkdt)

= dUtk = Utk — Utkfl = —I Utk—l (dt€ + V 2U dth)



5. SDE Representation

Theorem 3: a) The unitary evolution matrix U, satisfies the SDE
dUt = —IUt(Edt + v2udxt)

b) The correlation functions have the representations

sl

<'¢taa?—aj wt>coh = E evV] /e»‘

<¢t73;+aj ¢t>num = EE[ Vi Vj (VV)N_l] /()‘E‘)N_l

[vi

S

with v, 7 € CI"l ) v = (vjx1), V = (Vj.t), given by the SDE system

dvi = —idt(ev); — iV2uvjdx;
dv; = +idt(ev); + iV2uv;dy,

with initial conditions (vi0,%.,0) = (A )) and EE = EE, .



5. SDE Representation
Proof 3b) From Theorem 2,
(e, ata; Yedeon = EE[ (UL A [OF N exp{ UL A- OF A} } /M
(Ve.af 3 Ve)mm = EE[ [ULN 107N (UTA-OFX)" " ]/ v

With (x4 = \/Ezjkzl Diy Yrdt = mzle 0;)

Vo= Wy = UZtA e ¢l
v =7, = 0 e I

this looks as follows

<¢t737r3j Vi )eoh = EE[ Vi Vj evv] /e/\i
(Ve,a]a; Ye)oum = EE[viy; (v)V 1] / (AN



5. SDE Representation

Since

dU; = —iUs (edt + V2u dx;)

and because of ¢7 =¢, dx, = dx;, we obtain

duf = —i(edt + V2udx ) U]
dU] = +i(edt + V2udy) U]

Thus, with v+ = UtT)\, Ve = UtTS\,

dv = —i(dtsﬂ—\/ﬂdxt)v
dv = +i(dte + vV2udy)7V

with initial conditions vo = UJ A = \, o = Uj A = X.



6. Girsanov Transformed SDE Representation

6.1 Unitary Time Evolution as a Martingale
6.2 Girsanov Transformed SDE System



6.1 Unitary Time Evolution as a Martingale



6.1 Unitary Time Evolution as a Martingale

As in Theorem 3, one finds just for the norms ||¢;||?:

<¢t7wt>coh = EE[ vV ] / e/\j\
(e, Y1) pum = EI_E[(VV)’V—l]/()\j\)N—1

with vV =} . v;V; and v;, ¥ given by the SDE system

dvi = —idt(ev); — iV2uvjdx;
dv; = +idt(ev); + ivV2uvdy;

These quantities have to be independent of time, we have to have

EE[ eV\7 ] — eVgV() — e)\)\

EE[(vi)" '] = (w)¥' = (V!

How can this be understood in an SDE context?



6.1 Unitary Time Evolution as a Martingale

From dv = —i(edt +V2udx)v

dv = +i(edt +V2udy)v
we get dvT = —ivi(edt + V2udx) ,
d(vi) "= d(vTe) = dvTv + vTdv + dvTdv

—ivi(edt + V2udx; )V + ivT(edt + V2udy,)v + 0

= —ivievdt + ivievdt — iV2uv'(dx, —dy,) v

— iV2u 33 vV (dxje — dyje)
The quantity v is a martingale, its d(v¥) has no drift part. Since E[dx;] = E[dy;:] = 0,

= EE[(v©)s, ] = (V7)o + Yy EE[d(vP),] = (VD)o



6.1 Unitary Time Evolution as a Martingale
Ok, but we need more, we need EE[f(v;¥:)] = f(wi) for arbitrary f. With Ito-Lemma:

df(VtVt) = f/(VV) d(VtVt) + %f”(VV) [d(VtVt)]2
Now,
—\12 . - 2
[z = { = ivau v (dge — dyio) }
= —2u Z viVi vV (dxi,e — dy;e)(dxj,e — dyjie)
ioj
=0
since dx;.dxj: = dy;.dyj: = dxi+dyj = 0 for i #j and for i =j:

(dxje — dyje)® = (dxie)® — 2dxedyje + (dyje)?
= +idt — 2-0 — jdt = 0



6.1 Unitary Time Evolution as a Martingale

Thus,
df () = f'(vv)d(wv) + %f”(vV) [d(vt\7t)]2

=0

= —iv2u f'(vee) 32 viV; (dxje — dyje) (2)
has no drift part which gives EE[df(v,v:)] =0 and therefore

EE[f(vi%)] = f(ww) -

Equation (2) allows us in the next section 6.2 to absorb the the quantities €7 or (v)"~1 into

the Fresnel integration measure and to arrive at the compact expressions

<¢t ) a?_aj (o >coh/num = EE[ Vi \7J ]

with new, and initial state coh/num dependent, SDE's for the v;, ¥;. Result is Theorem 4.



6.2 Girsanov Transformed SDE System



6.2 Girsanov Transformed SDE System

Untransformed representation:

<'(/}t ) a;raj ¢t>coh = EE[ Vi ‘7_/ e’’ ] / e>\5\
(Ve a;+3j Ve )oum = EE[ vi Vj (V‘7)N71 ] / ()‘/_\)Nfl
We write
(r, a?’aj Ye) = EE[ Vit Vit P(veVt) ] / P(voio)

Now, with p :=log P,

P(Vtkvtk) / P(VOVO) = exp{ p(Vthtk) - p(VOVO)} = exp{ Zéf:l dp(vttz‘_/tz) }

—
N
—

exp{ — iV2u S5, S [P (vI)(v)]e, (e, — dYie,) b
exp{ — ivV2udt 5 S [P (V) (viT)]ers (76 — 050) }



6.2 Girsanov Transformed SDE System

Since
EE[ '] = f]Rk“'\ kam : dF(ﬁﬁ)d'E(a)
with
6% T — 7,-972, I
dF(¢) = Ili,et ? eyt dF(0) = [Ty e F EaT

the quantity

P(vi7) / Pwoio) = exp{ = iv2udt Y1, 35, 1 (v (vl (610 = 6,) }

can be absorbed into the Fresnel measure by completing the square. In stochastic calculus, this
is called a Girsanov transformation:

Gje = e — V2udt [p'(vV) v ]e-1yae
ng = Gj,g — v2udt[p/(V\7)Vj\7j](g,1)dt



6.2 Girsanov Transformed SDE System

or equivalently
dXJ'Jz

dj;j’tzf

We get a new SDE system:

dv; =

= dXJ',fz

= dyj,t/

— i dt(ev);
— i dt(ev);
— i dt(ev);

<I

+idt(e
+idt(e

<I

)i
)i
+ idt(eV);

V2udt[p'(vi
V2udt[p'(vi

)VJVJ](Z 1)dt

V) VviVi l(e—1)dr

— IV2uvjdx;
— iV2uv; [d& + V2udtp'vv]
— i2udtp'viviv; — iV2uv;dX;
+ iV2uV; dy;
iV2u v [dy; + V2udtp'v;ij]
+ i2udtp'viviv; + iV2uv;dy;

+



6.2 Girsanov Transformed SDE System

Theorem 4: The correlation functions of Theorem 3 have the following equivalent
representation:

<77Z)tva?raj wt>coh/num = EE[VIVJ]

with the vj, v; given by the transformed SDE system (vj = vjx,.t, Vj = Vjx,y.t)

dvj = —i(ev)jdt — i2up'v;V;vidt — iV2uv;dx
dv; = +i(ev)jdt + i2up'vjv; vidt + i\/ﬂvjdyj

and

1 for a coherent state
(N —1)/(vv) for a number state .

p(v7) = llogPl(vi) = {

with P(x) = &* or xN=1 for coh/num.



7. Large N Limit: Gross-Pitaevskii Equation

7.1 GP Equation for the d Dim Bose-Hubbard Model
7.2 GP Equation for the Two Site Bose-Hubbard Model and Numerical Test



7.1 GP Equation for the d Dim Bose-Hubbard Model



7.1 GP Equation for the d Dim Bose-Hubbard Model

Recall |[A\|?> = N. Define normalized quantities

wi = vi/IAl = vi/VN

W o= G/ = /YN
Then, with p’ = p/(vv) = p'(Nww),
dwj = —idt(ew); — i2uN dtp'wiw; — iV2uw; dy
dw; = +idt(ew); + i2uNdtp'wjw;w; + iv2uw; dy;
or, with g = uN
dwj = —idt(ew); — i2gdtp'wiww; — i\/2g/Nw;d
dw; = +idt(ew); + i2gdtp'wiw;w; + iv/2g/Nw, dy;

The large N limit can be read off:



7.1 GP Equation for the d Dim Bose-Hubbard Model
Theorem 5: In the limit N — co with g = ulN fixed, Theorem 4 reduces to

<¢tva,-'i—aj wt >coh/num = N x Wf(t) Wj(t)
with w, w given by the ODE system, in both cases coh/num,

W o= —i(ew)j — 128 wiw;w;
W = +i(ew); + 128 ww; w; (4)
with initial conditions
wi(0) = N /AL w(0) = X/ Al
The ODE system (4) is the time dependent discrete Gross-Pitaevskii equation.

The first equation of (4) is enough since w; is the true complex conjugate of w; now.



7.1 GP Equation for the d Dim Bose-Hubbard Model

Proof: For a coherent state p’ = 1 and the statement follows immediately from the

SDE system (3) since the diffusive part vanishes. For a number state,
po=p(Nww) = (N-1)/(Nww) "= 1/(ww)

such that we get the following ODE system:

W, = —i(ew); — i2g _WJWJWJ
W= (W) + 28 5 Wi W,
However,
%(wv‘v) = ZJ{ i(ew)w; — i2g = (wjw))? + iwj(ew); + i2g =
T

which results in (ww); = (ww)g = 1.



7.2 GP Equation for the Two Site Bose-Hubbard Model and Numerical Test



7.2 GP Equation for the Two Site Bose-Hubbard Model

For just two lattice sites 1 and 2, we get from Theorem 5
. N— oo 2 X
<nj7f> = <7/]f ) afaj 1/% >coh/num = N |Wj7t| = N 9j,t
with wy, wy given by the GP system
Wi = —iewy — i2g|wmPwm
W = —iewy — i2g|walPws .

Theorem 6 (well known): Introduce the normalized particle imbalance and its integral,

o = [wmf — |wf?

pr = ngot 0125 ds
Then ¢, is a solution of

Gr + 4e%sing; = 0

and the density of particles at lattice site 1 is obtained as

01t = |W1,t|2 = %(14‘2%)



7.2 GP Equation for the Two Site Bose-Hubbard Model

Initial conditions: Put all particles on lattice site 1 at t = 0. Then g = 0, always, and
Yo = 280120 = 28(010—020) = 28(1-0) = 2g
The total energy is

E = %t —4c2cosp; =

S

.2
D — 4e?cospy = 282 — 4e?

The potential energy at ¢ = m is E,or = +4c%. We have rollovers if the total energy is
bigger than that:

2g° — 4e? > 442
& g2 > (2)
In that case, the velocity ¢ = 2g (91,+ — 02,:) which is the particle imbalance between the

two lattice sites, does not change its sign and this corresponds to the non-oscillatory or self-
trapping regime:



7.2 GP Equation for the Two Site Bose-Hubbard Model

The mathematical pendulum ODE for e =1 and g € {1.99, 2.01 }:

g =1.99 (black) and g = 2.01 (red) from ODE system

NN

time

the quantity 01 = %(1 + ‘;—gt) with ¢; from ODE, @9 =0 and ¢y = 2g



7.2 GP Equation for the Two Site Bose-Hubbard Model: Numerical Test

Numerical check of the large N limit: ¢ =1 and

N S { 2500 5 5000 5 10000 5 20000 } = {orange, green, light blue, dark blue }
g € {05,1.0,18,22,3.0,6.0}

Quantity:

<¢t,afal Ye) | N from exact diagonalization

%(1 + 2“-’—;) from ODE mathematical pendulum

The red line below is the ODE solution and the dots come from exact diagonalization:



7.2 GP Equation for the Two Site Bose-Hubbard Model: Numerical Test

nl{tyN

00 02 04 06 08 10

ntnN

00 02 04 06 08 10




7.2 GP Equation for the Two Site Bose-Hubbard Model: Numerical Test
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7.2 GP Equation for the Two Site Bose-Hubbard Model: Numerical Test

g=3.0
o
o |
o
Z 51
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8. Summary



8. Summary

Main Results:

o Simple and Elegant Method to Calculate GP-like Mean Field Equations

o Generic Formalism: Arbitrary Initial State, Arbitrary Hopping Matrix, Arbitrary Dimension

o Various Exact PDE Representations

o collapse and revivals could be reproduced, proper treatment of diffusive part still missing
Outlook:

o Use this for New Numerical or Analytical Calculation Schemes
o Fermi Hubbard Model

o Thermodynamic Quantities

full paper at
https://arxiv.org/abs/2205.02010


https://arxiv.org/abs/2205.02010

8. Summary

Theorems:

Theorem 1: Time Evolution of States as Fresnel Expectation Values, Matrix Uyg:
Theorem 2: Correlation Functions as Fresnel Expectation Values

Theorem 3: SDE for Ukg: and Correlation Functions as Expectations of Fresnel Diffusions
Theorem 4: Girsanov Transformed SDE System: Initial State moves into Drift Part
Theorem 5: Large N-Limit of Theorem 4: Gross-Pitaevskii Equation

Theorem 6: GP Equation for Two Site Bose-Hubbard Model as Mathematical Pendulum

Appendix:

Theorem 7: PDE Representation Correlation Functions, d-dim Bose-Hubbard Model
Theorem 8: PDE Representation Correlation Functions, Two Site Bose-Hubbard Model
Theorem 9: Equivalence Mathematical Pendulum and Quartic Double-Well Potential

Standard Formula Wiener and Fresnel Expectations



Appendix

PDE Representation d Dim Bose-Hubbard Model

PDE Representation Two Site Bose-Hubbard Model

Equivalence Mathematical Pendulum and Quartic Double-Well Potential
Standard Formula Wiener and Fresnel Expectations



Appendix: PDE Representation d Dim Bose-Hubbard Model

Theorem 7: Define the differential operators

Line = uz:{faiv_r/fav.2
J

:IZ,J;&,'J'{V,‘aiVj—V,a }

X fi h t stat
and fOI’ P(X) — eN71 Oor conerent state
X for number state
0
let Lp = P'(vv) - Vi —
P “Pvo) Z % { v av Vfar/,-}

Then, for the d-dimensional Bose-Hubbard model with hopping matrix ¢ and interaction u
<wt ) a,-'l_aj ’l/Jr >coh/num = eiit(ﬁo+£m) { Vi ‘7j 'D(Vv) } / P()‘S‘) |v:)\,\7:5\

— e it(LotLintLp) { Vi V) } lv=rp=3 -



Appendix: PDE Representation Two Site Bose-Hubbard Model

Theorem 8: Define the differential operators  (with p’ = [log P]’, P(x) = €< orx"~1 coh/num)

Le —6{(q—c—/)(a%—a%)+(n1—n2)(a@q_%)}

o= r2{(mgh - md)(ad - k) + P m-m)(af -3

)}

acting on functions of 4 variables F = F(n1, n2,q,q). Then for the two site Bose-Hubbard model

Sle

—it(L L
<1/)tyafa1 ¢t>coh/num = € it(Le+ u)nl

(n1:m2,0,@) = (12112, X212, A1 32, A1 20)

with actions

—itl = T
(e EF)(n17n27q7q) = F(Rt (n17n27q7 q) )
cos? et sin?et +isinetcoset —isinegtcoset
R = sin® et cos? et —isinetcoset +isinetcoset
£t +isinetcoset —isinegtcoset cos? et sin et

—isinetcoset +isinetcoset sin?et cos? et



Appendix: PDE Representation Two Site Bose Hubbard Model

and
e L G(m,m)q” C_IB} =

P( e—i2ut(b—5)n1 + e+i2ut(b—5)n2) b i
X qq
P(n1 +4 nz)

—i2ut (b—b i2ut (b—b
G(e'”( Dy, eti2utl )nz) x

where G = G(m, n2) is an arbitrary analytic function and b, b are arbitrary natural numbers.

Example, used for Collapse and Revivals:

e_itﬁu { n } = n
e—itﬁu { q} _ P( e—i2utn1 4 e-%—iQutn2 ) 5 q
P(n1 + nz)
. . P( e—i2utn + e+i2utn )
itLy i2ut 1 2
= X X
e {mq} e m P + ) q
such that
e "v[nyq] = et e "<[mq] - 1.

e~ L[] e~itLu[q] e—itLs[ny] e~ itLz [q]



Appendix: Equivalence Mathematical Pendulum and Quartic Double-Well Potential

Theorem 9: The mathematical pendulum
G + 4e%singy = 0

with o =0 and ¢g = 2g is equivalent to
X + (462 —2g%)x; + 28°x3 = 0
with xp =1 and xp = 0 through the transformation

(pt = 2g f()t XS dS = Xf = i ()bt .



Appendix: Standard Formula Wiener and Fresnel Expectations
Theorem: Consider mtimes0 < t) < th < --- < t,, < T and let xy; be a standard or Fresnel
Brownian motion observed at time t;. Let

F = F(xy, ,x,) : R" - C

be an arbitrary function of m variables and let E[F] denote its Wiener or Fresnel expectation
value. Then, with t; := 0 and xp := 0,

E[F] = /]Rm F(Xtu'" ’Xtm) Hj":l ptj_tj—l(xtj—ﬂxtj)dxtj

with Gaussian or Fresnel kernels given by

1 _ x=y?

e 2t for Wiener expectations
A V2t
Pt(X, }/) T 17T i (x—y)?
e' T2 for Fresnel expectations.
V2rmit P

Basic property: Jepe(x, ) ps(y,2)dy = pess(x, 2)



