The Dynamics of the Hubbard Model through Stochastic Calculus and Girsanov Transformation

Detlef Lehmann, Hochschule RheinMain, Faculty of Engineering Postfach 3251, 65022 Wiesbaden, Germany

detlef.lehmann@hs-rm.de

https://www.hs-rm.de/de/hochschule/personen/lehmann-detlef/

Content:

1.	Setup and Motivation	3
2.	Overall Strategy and Main Results	32
3.	Time Evolution of States as Fresnel Expectation Values	37
4.	Correlation Functions as Fresnel Expectation Values	45
5.	SDE Representation	51
6.	Girsanov Transformed SDE Representation	59
7.	Large N Limit: Gross-Pitaevskii Equation	70
8.	Summary	83
9.	Appendix: Additional Results	86

45/91 slides are pictures or title/cover slides or appendix, motivation has 21 pictures

1. Setup and Motivation

1. Setup and Motivation

Bose-Hubbard Hamiltonian in d Dimensions (n.n. = nearest neighbors):

$$H = -J \sum_{i,j \atop n.n.} (a_i^+ a_j + a_j^+ a_i) + \frac{U}{2} \sum_j a_j^+ a_j^+ a_j a_j + \sum_j \epsilon_j a_j^+ a_j$$

Bosonic Annihilation and Creation operators:

$$[a_i, a_j^+] = \delta_{i,j}$$

Cubic Lattice T:

$$j = (j_1, \cdots, j_d) \in \{1, 2, \cdots, L\}^d =: \Gamma$$

シック 単 (中本) (中本) (日)

1. Setup and Motivation: Quantities of Interest

Initial state: N particles at some lattice site j_0

$$\psi_0 := rac{(a_{j_0}^+)^N}{\sqrt{N!}} \ket{0}$$

Time evolved state:

$$\psi_t = e^{-itH} \psi_0$$

Number of particles $\langle n_{j,t} \rangle$ at lattice site j at some time t > 0:

$$\langle n_{j,t} \rangle := \langle \psi_t, a_j^+ a_j \psi_t \rangle$$

Already for just two lattice sites 1 and 2, quite complex behaviour, Example:

1. Setup and Motivation: Example Two Site Bose-Hubbard Model

Two Site Bose-Hubbard model:

$$H = \varepsilon \left(a_1^+ a_2^- + a_2^+ a_1^- \right) + u \left(a_1^+ a_1^+ a_1^- a_1^- + a_2^+ a_2^+ a_2^- a_2^- \right)$$

N = 20 particles at lattice site $j_0 = 1$:

$$\psi_0 := \frac{(a_1^+)^N}{\sqrt{N!}} |0\rangle$$

Plot
$$\langle n_{1,t} \rangle = \langle \psi_t, a_1^+ a_1^- \psi_t \rangle$$
 for

$$\varepsilon = 1$$

$$t \in [0, 500]$$

$$N = 20$$

$$u = g/N$$

with interaction strength

$$g \in \left\{ \, 0 \, , \, \frac{1}{16} \, , \, \frac{1}{8} \, , \, \frac{1}{4} \, , \, \frac{1}{2} \, , \, 1 \, , \, 1.5 \, , \, 2.0 \, , \, 2.5 \, , \, 3 \, , \, 4 \, , \, 5 \, , \, 25 \, \right\}$$

$$g=0,~$$
 non interacting case, $~\langle {\it n}_{1,t}
angle ~=~ N\cos^2arepsilon t$

time t in [0,500]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$g = 1/16$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

$$g = 1/8$$

<n1> black , <n2> red , <n1>+<n2> green

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$g = 1/4$$

<n1> black , <n2> red , <n1>+<n2> green

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$g = 1/2$$

<n1> black , <n2> red , <n1>+<n2> green

<n1> black, <n2> red, <n1>+<n2> green

g = 1.5

<n1> black , <n2> red , <n1>+<n2> green

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで

g = 2.0

<n1> black , <n2> red , <n1>+<n2> green

time t in [0,500]

▲ロ▶▲圖▶▲臣▶▲臣▶ 臣 のQで

$$g = 2.5$$

<n1> black , <n2> red , <n1>+<n2> green

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

<n1> black , <n2> red , <n1>+<n2> green

<n1> black , <n2> red , <n1>+<n2> green

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

<n1> black , <n2> red , <n1>+<n2> green

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

$$g = 25$$

<n1> black , <n2> red , <n1>+<n2> green

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

arepsilon=0.5,~g=1/8

arepsilon=0.5, g=1/4

arepsilon=0.5,~g=1/2

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 国 ● 今 ♀ ◆

 $\varepsilon = 1$, g = 1, $g/\varepsilon = 1$

<n1> black, <n2> red, <n1>+<n2> green

<n1> black, <n2> red, <n1>+<n2> green

 $\varepsilon = 0.5, \ g = 1, \ g/\varepsilon = 2$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国・ 釣A⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

<n1> black, <n2> red, <n1>+<n2> green

$\varepsilon = 0.5, \ g = 1.5, \ g/\varepsilon = 3$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Central Problem of Many Body Quantum Mechanics:

Calculate Density Matrix Elements or Correlation Functions

 $\langle \psi_t, a_j^+ a_j \psi_t \rangle$, $\langle \psi_t, a_i^+ a_j^+ a_k a_\ell \psi_t \rangle$, ...

・ロト・西ト・ヨト・ヨト ・ ヨー うへぐ

this talk: new proposal for doing that

1. Setup and Motivation: Bargmann-Segal Representation

Bargmann-Segal representation:

$$a_j = \frac{\partial}{\partial z_j}, \quad a_j^+ = z_j$$

acting on the Hilbert space of analytic functions of $|\Gamma| = L^d$ complex variables:

$$\mathcal{F} \hspace{.1in} := \hspace{.1in} \left\{ \hspace{.1in} f = f\big(\hspace{.1in} \{z_j\} \hspace{.1in} \big) \hspace{.1in} : \hspace{.1in} \mathbb{C}^{|\Gamma|} \rightarrow \mathbb{C} \hspace{.1in} \text{analytic} \hspace{.1in} \left| \hspace{.1in} \|f\|_{\mathcal{F}}^2 = \langle f, f \rangle_{\mathcal{F}} \hspace{.1in} < \infty \hspace{.1in} \right\}$$

with scalar product

$$\langle f,g \rangle_{\mathcal{F}} := \int_{\mathbb{C}^{|\Gamma|} = \mathbb{R}^{2|\Gamma|}} f(z) \overline{g(z)} d\mu(z)$$

 $d\mu(z) := \prod_{j} e^{-|z_j|^2} \frac{d\operatorname{Re} z_j d\operatorname{Im} z_j}{\pi}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●

1. Setup and Motivation: Bargmann-Segal Representation

Hamiltonian:

$$h = \sum_{i,j} \varepsilon_{ij} z_i \frac{\partial}{\partial z_j} + u \sum_j z_j^2 \frac{\partial^2}{\partial z_j^2} =: h_0 + h_{int}$$

We can allow for a general hopping matrix which should be real and symmetric:

$$\varepsilon := (\varepsilon_{ij})_{i,j\in\Gamma} \in \mathbb{R}^{|\Gamma|\times|\Gamma|}, \quad \varepsilon_{i,j} = \varepsilon_{j,i}$$

For a nearest neighbor hopping J and on-diagonal trapping potentials ϵ_j :

$$\varepsilon_{ij} = \begin{cases} -J & \text{if } |i-j| = 1 \\ +\epsilon_j & \text{if } i=j \\ 0 & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

1. Setup and Motivation: Coherent States and Number States

Coherent and Number states, $\lambda = \{\lambda_j\} \in \mathbb{C}^{|\Gamma|}$:

$$\psi_{coh}(z) = \psi_{coh}(\{z_j\}) = \prod_j e^{\lambda_j z_j} e^{-\frac{|\lambda_j|^2}{2}} =: e^{\lambda z} e^{-\frac{|\lambda|^2}{2}}$$

$$\psi_{num}(z) = \psi_{num}(\{z_j\}) = \frac{1}{\sqrt{N!N^N}} \left(\sum_j \lambda_j z_j\right)^N =: \frac{(\lambda z)^N}{\sqrt{N!N^N}}$$

In both cases: t = 0 expected number of particles at site *j*:

$$\langle \psi_0, a_j^+ a_j \psi_0 \rangle_{\mathcal{F}} = |\lambda_j|^2$$

Thus: Total number of particles N:

$$N = \sum_{j} N_{j} = \sum_{j} |\lambda_{j}|^{2} = |\lambda|^{2}$$

1) Time Evolution of States as Fresnel Expectation Values, $t = t_k = kdt$

$$\psi_t(z) = (e^{-ith}\psi_0)(z) = \mathsf{E}_{\phi}[\psi_0(U_{\phi,t}z)]$$

with unitary evolution matrix

$$U_{kdt}(\phi) = e^{-i dt \varepsilon} e^{-i D_{dt}(\phi_1)} \cdots e^{-i dt \varepsilon} e^{-i D_{dt}(\phi_k)} \in \mathbb{C}^{|\Gamma| \times |\Gamma|}$$

2) Correlation Functions as Fresnel Expectation Values

$$\langle \psi_t, a_i^+ a_j | \psi_t \rangle = \mathsf{E}_{\phi} \bar{\mathsf{E}}_{\theta} \left[F_{i,j}^{\psi_0} (U_{\phi,t}, \bar{U}_{\theta,t}) \right]$$

3) Stochastic Differential Equation (SDE) for Unitary Evolution Matrix $U_{\phi,t}$

$$dU_t = -i U_t \left(\varepsilon dt + \sqrt{2u} dx_t \right), \qquad dx_{kdt} = \sqrt{dt} \phi_k$$

4) Correlation Functions from SDEs, $(v_t, \bar{v}_t) := (U_{\phi,t}^T \lambda, \bar{U}_{\theta,t}^T \bar{\lambda})$

$$\langle \psi_t, a_i^+ a_j \psi_t \rangle_{coh/num} = \mathsf{E}\bar{\mathsf{E}} \left[v_{i,t} \bar{v}_{j,t} P_{\psi_0}(v_t \bar{v}_t) \right] / P_{\psi_0}(v_0 \bar{v}_0)$$

with
$$\begin{aligned} dv_j &= -i \, (\varepsilon v)_j \, dt \, - \, i \, \sqrt{2u} \, v_j \, dx_j \\ d\bar{v}_j &= \, + \, i \, (\varepsilon \bar{v})_j \, dt \, + \, i \, \sqrt{2u} \, \bar{v}_j \, dy_j \, , \qquad \qquad P_{coh/num}(x) = e^x \text{ or } x^{N-1} \end{aligned}$$

5) Correlation Functions from Girsanov-Transformed SDEs

$$\langle \psi_t, a_i^+ a_j \psi_t \rangle_{coh/num} = \mathsf{E}\bar{\mathsf{E}}[v_{i,t} \bar{v}_{j,t}]$$

with $dv_j = -i(\varepsilon v)_j dt - i2u [\log P_{\psi_0}]'(v\bar{v}) v_j \bar{v}_j v_j dt - i\sqrt{2u} v_j dx_j d\bar{v}_j d\bar{v}_j = +i(\varepsilon \bar{v})_j dt + i2u [\log P_{\psi_0}]'(v\bar{v}) v_j \bar{v}_j \bar{v}_j dt + i\sqrt{2u} \bar{v}_j dy_j$

6) Large N Limit: g := uN fixed, $(w, \bar{w}) := (v, \bar{v})/\sqrt{N}$, then

$$\langle \psi_t, a_i^+ a_j \psi_t \rangle_{coh/num} = N \times E\overline{E}[w_{i,t} \overline{w}_{j,t}]$$

Large N Limit can be read off:

$$\langle \psi_t, a_i^+ a_j | \psi_t \rangle_{coh/num} = N \times w_i(t) \bar{w}_j(t)$$

with w_j, \bar{w}_j given by the ODE system ([log $P_{coh/num}$]' \rightarrow 1)

$$\dot{w}_j = -i(\varepsilon w)_j - i 2g w_j \bar{w}_j w_j \dot{\bar{w}}_j = +i(\varepsilon \bar{w})_j + i 2g w_j \bar{w}_j \bar{w}_j$$

which is the time dependent discrete Gross-Pitaevskii equation.

2. Overall Strategy: Additional Results (appendix has more detail)

- Various Exact PDE Representations (confirming stochastic calculus formalism)
- Collapse and Revivals can be obtained from an approximate ODE System Black numbers are from exact diagonalization, the red curve comes from an analytical calculation:

• Equivalence between Mathematical Pendulum and Quartic Double-Well Potential

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Time evolution with Trotter formula, $t = t_k = k dt$:

$$e^{-ith} = e^{-ikdt(h_0+h_{int})} \approx (e^{-idth_0}e^{-idth_{int}})^k$$

Let's consider the action of $e^{-i dt h_0}$ and $e^{-i dt h_{int}}$:

Action of e^{-ith_0} :

$$(e^{-ith_0}f)(z) = f(e^{-it\varepsilon}z)$$

since with $z_t := e^{-i\varepsilon t} z$

$$\frac{\partial}{\partial t} [f(z_t)] = \frac{\partial}{\partial t} [f(e^{-it\varepsilon}z)] = \sum_j \frac{\partial z_{t,j}}{\partial t} \frac{\partial f}{\partial z_j}(z_t) = \sum_j (-i\varepsilon z_t)_j \frac{\partial f}{\partial z_j}(z_t)$$

$$= \left\{ -i\sum_{j,k} \varepsilon_{j,k} z_k \frac{\partial f}{\partial z_j} \right\} (z = z_t) = \left\{ -ih_0 f \right\} (z_t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Action of $e^{-it h_{int}}$:

$$(e^{-it h_{int}} f)(z) = \int_{\mathbb{R}^{|\Gamma|}} f(e^{-iD_t(\phi)}z) \prod_j e^{i\frac{\phi_j^2}{2}} \frac{d\phi_j}{\sqrt{2\pi i}}$$
 (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with $D_t(\phi)$ the $|\Gamma| \times |\Gamma|$ diagonal matrix

$$D_t(\phi) = \operatorname{diag}(\{\sqrt{2ut} \phi_j - ut\}_{j \in \Gamma}) \in \mathbb{R}^{|\Gamma| \times |\Gamma|}$$

Proof of (1):

$$h_{int} \prod_{j} z_{j}^{n_{j}} = \left\{ u \sum_{i} z_{i}^{2} \frac{\partial^{2}}{\partial z_{i}^{2}} \right\} \prod_{j} z_{j}^{n_{j}} = \left\{ u \sum_{i} n_{i}(n_{i}-1) \right\} \prod_{j} z_{j}^{n_{j}}$$

$$e^{-it h_{int}} \prod_{j} z_{j}^{n_{j}} = e^{-iut \sum_{j} n_{j}(n_{j}-1)} \prod_{j} z_{j}^{n_{j}} = \prod_{j} \left(e^{+iut n_{j}} e^{-iut n_{j}^{2}} z_{j}^{n_{j}} \right)$$

Now use Fresnel integral ($\sqrt{i} := e^{i\frac{\pi}{4}}$)

$$\int_{\mathbb{R}} e^{-i\lambda\phi} e^{j\frac{\phi^2}{2}} \frac{d\phi}{\sqrt{2\pi i}} = e^{-j\frac{\lambda^2}{2}}$$

to obtain

$$e^{-it h_{int}} \prod_j z_j^{n_j} = \int_{\mathbb{R}^{|\Gamma|}} \prod_j \left(e^{+iut - i\sqrt{2ut} \phi_j} z_j \right)^{n_j} \prod_j e^{j \frac{\phi_j^2}{2}} \frac{d\phi_j}{\sqrt{2\pi i}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Thus, single Trotter step $(\phi^2 := \sum_j \phi_j^2)$:

$$(e^{-i dt h}f)(z) = \left[e^{-i dt h_{int}} \left(e^{-i dt h_0}f\right)\right](z)$$
$$= \int_{\mathbb{R}^{|\Gamma|}} f(e^{-i dt \varepsilon} e^{-i D_{dt}(\phi)}z) e^{i \frac{\phi^2}{2}} \frac{d^{|\Gamma|}\phi}{(2\pi i)^{|\Gamma|/2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Iterating, $t = t_k = kdt$:

$$(e^{-i\,kdt\,h}f)(z) = \int_{\mathbb{R}^{k|\Gamma|}} f\left(e^{-i\,dt\,\varepsilon}e^{-i\,D_{dt}(\phi_{1})}\cdots e^{-i\,dt\,\varepsilon}e^{-i\,D_{dt}(\phi_{k})}z\right) \prod_{\ell=1}^{k} e^{i\frac{\phi_{\ell}^{2}}{2}} \frac{d^{|\Gamma|}\phi_{\ell}}{(2\pi i)^{|\Gamma|/2}}$$
$$=: \int_{\mathbb{R}^{k|\Gamma|}} f\left(U_{kdt}(\phi)z\right) dF\left(\{\phi_{\ell}\}_{\ell=1}^{k}\right)$$
$$=: \mathsf{E}\left[f\left(U_{\phi,kdt}z\right)\right]$$

with notations ($k, \ell \in \mathbb{N}$ time indices, $j = (j_1, \cdots, j_d) \in \Gamma$ lattice site index)

$$\begin{split} \phi_{\ell} &:= \left(\{\phi_{j,\ell}\}_{j\in\Gamma} \right) \in \mathbb{R}^{|\Gamma|} \\ \phi_{\ell}^2 &:= \sum_j \phi_{j,\ell}^2 \in \mathbb{R} \\ d^{|\Gamma|}\phi_{\ell} &:= \prod_j d\phi_{j,\ell} \end{split}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Theorem 1: Let $h = h_0 + h_{int}$ be the *d*-dimensional Bose-Hubbard hamiltonian with cubic lattice $\Gamma = \{1, ..., L\}^d$, hopping matrix ε and interaction *u*. Then, for t = kdt, the time evolution of some initial state $\psi_0(z)$ is given by

$$(e^{-i \, k dt \, h} \psi_0)(z) = \int_{\mathbb{R}^{k|\Gamma|}} \psi_0(U_{k dt}(\phi) \, z) \, dF(\{\phi_\ell\}_{\ell=1}^k) = \mathsf{E}[\psi_0(U_{\phi,k dt} \, z)]$$

with unitary evolution matrix

$$U_{kdt}(\phi) = e^{-i dt \varepsilon} e^{-i D_{dt}(\phi_1)} \cdots e^{-i dt \varepsilon} e^{-i D_{dt}(\phi_k)} \in \mathbb{C}^{|\Gamma| \times |\Gamma|}$$
$$D_{dt}(\phi_\ell) = diag(\{\sqrt{2u dt} \phi_{j,\ell} - u dt\}_{j \in \Gamma}) \in \mathbb{R}^{|\Gamma| \times |\Gamma|}$$

and Fresnel measure given by

$$\mathsf{E}\big[\cdot\big] = \int_{\mathbb{R}^{k|\Gamma|}} \cdot d\mathsf{F}\big(\{\phi_\ell\}_{\ell=1}^k\big) = \int_{\mathbb{R}^{k|\Gamma|}} \cdot \prod_{\ell=1}^k e^{j\frac{\phi_\ell^2}{2}} \frac{d^{|\Gamma|}\phi_\ell}{(2\pi i)^{|\Gamma|/2}}$$

うせん 同一人用 人用 人用 人口 マ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Correlation Functions in Bargmann-Segal Representation:

$$\begin{array}{lll} \langle \psi_t \,, \mathbf{a}_i^+ \mathbf{a}_j \; \psi_t \,\rangle &=& \langle \psi_t \,, [\mathbf{a}_j \; \mathbf{a}_i^+ - \delta_{i,j}] \,\psi_t \,\rangle \\ \\ &=& \int_{\mathbb{C}^{|\Gamma|}} z_j \, \overline{z}_i \; |\psi_t(z)|^2 \, d\mu(z) \; - \; \delta_{i,j} \end{array}$$

From Theorem 1,

$$\psi_{kdt}(z) = \int_{\mathbb{R}^{k|\Gamma|}} \psi_0(U_{\phi,kdt}z) dF(\phi)$$

$$\overline{\psi_{kdt}(z)} = \int_{\mathbb{R}^{k|\Gamma|}} \overline{\psi_0(U_{\theta,kdt}z)} d\overline{F}(\theta)$$

with

$$dF(\phi) = \prod_{\ell=1}^{k} e^{+i\frac{\phi_{\ell}^{2}}{2}} \frac{d^{|\Gamma|}\phi_{\ell}}{(2\pi i)^{|\Gamma|/2}} , \quad d\bar{F}(\theta) = \prod_{\ell=1}^{k} e^{-i\frac{\theta_{\ell}^{2}}{2}} \frac{d^{|\Gamma|}\theta_{\ell}}{[2\pi(-i)]^{|\Gamma|/2}}$$

Thus, with t = kdt,

$$\begin{array}{l} \langle \psi_t, a_j a_i^+ \psi_t \rangle &= \int_{\mathbb{C}^{|\Gamma|}} z_j \, \bar{z}_i \, |\psi_t(z)|^2 \, d\mu(z) \\ \\ &= \int_{\mathbb{C}^{|\Gamma|}} z_j \, \bar{z}_i \, \int_{\mathbb{R}^{k|\Gamma|}} \psi_0(U_{\phi,t}z) \, dF(\phi) \, \int_{\mathbb{R}^{k|\Gamma|}} \overline{\psi_0(U_{\theta,t}z)} \, d\bar{F}(\theta) \, d\mu(z) \\ \\ &= \int_{\mathbb{R}^{k|\Gamma|}} \int_{\mathbb{R}^{k|\Gamma|}} \left\{ \int_{\mathbb{C}^{|\Gamma|}} z_j \, \bar{z}_i \, \psi_0(U_{\phi,t}z) \, \overline{\psi_0(U_{\theta,t}z)} \, d\mu(z) \right\} \, dF(\phi) \, d\bar{F}(\theta)$$

The red integral is the expectation over the bosonic Fock space and can be calculated:

The integrand is:

For coherent states:

$$\begin{aligned} z_j \, \bar{z}_i \, \psi_0(U_{\phi,t} z) \, \overline{\psi_0(U_{\theta,t} z)} &= z_j \, \bar{z}_i \, \exp\{\lambda \cdot U_{\phi,t} z\} \, \exp\{\bar{\lambda} \cdot \bar{U}_{\theta,t} \bar{z}\} \, e^{-|\lambda|^2} \\ &= z_j \, \bar{z}_i \, \exp\{U_{\phi,t}^T \lambda \cdot z\} \, \exp\{\bar{U}_{\theta,t}^T \bar{\lambda} \cdot \bar{z}\} \, e^{-|\lambda|^2} \end{aligned}$$

For number states:

$$z_{j} \bar{z}_{i} \psi_{0}(U_{\phi,t}z) \overline{\psi_{0}(U_{\theta,t}z)} = z_{j} \bar{z}_{i} \frac{1}{N!N^{N}} \left(\lambda \cdot U_{\phi,t}z\right)^{N} \left(\bar{\lambda} \cdot \bar{U}_{\theta,t}\bar{z}\right)^{N}$$
$$= z_{j} \bar{z}_{i} \frac{1}{N!N^{N}} \left(U_{\phi,t}^{T}\lambda \cdot z\right)^{N} \left(\bar{U}_{\theta,t}^{T}\bar{\lambda} \cdot \bar{z}\right)^{N}$$

Using $\left(\begin{array}{c} \text{with} \quad (\lambda, \bar{\lambda}) \to (U_{\phi,t}^T \lambda, \bar{U}_{\theta,t}^T \bar{\lambda}) \quad \text{and recall} \quad d\mu(z) = \prod_j e^{-|z_j|^2} \frac{d\operatorname{Re} z_j d\operatorname{Im} z_j}{\pi} \end{array} \right)$

$$\int_{\mathbb{C}^{|\Gamma|}} e^{\lambda z + \bar{\lambda} \bar{z}} d\mu(z) = e^{\lambda \bar{\lambda}}$$
$$\int_{\mathbb{C}^{|\Gamma|}} z_j \bar{z}_i \ e^{\lambda z + \bar{\lambda} \bar{z}} d\mu(z) = \frac{\partial}{\partial \lambda_j} \frac{\partial}{\partial \bar{\lambda}_i} e^{\lambda \bar{\lambda}} = (\lambda_i \bar{\lambda}_j + \delta_{i,j}) e^{\lambda \bar{\lambda}}$$

and

$$\frac{1}{N!} \int_{\mathbb{C}^{|\Gamma|}} (\lambda z)^{N} (\bar{\lambda} \bar{z})^{N} d\mu(z) = (\lambda \bar{\lambda})^{N}$$

$$\frac{1}{N!} \int_{\mathbb{C}^{|\Gamma|}} z_{j} \bar{z}_{i} (\lambda z)^{N} (\bar{\lambda} \bar{z})^{N} d\mu(z) = \frac{\partial}{\partial \lambda_{j}} \frac{\partial}{\partial \bar{\lambda}_{i}} \frac{(\lambda \bar{\lambda})^{N+1}}{N+1} = N \lambda_{i} \bar{\lambda}_{j} (\lambda \bar{\lambda})^{N-1} + \delta_{i,j} (\lambda \bar{\lambda})^{N}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

we find

Theorem 2: For t = kdt let $E\bar{E}[\cdot] = \int_{\mathbb{R}^{k|\Gamma|}} \int_{\mathbb{R}^{k|\Gamma|}} \cdot dF(\phi) d\bar{F}(\theta)$. Then:

a) For an arbitrary initial state ψ_0 ,

 $\psi_t(z) = (e^{-ith}\psi_0)(z) = \mathsf{E}[\psi_0(U_{\phi,t}z)]$ (reminder, same as Theorem 1)

b) For a coherent state $\psi_0(z) = e^{\lambda z} e^{-|\lambda|^2/2}$,

 $\langle \psi_t, \mathbf{a}_i^+ \mathbf{a}_j \ \psi_t \rangle = \mathsf{E} \mathsf{E} \Big[\left[U_{\phi,t}^T \lambda \right]_i \ \left[\bar{U}_{\theta,t}^T \bar{\lambda} \right]_j \ \exp \Big\{ U_{\phi,t}^T \lambda \cdot \bar{U}_{\theta,t}^T \bar{\lambda} \Big\} \Big] / e^{\lambda \bar{\lambda}}$

c) For a number state $\psi_0(z) = (\lambda z)^N / \sqrt{N! N^N}$, $\langle \psi_t, a_i^+ a_j | \psi_t \rangle = \mathsf{E} \mathsf{E} \Big[[U_{\phi,t}^T \lambda]_i [\bar{U}_{\theta,t}^T \bar{\lambda}]_j (U_{\phi,t}^T \lambda \cdot \bar{U}_{\theta,t}^T \bar{\lambda})^{N-1} \Big] / (\lambda \bar{\lambda})^{N-1}$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

5. SDE Representation: Reminder Brownian Motion and Wiener Measure

Standard Brownian motion in discrete time $t = t_k = kdt$:

$$\begin{array}{rcl} x_{t_k} & = & \sqrt{dt} \sum_{\ell=1}^k \phi_\ell & & dx_{t_k} := x_{t_k} - x_{t_{k-1}} = & \sqrt{dt} \phi_k \end{array}$$

Wiener measure in discrete time with fixed time horizon $T = t_n = ndt$:

$$dW = \prod_{\ell=1}^{n} e^{-\frac{\phi_{\ell}^{2}}{2}} \frac{d\phi_{\ell}}{\sqrt{2\pi}} = \prod_{\ell=1}^{n} e^{-\frac{(x_{t_{\ell}} - x_{t_{\ell-1}})^{2}}{2dt}} \frac{dx_{t_{\ell}}}{\sqrt{2\pi dt}}$$

Brownian motion calculation rule, basic to stochastic calculus:

$$(dx_t)^2 = dt$$

For more background, see the appendix compact summary stochastic calculus in

https://arxiv.org/pdf/2205.02010.pdf

5. SDE Representation: Fresnel Brownian Motion and Fresnel Measure

Then Fresnel Brownian motion is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

with the ϕ_ℓ to be integrated against Fresnel measure,

$$dF = \prod_{\ell=1}^{n} e^{j \frac{\phi_{\ell}^{2}}{2}} \frac{d\phi_{\ell}}{\sqrt{2\pi i}} = \prod_{\ell=1}^{n} e^{j \frac{(x_{t_{\ell}} - x_{t_{\ell-1}})^{2}}{2dt}} \frac{dx_{t_{\ell}}}{\sqrt{2\pi i \, dt}}$$

Fresnel Brownian motion calculation rule:

$$(dx_t)^2 = i dt$$

For more background, see the appendix compact summary stochastic calculus in

https://arxiv.org/pdf/2205.02010.pdf

5. SDE Representation: Unitary Evolution Matrix U_{kdt}

Unitary evolution matrix of Theorem 1,

$$U_{kdt} = e^{-i dt \varepsilon} e^{-i D_{dt}(\phi_1)} \cdots e^{-i dt \varepsilon} e^{-i D_{dt}(\phi_k)} = U_{(k-1)dt} e^{-i dt \varepsilon} e^{-i D_{dt}(\phi_k)}$$

with diagonal matrix $D_{dt}(\phi_k)$ given by

$$D_{dt}(\phi_k) = \operatorname{diag}\left(\left\{\sqrt{2u}\sqrt{dt} \phi_{j,k} - u \, dt\right\}_{j \in \Gamma}\right)$$

=
$$\operatorname{diag}\left(\left\{\sqrt{2u} \, dx_{j,kdt} - u \, dt\right\}_{j \in \Gamma}\right)$$

=:
$$\sqrt{2u} \, dx_{kdt} - u \, dt \, ld$$

and diagonal matrix of Fresnel Brownian motions

$$dx_{kdt} := \operatorname{diag}(\{ dx_{j,kdt} \}_{j \in \Gamma}) \in \mathbb{R}^{|\Gamma| \times |\Gamma|}$$

which satisfies the matrix equation $(dx_{kdt})^2 = i dt ld$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

5. SDE Representation: Unitary Evolution Matrix U_{kdt}

Up to terms $O(dt^{3/2})$,

$$e^{-i D_{dt}(\phi_k)} = 1 - i D_{dt}(\phi_k) - \frac{1}{2} [D_{dt}(\phi_k)]^2$$

= $1 - i [\sqrt{2u} dx_{kdt} - u dt ld] - \frac{1}{2} [\sqrt{2u} dx_{kdt} - u dt ld]^2$
= $1 - i \sqrt{2u} dx_{kdt} + i u dt ld - \frac{1}{2} [\sqrt{2u} dx_{kdt}]^2$
= $1 - i \sqrt{2u} dx_{kdt} + i u dt ld - i u dt ld$
= $1 - i \sqrt{2u} dx_{kdt}$

Thus, $U_{kdt} = U_{(k-1)dt} e^{-i dt \varepsilon} e^{-i D_{dt}(\phi_k)}$ $= U_{(k-1)dt} (1 - i dt \varepsilon) (1 - i \sqrt{2u} dx_{kdt})$ $= U_{(k-1)dt} (1 - i dt \varepsilon - i \sqrt{2u} dx_{kdt})$ $\Rightarrow dU_{t_k} := U_{t_k} - U_{t_{k-1}} = -i U_{t_{k-1}} (dt \varepsilon + \sqrt{2u} dx_{t_k})$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Theorem 3: a) The unitary evolution matrix U_t satisfies the SDE

$$dU_t = -i U_t \left(\varepsilon \, dt + \sqrt{2u} \, dx_t \right)$$

b) The correlation functions have the representations

$$\langle \psi_t, a_i^+ a_j \ \psi_t \rangle_{coh} = \mathsf{E}\bar{\mathsf{E}} \left[v_i \, \bar{v}_j \ e^{v\bar{v}} \right] / e^{\lambda \bar{\lambda}}$$

$$\langle \psi_t, a_i^+ a_j \ \psi_t \rangle_{num} = \mathsf{E}\bar{\mathsf{E}} \left[v_i \, \bar{v}_j \ (v\bar{v})^{N-1} \right] / (\lambda \bar{\lambda})^{N-1}$$

with $v, ar{v} \in \mathbb{C}^{|\Gamma|}$, $v = (v_{j,x,t})$, $ar{v} = (ar{v}_{j,y,t})$, given by the SDE system

$$dv_j = -i dt (\varepsilon v)_j - i \sqrt{2u} v_j dx_j$$

$$d\bar{v}_j = +i dt (\varepsilon \bar{v})_j + i \sqrt{2u} \bar{v}_j dy_j$$

with initial conditions $(\textit{v}_{x,0},\bar{\textit{v}}_{y,0})=(\lambda,\bar{\lambda})~~\text{and}~~E\bar{E}=E_x\bar{E}_y~$.

Proof 3b) From Theorem 2,

$$\langle \psi_t, a_i^+ a_j \ \psi_t \rangle_{coh} = \mathsf{E}\bar{\mathsf{E}} \left[\left[U_{\phi,t}^T \lambda \right]_i \left[\bar{U}_{\theta,t}^T \bar{\lambda} \right]_j \ \exp\left\{ U_{\phi,t}^T \lambda \cdot \bar{U}_{\theta,t}^T \bar{\lambda} \right\} \right] / e^{\lambda \bar{\lambda}}$$

$$\langle \psi_t, a_i^+ a_j \ \psi_t \rangle_{num} = \mathsf{E}\bar{\mathsf{E}} \left[\left[U_{\phi,t}^T \lambda \right]_i \left[\bar{U}_{\theta,t}^T \bar{\lambda} \right]_j \left(U_{\phi,t}^T \lambda \cdot \bar{U}_{\theta,t}^T \bar{\lambda} \right)^{N-1} \right] / (\lambda \bar{\lambda})^{N-1}$$

With $(x_{kdt} = \sqrt{dt} \sum_{j=1}^{k} \phi_j, y_{kdt} = \sqrt{dt} \sum_{j=1}^{k} \theta_j)$

$$\begin{aligned} v &= v_{x,t} &:= U_{x,t}^T \lambda \in \mathbb{C}^{|\Gamma|} \\ \bar{v} &= \bar{v}_{y,t} &:= \bar{U}_{y,t}^T \bar{\lambda} \in \mathbb{C}^{|\Gamma|} \end{aligned}$$

this looks as follows

$$\langle \psi_t, a_i^+ a_j \ \psi_t \rangle_{coh} = \mathsf{E}\bar{\mathsf{E}} \left[v_i \ \bar{v}_j \ e^{v\bar{v}} \right] / e^{\lambda \bar{\lambda}} \langle \psi_t, a_i^+ a_j \ \psi_t \rangle_{num} = \mathsf{E}\bar{\mathsf{E}} \left[v_i \ \bar{v}_j \ (v\bar{v})^{N-1} \right] / (\lambda \bar{\lambda})^{N-1}$$

Since

$$dU_t = -i U_t \left(\varepsilon \, dt + \sqrt{2u} \, dx_t \right)$$

and because of $\varepsilon^T = \varepsilon$, $dx_t^T = dx_t$, we obtain

$$\begin{aligned} dU_t^T &= -i\left(\varepsilon \, dt \, + \, \sqrt{2u} \, dx_t\right) \, U_t^T \\ d\bar{U}_t^T &= +i\left(\varepsilon \, dt \, + \, \sqrt{2u} \, dy_t\right) \, \bar{U}_t^T \end{aligned}$$

Thus, with $v_t = U_t^T \lambda$, $\bar{v}_t = \bar{U}_t^T \bar{\lambda}$,

$$dv = -i \left(dt \varepsilon + \sqrt{2u} dx_t \right) v$$

$$d\bar{v} = +i \left(dt \varepsilon + \sqrt{2u} dy_t \right) \bar{v}$$

with initial conditions $v_0 = U_0^T \lambda = \lambda$, $\bar{v}_0 = \bar{U}_0^T \bar{\lambda} = \bar{\lambda}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

6. Girsanov Transformed SDE Representation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

6.1 Unitary Time Evolution as a Martingale6.2 Girsanov Transformed SDE System

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

As in Theorem 3, one finds just for the norms $\|\psi_t\|^2$:

$$\begin{array}{lll} \langle \psi_t, \psi_t \rangle_{coh} &=& \mathsf{E}\bar{\mathsf{E}}[\; e^{v\bar{v}}\;] \; / \; e^{\lambda\lambda} \\ \\ \langle \psi_t, \psi_t \rangle_{num} &=& \mathsf{E}\bar{\mathsf{E}}[\; (v\bar{v})^{N-1}\;] \; / \; (\lambda\bar{\lambda})^{N-1} \end{array}$$

with $v\bar{v} = \sum_j v_j \bar{v}_j$ and v_j, \bar{v}_j given by the SDE system

$$dv_j = -i dt (\varepsilon v)_j - i \sqrt{2u} v_j dx_j$$

$$d\bar{v}_j = +i dt (\varepsilon \bar{v})_j + i \sqrt{2u} \bar{v}_j dy_j$$

These quantities have to be independent of time, we have to have

$$\begin{split} \mathsf{E}\bar{\mathsf{E}}[\; e^{v\bar{v}}\;] &= \; e^{v_0\bar{v}_0}\; = \; e^{\lambda\bar{\lambda}} \\ \mathsf{E}\bar{\mathsf{E}}[\; (v\bar{v})^{N-1}\;] &= \; (v_0\bar{v}_0)^{N-1}\; = \; (\lambda\bar{\lambda})^{N-1} \end{split}$$

How can this be understood in an SDE context?

From

$$dv = -i(\varepsilon dt + \sqrt{2u} dx_t) v$$

$$d\bar{v} = +i(\varepsilon dt + \sqrt{2u} dy_t) \bar{v}$$

we get
$$dv^T = -i v^T (\varepsilon dt + \sqrt{2u} dx_t)$$
,

$$d(v\bar{v}) \stackrel{\text{notation}}{=} d(v^T\bar{v}) = dv^T\bar{v} + v^Td\bar{v} + dv^Td\bar{v}$$
$$= -iv^T(\varepsilon dt + \sqrt{2u} dx_t)\bar{v} + iv^T(\varepsilon dt + \sqrt{2u} dy_t)\bar{v} + 0$$
$$= -iv^T\varepsilon \bar{v} dt + iv^T\varepsilon \bar{v} dt - i\sqrt{2u} v^T(dx_t - dy_t)\bar{v}$$
$$= -i\sqrt{2u} \sum_j v_j \bar{v}_j (dx_{j,t} - dy_{j,t})$$

The quantity $v\bar{v}$ is a martingale, its $d(v\bar{v})$ has no drift part. Since $E[d_{x_{j,t}}] = \bar{E}[d_{y_{j,t}}] = 0$,

$$\Rightarrow \qquad \mathsf{E}\bar{\mathsf{E}}[(v\bar{v})_{t_k}] = (v\bar{v})_0 + \sum_{\ell=1}^k \mathsf{E}\bar{\mathsf{E}}[d(v\bar{v})_{t_\ell}] = (v\bar{v})_0$$

(ロ) (型) (E) (E) (E) (E) (O)

Ok, but we need more, we need $E\bar{E}[f(v_t\bar{v}_t)] = f(v_0\bar{v}_0)$ for arbitrary f. With Ito-Lemma:

$$df(v_t \bar{v}_t) = f'(v \bar{v}) d(v_t \bar{v}_t) + \frac{1}{2} f''(v \bar{v}) [d(v_t \bar{v}_t)]^2$$

Now,

$$\begin{aligned} [d(v_t \bar{v}_t)]^2 &= \left\{ -i\sqrt{2u} \sum_j v_j \bar{v}_j (dx_{j,t} - dy_{j,t}) \right\}^2 \\ &= -2u \sum_{i,j} v_i \bar{v}_i v_j \bar{v}_j (dx_{i,t} - dy_{i,t}) (dx_{j,t} - dy_{j,t}) \\ &= 0 \end{aligned}$$

since $dx_{i,t}dx_{j,t} = dy_{i,t}dy_{j,t} = dx_{i,t}dy_{j,t} = 0$ for $i \neq j$ and for i = j: $(dx_{j,t} - dy_{j,t})^2 = (dx_{j,t})^2 - 2 dx_{j,t}dy_{j,t} + (dy_{j,t})^2$ $= + i dt - 2 \cdot 0 - i dt = 0$

Thus,

$$df(v_t \bar{v}_t) = f'(v \bar{v}) d(v_t \bar{v}_t) + \frac{1}{2} f''(v \bar{v}) \underbrace{[d(v_t \bar{v}_t)]^2}_{=0}$$

= $-i\sqrt{2u} f'(v_t \bar{v}_t) \sum_j v_j \bar{v}_j (dx_{j,t} - dy_{j,t})$ (2)

has no drift part which gives $E\bar{E}[df(v_t\bar{v}_t)] = 0$ and therefore

$$\mathsf{E}\bar{\mathsf{E}}[f(v_t\bar{v}_t)] = f(v_0\bar{v}_0) .$$

Equation (2) allows us in the next section 6.2 to absorb the the quantities $e^{v\bar{v}}$ or $(v\bar{v})^{N-1}$ into the Fresnel integration measure and to arrive at the compact expressions

$$\langle \psi_t, a_i^+ a_j \psi_t \rangle_{coh/num} = \mathsf{E}\bar{\mathsf{E}} \left[v_i \bar{v}_j \right]$$

with new, and initial state coh/num dependent, SDE's for the v_i, \bar{v}_i . Result is Theorem 4.

シック 単 (中本) (中本) (日)

Untransformed representation:

$$\langle \psi_t, a_i^+ a_j \psi_t \rangle_{coh} = \mathsf{E}\bar{\mathsf{E}} \left[v_i \bar{v}_j e^{v\bar{v}} \right] / e^{\lambda \bar{\lambda}} \langle \psi_t, a_i^+ a_j \psi_t \rangle_{num} = \mathsf{E}\bar{\mathsf{E}} \left[v_i \bar{v}_j (v\bar{v})^{N-1} \right] / (\lambda \bar{\lambda})^{N-1}$$

We write

$$\langle \psi_t, a_i^+ a_j \psi_t \rangle = \mathsf{E}\bar{\mathsf{E}} \left[v_{i,t} \bar{v}_{j,t} P(v_t \bar{v}_t) \right] / P(v_0 \bar{v}_0)$$

Now, with $p := \log P$,

$$P(v_{t_{k}}\bar{v}_{t_{k}}) / P(v_{0}\bar{v}_{0}) = \exp\{p(v_{t_{k}}\bar{v}_{t_{k}}) - p(v_{0}\bar{v}_{0})\} = \exp\{\sum_{\ell=1}^{k} dp(v_{t_{\ell}}\bar{v}_{t_{\ell}})\}$$

$$\stackrel{(2)}{=} \exp\{-i\sqrt{2u}\sum_{\ell=1}^{k}\sum_{j}[p'(v\bar{v})(v_{j}\bar{v}_{j})]_{t_{\ell-1}}(dx_{j,t_{\ell}} - dy_{j,t_{\ell}})\}$$

$$= \exp\{-i\sqrt{2u}dt\sum_{\ell=1}^{k}\sum_{j}[p'(v\bar{v})(v_{j}\bar{v}_{j})]_{t_{\ell-1}}(\phi_{j,\ell} - \theta_{j,\ell})\}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Since

$$\mathsf{E}\bar{\mathsf{E}}[\,\cdot\,] = \int_{\mathbb{R}^{k|\Gamma|}} \int_{\mathbb{R}^{k|\Gamma|}} \cdot dF(\phi) d\bar{F}(\theta)$$

with

$$dF(\phi) = \prod_{\ell=1}^{k} e^{+i\frac{\phi_{\ell}^{2}}{2}} \frac{d^{|\Gamma|}\phi_{\ell}}{(2\pi i)^{|\Gamma|/2}} , \quad d\bar{F}(\theta) = \prod_{\ell=1}^{k} e^{-i\frac{\theta_{\ell}^{2}}{2}} \frac{d^{|\Gamma|}\theta_{\ell}}{[2\pi(-i)]^{|\Gamma|/2}}$$

the quantity

$$P(v_{t_k}\bar{v}_{t_k}) / P(v_0\bar{v}_0) = \exp \left\{ -i\sqrt{2u \, dt} \sum_{\ell=1}^k \sum_j \left[p'(v\bar{v})(v_j\bar{v}_j) \right]_{t_{\ell-1}} (\phi_{j,\ell} - \theta_{j,\ell}) \right\}$$

can be absorbed into the Fresnel measure by completing the square. In stochastic calculus, this is called a Girsanov transformation:

$$\begin{split} \tilde{\phi}_{j,\ell} &:= \phi_{j,\ell} - \sqrt{2u \, dt} \left[p'(v\bar{v}) \, v_j \bar{v}_j \right]_{(\ell-1)dt} \\ \tilde{\theta}_{j,\ell} &:= \theta_{j,\ell} - \sqrt{2u \, dt} \left[p'(v\bar{v}) \, v_j \bar{v}_j \right]_{(\ell-1)dt} \end{split}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

or equivalently

$$\begin{aligned} d\tilde{x}_{j,t_{\ell}} &:= dx_{j,t_{\ell}} - \sqrt{2u} dt \left[p'(v\bar{v}) v_j \bar{v}_j \right]_{(\ell-1)dt} \\ d\tilde{y}_{j,t_{\ell}} &:= dy_{j,t_{\ell}} - \sqrt{2u} dt \left[p'(v\bar{v}) v_j \bar{v}_j \right]_{(\ell-1)dt} \end{aligned}$$

We get a new SDE system:

$$dv_j = -i dt (\varepsilon v)_j - i\sqrt{2u} v_j dx_j$$

= $-i dt (\varepsilon v)_j - i\sqrt{2u} v_j [d\tilde{x}_j + \sqrt{2u} dt p' v_j \bar{v}_j]$
= $-i dt (\varepsilon v)_j - i 2u dt p' v_j \bar{v}_j v_j - i\sqrt{2u} v_j d\tilde{x}_j$

$$d\bar{v}_{j} = + i dt (\varepsilon \bar{v})_{j} + i \sqrt{2u} \bar{v}_{j} dy_{j}$$

$$= + i dt (\varepsilon \bar{v})_{j} + i \sqrt{2u} \bar{v}_{j} [d\tilde{y}_{j} + \sqrt{2u} dt p' v_{j} \bar{v}_{j}]$$

$$= + i dt (\varepsilon \bar{v})_{j} + i 2u dt p' v_{j} \bar{v}_{j} \bar{v}_{j} + i \sqrt{2u} \bar{v}_{j} d\tilde{y}_{j}$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Theorem 4: The correlation functions of Theorem 3 have the following equivalent representation:

$$\langle \psi_t, a_i^+ a_j \psi_t \rangle_{coh/num} = E\overline{E}[v_i \overline{v}_j]$$

with the v_j , \bar{v}_j given by the transformed SDE system $(v_j = v_{j,x,y,t}, \bar{v}_j = \bar{v}_{j,x,y,t})$

$$dv_j = -i (\varepsilon v)_j dt - i 2u p' v_j \overline{v}_j v_j dt - i \sqrt{2u} v_j dx_j$$

$$d\overline{v}_j = +i (\varepsilon \overline{v})_j dt + i 2u p' v_j \overline{v}_j \overline{v}_j dt + i \sqrt{2u} \overline{v}_j dy_j$$

and

$$p'(v\bar{v}) = [\log P]'(v\bar{v}) = \begin{cases} 1 & \text{for a coherent state} \\ (N-1)/(v\bar{v}) & \text{for a number state} \end{cases}$$

with $P(x) = e^x$ or x^{N-1} for coh/num.

7. Large N Limit: Gross-Pitaevskii Equation

7.1 GP Equation for the d Dim Bose-Hubbard Model

7.2 GP Equation for the Two Site Bose-Hubbard Model and Numerical Test

7.1 GP Equation for the d Dim Bose-Hubbard Model

(日)、(型)、(E)、(E)、(E)、(O)へ(C)

7.1 GP Equation for the d Dim Bose-Hubbard Model

Recall $|\lambda|^2 = N$. Define normalized quantities

Then, with $p' = p'(v\bar{v}) = p'(Nw\bar{w})$,

$$dw_j = -i dt (\varepsilon w)_j - i 2uN dt p' w_j \overline{w}_j w_j - i \sqrt{2u} w_j dx_j d\overline{w}_j = +i dt (\varepsilon \overline{w})_j + i 2uN dt p' w_j \overline{w}_j \overline{w}_j + i \sqrt{2u} \overline{w}_j dy_j$$

or, with

$$dw_{j} = -i dt (\varepsilon w)_{j} - i 2g dt p' w_{j} \overline{w}_{j} w_{j} - i \sqrt{2g/N} w_{j} dx_{j}$$

$$d\overline{w}_{j} = +i dt (\varepsilon \overline{w})_{j} + i 2g dt p' w_{j} \overline{w}_{j} \overline{w}_{j} + i \sqrt{2g/N} \overline{w}_{j} dy_{j}$$
(3)

The large N limit can be read off:
7.1 GP Equation for the d Dim Bose-Hubbard Model

Theorem 5: In the limit $N \to \infty$ with g = uN fixed, Theorem 4 reduces to

$$\langle \psi_t, a_i^+ a_j \psi_t \rangle_{coh/num} = N \times w_i(t) \bar{w}_j(t)$$

with w, \bar{w} given by the ODE system, in both cases coh/num,

$$\dot{w}_j = -i(\varepsilon w)_j - i 2g w_j \bar{w}_j w_j \dot{\bar{w}}_j = +i(\varepsilon \bar{w})_j + i 2g w_j \bar{w}_j \bar{w}_j$$

$$(4)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◇

with initial conditions

$$w_j(0) = \lambda_j / |\lambda|, \quad \overline{w}_j(0) = \overline{\lambda}_j / |\lambda|$$

The ODE system (4) is the time dependent discrete Gross-Pitaevskii equation.

The first equation of (4) is enough since \bar{w}_i is the true complex conjugate of w_i now.

7.1 GP Equation for the d Dim Bose-Hubbard Model

Proof: For a coherent state p' = 1 and the statement follows immediately from the SDE system (3) since the diffusive part vanishes. For a number state,

$$p' = p'(Nw\bar{w}) = (N-1)/(Nw\bar{w}) \stackrel{N \to \infty}{ o} 1/(w\bar{w})$$

such that we get the following ODE system:

$$\dot{w}_j = -i(\varepsilon w)_j - i 2g \frac{1}{w\bar{w}} w_j \bar{w}_j w_j \dot{\bar{w}}_j = +i(\varepsilon \bar{w})_j + i 2g \frac{1}{w\bar{w}} w_j \bar{w}_j \bar{w}_j$$

However,

$$\frac{d}{dt}(w\bar{w}) = \sum_{j} \left\{ -i(\varepsilon w)_{j}\bar{w}_{j} - i2g \frac{1}{w\bar{w}}(w_{j}\bar{w}_{j})^{2} + iw_{j}(\varepsilon\bar{w})_{j} + i2g \frac{1}{w\bar{w}}(w_{j}\bar{w}_{j})^{2} \right\}$$
$$= -i(\varepsilon w) \cdot \bar{w} + iw \cdot (\varepsilon\bar{w}) \stackrel{\varepsilon = \varepsilon^{T}}{=} 0$$

which results in $(w\bar{w})_t = (w\bar{w})_0 = 1$.

7.2 GP Equation for the Two Site Bose-Hubbard Model

For just two lattice sites 1 and 2, we get from Theorem 5

$$\langle n_{j,t} \rangle := \langle \psi_t, a_j^+ a_j \psi_t \rangle_{coh/num} \stackrel{N \to \infty}{=} N |w_{j,t}|^2 =: N \varrho_{j,t}$$

with w_1, w_2 given by the GP system

$$\dot{w}_1 = -i\varepsilon w_2 - i2g |w_1|^2 w_1 \dot{w}_2 = -i\varepsilon w_1 - i2g |w_2|^2 w_2$$

Theorem 6 (well known): Introduce the normalized particle imbalance and its integral,

$$arphi_{12} := |w_1|^2 - |w_2|^2$$

 $arphi_t := 2g \int_0^t \varrho_{12,s} \, ds$

Then φ_t is a solution of

$$\ddot{\varphi}_t + 4\varepsilon^2 \sin \varphi_t = 0$$

and the density of particles at lattice site 1 is obtained as

$$\varrho_{1,t} = |w_{1,t}|^2 = \frac{1}{2} \left(1 + \frac{\dot{\varphi}_t}{2g} \right)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

7.2 GP Equation for the Two Site Bose-Hubbard Model

Initial conditions: Put all particles on lattice site 1 at t = 0. Then $\varphi_0 = 0$, always, and

$$\dot{\varphi}_0 = 2g \, \varrho_{12,0} = 2g \left(\varrho_{1,0} - \varrho_{2,0} \right) = 2g \left(1 - 0 \right) = 2g$$

The total energy is

$$E = \frac{\dot{\varphi}_t^2}{2} - 4\varepsilon^2 \cos\varphi_t = \frac{\dot{\varphi}_0^2}{2} - 4\varepsilon^2 \cos\varphi_0 = 2g^2 - 4\varepsilon^2$$

The potential energy at $\varphi = \pi$ is $E_{pot} = +4\varepsilon^2$. We have **rollovers** if the total energy is bigger than that:

$$\begin{array}{rcl} 2g^2 - 4\varepsilon^2 &> & +4\varepsilon^2 \\ \Leftrightarrow & \qquad g^2 &> & (2\varepsilon)^2 \end{array}$$

In that case, the velocity $\dot{\varphi}_t = 2g(\varrho_{1,t} - \varrho_{2,t})$ which is the particle imbalance between the two lattice sites, does not change its sign and this corresponds to the non-oscillatory or self-trapping regime:

7.2 GP Equation for the Two Site Bose-Hubbard Model

The mathematical pendulum ODE for $\varepsilon = 1$ and $g \in \{1.99, 2.01\}$:

g = 1.99 (black) and g = 2.01 (red) from ODE system

the quantity $\varrho_{1,t} = \frac{1}{2} \left(1 + \frac{\dot{\varphi}_t}{2g} \right)$ with φ_t from ODE, $\varphi_0 = 0$ and $\dot{\varphi}_0 = 2g$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Numerical check of the large N limit: $\varepsilon = 1$ and

$$egin{array}{rcl} N & \in & \left\{ 2500\,,\,5000\,,\,10000\,,\,20000 \,
ight\} & = & \left\{ \, {
m orange}\,,\,{
m green}\,,\,{
m light}\,\,{
m blue}\,,\,{
m dark}\,\,{
m blue}\,,\,{
m blue}\,,\,{
m dark}\,\,{
m blue$$

Quantity:

$$\varrho_{1,t} = \begin{cases} \langle \psi_t, a_1^+ a_1 \psi_t \rangle / N & \text{from exact diagonalization} \\ \frac{1}{2} \left(1 + \frac{\dot{\varphi}_t}{2g} \right) & \text{from ODE mathematical pendulum} \end{cases}$$

The red line below is the ODE solution and the dots come from exact diagonalization:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

8. Summary

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

8. Summary

Main Results:

- Simple and Elegant Method to Calculate GP-like Mean Field Equations
- Generic Formalism: Arbitrary Initial State, Arbitrary Hopping Matrix, Arbitrary Dimension
- Various Exact PDE Representations
- o collapse and revivals could be reproduced, proper treatment of diffusive part still missing

Outlook:

- Use this for New Numerical or Analytical Calculation Schemes
- Fermi Hubbard Model
- Thermodynamic Quantities

full paper at

https://arxiv.org/abs/2205.02010

8. Summary

Theorems:

Theorem 1: Time Evolution of States as Fresnel Expectation Values, Matrix U_{kdt} Theorem 2: Correlation Functions as Fresnel Expectation Values Theorem 3: SDE for U_{kdt} and Correlation Functions as Expectations of Fresnel Diffusions Theorem 4: Girsanov Transformed SDE System: Initial State moves into Drift Part Theorem 5: Large *N*-Limit of Theorem 4: Gross-Pitaevskii Equation Theorem 6: GP Equation for Two Site Bose-Hubbard Model as Mathematical Pendulum

Appendix:

Theorem 7: PDE Representation Correlation Functions, d-dim Bose-Hubbard Model Theorem 8: PDE Representation Correlation Functions, Two Site Bose-Hubbard Model Theorem 9: Equivalence Mathematical Pendulum and Quartic Double-Well Potential Standard Formula Wiener and Fresnel Expectations

Appendix

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◇

- PDE Representation d Dim Bose-Hubbard Model
- PDE Representation Two Site Bose-Hubbard Model
- Equivalence Mathematical Pendulum and Quartic Double-Well Potential
- Standard Formula Wiener and Fresnel Expectations

Appendix: PDE Representation d Dim Bose-Hubbard Model

Theorem 7: Define the differential operators

$$\mathcal{L}_{0} := \sum_{i,j} \varepsilon_{ij} \left\{ v_{i} \frac{\partial}{\partial v_{j}} - \bar{v}_{i} \frac{\partial}{\partial \bar{v}_{j}} \right\}, \quad \mathcal{L}_{int} := u \sum_{j} \left\{ v_{j}^{2} \frac{\partial^{2}}{\partial v_{j}^{2}} - \bar{v}_{j}^{2} \frac{\partial^{2}}{\partial \bar{v}_{j}^{2}} \right\}$$

and for $P(x) := \begin{cases} e^x & \text{for coherent state} \\ x^{N-1} & \text{for number state} \end{cases}$

$$\mathsf{let} \qquad \qquad \mathcal{L}_P := 2u \, \frac{P'(v\bar{v})}{P(v\bar{v})} \, \sum_j v_j \bar{v}_j \left\{ \, v_j \, \frac{\partial}{\partial v_j} \, - \, \bar{v}_j \, \frac{\partial}{\partial \bar{v}_j} \, \right\}$$

Then, for the *d*-dimensional Bose-Hubbard model with hopping matrix ε_{ij} and interaction *u*,

$$\langle \psi_t, a_i^+ a_j \psi_t \rangle_{coh/num} = e^{-it(\mathcal{L}_0 + \mathcal{L}_{int})} \left\{ v_i \, \bar{v}_j \, P(v\bar{v}) \right\} / P(\lambda\bar{\lambda}) \mid_{v=\lambda, \bar{v}=\bar{\lambda}}$$
$$= e^{-it(\mathcal{L}_0 + \mathcal{L}_{int} + \mathcal{L}_P)} \left\{ v_i \, \bar{v}_j \right\} \mid_{v=\lambda, \bar{v}=\bar{\lambda}} .$$

(ロ) (型) (E) (E) (E) (E) (O)

Appendix: PDE Representation Two Site Bose-Hubbard Model

Theorem 8: Define the differential operators (with $p' = [\log P]', P(x) = e^x \text{ or } x^{N-1} \cosh/\text{num}$)

$$\begin{aligned} \mathcal{L}_{\varepsilon} &:= -\varepsilon \left\{ \left(q - \bar{q} \right) \left(\frac{\partial}{\partial n_{1}} - \frac{\partial}{\partial n_{2}} \right) + \left(n_{1} - n_{2} \right) \left(\frac{\partial}{\partial q} - \frac{\partial}{\partial \bar{q}} \right) \right\} \\ \mathcal{L}_{u} &:= + 2u \left\{ \left(n_{1} \frac{\partial}{\partial n_{1}} - n_{2} \frac{\partial}{\partial n_{2}} \right) \left(q \frac{\partial}{\partial q} - \bar{q} \frac{\partial}{\partial \bar{q}} \right) + p'(n) \left(n_{1} - n_{2} \right) \left(q \frac{\partial}{\partial q} - \bar{q} \frac{\partial}{\partial \bar{q}} \right) \right\} \end{aligned}$$

acting on functions of 4 variables $F = F(n_1, n_2, q, \bar{q})$. Then for the two site Bose-Hubbard model

$$\langle \psi_t, a_1^+ a_1 \, \psi_t \rangle_{coh/num} = e^{-it \, (\mathcal{L}_{\varepsilon} + \mathcal{L}_u)} \, n_1 \, \left|_{(n_1, n_2, q, \bar{q}) = (|\lambda_1|^2, |\lambda_2|^2, \lambda_1 \bar{\lambda}_2, \bar{\lambda}_1 \lambda_2)}\right|_{(n_1, n_2, q, \bar{q}) = (|\lambda_1|^2, |\lambda_2|^2, \lambda_1 \bar{\lambda}_2, \bar{\lambda}_1 \lambda_2)}$$

with actions

$$(e^{-it\mathcal{L}_{\varepsilon}}F)(n_1,n_2,q,\bar{q}) = F(R_t(n_1,n_2,q,\bar{q})^T)$$

$$R_t = \begin{pmatrix} \cos^2 \varepsilon t & \sin^2 \varepsilon t & +i\sin \varepsilon t \cos \varepsilon t & -i\sin \varepsilon t \cos \varepsilon t \\ \sin^2 \varepsilon t & \cos^2 \varepsilon t & -i\sin \varepsilon t \cos \varepsilon t & +i\sin \varepsilon t \cos \varepsilon t \\ +i\sin \varepsilon t \cos \varepsilon t & -i\sin \varepsilon t \cos \varepsilon t & \cos^2 \varepsilon t & \sin^2 \varepsilon t \\ -i\sin \varepsilon t \cos \varepsilon t & +i\sin \varepsilon t \cos \varepsilon t & \sin^2 \varepsilon t & \cos^2 \varepsilon t \end{pmatrix}$$

・ロト・4回ト・ミト・ミート
 ・ロト・4回ト・ミート
 ・ロト・4回ト・ミート

Appendix: PDE Representation Two Site Bose Hubbard Model

and

$$e^{-it\mathcal{L}_{u}} \left\{ G(n_{1}, n_{2}) q^{b} \bar{q}^{\bar{b}} \right\} = G\left(e^{-i2ut(b-\bar{b})}n_{1}, e^{+i2ut(b-\bar{b})}n_{2} \right) \times \frac{P\left(e^{-i2ut(b-\bar{b})}n_{1} + e^{+i2ut(b-\bar{b})}n_{2} \right)}{P(n_{1} + n_{2})} \times q^{b} \bar{q}^{\bar{b}}$$

where $G = G(n_1, n_2)$ is an arbitrary analytic function and b, \bar{b} are arbitrary natural numbers.

Example, used for Collapse and Revivals:

$$e^{-it\mathcal{L}_{u}} \{ n_{1} \} = n_{1}$$

$$e^{-it\mathcal{L}_{u}} \{ q \} = \frac{P(e^{-i2ut}n_{1} + e^{+i2ut}n_{2})}{P(n_{1} + n_{2})} \times q$$

$$e^{-it\mathcal{L}_{u}} \{ n_{1}q \} = e^{-i2ut}n_{1} \times \frac{P(e^{-i2ut}n_{1} + e^{+i2ut}n_{2})}{P(n_{1} + n_{2})} \times q$$

such that

$$\frac{e^{-it\mathcal{L}_{u}}[n_{1}q]}{e^{-it\mathcal{L}_{u}}[n_{1}]e^{-it\mathcal{L}_{u}}[q]} = e^{-i2ut}, \qquad \frac{e^{-it\mathcal{L}_{\varepsilon}}[n_{1}q]}{e^{-it\mathcal{L}_{\varepsilon}}[n_{1}]e^{-it\mathcal{L}_{\varepsilon}}[q]} = 1.$$

Appendix: Equivalence Mathematical Pendulum and Quartic Double-Well Potential

Theorem 9: The mathematical pendulum

$$\ddot{\varphi}_t + 4\varepsilon^2 \sin \varphi_t = 0$$

with $\varphi_0=0$ and $\dot{\varphi}_0=2g$ is equivalent to

$$\ddot{x}_t + (4\varepsilon^2 - 2g^2)x_t + 2g^2x_t^3 = 0$$

with $x_0 = 1$ and $\dot{x}_0 = 0$ through the transformation

$$\varphi_t = 2g \int_0^t x_s \, ds \quad \Leftrightarrow \quad x_t = \frac{1}{2g} \, \dot{\varphi}_t \, .$$

Appendix: Standard Formula Wiener and Fresnel Expectations

Theorem: Consider *m* times $0 < t_1 < t_2 < \cdots < t_m \leq T$ and let x_{t_j} be a standard or Fresnel Brownian motion observed at time t_j . Let

$$F = F(x_{t_1}, \cdots, x_{t_m}) : \mathbb{R}^m \rightarrow \mathbb{C}$$

be an arbitrary function of *m* variables and let E[F] denote its Wiener or Fresnel expectation value. Then, with $t_0 := 0$ and $x_0 := 0$,

$$\mathsf{E}[F] = \int_{\mathbb{R}^m} F(x_{t_1}, \cdots, x_{t_m}) \prod_{j=1}^m p_{t_j-t_{j-1}}(x_{t_{j-1}}, x_{t_j}) \, dx_{t_j}$$

with Gaussian or Fresnel kernels given by

$$p_t(x,y) := \begin{cases} rac{1}{\sqrt{2\pi t}} e^{-rac{(x-y)^2}{2t}} & ext{for Wiener expectations} \ rac{1}{\sqrt{2\pi it}} e^{irac{(x-y)^2}{2t}} & ext{for Fresnel expectations} . \end{cases}$$

Basic property: $\int_{\mathbb{R}} p_t(x, y) p_s(y, z) \, dy = p_{t+s}(x, z)$