Low Regularity Inextendibility of Spacetimes

Marco van den Beld Serrano

November 4th 2022

Table of Contents

- Introduction
- 2 Low Regularity Inextendibility Criteria
- Inextendibility of Strongly Cylindrically Symmetric Spacetimes
 - FLRW spacetimes
 - Strongly spherically symmetric spacetimes
 - Strongly cylindrically symmetric spacetimes
- 4 Existence of a unique maximal boundary

1) Relativity and Determinism:

Strong Cosmic Censorship Conjecture (Penrose)

For generic asymptotically flat initial data for the vacuum Einstein Equations $\mathrm{Ric}(g)=0$ the maximal globally hyperbolic development is inextendible as a *suitably regular* Lorentzian manifold.

1) Relativity and Determinism:

Strong Cosmic Censorship Conjecture (Penrose)

For generic asymptotically flat initial data for the vacuum Einstein Equations $\mathrm{Ric}(g)=0$ the maximal globally hyperbolic development is inextendible as a *suitably regular* Lorentzian manifold.

• What is *suitably regular*? C^2 makes sense, but excludes interesting cases... However, C^0 does not hold!

1) Relativity and Determinism:

Strong Cosmic Censorship Conjecture (Penrose)

For generic asymptotically flat initial data for the vacuum Einstein Equations $\mathrm{Ric}(g)=0$ the maximal globally hyperbolic development is inextendible as a *suitably regular* Lorentzian manifold.

- What is *suitably regular*? C^2 makes sense, but excludes interesting cases... However, C^0 does not hold!
- Now believed (spoiler!): suitably regular means C^0 spacetime (and $\partial g \in L^2_{loc}$).
- Physically, the conjecture encodes determinism in General Relativity.

1) Relativity and Determinism:

Strong Cosmic Censorship Conjecture (Penrose)

For generic asymptotically flat initial data for the vacuum Einstein Equations $\mathrm{Ric}(g)=0$ the maximal globally hyperbolic development is inextendible as a *suitably regular* Lorentzian manifold.

- What is *suitably regular*? C^2 makes sense, but excludes interesting cases... However, C^0 does not hold!
- Now believed (spoiler!): suitably regular means C^0 spacetime (and $\partial g \in L^2_{loc}$).
- Physically, the conjecture encodes determinism in General Relativity.

2) Singularity Classification

Below C^2 , classical causality theory breaks down...

$C^{0,1}$ spacetimes:

- Geodesic equation is not a classical ODE: solutions exist (e.g. Filippov solutions) but are not unique.
- Causal maximizers have a fixed causal character almost everywhere.

Below C^2 , classical causality theory breaks down...

$C^{0,1}$ spacetimes:

- Geodesic equation is not a classical ODE: solutions exist (e.g. Filippov solutions) but are not unique.
- Causal maximizers have a fixed causal character almost everywhere.

C^0 spacetimes:

- Geodesic equation is not well defined.
- Causal maximizers do not have a fixed causal character.
- C⁰ Avez-Seifert Theorem: global hyperbolicity guarantees existence of (global) causal maximizers. Moreover, local causal maximizers always exist.

Definition 1: Fix $k \ge 0$ and let $0 \le l \le k$. Let (M,g) be a C^k spacetime (i.e. a connected time-oriented Lorentzian manifold) with dimension d:

• A C^{\prime} -extension of (M,g) is a proper isometric embedding ι

$$\iota \ : \ (M,g) \hookrightarrow (M_{\mathrm{ext}},g_{\mathrm{ext}})$$

where $(M_{\rm ext},g_{\rm ext})$ is C^I spacetime of dimension d. If such an embedding exists, then (M,g) is said to be C^I -extendible. The topological boundary of M within $M_{\rm ext}$ is $\partial\iota(M)$.

Definition 2: Let $\iota:(M,g)\to(M_{\mathsf{ext}},g_{\mathsf{ext}})$ be a C^k -extension $(k\geq 0)$.

- Future boundary of M:
 - $\partial^+\iota(M) := \{ p \in \partial\iota(M) : \exists \text{ f.d.t.l. } \gamma : [0,1] \to M_{\text{ext}} \text{ with } \gamma(1) = p, \ \gamma([0,1) \subset \iota(M) \}$
- Past boundary of M:

$$\partial^{-}\iota(M) := \{ p \in \partial\iota(M) : \exists \text{ f.d.t.l. } \gamma : [0,1] \to M_{\text{ext}} \text{ with } \gamma(0) = p, \ \gamma((0,1] \subset \iota(M) \}$$

Introduction: A first crucial result

Proposition 3 (Sbierski (2018))

Let $\iota \colon (M,g) o (M_{\mathrm{ext}},g_{\mathrm{ext}})$ be a C^0 extension. Then:

$$\partial^+\iota(M)\cup\partial^-\iota(M)\neq\emptyset$$

Question: Can we get an inextendibility criteria from timelike geodesic completeness?

Question: Can we get an inextendibility criteria from timelike geodesic completeness?

Setting: Let (M,g) be a C^2 timelike geodesically complete spacetime and $\iota: M \to M_{\rm ext}$ a C^0 extension.

• Fix $p \in \partial^+\iota(M)$ and a globally hyperbolic neighbourhood V. Then, there exists a causal maximizer (Sämann, 2016) $\gamma_{\max}: [0,1] \to M_{\mathrm{ext}}$ from $q := \gamma_{\max}(0) \in I^-(p,V) \cap \iota(M)$, to p:

$$L(\gamma) \le L(\gamma_{\max}) < \infty$$

 \forall causal γ with the same endpoints as γ_{max} .

Question: Can we get an inextendibility criteria from timelike geodesic completeness?

Setting: Let (M,g) be a C^2 timelike geodesically complete spacetime and $\iota: M \to M_{\rm ext}$ a C^0 extension.

• Fix $p \in \partial^+\iota(M)$ and a globally hyperbolic neighbourhood V. Then, there exists a causal maximizer (Sämann, 2016) $\gamma_{\max}: [0,1] \to M_{\mathrm{ext}}$ from $q := \gamma_{\max}(0) \in I^-(p,V) \cap \iota(M)$, to p:

$$L(\gamma) \le L(\gamma_{\max}) < \infty$$

 \forall causal γ with the same endpoints as γ_{\max} .

② Simple case: Assume $\gamma_{\max}([0,1)) \subset \iota(M)$. Then, $\iota^{-1} \circ \gamma_{\max}|_{[0,1)}$ is a future inext. t.l. geodesic, so $L(\gamma_{\max}) = \infty$ (Contradiction!). So (M,g) is C^0 inextendible.

Problems:

- In general, $\gamma_{\max}([0,1)) \not\subset \iota(M)$.
- Causal maximizers in C^0 spacetimes do not have a fixed causal character.

Problems:

- In general, $\gamma_{\max}([0,1)) \not\subset \iota(M)$.
- Causal maximizers in C^0 spacetimes do not have a fixed causal character.

Solutions:

• Galloway, Ling, Sbierski: Assume (M,g) is also globally hyperbolic. Then the portion of γ_{\max} in $\iota(M)$ is a timelike geodesic.

Problems:

- In general, $\gamma_{\max}([0,1)) \not\subset \iota(M)$.
- Causal maximizers in C^0 spacetimes do not have a fixed causal character.

Solutions:

- Galloway, Ling, Sbierski: Assume (M,g) is also globally hyperbolic. Then the portion of γ_{\max} in $\iota(M)$ is a timelike geodesic.
- Graf, Ling: Assume $(M_{\rm ext}, g_{\rm ext})$ is a $C^{0,1}$ spacetime. Then $\gamma_{\rm max}$ is timelike a.e.

Proposition 4 (Galloway, Ling, Sbierski (2018))

A smooth (at least C^2) spacetime that is timelike geodesically complete and globally hyperbolic is C^0 -inextendible.

Proposition 5 (Graf, Ling (2019))

Let (M, g) be a smooth timelike geodesically complete spacetime. Then (M, g) is $C^{0,1}$ -inextendible.

Theorem 6 (Minguzzi, Suhr (2019))

Let (M,g) be a smooth timelike geodesically complete spacetime. Then it is C^0 inextendible.

Examples:

- C⁰ inextendibility of Schwarzschild and Minkowski (Sbierski (2018)).
- C⁰ inextendibility of anti de Sitter (Galloway, Ling (2018)).
- $C_{\rm loc}^{0,1}$ inextendibility of FLRW (Sbierski (2022)).

FLRW spacetimes

Definition 7: An open FLRW spacetime is a spacetime (M,g) where $M = (0, \infty) \times \mathbb{R}^d$ with coordinates $(t,r,\omega) \in (0,\infty) \times (0,\infty) \times \mathbb{S}^{d-1}$ and:

$$g = \begin{cases} -dt^2 + a^2(t)(dr^2 + r^2d\Omega_{d-1}^2) & \text{Euclidian} \\ -dt^2 + a^2(t)(dr^2 + \sinh^2(r)d\Omega_{d-1}^2) & \text{Hyperbolic} \end{cases}$$
(1)

where $a:(0,\infty)\to(0,\infty)$ satisfies:

- ① a has to be smooth
- 2 $\lim_{t\to 0^+} a(t) = 0$
- **③** \exists m > 0, b ≥ 0 such that a(t) ≤ mt + b ∀t
- **4** $a'(t) > 0 \ \forall \ t$

FLRW spacetimes

Theorem 8

Let (M,g) be an open FLRW spacetime. If $(M_{\rm ext},g_{\rm ext})$ is a C^0 -extension of (M,g), then $\partial^+\iota(M)=\emptyset$ and $\partial^-\iota(M)$ is an achronal topological hypersurface.

Definition 9: (M,g) is called a **strongly spherically symmetric (StSp) spacetime** if $\forall p \in M$ there exists a neighbourhood U, a change of coordinates ψ_s and coordinates $(T,R): U \to (0,\infty)$ and $\omega: U \to \mathbb{S}^{d-1}$ such that:

$$g_s := (\psi_s)_* g = -F(T, R) dT^2 + G(T, R) dR^2 + R^2 d\Omega_{d-1}^2$$
 (2)

with $F, G: (0, \infty) \times (0, \infty) \to (0, \infty)$ smooth.

Definition 9: (M,g) is called a **strongly spherically symmetric (StSp) spacetime** if $\forall p \in M$ there exists a neighbourhood U, a change of coordinates ψ_s and coordinates $(T,R): U \to (0,\infty)$ and $\omega: U \to \mathbb{S}^{d-1}$ such that:

$$g_s := (\psi_s)_* g = -F(T, R) dT^2 + G(T, R) dR^2 + R^2 d\Omega_{d-1}^2$$
 (2)

with $F, G: (0, \infty) \times (0, \infty) \to (0, \infty)$ smooth.

Definition 10: Let (M,g) be an FLRW spacetime. We call a change of coordinates $\psi_s:(t,r)\mapsto (T,R)$ such that $g_s:=(\psi_s)_*g$ is as in (2) a **natural strongly spherical change of coordinates**. If it exists $\forall p\in M$, we write (M,g,ψ_s) .

Theorem 11: Part 1 (Galloway, Ling)

Let (M, g) be a Euclidean FLRW spacetime with $a'(0) := \lim_{t \to 0^+} a'(t) \in (0, \infty]$. Then, up to an initial condition, there exists a unique natural StSp change of coordinates ψ_s with:

$$g_s := (\psi_s)_* g = -F(T, R) dT^2 + G(T, R) dR^2 + R^2 d\Omega_{d-1}^2$$
 (3)

with F and G are regular a.e.

Theorem 11: Part 2 (Galloway, Ling)

Let $\iota: M \to M_{\mathrm{ext}}$ be a C^0 -extension M_{ext} and $\gamma: [0,1] \to M_{\mathrm{ext}}$ a future directed timelike curve with past endpoint $\gamma(0) \in \partial^-\iota(M)$, and suppose R has a finite positive limit along γ as $t \to 0^+$. Then, the following holds along γ :

- $\lim_{t\to 0^+} G(\iota^{-1}\circ\gamma(t))=0.$
- If F has a finite nonzero limit as $t \to 0^+$, then $T \to \pm \infty$ as $t \to 0^+$.

Definition 12: Let (M,g,ψ_s) be an FLRW spacetime and $\iota:(M,g)\to (M_{\rm ext},g_{\rm ext})$ be a C^0 -extension. It is a **natural strongly spherical** C^0 -extension if:

- $\forall p \in \partial^- \iota(M)$ there exists a StSp change of coordinates ψ_{ext} defined on a neighbourhood U.
- **2** In $\iota^{-1}(U)$:

$$\psi_{\mathbf{s}}|_{\iota^{-1}(U)} = \psi_{\text{ext}} \circ \iota|_{\iota^{-1}(U)} \tag{4}$$

The previous expression actually implies that:

$$g_{\text{ext},s}|_{\iota(M)\cap U} = (\psi_{\text{ext}})_*\iota_*g = (\psi_s)_*g = g_s$$
 (5)

Corollary 13

Let (M, g, ψ_s) be a Euclidean FLRW spacetime with $a'(0) \in (0, \infty]$. Then, it has no natural strongly spherically symmetric C^0 extension.

Proof:

• Fix $p \in \partial^{-}\iota(M)$. There \exists a ψ_{ext} such that $g_{\mathrm{ext},s} \coloneqq (\psi_{\mathrm{ext}})_* g_{\mathrm{ext}}$ is:

$$g_{\text{ext},s} = -F_{\text{ext}}dT_{\text{ext}}^2 + G_{\text{ext}}dR_{\text{ext}}^2 + R_{\text{ext}}^2d\Omega_{\text{ext},d-1}^2$$
 (6)

in a neighbourhood U of p.

• Recall that $g_{\text{ext},s}|_{\iota(M)\cap U}=g_s$. This implies that:

$$(T_{\text{ext}}, R_{\text{ext}}, \omega_{\text{ext}})|_{\iota(M)\cap U} = (T, R, \omega)$$
 (7)

$$(F_{\text{ext}}, G_{\text{ext}})|_{\iota(M)\cap U} = (F, G)$$
(8)

• Let $\gamma:[0,1] \to M_{\mathrm{ext}}$ be a f.d. t.l. curve with $\gamma((0,1]) \subset \iota(M)$ and $\gamma(0) = p$. Then, $\lim_{s\to 0} R(\gamma(s)) \neq 0$ as $R_{\mathrm{ext}} \in (0,\infty)$.

Proof:

• The metric g_s degenerates as $t \to 0$ because $\lim_{t \to 0^+} G(\gamma(t)) = 0$. Hence, as $g_{\text{ext},s} = g_s$, also $\lim_{t \to 0^+} G_{\text{ext}}(\gamma(t)) = 0$. $\to (M_{\text{ext}}, g_{\text{ext}})$ also degenerates!

Definition 14: Let (M,g) be a 4-dimensional spacetime. It is a **strongly cylindrically symmetric (StSc) spacetime** if $\forall p \in M \exists$ a neighbourhood U, a change of coordinates ψ_c and coordinates $T, \rho: U \to (0,\infty)$, $z: U \to \mathbb{R}$ and $\varphi: U \to (0,2\pi)$ with $g_c := (\psi_c)_*g$

$$g_c = -A(T, z, \rho)dT^2 + B(T, z, \rho)dz^2 + C(T, z, \rho)d\rho^2 + \rho^2 d\varphi^2$$
 (9)

 $A, B, C: U \to (0, \infty)$ smooth functions.

Definition 14: Let (M,g) be a 4-dimensional spacetime. It is a **strongly cylindrically symmetric (StSc) spacetime** if $\forall p \in M \exists$ a neighbourhood U, a change of coordinates ψ_c and coordinates $T, \rho: U \to (0,\infty)$, $z: U \to \mathbb{R}$ and $\varphi: U \to (0,2\pi)$ with $g_c := (\psi_c)_*g$

$$g_c = -A(T, z, \rho)dT^2 + B(T, z, \rho)dz^2 + C(T, z, \rho)d\rho^2 + \rho^2 d\varphi^2$$
 (9)

 $A, B, C: U \to (0, \infty)$ smooth functions.

Definition 15: Let (M,g) be a StSp spacetime. We call a $\psi_c: (R,\theta) \mapsto (z,\rho)$ such that $g_c = (\psi_c)_*(\psi_s)_*g$ is as in (9) a **natural strongly cylindrical change of coordinates**. If it exists $\forall p \in M$, we write (M,g,ψ_c) .

Theorem 16: Let (M, g) be a StSp spacetime. Subject to:

- a suitable initial condition
- ullet the choice of heta and arphi

there exists a unique natural StSc transformation ψ_c . Moreover, the metric coefficients A, B, C are regular a.e.

Proof:

• Ansatz: $\exists \psi_c : (R, \theta) \mapsto (z, \rho)$ smooth and invertible. Then:

$$\begin{cases} z = z(R,\theta) \longrightarrow dz^2 = z_R^2 dR^2 + z_\theta^2 d\theta^2 + 2z_R z_\theta dRd\theta \\ \rho = \rho(R,\theta) \longrightarrow d\rho^2 = \rho_R^2 dR^2 + \rho_\theta^2 d\theta^2 + 2\rho_R \rho_\theta dRd\theta \end{cases}$$

• It holds that $(\psi_c)_*(\psi_s)_*g=(\psi_s)_*g$:

$$-FdT^2 + GdR^2 + R^2(d\theta^2 + \sin^2\theta d\varphi^2) = -AdT^2 + Bdz^2 + Cd\rho^2 + \rho^2d\varphi^2$$

So, A = F and $\rho = R \sin \theta$.

• Moreover:

$$Bz_R^2 = G - C\rho_R^2 \tag{10a}$$

$$Bz_{\theta}^2 = R^2 - C\rho_{\theta}^2 \tag{10b}$$

$$Bz_R z_\theta = -C\rho_R \rho_\theta \tag{10c}$$

• Squaring (10c), plugging (10a) and (10b) in it:

$$(G - C\rho_R^2)(R^2 - C\rho_\theta^2) = C^2 \rho_R^2 \rho_\theta^2$$
 (11)

where will assume $(G \cos^2 \theta + \sin^2 \theta) \neq 0$, $z_{\theta} \neq 0$.

• As $\rho_{\theta} = R \cos \theta$ and $\rho_{R} = \sin \theta$, we get:

$$C = \frac{G}{G\cos^2\theta + \sin^2\theta} \tag{12}$$

Proof:

• Replacing *C* in (10b):

$$\frac{z_R}{z_\theta} = -\frac{G\cos\theta}{R\sin\theta} \tag{13}$$

Linear PDE. By method of characteristics:

$$z(R,\theta) = f\left(\int \frac{G(T,R)}{R} dR + \ln|\cos\theta|\right)$$
 (14)

• Plugging C and $z_{\theta} = -f' \tan \theta$ in (10b) with $f' \neq 0$:

$$B = \frac{R^2(1 - C\cos^2\theta)}{z_{\theta}^2} = \frac{R^2\cos^2\theta}{f'^2(G\cos^2\theta + \sin^2\theta)}$$
(15)

Proof:

Summing up:

$$\begin{cases} z(R,\theta) = f\left(\int \frac{G(T,R)}{R} dR + \ln|\cos\theta|\right) \\ \rho(R,\theta) = R\sin\theta \end{cases}$$
 (16)

$$\begin{cases} A(T, z, \rho) = F(T, R) \\ B(T, z, \rho) = \frac{R^2 \cos^2 \theta}{f'^2(G \cos^2 \theta + \sin^2 \theta)} \\ C(T, z, \rho) = \frac{G}{G \cos^2 \theta + \sin^2 \theta} \end{cases}$$
(17)

So the metric is:

$$g_{c} = -FdT^{2} + \frac{1}{G\cos^{2}\theta + \sin^{2}\theta} \left(\frac{R^{2}\cos^{2}\theta}{f'^{2}} dz^{2} + GdR^{2} \right) + \rho^{2}d\varphi^{2}$$
(18)

• But is this a well defined change of coordinates? Determinant of the Jacobian:

$$J = z_R \rho_{\theta} - z_{\theta} \rho_R = f' \frac{G \cos^2 \theta + \sin^2 \theta}{\cos \theta}$$
 (19)

- Change of coordinates well defined except on measure zero sets $G=-\tan^2\theta,\ \theta=\pi/2$
- $\frac{f' \neq 0}{\text{and (10c)}}$: If f' = 0, then also $z_R = z_\theta = 0$. Plugging this in (10a), (10b)

$$\begin{cases} G = C \sin^2 \theta \\ 1 = C \cos^2 \theta \\ 0 = CR \cos \theta \sin \theta \end{cases}$$
 (20)

• $\underline{z_{\theta} \neq 0}$: If $z_{\theta} = 0$ we recover the 2 last equations, which cannot be satisfied simultaneously.

Definition 17: Let (M,g) be a StSp spacetime with natural StSc change of coordinates ψ_c and $\iota:(M,g)\to(M_{\rm ext},g_{\rm ext})$ a C^0 -extension. It is a **natural strongly cylindrical extension** if:

- $\forall p \in \partial \iota(M)$, there exists a StSc change of coordinates $\widetilde{\psi}_{ext}$ defined on a neighbourhood U of p.

$$\psi_{\mathsf{c}} \circ \psi_{\mathsf{s}}|_{\iota^{-1}(U)} = \widetilde{\psi}_{\mathrm{ext}} \circ \iota|_{\iota^{-1}(U)} \tag{21}$$

So:

$$g_{\text{ext},c}|_{\iota(M)\cap U} = (\widetilde{\psi}_{\text{ext}})_* g_{\text{ext}}|_{\iota(M)\cap U} = (\widetilde{\psi}_{\text{ext}})_* \iota_* g = (\psi_c)_* (\psi_s)_* g \quad (22)$$

i.e. $g_{\text{ext},c} = g_c$.

Theorem 18

Let (M,g) be a StSp spacetime, $\iota:(M,g)\to(M_{\mathrm{ext}},g_{\mathrm{ext}})$ a C^0 extension and $\gamma:[0,1]\to M_{\mathrm{ext}}$ a curve with $\gamma(0,1)\subset\iota(M)$ and $\gamma(0)=p\in\partial\iota(M)$. If one of the following conditions is satisfied:

- ② $\lim_{s\to 0} G(\gamma(s)) = 0$ but $\lim_{s\to 0} \theta(\gamma(s)) \notin \{0, \pi\}$.
- 4 more ...

Then, there exists no natural StSc extension of (M, g).

Proof:

• Let $\gamma:[0,1] \to M_{\mathrm{ext}}$ be a curve with $\gamma(0,1) \subset \iota(M)$ and $\gamma(0) = p \in \partial \iota(M)$ such that (at least) one of the conditions of the Theorem is satisfied. Recall:

$$A(T, z, \rho) = F(T, R)$$

$$B(T, z, \rho) = \frac{R^2 \cos^2 \theta}{f'^2 (G \cos^2 \theta + \sin^2 \theta)}$$

$$C(T, z, \rho) = \frac{G}{G \cos^2 \theta + \sin^2 \theta}$$

- If condition 1 is satisfied A vanishes and if condition 2 is satisfied C vanishes
 - \rightarrow the metric $g_c = (\psi_c)_* g_s$ degenerates, where ψ_c is the natural StSc transf.

Proof:

• The rest is by contradiction: assume there exists a natural StSc transf. $\widetilde{\psi}_{\rm ext}$ such that $g_{{\rm ext},c}=(\widetilde{\psi}_{\rm ext})_*g_{\rm ext}$ and $g_{{\rm ext},c}|_{\iota(M)\cap U}=g_c$, where U is a neighbourhood of p, so:

$$(A_{\text{ext}}, B_{\text{ext}}, C_{\text{ext}})|_{\iota(M)\cap U} = (A, B, C)$$
(23)

 \rightarrow Also $(M_{\mathrm{ext}}, g_{\mathrm{ext}})$ degenerates!

Corollary 19

Let (M,g,ψ_s) be a (4-dimensional) open Euclidean FLRW spacetime satisfying that $a'(0) \in (0,\infty]$. Then, it has no natural strongly cylindrical C^0 -extension compatible with the natural ψ_s .

Proof:

• We apply the following 2-step change of coordinates to (M, g):

$$\{t, r, \theta, \varphi\} \xrightarrow{\psi_s} \begin{cases} T = T(t, r) \\ R = R(t, r) \\ \theta, \varphi \text{ same} \end{cases} \xrightarrow{\psi_c} \begin{cases} z = z(R, \theta) \\ \rho = \rho(R, \theta) \\ T, \varphi \text{ same} \end{cases}$$
(24)

so the metric becomes $g_c = (\psi_c)_*(\psi_s)_*g$

Proof:

- The rest of the proof is by contradiction: Let $\iota:(M,g) \to (M_{\mathrm{ext}},g_{\mathrm{ext}})$ be a natural StSc C^0 -extension compatible with the natural ψ_s in M. Unwinding the definitions:
 - Fix $p \in \partial^- \iota(M)$. \exists a neighbourhood U and a $\widetilde{\psi}_{\rm ext}$ s.t. $g_{{\rm ext},c} = (\widetilde{\psi}_{\rm ext})_* g_{\rm ext}$ is:

$$g_{\text{ext},c} = -A_{\text{ext}} dT_{\text{ext}}^2 + B_{\text{ext}} dz_{\text{ext}}^2 + C_{\text{ext}} d\rho_{\text{ext}}^2 + \rho_{\text{ext}}^2 d\varphi_{\text{ext}}^2$$
 (25)

② In $\iota^{-1}(U)$ it holds that $\psi_c \circ \psi_s|_{\iota^{-1}(U)} = \widetilde{\psi}_{\mathrm{ext}} \circ \iota|_{\iota^{-1}(U)}$. So $g_{\mathrm{ext},c}|_{\iota(M)\cap U} = g_c$. This implies that:

$$(A_{\text{ext}}, B_{\text{ext}}, C_{\text{ext}})|_{\iota(M)\cap U} = (A, B, C)$$
(26)

$$(T_{\text{ext}}, z_{\text{ext}}, \rho_{\text{ext}})|_{\iota(M) \cap U} = (T, z, \rho)$$
(27)

Proof:

- Let $\gamma:[0,1] \to M_{\mathrm{ext}}$ be a f.d.t.l curve with $\gamma(0,1] \subset \iota(M)$ and $\gamma(0) = p$. By a previous theorem, $\lim_{s \to 0} G(\gamma(s)) = 0$.
- Moreover, $\lim_{s\to 0} \theta(\gamma(s)) \neq 0$ as $\rho = R \sin \theta$ and $\rho|_{\iota(M)\cap U} = \rho_{\mathrm{ext}}|_{\iota(M)\cap U} \in (0,\infty)$. \to By previous theorem, g_c degenerates!
- As $g_{\text{ext},c} = g_c$, also $g_{\text{ext},c}$ is degenerate.

Question: Given a certain (extendible) spacetime (M,g), does there exist a (unique) maximal boundary? Are additional assumptions required? **Strategy:**

• Step 1: Define a (well defined) notion of equivalence between extensions and a notion partial ordering on the collection of equivalence classes \mathcal{I} .

Strategy

• Step 2: Show that every partially ordered subset has an upper bound. By Zorn's Lemma, there exists a (set theoretic) maximal element: $\iota \in \mathcal{I}$ satisfying that $\iota_{\max} \leq_{\partial} \iota$, it necessarily holds that $\iota =_{\partial} \iota_{\max}$.

Strategy:

- Step 3 (hypothetical): Show that there exists a maximal element in the desired sense: $\forall \iota \in \mathcal{I}$ it holds that $\iota \leq \iota_{\max}$
 - \rightarrow Additional assumptions required? Or consider specific subclasses of spactimes?

Definition 20: Let $\iota_1: M \to M_{\mathrm{ext},1}$ and $\iota_2: M \to M_{\mathrm{ext},2}$ be 2 extensions. If there exists an embedding $\widehat{\psi}_{12}: \widehat{U}_1 \to \widehat{U}_2$, where $\partial \iota_1(M) \subset \widehat{U}_1$ and $\partial \iota_2(M) \subset \widehat{U}_2$ which is compatible with the extensions, i.e.:

$$\widehat{\psi}_{12} \circ \iota_1|_{\iota_1^{-1}(\iota_1(M) \cap \widehat{U}_1)} = \iota_2|_{\iota_1^{-1}(\iota_1(M) \cap \widehat{U}_1)}$$
(28)

and the restriction $\widehat{\psi}_{12}: \overline{\iota_1(M)} \cap \widehat{U}_1 \to \overline{\iota_2(M)} \cap \widehat{U}_2$ is surjective, we define the relation:

$$\iota_1 =_{\partial} \iota_2$$

Lemma 21

The relation $=_{\partial}$ is an equivalence relation.

If $\iota_1 =_{\partial} \iota_2$, then $\overline{\iota_1(M)} \cap \widehat{U}_1$ is homeomorphic to $\overline{\iota_2(M)} \cap \widehat{U}_2$. In particular, $\partial \iota_1(M)$ is homeomorphic to $\partial \iota_2(M)$.

Theorem 22 (Sbierski 2022)

Let (M,g) be a globally hyperbolic spacetime with $g\in C^1$ and let ι_1,ι_2 be two $C^{0,1}_{\mathrm{loc}}$ extensions. Moreover, let $\gamma:[-1,0)\to M$ be a f.d. causal curve such that

$$p_1 := \lim_{s \to 0} (\iota_1 \circ \gamma)(s) \in \partial^+ \iota_1(M)$$
 and $p_2 := \lim_{s \to 0} (\iota_2 \circ \gamma)(s) \in \partial^+ \iota_2(M)$

Then, there exist neighbourhoods \widehat{U}_1 of p_1 and \widehat{U}_2 of p_2 such that $\iota_1(M) \cap \widehat{U}_1$ is diffeomorphic to $\iota_2(M) \cap \widehat{U}_2$.

Theorem 22 (Sbierski 2022)

Let (M,g) be a globally hyperbolic spacetime with $g\in C^1$ and let ι_1,ι_2 be two $C^{0,1}_{\mathrm{loc}}$ extensions. Moreover, let $\gamma:[-1,0)\to M$ be a f.d. causal curve such that

$$p_1 := \lim_{s \to 0} (\iota_1 \circ \gamma)(s) \in \partial^+ \iota_1(M)$$
 and $p_2 := \lim_{s \to 0} (\iota_2 \circ \gamma)(s) \in \partial^+ \iota_2(M)$

Then, there exist neighbourhoods \widehat{U}_1 of p_1 and \widehat{U}_2 of p_2 such that $\overline{\iota_1(M)} \cap \widehat{U}_1$ is diffeomorphic to $\overline{\iota_2(M)} \cap \widehat{U}_2$.

If the assumptions of the previous theorem hold, we can define $\iota_{1,loc}$ and $\iota_{2,loc}$ as restrictions of ι_1 and ι_2 and prove that:

$$\iota_{1,\mathrm{loc}} =_{\partial} \iota_{2,\mathrm{loc}}$$

Definition 23: Let $\iota_1: M \to M_{\mathrm{ext},1}$ and $\iota_2: M \to M_{\mathrm{ext},2}$ be extensions of (M,g) and U_1, U_2 be open neighbourhoods satisfying that $\partial \iota_1(M) \subset U_1$ and $\partial \iota_2(M) \subset U_2$. Moreover, let $\psi_{12}: U_1 \to U_2$ be an embedding satisfying that $\psi_{12}(\partial \iota_1(M)) \subset \partial \iota_2(M)$ and which is compatible with the extensions:

$$\psi_{12} \circ \iota_1|_{\iota_1^{-1}(\iota_1(M) \cap U_1)} = \iota_2|_{\iota_1^{-1}(\iota_1(M) \cap U_1)}$$
(29)

If such an embedding ψ_{12} exists, then we define the relation \leq_{∂} as follows:

$$\iota_1 \leq_{\partial} \iota_2$$

Definition 23: Let $\iota_1: M \to M_{\mathrm{ext},1}$ and $\iota_2: M \to M_{\mathrm{ext},2}$ be extensions of (M,g) and U_1, U_2 be open neighbourhoods satisfying that $\partial \iota_1(M) \subset U_1$ and $\partial \iota_2(M) \subset U_2$. Moreover, let $\psi_{12}: U_1 \to U_2$ be an embedding satisfying that $\psi_{12}(\partial \iota_1(M)) \subset \partial \iota_2(M)$ and which is compatible with the extensions:

$$\psi_{12} \circ \iota_1|_{\iota_1^{-1}(\iota_1(M) \cap U_1)} = \iota_2|_{\iota_1^{-1}(\iota_1(M) \cap U_1)}$$
(29)

If such an embedding ψ_{12} exists, then we define the relation \leq_{∂} as follows:

$$\iota_1 \leq_{\partial} \iota_2$$

Lemma 24

Let $[\iota]$ denote the equivalence class of the extension ι (under the eq. relation $=_{\partial}$). The collection of equivalence classes of all extensions ι together with the previously defined relation \leq_{∂} is a partially ordered set, which will be denoted \mathcal{I} .

Problems:

• Sbierski's (2022) result does not hold for C^0 extensions... Not even for $C^{0,\alpha}$ with $\alpha \in (0,1)!$

Problems:

- Sbierski's (2022) result does not hold for C^0 extensions... Not even for $C^{0,\alpha}$ with $\alpha \in (0,1)!$
- Topological issues might appear when constructing the upper bound...
 if it is too "large" it might not even be Hausdorff! See
 Choquet-Bruhat, Geroch (1969) and Chrusciel (2010).

Problems:

- Sbierski's (2022) result does not hold for C^0 extensions... Not even for $C^{0,\alpha}$ with $\alpha \in (0,1)!$
- Topological issues might appear when constructing the upper bound...
 if it is too "large" it might not even be Hausdorff! See
 Choquet-Bruhat, Geroch (1969) and Chrusciel (2010).
- Counterexamples such as the Taub-NUT or Misner spacetime show that additional assumptions on (M,g) might be required (probably on the behaviour of timelike curves reaching $\partial \iota(M)$).

Extra: Comparison with (classical) Lorentzian geometry

Let (M,g) be an arbitrary spacetime. Does it have an extension or not?

- Yes, we explicitly find/construct one.
- No, a certain curvature scalar blows up.

Extra: Comparison with (classical) Lorentzian geometry

Let (M,g) be an arbitrary spacetime. Does it have an extension or not?

- Yes, we explicitly find/construct one.
- No, a certain curvature scalar blows up.

Example:

• $M=(0,\infty)\times\mathbb{R}$ and $g=e^{2\sqrt{t}}(-dt^2+dx^2)$. Then $R=-\frac{1}{2e^{2\sqrt{t}}}\frac{1}{t^{3/2}}$ \longrightarrow No C^2 -extension possible.

Extra

Theorem

Theorem: Let (M,g) be a StSp. spacetime, $\iota:(M,g)\to (M_{\rm ext},g_{\rm ext})$ a C^0 extension and $\gamma:[0,1]\to M_{\rm ext}$ a curve with $\gamma(0,1)\subset\iota(M)$ and $\gamma(0)=p\in\partial M$. If one of the following conditions is satisfied:

- ② $\lim_{s\to 0} R(\gamma(s)) = 0$ and/or $\lim_{s\to 0} \theta(\gamma(s)) = \pi/2$ but $\lim_{s\to 0} G(\gamma(s)) \neq \lim_{s\to 0} (-\tan^2(\theta))$.

Then, there exists no natural StSc extension of (M, g).

Extra: Properties of extendible spacetimes

Theorem 4 (Galloway, Ling, Sbierski (2018))

Let (M,g) be a smooth (at least C^2) globally hyperbolic spacetime. Suppose $\iota:(M,g)\to (M_{\rm ext},g_{\rm ext})$ is a C^0 -extension and $\partial^+\iota(M)\neq\emptyset$. Then, there exists a future directed timelike geodesic $\gamma:[0,1]\to M_{\rm ext}$ with $\gamma([0,1))\subset\iota(M)$ and $\gamma(1)\in\partial^+\iota(M)$

Theorem (Galloway, Ling 2018)

Let ι : $(M,g) \to (M_{ext},g_{ext})$ be a C^0 -extension. If $\partial^+ M = \emptyset$, then $\partial^- M$ is an achronal topological hypersurface.