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1) Relativity and Determinism:

Strong Cosmic Censorship Conjecture (Penrose)

For generic asymptotically flat initial data for the vacuum Einstein
Equations Ric(g) = 0 the maximal globally hyperbolic development is
inextendible as a suitably regular Lorentzian manifold.
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Strong Cosmic Censorship Conjecture (Penrose)

For generic asymptotically flat initial data for the vacuum Einstein
Equations Ric(g) = 0 the maximal globally hyperbolic development is
inextendible as a suitably regular Lorentzian manifold.

e What is suitably regular? C? makes sense, but excludes interesting
cases... However, C° does not hold!
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1) Relativity and Determinism:

Strong Cosmic Censorship Conjecture (Penrose)

For generic asymptotically flat initial data for the vacuum Einstein
Equations Ric(g) = 0 the maximal globally hyperbolic development is
inextendible as a suitably regular Lorentzian manifold.

e What is suitably regular? C? makes sense, but excludes interesting
cases... However, C° does not hold!

o Now believed (spoiler!): suitably regular means C° spacetime (and
g € L2 ).

loc

@ Physically, the conjecture encodes determinism in General Relativity.
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1) Relativity and Determinism:

Strong Cosmic Censorship Conjecture (Penrose)

For generic asymptotically flat initial data for the vacuum Einstein
Equations Ric(g) = 0 the maximal globally hyperbolic development is
inextendible as a suitably regular Lorentzian manifold.

e What is suitably regular? C? makes sense, but excludes interesting
cases... However, C° does not hold!

o Now believed (spoiler!): suitably regular means C° spacetime (and
2
og € L)
@ Physically, the conjecture encodes determinism in General Relativity.

2) Singularity Classification

Marco van den Beld Serrano Low Regularity Inextendibility of Spacetimes November 4% 2022 3/47



Introduction: Basic concepts

Below C?, classical causality theory breaks down...

C%! spacetimes:

e Geodesic equation is not a classical ODE: solutions exist (e.g.
Filippov solutions) but are not unique.

@ Causal maximizers have a fixed causal character almost everywhere.
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Introduction: Basic concepts

Below C?, classical causality theory breaks down...

C%! spacetimes:

e Geodesic equation is not a classical ODE: solutions exist (e.g.
Filippov solutions) but are not unique.

@ Causal maximizers have a fixed causal character almost everywhere.
CY spacetimes:

@ Geodesic equation is not well defined.

@ Causal maximizers do not have a fixed causal character.

o C° Avez-Seifert Theorem: global hyperbolicity guarantees existence

of (global) causal maximizers. Moreover, local causal maximizers
always exist.
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Introduction: Basic concepts

Definition 1: Fix k > 0 and let 0 < / < k. Let (M,g) be a C* spacetime
(i.e. a connected time-oriented Lorentzian manifold) with dimension d:

o A C'-extension of (M, g) is a proper isometric embedding ¢

Lo (Mag) — (Mextagext)

where (Mo, goxt) is C! spacetime of dimension d. If such an
embedding exists, then (M, g) is said to be C’-extendible. The
topological boundary of M within Mgy is Ou(M).
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Introduction: Basic concepts

Definition 2: Let t : (M, g) — (Mext, ext) be a Ck-extension (k > 0).
@ Future boundary of M:
It (M) ={p e du(M) : Ffd.tl ~:[0,1] = Mex with
V(1) = p, ([0,1) C (M)}
e Past boundary of M:
07 (M) ={pedu(M) : Ifdtl ~v:[0,1] & Meg with
7(0) = p, 7((0,1] € (M)}
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Introduction: A first crucial result

Proposition 3 (Sbierski (2018))

Let 1 (M, g) — (Mext, Sext) be a Clextension. Then:

OTu(MYUO (M) #£ 0
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Low regularity inextendibility criteria

Question: Can we get an inextendibility criteria from timelike geodesic
completeness?
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Low regularity inextendibility criteria

Question: Can we get an inextendibility criteria from timelike geodesic
completeness?

Setting: Let (M, g) be a C? timelike geodesically complete spacetime and
LM — Mgy a CO extension.

@ Fix p € 97(M) and a globally hyperbolic neighbourhood V. Then,
there exists a causal maximizer (Samann, 2016) Ymax : [0, 1] = Mext
from q == Ymax(0) € I~ (p, V) N (M), to p:

L(7) < L(7max) < o0

V causal v with the same endpoints as Ypax.

Marco van den Beld Serrano

Low Regularity Inextendibility of Spacetimes November 4% 2022



Low regularity inextendibility criteria

Question: Can we get an inextendibility criteria from timelike geodesic
completeness?

Setting: Let (M, g) be a C? timelike geodesically complete spacetime and
LM — Mgy a CO extension.

@ Fix p € 97(M) and a globally hyperbolic neighbourhood V. Then,
there exists a causal maximizer (Samann, 2016) Ymax : [0, 1] = Mext
from q == Ymax(0) € I~ (p, V) N (M), to p:

L(7) < L(7max) < o0

V causal v with the same endpoints as Ypax.

@ Simple case: Assume Ymax([0,1)) C t(M). Then, t™! 0 ymaxlj,1) is a

future inext. t.l. geodesic, so L(Ymax) = 0o (Contradiction!). So
(M, g) is C° inextendible.
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Low regularity inextendibility criteria

Problems:

o In general, Yax([0,1)) & «(M).

e Causal maximizers in C° spacetimes do not have a fixed causal
character.
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Low regularity inextendibility criteria

Problems:

o In general, Yax([0,1)) & «(M).

e Causal maximizers in C° spacetimes do not have a fixed causal
character.

Solutions:

o Galloway, Ling, Sbierski: Assume (M, g) is also globally hyperbolic.
Then the portion of Ymax in t(M) is a timelike geodesic.
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Low regularity inextendibility criteria

Problems:
o In general, Ymax([0,1)) Z ¢«(M).
e Causal maximizers in C° spacetimes do not have a fixed causal
character.
Solutions:
o Galloway, Ling, Sbierski: Assume (M, g) is also globally hyperbolic.
Then the portion of Ymax in t(M) is a timelike geodesic.
o Graf, Ling: Assume (Mext, gext) is @ C%! spacetime. Then vy is
timelike a.e.
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Low regularity inextendibility criteria

Proposition 4 (Galloway, Ling, Sbierski (2018))

A smooth (at least C?) spacetime that is timelike geodesically complete
and globally hyperbolic is C%-inextendible.

Proposition 5 (Graf, Ling (2019))

Let (M, g) be a smooth timelike geodesically complete spacetime. Then
(M, g) is C%-inextendible.
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Low regularity inextendibility criteria

Theorem 6 (Minguzzi, Suhr (2019))

Let (M, g) be a smooth timelike geodesically complete spacetime. Then it
is CO inextendible.
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Low regularity inextendibility criteria

Examples:

e CO inextendibility of Schwarzschild and Minkowski (Sbierski (2018)).
o CY inextendibility of anti de Sitter (Galloway, Ling (2018)).
° CI%’CI inextendibility of FLRW (Sbierski (2022)).
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FLRW spacetimes

Definition 7: An open FLRW spacetime is a spacetime (M,g) where
M = (0,00) x R? with coordinates (t,r,w)€ (0,00) x (0,00) x S~ and:

_ {—dt2 + a%(t)(dr* + r?dQ2_,) Euclidian (1)
—dt? 4+ 2%(t)(dr* + sinh®(r)dQ?3_;)  Hyperbolic
where a : (0,00) — (0, 00) satisfies:
@ a has to be smooth
@ lim;_,ora(t)=0
©@ Im>0,b>0such that a(t) < mt+ bVt
Q d(t)>0vt
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FLRW spacetimes

Theorem 8

Let (M, g) be an open FLRW spacetime. If (Mexs, Zext) is a C%-extension

of (M, g), then 3t«(M) = () and &~ «(M) is an achronal topological
hypersurface.
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Strongly spherically symmetric spacetimes

Definition 9: (M, g) is called a strongly spherically symmetric (StSp)
spacetime if Vp € M there exists a neighbourhood U, a change of
coordinates 15 and coordinates (T,R) : U — (0,00) and w : U — S7-1
such that:

g = (Vs).g = —F(T,R)dT? + G(T,R)dR? + R%D3,  (2)

with F, G : (0,00) x (0,00) — (0, 00) smooth.
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Strongly spherically symmetric spacetimes

Definition 9: (M, g) is called a strongly spherically symmetric (StSp)
spacetime if Vp € M there exists a neighbourhood U, a change of
coordinates 15 and coordinates (T,R) : U — (0,00) and w : U — S7-1
such that:

gs = (s)«g = —F(T,R)dT? + G(T,R)dR?> + R?dQ?_, (2)
with F, G : (0,00) x (0,00) — (0, 00) smooth.

Definition 10: Let (M, g) be an FLRW spacetime. We call a change of
coordinates s : (t,r) — (T, R) such that g5 == (¢s)«g is as in (2) a
natural strongly spherical change of coordinates. If it exists Vp € M,
we write (M, g, vs).
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Strongly spherically symmetric spacetimes

Theorem 11: Part 1 (Galloway, Ling)

Let (M, g) be a Euclidean FLRW spacetime with
a'(0) := lim;_,o+a'(t) € (0,00]. Then, up to an initial condition, there
exists a unique natural StSp change of coordinates s with:

gs = (Vs)sg = —F(T,R)dT? + G(T,R)dR* + R?dQ2_;  (3)

with F and G are regular a.e.
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Strongly spherically symmetric spacetimes

Theorem 11: Part 2 (Galloway, Ling)
Let ¢ : M — Meyibe a CO-extension Mgy and 7 : [0, 1] — Mgy a future

directed timelike curve with past endpoint v(0) € 9~ «(M), and suppose R

has a finite positive limit along v as t — 0. Then, the following holds
along ~:

o limy_ 0+ G(t L oy(t)) = 0.

o If F has a finite nonzero limit as t — 01, then T — +o0 as t — 07.

o
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Strongly spherically symmetric spacetimes

Definition 12: Let (M, g,1s) be an FLRW spacetime and
t: (M, g) = (Mext, Gext) be a CP-extension. It is a natural strongly
spherical C%-extension if:

© Vp € 07 1(M) there exists a StSp change of coordinates 1)yt defined
on a neighbourhood U.

Q In.1(V):
Vsl -1(0) = Yext © t,-1(0) (4)

The previous expression actually implies that:

geXt,S‘L(M)ﬂU = (Yext)stx8 = (Vs)+8 = &s (5)
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Strongly spherically symmetric spacetimes

Let (M, g,%s) be a Euclidean FLRW spacetime with a’(0) € (0, 0c]. Then,
it has no natural strongly spherically symmetric C° extension.
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Strongly spherically symmetric spacetimes

Proof:
o Fix p € 07¢(M). There 3 a thext such that gext s = (Pext)+8ext IS:

8ext,s = eXthext + GeXt dRe2xt e2Xt dﬂgxt,dfl (6)

in a neighbourhood U of p.
o Recall that gext,s|,(m)nu = gs- This implies that:

(Text7 Rexta Wext)’L(M)ﬂU = (Ta R7w) (7)
(Fex‘m Gext)|L(M)ﬂU = (F7 G) (8)

o Let 7y :[0,1] = Mey be a f.d. t.l. curve with v((0,1]) C «(M) and
~v(0) = p. Then, lims_,0 R(7(s)) # 0 as Rext € (0, 00).
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Strongly spherically symmetric spacetimes

Proof:

@ The metric g5 degenerates as t — 0 because lim;_g+ G(7(t)) = 0.
Hence, as gext,s = &s, also lim; g+ Gext(7(t)) = 0.
— (Mext, 8ext) also degenerates!
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Strongly cylindrically symmetric spacetimes

Definition 14: Let (M, g) be a 4-dimensional spacetime. It is a strongly
cylindrically symmetric (StSc) spacetime if Vp € M 3 a neighbourhood
U, a change of coordinates ). and coordinates T,p: U — (0,00),
z:U—Rand ¢: U— (0,27) with gc = (¢¢)«g

8c = —A(T,z,p)dT? + B(T,z,p)dz* + C(T,z,p)dp* + p°de*>  (9)

A, B, C: U — (0,00) smooth functions.
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Strongly cylindrically symmetric spacetimes

Definition 14: Let (M, g) be a 4-dimensional spacetime. It is a strongly
cylindrically symmetric (StSc) spacetime if Vp € M 3 a neighbourhood
U, a change of coordinates ). and coordinates T,p: U — (0,00),
z:U—Rand ¢: U— (0,27) with gc = (¢¢)«g

8c = —A(T,z,p)dT? + B(T,z,p)dz* + C(T,z,p)dp* + p°de*>  (9)
A, B, C: U — (0,00) smooth functions.

Definition 15: Let (M, g) be a StSp spacetime. We call a
e o (R,0) — (z, p) such that gc = (1c)«(¢s)«g is as in (9) a natural
strongly cylindrical change of coordinates. If it exists Vp € M, we

Wl’ite (MvgawC)'
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Strongly cylindrically symmetric spacetimes

Theorem 16: Let (M, g) be a StSp spacetime. Subject to:
@ a suitable initial condition

@ the choice of # and ¢

there exists a unique natural StSc transformation .. Moreover, the
metric coefficients A, B, C are regular a.e.

Marco van den Beld Serrano
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Strongly cylindrically symmetric spacetimes

Proof:
@ Ansatz: 3¢ : (R,0) — (z,p) smooth and invertible. Then:

z=2(R,0) — dz* = z3dR? + z3d0? + 2zgzpdRd0
p=p(R,0) — dp? = p%dR? + p3d6? + 2prppdRd0

o It holds that (¢c)«(¢s)«g8 = (¥s)«g:
—FdT?+GdR?*+R*(d6?+sin® 0dp?) = —AdT?4Bdz*+ Cd p*+p* dp?

So, A= F and p = Rsiné.
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Strongly cylindrically symmetric spacetimes

@ Moreover:
Bz = G — Cp% (10a)
Bzi = R? — Cpj (10b)
Bzrzg = —Cprpo (10c)

@ Squaring (10c), plugging (10a) and (10b) in it:
(G — CpR)(R* = Cpj) = C*pRpj (11)

where will assume (G cos? 6 +sin?6) # 0, zp # 0.
@ As py = Rcosf and pg = sinf, we get:

B G
"~ Gcos2f +sin?0

(12)
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Strongly cylindrically symmetric spacetimes

Proof:
@ Replacing C in (10b):
ZR G cosd
) 1
Zy Rsind (13)
@ Linear PDE. By method of characteristics:
G(T,R
z(R,0)="f (/(R’)dR—i— In ]cos@\) (14)
@ Plugging C and zp = —f’tan# in (10b) with ' # 0:
R?(1 — Ccos? 6 R? cos? §
B ( 2cos ): cos _ (15)
z f2(G cos?  + sin” 0)
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Strongly cylindrically symmetric spacetimes

Proof:

@ Summing up:

2(R,0) = f(f @dR—i—ln]cosﬁ\) (16)
p(R,0) = Rsin6
A(T,z,p) = F(T,R)
2 2
B(T.2.9) = 726 coi s 170) (17)
. G
C(T:2,0) = Gaozorem®s

@ So the metric is:

ge = —FdT? +

1 <R2 cos2 6
G cos? 6 + sin? 6 2

dz? + GdR2) + p?dy?
(18)
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Strongly cylindrically symmetric spacetimes

@ But is this a well defined change of coordinates? Determinant of the

Jacobian:
, G cos? 0 +sin? 0

cos

J=zrpy — zgpr = f (19)

@ Change of coordinates well defined except on measure zero sets
G =—tan%0, 0 =1/2

o f'#0:If f/ =0, then also zg = zp = 0. Plugging this in (10a), (10b)
and (10c):

G = Csin%6
1= Ccos?f (20)
0= CRcos0sin6

@ zy # 0: If zg = 0 we recover the 2 last equations, which cannot be
satisfied simultaneously.
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Strongly cylindrically symmetric spacetimes

Definition 17: Let (M, g) be a StSp spacetime with natural StSc change
of coordinates 1) and ¢ : (M, g) — (Mext, gext) @ CP-extension. It is a
natural strongly cylindrical extension if:

Q Vp € 0u(M), there exists a StSc change of coordinates ey defined
on a neighbourhood U of p.

Q In.HU)cMm:
Ye 0 Ys|—1yy = Pext © t-1v) (21)
So:
gext.clumyny = (Vext)sBext lmynu = (Dext)s 128 = () (1hs):8 (22)

i.e. Zext,c = 8c-
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Strongly cylindrically symmetric spacetimes

Theorem 18

Let (M, g) be a StSp spacetime, ¢ : (M, g) — (Mext, gext) @ C° extension
and v : [0,1] = Mex a curve with v(0,1) C ¢«(M) and v(0) = p € 0u(M).
If one of the following conditions is satisfied:

Q lims_o F(7(s)) = 0.
Q lims_0 G(7(s)) =0 but lims_,0 0(~(s)) ¢ {0, 7}.
© + more ...

Then, there exists no natural StSc extension of (M, g).
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Strongly cylindrically symmetric spacetimes

Proof:
o Let v :[0,1] = Mey be a curve with v(0,1) C «(M) and
~v(0) = p € (M) such that (at least) one of the conditions of the
Theorem is satisfied. Recall:

A(T,z,p)=F(T,R)

R2 cos? 6
B(T,z,p)= :
(T:2.p) f2(G cos? 0 + sin? 0)
G
C(T,z,p)=
(T.z:p) G cos2 6 + sin? 6

o If condition 1 is satisfied A vanishes and if condition 2 is satisfied C

vanishes
— the metric gc = (1 )«gs degenerates, where 1. is the natural StSc

transf.

November 4% 2022 31/47
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Strongly cylindrically symmetric spacetimes

Proof:
@ The rest is by contradiction: assume there exists a natural StSc

transf. Yex; such that gext.c = (Vext)sext and Gext,clu(mynu = &e.
where U is a neighbourhood of p, so:

(Aext; Bex‘m Cext)|L(M)ﬁU = (A7 Ba C) (23)

— Also (Mext, Gext) degenerates!
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Strongly cylindrically symmetric spacetimes

Corollary 19

Let (M, g,s) be a (4-dimensional) open Euclidean FLRW spacetime

satisfying that a'(0) € (0,00]. Then, it has no natural strongly cylindrical
CO-extension compatible with the natural 1)s.
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Strongly cylindrically symmetric spacetimes

Proof:
e We apply the following 2-step change of coordinates to (M, g):

T =T(tr) z=2z(R,0)
{trog} ™ (R=R(tr) 5 $p=p(R0) (24)
0, ¢ same T, p same

so the metric becomes g = (¥¢)«(1s)«g
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Strongly cylindrically symmetric spacetimes

Proof:

@ The rest of the proof is by contradiction: Let
(M, g) = (Mext, Zext) be a natural StSc CO-extension compatible
with the natural s in M. Unwinding the definitions:

Q@ Fixpe 8:L(M). 3 a neighbourhood U and a Jext s.t.
Bext,c = (wext)*gext is:

Bext,c = 7A€Xthe2xt + BEXt dze2xt + Cext dpgxt + pgxt dsogxt (25)

@ In . }(U) it holds that 9 © ¥s|,-1(y) = Yext © t],-1(1)- SO
ext,clu(M)nu = 8. This implies that:

(Aexta Bext, Cext)|L(M)ﬂU = (A7 B, C) (26)
(Tcxt,zcxtapcxt)|L(M)ﬂU = (T,Z,p) (27)

Marco van den Beld Serrano Low Regularity Inextendibility of Spacetimes November 4% 2022 35 /47



Strongly cylindrically symmetric spacetimes

Proof:
o Let v :[0,1] = Mey be a f.d.t.| curve with v(0,1] C «(M) and
~(0) = p. By a previous theorem, lims_,o G(y(s)) = 0.
@ Moreover, lims_,08(7(s)) # 0 as p = Rsin§ and

plumynu = Pextl(mnu € (0, 00).
— By previous theorem, g. degenerates!

@ As gext,c = 8¢, also gext,c is degenerate.
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Existence of a unique maximal boundary

Question: Given a certain (extendible) spacetime (M, g), does there exist
a (unique) maximal boundary? Are additional assumptions required?
Strategy:

@ Step 1: Define a (well defined) notion of equivalence between
extensions and a notion partial ordering on the collection of
equivalence classes 7.

Marco van den Beld Serrano Low Regularity Inextendibility of Spacetimes November 4% 2022 37 /47



Existence of a unique maximal boundary

Strategy
@ Step 2: Show that every partially ordered subset has an upper bound.
By Zorn's Lemma, there exists a (set theoretic) maximal element:
L € T satisfying that tax <s ¢, it necessarily holds that ¢ =5 tmax-

T 7 s
\ / \\\\Mext,,’l/ 4 . -7
\\ ,\, / Wos Vs 48 e
/ \\\M , .
9 .
« Mext wilext2" L7
\ / [ 4 -
\ / N Wlext, 3 -7
2
\\ // \ ~_-- //
\ 48
1 P
X Moxt -7
\ -
N P
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Existence of a unique maximal boundary

Strategy:

@ Step 3 (hypothetical): Show that there exists a maximal element in
the desired sense: Vi € T it holds that ¢ < tyax
— Additional assumptions required? Or consider specific subclasses
of spactimes?
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Existence of a unique maximal boundary

Definition 20: Let 11 : M — My, 1 and L2 : M — Mext 2 be 2 extensions.

If there exists an embedding ?,Z12 U1 — U2, where 011 (M) C U1 and
Owa(M) C Us which is compatible with the extensions, i.e.:

¢12 © Ll’ THaMyn ) — L2|L;1(L1(M) n 0y) (28)

and the restriction 1512 cu(M)n Ul — w(M)N Ug is surjective, we define
the relation:

l1 =o 2
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Existence of a unique maximal boundary

The relation =5 is an equivalence relation. \

If 11 =5 t2, then 11 (M) N 01 is homeomorphic to t2(M) N Ug. In particular,
0t1(M) is homeomorphic to dia(M).
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Existence of a unique maximal boundary

Theorem 22 (Sbierski 2022)

Let (M, g 3 be a globally hyperbolic spacetime with g € C! and let ¢y, 17
be two Cloc extensions. Moreover, let v : [—1,0) — M be a f.d. causal

curve such that

pri=lim(1109)(s) € 9T (M) and  py = lim (12 07)(s) € 0T 12(M)

Then, there exist neighbourhoods U1 of p1 and U2 of pp such that
11(M) N Uy is diffeomorphic to 12(M) N Us.
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Existence of a unique maximal boundary

Theorem 22 (Sbierski 2022)

Let (M, g 3 be a globally hyperbolic spacetime with g € C! and let ¢y, 17
be two Cloc extensions. Moreover, let v : [—1,0) — M be a f.d. causal

curve such that
p1 = lim(t107)(s) € 0Ty (M) and pp = lim (12 0¥)(s) € 01 12(M)
s—0 s—0

Then, there exist neighbourhoods U1 of p1 and U2 of pp such that
Ll(M) N U1 is diffeomorphic to ta(M) N U2

If the assumptions of the previous theorem hold, we can define ¢1 o and
12 Joc as restrictions of ¢1 and t2 and prove that:

L1,Joc =8 2,loc
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Existence of a unique maximal boundary

Definition 23: Let 11 : M — Mey,1 and 12 : M — Mgy 2 be extensions of
(M, g) and Uy, U be open neighbourhoods satisfying that du1(M) C Uy
and Jwa(M) C U,. Moreover, let 115 : Uy — U, be an embedding

satisfying that 112(9t1(M)) C 0t2(M) and which is compatible with the
extensions:

Y12 0 ul 1My 0w = 2l ey ooy (29)

If such an embedding 11> exists, then we deflne the relation <y as follows:

11 <o L2
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Existence of a unique maximal boundary

Definition 23: Let 11 : M — Mey,1 and 12 : M — Mgy 2 be extensions of
(M, g) and Uy, U be open neighbourhoods satisfying that du1(M) C Uy
and Jwa(M) C U,. Moreover, let 115 : Uy — U, be an embedding
satisfying that 112(9t1(M)) C 0t2(M) and which is compatible with the
extensions:

V12 © 4l 2y 0 ) = 2Ly 0 vy (29)

If such an embedding 11> exists, then we deflne the relation <y as follows:

11 <o L2

Let [¢] denote the equivalence class of the extension ¢ (under the eq.
relation =y). The collection of equivalence classes of all extensions ¢
together with the previously defined relation <j is a partially ordered set,
which will be denoted 7.

i (mid = — e
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Existence of a unique maximal boundary

Problems:

@ Sbierski's (2022) result does not hold for C° extensions... Not even
for CO with « € (0,1)!
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Existence of a unique maximal boundary

Problems:

@ Sbierski's (2022) result does not hold for C° extensions... Not even
for CO with « € (0,1)!

@ Topological issues might appear when constructing the upper bound...
if it is too "large” it might not even be Hausdorff! See
Choquet-Bruhat, Geroch (1969) and Chrusciel (2010).
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Existence of a unique maximal boundary

Problems:

@ Sbierski's (2022) result does not hold for C° extensions... Not even
for CO with « € (0,1)!

@ Topological issues might appear when constructing the upper bound...
if it is too "large” it might not even be Hausdorff! See
Choquet-Bruhat, Geroch (1969) and Chrusciel (2010).

@ Counterexamples such as the Taub-NUT or Misner spacetime show
that additional assumptions on (M, g) might be required (probably on
the behaviour of timelike curves reaching du(M)).
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Extra: Comparison with (classical) Lorentzian geometry

Let (M, g) be an arbitrary spacetime. Does it have an extension or not?
@ Yes, we explicitly find/construct one.

@ No, a certain curvature scalar blows up.
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Extra: Comparison with (classical) Lorentzian geometry

Let (M, g) be an arbitrary spacetime. Does it have an extension or not?
@ Yes, we explicitly find/construct one.
@ No, a certain curvature scalar blows up.
Example:
11
o M=(0,00) xR and g = e2V¥(—dt? + dx?). Then R = — 1.1,

22Vt

— No C?-extension possible.
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Theorem: Let (M, g) be a StSp. spacetime, ¢ : (M, g) — (Mext, Gext) a
CO extension and 7 : [0,1] — My a curve with 7(0,1) € (M) and
~v(0) = p € OM. If one of the following conditions is satisfied:

Q lims_0 F(v(s)) =

9 Iims—>0 R

)
s)) =0 and/or I|ms_>0 0(v(s)) = 7/2 but
|ims_>o G )

((
(7(s)) # limso(— tan?(0)).

© lims_0 G(v(s)) = 0 but lims_,0 0((s)) ¢ {0, 7}.

Q lims_0 G(y(s)) = lims_,o(—tan?(#)) but lims_,0 O((s)) & {0, }.
((

(
@ lims_,0 G(v(s)) = lims_,o(— tan?(#)) but lims_,o R(7(s)) # 0 and
lims_00(v(s)) # 7/2.

Then, there exists no natural StSc extension of (M, g).
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Extra: Properties of extendible spacetimes
Theorem 4 (Galloway, Ling, Sbierski (2018))

Let (M, g) be a smooth (at least C?) globally hyperbolic spacetime.
Suppose ¢ : (M, g) = (Mext, gext) is a CP-extension and 9+ 1(M) # 0.
Then, there exists a future directed timelike geodesic 7y : [0, 1] = Mext
with v([0,1)) C «(M) and (1) € 9" (M)

Theorem (Galloway, Ling 2018)

Let t: (M, g) = (Mext, 8ext) be a CO-extension. If 9 M = (), then 9~ M is
an achronal topological hypersurface.

v
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