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What is a spacetime?

Definition
A spacetime (M,g) is a connected time-oriented Lorentzian
manifold, that is,

g : M → T ∗M ⊗ T ∗M is non-degenerate metric of signature (1,n)

∃ continuous choice of a “future cone” for (TpM,gp) at every p

Example: Minkowski space R1,3 with

v · w = −v0w0 + v1w1 + v2w2 + v3w3

Warning (Riemann vs. Lorentz)
Not every manifold admits a Lorentzian
metric (but all non-compact ones do).



Relevance for physics

General Relativity
models graviation via geometry

4-dimensional spacetimes (M,g)
satisfying the Einstein equations
(1915)

Ric[g]− 1
2R[g]g = 8πG

c4 T
+ equations for T (matter)

Ric[g] = 0 (vacuum)
Einstein and Lorentz (Leiden, 1921)



Important explicit solutions

Minkowski spacetime (flat vacuum)

g = −dt2 + dx2
1 + dx2

2 + dx2
3

Schwarzschild–Droste spacetime (static, spherically
symmetric black hole)

g = −
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2gS2

Kerr (rotating), Reissner–Weyl–Nordström (charged) . . .

FLRW spacetimes (homogeneous, isotropic universe)

g = −dt2 + a(t)2σ,

where (Σ, σ) is Elliptic/Euclidean/Hyperbolic space

Light cone

Center of M87
(EHT 2019)

Milne model
(Ling 2020)



Concrete occurences of nonsmooth metrics
Matter models: e.g. stars are fluid balls with vacuum exterior

I generic matter-vacuum boundary expected to be C1 (Makino 2016)
I shocks occur jump in pressure and density
I matching spacetimes also leads to jumps (Mars–Senovilla 1993)
I but some regularization possible (Reintjes–Temple 2020)

(In)extendibility questions:
I Strong cosmic censorship conjecture: maximal globally hyperbolic

developments of “generic” initial data of the Einstein equations
cannot be extended as “suitably regular” (often C0 with Γk

ij ∈ L2
loc)

Lorentzian manifold
I (M,g) globally hyperbolic and timelike geodesically complete =⇒

C0-inextendible (Galloway–Ling–Sbierski 2018)
I related weaker results (discussed later)

Several open problems in GR are related to stability and/or regularity
of solutions to the Einstein eq. ⊆ spacetimes ⊆ Lorentzian mfds.,
however, we still don’t have a full grip on this nonsmooth world itself.



Pathologies of nonsmooth metrics (below C1,1)

Geodesics: below regularity g ∈ C1 is the geodesic equation not
necessarily locally solvable, below g ∈ C1,1 not uniquely
 “replace” geodesic equation with Lorentzian distance
(e.g. in Lorentzian length spaces of Kunzinger–Sämann 2018)

Push-up principle: p � q ≤ r ?
=⇒ p � r (wrong for C0 metrics

with “causal bubbles”, Chruściel–Grant 2012)

Open futures: I±(p) may not be open (Grant et al 2020)
 push-up and open futures are implicitely assumed in LLS

Curvature: no longer classically defined
 notions of timelike sectional/Ricci curvature bounds via triangle
comparison/optimal transport (also optimal transport formulation
of Einstein equations by Mondino–Suhr 2022, McCann 2020)



Classical results that extend to nonsmooth settings

Singularity theorems
I classically for smooth or C2 metrics (Penrose, Hawking ∼1970)
I now for C1 metrics with distributional curvature bounds (Graf 2020,

Kunzinger et al 2022)
I Hawking singularity theorem also for LLS with synthetic curvature

bounds (Alexander et al 2019, Cavalletti–Mondino 2020)

(In)extendibility results
I result for Lorentz–Finsler spaces (Minguzzi–Suhr 2019)
I also not extendible as regular LLS (Grant et al 2019)

Time functions and splitting
I classical characterizations of existence of time functions such as

K -causality and global hyperbolicity extend to LLS
(B.–García-Heveling 2021)

I but Cauchy “sets” of globally hyperbolic LLS need no longer be
homeomorphic



Open questions

1 How close are (and should be) smooth and nonsmooth
spacetimes related? How to measure closeness?

2 How reasonable and generic are the assumptions of push-up and
open futures for LLS? (geometric and GR perspective needed)

3 Can nonsmooth spacetimes be used to pass from general
relativity to some quantum gravitational theories?



How do Lorentzian manifolds converge?

(Mj ,gj) −→ (M∞,g∞)

Important questions:
What kind of geometric properties do we want to capture?
What is a suitable convergence and limit space?
Why is this relevant in general relativity?
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Riemannian distance function

Assume

(M,g) . . . Riemannian manifold
A . . . class of piecewise smooth paths (and reparametrizations)

Lg(γ) :=
∫ b

a

√
gγ(t)(γ̇(t), γ̇(t))dt . . . length of curve γ : [a,b]→ M in A

Define Riemannian distance

dg(p,q) := inf{Lg(γ) | γ ∈ A between p and q in M}

Theorem
The distance function dg is an intrinsic metric on M that induces the
manifold topology.



Some consequences of this metric space structure

completeness simplifies due to the Hopf–Rinow Theorem (1931)

can study “closeness” of (compact) Riemannian manifolds (that
are not necessarily diffeomorphic) in terms of the
Gromov–Hausdorff distance dGH (1981) as metric spaces

add further an integral current structure T , e.g., for oriented
compact submanifolds M

T (ω) :=

∫
M
ω,

and study Sormani–Wenger intrinsic flat distance dF (2011)
between (compact) oriented Riemannian manifolds as integral
current spaces



Definition of dGH

Hausdorff distance between subsets of a metric space (Z ,d):

dH(X ,Y ) := max

{
sup
x∈X

inf
y∈Y

d(x , y),

sup
y∈Y

inf
x∈X

d(x , y)

}

Gromov–Hausdorff distance between metric spaces

dGH(X ,Y ) := inf{dH(ϕ(X ), ψ(Y )) |ϕ : X → Z , ψ : Y → Z
isometric embeddings into
common metric space (Z ,d)}

dGH(X ,Y ) ≈ how close are (X ,dX ) and (Y ,dY ) from being isometric



Definition of dF = dSWIF

Flat distance between currents of a metric space (Z ,d)
(Federer–Fleming 1960; Ambrosio–Kirchheim 2000)

dF(TX ,TY ) := inf
{

Mn(A) + Mn+1(B) |
A + ∂B = TX − TY

}
Intrinsic flat distance between integral current spaces
(Sormani–Wenger 2011)

dF (X ,Y ) := inf{dF(ϕ#TX , ψ#TY ) |ϕ : X → Z , ψ : Y → Z
isometric embed. into common
complete metric space (Z ,d)}

dF (X ,Y ) ≈ how close are (X ,dX ,TX ) and (Y ,dY ,TY ) from being
current-preserving isometric



Applications of convergence in Riemannian geometry

GH-convergence works well with respect to lower sectional and
Ricci curvature bounds

SWIF-convergence is a weaker notion

GH- and SWIF-limits agree in certain cases, e.g., Ric ≥ 0,
vol ≥ C > 0 (Sormani–Wenger 2010)

SWIF-convergence compatible with scalar curvature bounds
I stability of the Positive Mass Theorem, e.g., for Mj rotationally

symmetric, asymptotically flat (Lee–Sormani 2014):

mADM(Mj )→ 0 =⇒ Mj
F→ M∞ Euclidean space

I related conjecture for almost rigidity of Riemannian Penrose ineq.



Natural analogue: Lorentzian distance function
Assume

(M,g) . . . spacetime
A∨ . . . class of piecewise smooth future-directed causal paths

Lg(γ) :=
∫ b

a

√
−gγ(t)(γ̇(t), γ̇(t))dt . . . length of γ : [a,b]→ M in A∨

Definition (Lorentzian distance)

dg(p,q) :=

{
sup{Lg(γ) | γ ∈ A∨ between p and q} q ∈ J+(p),

0 q 6∈ J+(p).

encodes information about causality
e.g., globally hyperbolic spacetime =⇒ dg finite and continuous
not a metric (not symmetric, reverse triangle inequality)
still of some use (Noldus 2004, Kunzinger–Sämann 2018 etc.)



Null distance of Sormani–Vega (2016)
Similar approach, but assume a bit more:

(M,g) . . . spacetime
τ . . . time function M → R
Â . . . class of piecewise smooth causal paths (future- and

past-directed allowed on pieces)
L̂τ (β) :=

∑k
i=1 |τ(β(si))− τ(β(si−1))| . . . null length of β ∈ Â

Definition (Null distance)

d̂τ (p,q) := inf{L̂τ (β) |β ∈ Â between p and q}



Properties of null distance: Length metric structure
Always: τ (generalized) time function =⇒ d̂τ pseudo-metric

Theorem (Sormani–Vega 2016)
For sufficiently nice τ (e.g., locally anti-Lipschitz) the null distance

d̂τ (p,q) = inf{L̂τ (β) |β ∈ A from p to q}

is a length metric on M.

Some basic properties.
d̂τ induces the manifold topology
d̂τ is conformally invariant
scaling for λ > 0: d̂τ2 = λd̂τ1 ⇐⇒ τ2 = λτ1 + C

q ∈ J+(p) =⇒ d̂τ (p,q) = τ(q)− τ(p)

d̂τ is bounded on causal diamonds J+(p) ∩ J−(q)



Properties of null distance: τ (in)dependence

Bad choices of τ hurt d̂τ :
e.g., for τ = t3 on Minkowski space d̂τ is not definite at {t = 0}

Good choices and certain robustness:
τ locally anti-Lipschitz: p,q ∈ U, p ≤ q =⇒ τ(q)− τ(p) ≥ dU(p,q)

spacetimes that admit a regular cosmological time function
(Andersson–Galloway–Howard 1998)

τg(q) := sup
p≤q

dg(p,q), with dg Lorentzian distance

τ(t , x) = φ(t) with φ′ > 0 for warped products −dt2 + f (t)2σ with σ
complete Riemannian metric (equivalent on compact sets)
τ1, τ2 temporal functions =⇒ d̂τ1 and d̂τ2 equiv. on compact sets
(B.–García-Heveling)



Properties of null distance: Relation to causality
Always: q ∈ J+(p) =⇒ d̂τ (p,q) = τ(q)− τ(p)

Definition (causality encoding)

We say that d̂τ encodes causality if

q ∈ J+(p)⇐⇒ d̂τ (p,q) = τ(q)− τ(p)

Open problem: When does this hold in general?

for warped spacetimes with g = −dt2 + f (t)2σ and time functions
τ(t , x) = φ(t) with φ′ > 0 the null distances d̂τ encode causality
(Sormani–Vega 2016)
incompleteness is an obstruction for d̂τ to encode causality
(Allen–B. 2022)
holds for globally hyperbolic spacetimes with Cauchy temporal
functions τ (B.–García-Heveling)
∃ causally simple spacetimes with J+ = K +  d̂τ -relation, so d̂τ is
really weaker (B.–García-Heveling)



Properties of null distance: completeness
Theorem (Allen–B. 2022)
Let (M,g) be a spacetime with time function τ . If τ is anti-Lipschitz
on M with respect to a complete distance function d that induces
the manifold topology (e.g., induced by a complete Riemannian
metric), then (M, d̂τ ) is a complete metric space.

Warning!

(M, d̂τ ) complete 6⇒ null distance is achieved by a piecew. causal path

Example: g = −dt2 + (t2 + 1)2dx2 and take p,q ∈ {t = 0}

x

t

g
η



Short pause

basic properties of null distance have been established
(Sormani–Vega 2016, Allen–B. 2022)
good choice of time function needed, but not too restrictive, e.g.,
temporal functions good for causal theory (B.–García-Heveling)
warped product spacetimes are well understood

Broad aim
understand geometric stability of spacetimes

obtained a metric space structure (enough for GH) but need
integral current space for SWIF convergence (Allen–B. 2022)
understand spacetime convergence for of warped product
spacetimes (Allen–B. 2022)
more general upcoming results (Sakovich–Sormani)



Example 1: Lorentzian products

If (Σ, σ) is a Riemannian manifold and (R× Σ, ησ) where

ησ = −dt2 + σ,

then the null distance between p = (t(p),pΣ) and q = (t(q),qΣ)
induced by the canonical time function t is

d̂t ,1(p,q) =

{
|t(p)− t(q)| q ∈ J±(p),

dσ(pΣ,qΣ) q 6∈ J±(p).



Example 2: Warped spacetimes (e.g. FLRW solutions)

Let I be an interval, (Σ, σ) be a Riemannian manifold, and f be such
that

0 < fmin ≤ f (t) ≤ fmax, t ∈ I.

Then the warped product Mf = I ×f Σ with Lorentzian metric

gf = −dt2 + f (t)2σ

is such that the null distance d̂t ,f of gf satisfies

d̂t ,f (p,q) = |t(p)− t(q)|, q ∈ J±(p),

fmindσ(pΣ,qΣ) ≤ d̂t ,f (p,q) ≤ fmaxdσ(pΣ,qΣ), q 6∈ J±(p).

=⇒ min{1, fmin}d̂t ,1(p,q) ≤ d̂t ,f (p,q) ≤ max{1, fmax}d̂t ,1(p,q) for all p,q



Warped products are integral current spaces
Theorem (Allen–B. 2022)
Let I be an interval, (Σ, σ) orientable connected complete Riemannian
manifold and f : I → (0,∞) bounded away from 0 and∞. Then there is
a natural local integral current structure on M = I ×f Σ with respect
to the null distance d̂t ,f .
If I ×f Σ is compact, then (M, d̂t ,f ) is integral current space.

Sketch of proof:
associated Riemannian product I × Σ with standard current

T (h, π1, . . . , πn) =

∫
M

h dπ1 ∧ . . . ∧ dπn

Riemannian product satisfies Pythagorean formula (complete)
=⇒ identity between products I × Σ is bi-Lipschitz
=⇒ push-forward current id# T on Lorentzian product (I × Σ, d̂t ,1)

just as before: identity between I × Σ and I ×f Σ is bi-Lipschitz
=⇒ push-forward current to (M, d̂t ,f ).



Globally hyperbolic spacetimes are (local) integral
current spaces
For warped spacetimes I ×f Σ we know:

I ×f Σ is globally hyperbolic⇐⇒ Σ complete Riemannian manifold

After quite some more work one obtains:

Theorem (Allen–B. 2022)
Let (M,g) be a globally hyperbolic spacetime with smooth time
function τ (Bernal–Sanchez 2005). Suppose M admits complete
Cauchy hypersurfaces and (M, d̂τ ) is complete as metric space. Then
(M, d̂τ ) is a local integral current space.
(Lang–Wenger 2011, Jauregui–Lee 2019)

If M is compact, then (M, d̂τ ) is an integral current space.
(Ambrosio–Kirchheim 2000, Sormani–Wenger 2011)



Final stage

For suitable τ a spacetime with null distance d̂τ
is a length metric space, and
is a (local) integral current space.

 We can study/compare (pointed) Gromov–Hausdorff (GH) and
Sormani–Wenger intrinsic flat (SWIF) spacetime convergence!



Spacetime convergence for warped products

We restrict ourselves to sequences of warped products I ×fj Σ:

I closed, (Σ, σ) oriented, connected, compact Riemannian mf
fj : I → (0,∞) continuous, fj uniformly bounded away from 0
metric gj = −dt2 + fj(t)2σ

Theorem (Allen–B. 2022)
Suppose the warping functions fj → f∞ converge uniformly, then
the warped products with corresponding null distances

(I ×fj Σ, d̂t ,j)→ (I ×f∞ Σ, d̂t ,∞)

converge in the uniform, GH, and SWIF sense (to the same limit!).



Sketch of proof
Theorem (Allen–B. 2022)

fj → f∞ uniform =⇒ (I ×fj Σ, d̂t ,j)→ (I ×f∞ Σ, d̂t ,∞) uniform/GH/SWIF

1 Pointwise convergence d̂t ,j(p,q)→ d̂t ,∞(p,q):
long explicit estimates using ε-close curves βj between p and q

2 ∃ subsequence (d̂t ,jk )k that converges to some length metric
space (M,d∞) in uniform/GH/SWIF sense:
show uniform bi-Lipschitz bounds, i.e., that there exists λ > 1 s.t.

1
λ
≤

d̂t ,j(p,q)

d̂t ,1(p,q)
≤ λ, for all j ∈ N, p,q ∈ M

and then apply a Theorem of Huang–Lee–Sormani (2017)
3 Uniform/GH/SWIF convergence of whole sequence to (M, d̂∞):

(1) =⇒ d∞ = d̂t ,∞ is uniform limit of (d̂t ,jk )k . . . and of (d̂t ,j)j by (2)
HLS Theorem (2017) =⇒ same for GH/SWIF convergence



Pointwise or Lp convergence fj → f∞ is not enough

Non-uniform convergence fj → f∞ can destroy everything:

uniform/GF/SWIF convergence but d̂t ,j → d∞ 6= d̂t ,∞
if null cones of g∞ narrower than of gj (for large j)

convergence to a degenerate warped product (g∞ not Lorentzian)
and uniform convergence to pseudo-metric,
GH-limit 6=SWIF-limit because of “collapse”

But uniform convergence fj → f∞ is not always necessary:

fj → f∞ pointwise can imply d̂t ,j → d̂t ,∞ uniform/GH/SWIF
if the null cones of g∞ wider than of gj (for large j)



Example 1: convergence but limiting d∞ 6= d̂t ,∞

t1
4
1
3

1
2

1 2 0 2

f1

h0

f2f3
1 j →∞

t

h0

1
f∞

x

t = 1
j+1

t = 1
j

t

fj = 1

fj = h0 < 1

p1 p2

p3 p4



Example 2: SWIF and GH limits exist but disagree

t0 11
2

2
3

2 1 2

1
1
21

3

f1
f2

f3
j →∞

t

1
f∞

x

t = j
j+1

t = 1

t

fj = 1

fj = 1
j

p1 p2

p3 p4



Example 3: convergence to null distance d̂t ,∞

t1
8
1
4

1
2

1 2 0 2

f1
h0

1
f2f3 j →∞

t

h0

1
f∞

x

t = 1
j+1

t = 1
j

t

fj = 1

fj = h0 > 1

p1 p2

p3 p4



Candidate limit spaces

the degenerate limits obtained are Lorentzian length spaces
(Allen–B. 2022)

our results in the context of warped products (properties of null
distance and GH convergence) can be extended to LLS with
suitable time functions, and are compatible with synethetic
sectional curvature bounds (Kunzinger–Steinbauer 2022)

suitable time functions (with various classical properties) actually
exist on LLS (B.–García-Heveling 2021)



Summary

null distance d̂τ is a way to obtain a meaningful intrinsic,
conformally invariant metric on most spacetimes

closely related to causality, but generally weaker (J ⊆ d̂τ -relation)

if restricted to a nice class: the choice of time function τ may
have global impact but at least produces equivalent metrics on
compacta

warped products with associated null distances converge in
uniform/GH/SWIF sense to the same limit if warping functions
converge uniformly (otherwise more complicated)

Thank you for your attention!
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