On limits of smooth spacetimes

Annegret Burtscher

Mathematical Physics Seminar

University of Regensburg (online) - 3 June 2022

What is a spacetime?

Definition

A spacetime (M, g) is a connected time-oriented Lorentzian manifold, that is,

- $g: M \to T^*M \otimes T^*M$ is non-degenerate metric of signature (1, n)
- \exists continuous choice of a "future cone" for (T_pM, g_p) at every p

Example: Minkowski space $\mathbb{R}^{1,3}$ with

$$v \cdot w = -v_0 w_0 + v_1 w_1 + v_2 w_2 + v_3 w_3$$

Warning (Riemann vs. Lorentz) Not every manifold admits a Lorentzian metric (but all non-compact ones do).

Relevance for physics

General Relativity

models graviation via geometry

4-dimensional spacetimes (M, g) satisfying the Einstein equations (1915)

- $Ric[g] \frac{1}{2}R[g]g = \frac{8\pi G}{c^4}T$ + equations for *T* (matter)
- *Ric*[*g*] = 0 (vacuum)

Einstein and Lorentz (Leiden, 1921)

Important explicit solutions

Minkowski spacetime (flat vacuum)

$$g = -dt^2 + dx_1^2 + dx_2^2 + dx_3^2$$

 Schwarzschild–Droste spacetime (static, spherically symmetric black hole)

$$g = -\left(1 - \frac{2m}{r}\right) dt^2 + \left(1 - \frac{2m}{r}\right)^{-1} dr^2 + r^2 g_{\mathbb{S}^2}$$

Kerr (rotating), Reissner-Weyl-Nordström (charged) ...

• FLRW spacetimes (homogeneous, isotropic universe)

$$g = -dt^2 + a(t)^2 \sigma$$

where (Σ, σ) is Elliptic/Euclidean/Hyperbolic space

Center of M87 (EHT 2019)

Concrete occurences of nonsmooth metrics

Matter models: e.g. stars are fluid balls with vacuum exterior

- generic matter-vacuum boundary expected to be C¹ (Makino 2016)
- ► shocks occur ~→ jump in pressure and density
- matching spacetimes also leads to jumps (Mars–Senovilla 1993)
- but some regularization possible (Reintjes–Temple 2020)

(In)extendibility questions:

- ► Strong cosmic censorship conjecture: maximal globally hyperbolic developments of "generic" initial data of the Einstein equations cannot be extended as "suitably regular" (often C^0 with $\Gamma_{ij}^k \in L^2_{loc}$) Lorentzian manifold
- (M, g) globally hyperbolic and timelike geodesically complete \implies C^{0} -inextendible (Galloway–Ling–Sbierski 2018)
- related weaker results (discussed later)

Several open problems in GR are related to **stability** and/or **regularity** of solutions to the Einstein eq. \subseteq spacetimes \subseteq Lorentzian mfds., however, we still don't have a full grip on this nonsmooth world itself.

Pathologies of nonsmooth metrics (below $C^{1,1}$)

Geodesics: below regularity $g \in C^1$ is the geodesic equation not necessarily locally solvable, below $g \in C^{1,1}$ not uniquely ~~ "replace" geodesic equation with Lorentzian distance

(e.g. in Lorentzian length spaces of Kunzinger-Sämann 2018)

Push-up principle: $p \ll q \le r \stackrel{?}{\Longrightarrow} p \ll r$ (wrong for C^0 metrics with "causal bubbles", Chruściel–Grant 2012)

Open futures: $I^{\pm}(p)$ may not be open (Grant et al 2020) \rightarrow push-up and open futures are implicitely assumed in LLS

Curvature: no longer classically defined

notions of timelike sectional/Ricci curvature bounds via triangle comparison/optimal transport (also optimal transport formulation of Einstein equations by Mondino–Suhr 2022, McCann 2020)

Classical results that extend to nonsmooth settings

Singularity theorems

- classically for smooth or C^2 metrics (Penrose, Hawking ~1970)
- now for C¹ metrics with distributional curvature bounds (Graf 2020, Kunzinger et al 2022)
- Hawking singularity theorem also for LLS with synthetic curvature bounds (Alexander et al 2019, Cavalletti–Mondino 2020)

(In)extendibility results

- result for Lorentz–Finsler spaces (Minguzzi–Suhr 2019)
- also not extendible as regular LLS (Grant et al 2019)

Time functions and splitting

- classical characterizations of existence of time functions such as K-causality and global hyperbolicity extend to LLS (B.–García-Heveling 2021)
- but Cauchy "sets" of globally hyperbolic LLS need no longer be homeomorphic

Open questions

- How close are (and should be) smooth and nonsmooth spacetimes related? How to measure closeness?
- e How reasonable and generic are the assumptions of push-up and open futures for LLS? (geometric and GR perspective needed)
- Can nonsmooth spacetimes be used to pass from general relativity to some quantum gravitational theories?

How do Lorentzian manifolds converge?

 $(M_j, g_j) \longrightarrow (M_\infty, g_\infty)$

Important questions:

- What kind of geometric properties do we want to capture?
- What is a suitable convergence and limit space?
- Why is this relevant in general relativity?

Basic literature

C. Sormani and C. Vega.

Null distance on a spacetime.

Classical Quantum Gravity 33 (2016), no. 8, 085001, 29 p.

C. Sormani.

Spacetime intrinsic flat convergence.

Oberwolfach Report for the Workshop ID 1832: Mathematical General Relativity (2018), 1–3.

B. Allen and A. Burtscher. Properties of the null distance and spacetime convergence. Int. Math. Res. Not. IMRN 2022, no. 10, 7729–7808. https://doi.org/10.1093/imrn/rnaa311

M. Kunzinger and R. Steinbauer. Null distance and convergence of Lorentzian length spaces. Ann. Henri Poincaré (2022), 24 p.

Outline

- 2 Main question for this talk
- Motivation from Riemannian geometry
 - 4 Metric approaches in Lorentzian geometry
- 5 Spacetime convergence based on the null distance

Riemannian distance function

Assume

(M, g) ... Riemannian manifold

 \mathcal{A} ... class of piecewise smooth paths (and reparametrizations)

 $L_g(\gamma) := \int_a^b \sqrt{g_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))} dt \dots$ length of curve $\gamma \colon [a,b] \to M$ in \mathcal{A}

Define Riemannian distance

 $d_g(p,q) := \inf\{L_g(\gamma) \,|\, \gamma \in \mathcal{A} \text{ between } p \text{ and } q \text{ in } M\}$

Theorem

The distance function d_g is an intrinsic metric on M that induces the manifold topology.

Some consequences of this metric space structure

- completeness simplifies due to the Hopf–Rinow Theorem (1931)
- can study "closeness" of (compact) Riemannian manifolds (that are not necessarily diffeomorphic) in terms of the Gromov–Hausdorff distance d_{GH} (1981) as metric spaces
- add further an integral current structure *T*, e.g., for oriented compact submanifolds *M*

$$T(\omega) := \int_M \omega,$$

and study **Sormani–Wenger intrinsic flat distance** $d_{\mathcal{F}}$ (2011) between (compact) oriented Riemannian manifolds as integral current spaces

Definition of *d*_{GH}

Hausdorff distance between subsets of a metric space (Z, d):

$$d_{\mathrm{H}}(X,Y) := \max \left\{ \sup_{\substack{x \in X \ y \in Y \\ y \in Y \ x \in X}} \inf d(x,y), \right\}$$

$$\sup_{\substack{y \in Y \ x \in X \\ y \in Y \ x \in X}} \inf d(x,y) \right\}$$

$$\sup_{\substack{x \in X \ y \in Y \\ y \in Y \ x \in X \\ y \in Y \ x \in X}} \inf d(x,y)$$

Gromov–Hausdorff distance between metric spaces

$$d_{\mathrm{GH}}(X,Y) := \inf\{d_{\mathrm{H}}(\varphi(X),\psi(Y)) \,|\, \varphi \colon X \to Z, \psi \colon Y \to Z\}$$

isometric embeddings into

common metric space (Z, d)}

 $d_{\rm GH}(X, Y) \approx$ how close are (X, d_X) and (Y, d_Y) from being **isometric**

Definition of $d_{\mathcal{F}} = d_{SWIF}$

Flat distance between currents of a metric space (Z, d) (Federer–Fleming 1960; Ambrosio–Kirchheim 2000)

$$d_{\mathrm{F}}(T_X, T_Y) := \inf \left\{ \mathbf{M}^n(A) + \mathbf{M}^{n+1}(B) \mid A + \partial B = T_X - T_Y \right\}$$

Intrinsic flat distance between integral current spaces (Sormani–Wenger 2011)

$$d_{\mathcal{F}}(X,Y) := \inf \{ d_{\mathrm{F}}(\varphi_{\#}T_X, \psi_{\#}T_Y) \, | \, \varphi \colon X \to Z, \psi \colon Y \to Z \}$$

isometric embed. into common

complete metric space (Z, d)}

 $d_{\mathcal{F}}(X, Y) \approx$ how close are (X, d_X, T_X) and (Y, d_Y, T_Y) from being current-preserving isometric

Applications of convergence in Riemannian geometry

- GH-convergence works well with respect to lower sectional and Ricci curvature bounds
- SWIF-convergence is a <u>weaker</u> notion
- GH- and SWIF-limits agree in certain cases, e.g., Ric ≥ 0, vol ≥ C > 0 (Sormani–Wenger 2010)
- SWIF-convergence compatible with scalar curvature bounds
 - stability of the Positive Mass Theorem, e.g., for M_j rotationally symmetric, asymptotically flat (Lee–Sormani 2014):

$$\mathit{m}_{\mathrm{ADM}}(\mathit{M}_{j})
ightarrow 0 \Longrightarrow \mathit{M}_{j} \stackrel{\mathcal{F}}{
ightarrow} \mathit{M}_{\infty}$$
 Euclidean space

related conjecture for almost rigidity of Riemannian Penrose ineq.

Natural analogue: Lorentzian distance function

Assume

(M,g) ... spacetime

 $\mathcal{A}_{\vee} \dots$ class of piecewise smooth future-directed causal paths $L_g(\gamma) := \int_a^b \sqrt{-g_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))} dt \dots$ length of $\gamma : [a,b] \to M$ in \mathcal{A}_{\vee}

Definition (Lorentzian distance)

$$d_g(p,q) := egin{cases} \sup\{L_g(\gamma) \,|\, \gamma \in \mathcal{A}_ee$$
 between $p ext{ and } q\} & q \in J^+(p), \ 0 & q
ot\in J^+(p). \end{cases}$

- encodes information about causality
- e.g., globally hyperbolic spacetime \implies d_g finite and continuous
- not a metric (not symmetric, reverse triangle inequality)
- still of some use (Noldus 2004, Kunzinger-Sämann 2018 etc.)

Null distance of Sormani–Vega (2016)

Similar approach, but **assume** a bit more:

- (*M*, *g*) ... spacetime
 - $\tau \ \ldots \ \mathsf{time} \ \mathsf{function} \ \mathbf{M} \to \mathbb{R}$
 - $\hat{\mathcal{A}}$... class of piecewise smooth causal paths (future- <u>and</u> past-directed allowed on pieces)

 $\hat{L}_{ au}(eta) \ := \sum_{i=1}^k | au(eta(s_i)) - au(eta(s_{i-1}))| \dots$ null length of $eta \in \hat{\mathcal{A}}$

Definition (Null distance)

 $\hat{d}_{ au}(p,q):=\inf\{\hat{L}_{ au}(eta)\,|\,eta\in\hat{\mathcal{A}} ext{ between }p ext{ and }q\}$

Properties of null distance: Length metric structure

Always: au (generalized) time function $\Longrightarrow \hat{d}_{ au}$ pseudo-metric

Theorem (Sormani–Vega 2016)

For sufficiently nice τ (e.g., locally anti-Lipschitz) the **null distance**

$$\hat{d}_{\tau}(p,q) = \inf\{\hat{L}_{\tau}(eta) \,|\, eta \in \mathcal{A} ext{ from } p ext{ to } q\}$$

is a length metric on M.

Some basic properties.

- \hat{d}_{τ} induces the manifold **topology**
- \hat{d}_{τ} is conformally invariant
- scaling for $\lambda > 0$: $\hat{d}_{\tau_2} = \lambda \hat{d}_{\tau_1} \iff \tau_2 = \lambda \tau_1 + C$

$$ullet \ oldsymbol{q} \in J^+(oldsymbol{
ho}) \Longrightarrow \hat{d}_ au(oldsymbol{
ho},oldsymbol{q}) = au(oldsymbol{q}) - au(oldsymbol{
ho})$$

• $\hat{d}_{ au}$ is bounded on causal diamonds $J^+(p)\cap J^-(q)$

Properties of null distance: τ (in)dependence

Bad choices of τ hurt \hat{d}_{τ} :

• e.g., for $\tau = t^3$ on Minkowski space \hat{d}_{τ} is not definite at $\{t = 0\}$

Good choices and certain robustness:

- τ locally anti-Lipschitz: $p, q \in U, p \leq q \Longrightarrow \tau(q) \tau(p) \geq d_U(p,q)$
- spacetimes that admit a regular cosmological time function (Andersson–Galloway–Howard 1998)

$$au_g(q) := \sup_{p \leq q} d_g(p,q), \quad ext{with } d_g ext{ Lorentzian distance}$$

- τ(t, x) = φ(t) with φ' > 0 for warped products dt² + f(t)²σ with σ complete Riemannian metric (equivalent on compact sets)
- τ_1 , τ_2 temporal functions $\implies \hat{d}_{\tau_1}$ and \hat{d}_{τ_2} equiv. on compact sets (B.–García-Heveling)

Properties of null distance: Relation to causality Always: $q \in J^+(p) \Longrightarrow \hat{d}_{\tau}(p,q) = \tau(q) - \tau(p)$

Definition (causality encoding)

We say that \hat{d}_{τ} encodes causality if

$$oldsymbol{q}\in J^+(oldsymbol{
ho}) \Longleftrightarrow \hat{d}_ au(oldsymbol{
ho},oldsymbol{q}) = au(oldsymbol{q}) - au(oldsymbol{
ho})$$

Open problem: When does this hold in general?

- for warped spacetimes with $g = -dt^2 + f(t)^2 \sigma$ and time functions $\tau(t, x) = \phi(t)$ with $\phi' > 0$ the null distances \hat{d}_{τ} encode causality (Sormani–Vega 2016)
- **incompleteness** is an obstruction for \hat{d}_{τ} to encode causality (Allen–B. 2022)
- holds for globally hyperbolic spacetimes with Cauchy temporal functions τ (B.–García-Heveling)
- ∃ causally simple spacetimes with J⁺ = K⁺ ⊊ d
 _τ-relation, so d
 _τ is really weaker (B.–García-Heveling)

Properties of null distance: completeness

Theorem (Allen–B. 2022)

Let (M, g) be a spacetime with time function τ . If τ is **anti-Lipschitz** on *M* with respect to a complete distance function d that induces the manifold topology (e.g., induced by a complete Riemannian metric), then (M, \hat{d}_{τ}) is a complete metric space.

Warning!

 (M, \hat{d}_{τ}) complete eq null distance is achieved by a piecew. causal path

Example: $g = -dt^2 + (t^2 + 1)^2 dx^2$ and take $p, q \in \{t = 0\}$

Short pause

- **basic properties of null distance** have been established (Sormani–Vega 2016, Allen–B. 2022)
- good choice of time function needed, but not too restrictive, e.g., temporal functions good for causal theory (B.–García-Heveling)
- warped product spacetimes are well understood

Broad aim

understand geometric stability of spacetimes

- obtained a metric space structure (enough for GH) but need integral current space for SWIF convergence (Allen–B. 2022)
- understand spacetime convergence for of warped product spacetimes (Allen–B. 2022)
- more general upcoming results (Sakovich–Sormani)

Example 1: Lorentzian products

If (Σ, σ) is a Riemannian manifold and $(\mathbb{R} \times \Sigma, \eta_{\sigma})$ where $\eta_{\sigma} = -dt^2 + \sigma$.

then the null distance between $p = (t(p), p_{\Sigma})$ and $q = (t(q), q_{\Sigma})$ induced by the canonical time function *t* is

Example 2: Warped spacetimes (e.g. FLRW solutions)

Let *I* be an interval, (Σ, σ) be a Riemannian manifold, and *f* be such that

$$0 < f_{\min} \le f(t) \le f_{\max}, \qquad t \in I.$$

Then the warped product $M_f = I \times_f \Sigma$ with Lorentzian metric

$$g_f = -dt^2 + f(t)^2 \sigma$$

is such that the null distance $\hat{d}_{t,f}$ of g_f satisfies

$$\hat{d}_{t,f}(p,q) = |t(p) - t(q)|, \qquad q \in J^{\pm}(p), \ f_{\min}d_{\sigma}(p_{\Sigma},q_{\Sigma}) \leq \hat{d}_{t,f}(p,q) \leq f_{\max}d_{\sigma}(p_{\Sigma},q_{\Sigma}), \qquad q \notin J^{\pm}(p).$$

 $\implies \min\{1, f_{\min}\}\hat{d}_{t,1}(p,q) \leq \hat{d}_{t,f}(p,q) \leq \max\{1, f_{\max}\}\hat{d}_{t,1}(p,q) \text{ for all } p,q$

Warped products are integral current spaces

Theorem (Allen–B. 2022)

Let I be an interval, (Σ, σ) orientable connected complete Riemannian manifold and $f: I \to (0, \infty)$ bounded away from 0 and ∞ . Then there is a natural **local integral current structure on** $M = I \times_f \Sigma$ with respect to the null distance $\hat{d}_{t,f}$.

If $I \times_f \Sigma$ is compact, then $(M, \hat{d}_{t,f})$ is integral current space.

Sketch of proof:

• associated Riemannian product $I \times \Sigma$ with standard current

$$T(h,\pi_1,\ldots,\pi_n)=\int_M h\,d\pi_1\wedge\ldots\wedge d\pi_n$$

- Riemannian product satisfies Pythagorean formula (complete) \implies identity between products $I \times \Sigma$ is bi-Lipschitz
 - \implies push-forward current id_# T on Lorentzian product ($I \times \Sigma, \hat{d}_{t,1}$)
- just as before: identity between $I \times \Sigma$ and $I \times_f \Sigma$ is bi-Lipschitz \implies push-forward current to $(M, \hat{d}_{t,f})$.

Globally hyperbolic spacetimes are (local) integral current spaces

For warped spacetimes $I \times_f \Sigma$ we know:

 $I \times_f \Sigma$ is globally hyperbolic $\iff \Sigma$ complete Riemannian manifold

After quite some more work one obtains:

Theorem (Allen–B. 2022)

Let (M, g) be a **globally hyperbolic spacetime** with smooth time function τ (Bernal–Sanchez 2005). Suppose M admits complete Cauchy hypersurfaces and (M, \hat{d}_{τ}) is complete as metric space. Then (M, \hat{d}_{τ}) is a local integral current space. (Lang–Wenger 2011, Jauregui–Lee 2019)

If *M* is **compact**, then (M, \hat{d}_{τ}) is an integral current space. (Ambrosio–Kirchheim 2000, Sormani–Wenger 2011)

Final stage

For suitable au a spacetime with null distance $\hat{d}_{ au}$

- is a length metric space, and
- is a (local) integral current space.

 \rightsquigarrow We can study/compare (pointed) Gromov–Hausdorff (GH) and Sormani–Wenger intrinsic flat (SWIF) **spacetime convergence**!

Spacetime convergence for warped products

We restrict ourselves to sequences of warped products $I \times_{f_i} \Sigma$:

- I closed, (Σ, σ) oriented, connected, compact Riemannian mf
- $f_j: I \to (0,\infty)$ continuous, f_j uniformly bounded away from 0
- metric $g_j = -dt^2 + f_j(t)^2 \sigma$

Theorem (Allen–B. 2022)

Suppose the warping functions $f_j \rightarrow f_{\infty}$ converge uniformly, then the warped products with corresponding null distances

$$(I \times_{f_j} \Sigma, \hat{d}_{t,j}) \rightarrow (I \times_{f_{\infty}} \Sigma, \hat{d}_{t,\infty})$$

converge in the uniform, GH, and SWIF sense (to the same limit!).

Sketch of proof

Theorem (Allen–B. 2022)

 $f_j \to f_\infty \text{ uniform} \Longrightarrow (I imes_{f_j} \Sigma, \hat{d}_{t,j}) \to (I imes_{f_\infty} \Sigma, \hat{d}_{t,\infty}) \text{ uniform/GH/SWIF}$

- **Operator Pointwise convergence** $\hat{d}_{t,j}(p,q) \rightarrow \hat{d}_{t,\infty}(p,q)$: long explicit estimates using ε -close curves β_j between p and q
- ② ∃ subsequence $(\hat{d}_{t,j_k})_k$ that converges to <u>some</u> length metric space (M, d_∞) in uniform/GH/SWIF sense:

show uniform bi-Lipschitz bounds, i.e., that there exists $\lambda > 1$ s.t.

$$rac{1}{\lambda} \leq rac{\hat{d}_{t,j}(oldsymbol{p},oldsymbol{q})}{\hat{d}_{t,1}(oldsymbol{p},oldsymbol{q})} \leq \lambda, \qquad ext{for all } j \in \mathbb{N}, \, oldsymbol{p}, oldsymbol{q} \in oldsymbol{M}$$

and then apply a Theorem of Huang–Lee–Sormani (2017)

Solution Uniform/GH/SWIF convergence of whole sequence to (M, \hat{d}_{∞}) : (1) $\implies d_{\infty} = \hat{d}_{t,\infty}$ is uniform limit of $(\hat{d}_{t,j_k})_k \dots$ and of $(\hat{d}_{t,j})_j$ by (2) HLS Theorem (2017) \implies same for GH/SWIF convergence Pointwise or L^p convergence $f_j \rightarrow f_\infty$ is not enough

Non-uniform convergence $f_j \rightarrow f_\infty$ can destroy everything:

- uniform/GF/SWIF convergence but $\hat{d}_{t,j} \rightarrow d_{\infty} \neq \hat{d}_{t,\infty}$ if null cones of g_{∞} <u>narrower</u> than of g_j (for large j)
- convergence to a degenerate warped product (g_∞ not Lorentzian) and uniform convergence to pseudo-metric, GH-limit≠SWIF-limit because of "collapse"

But uniform convergence $f_j \rightarrow f_\infty$ is not always necessary:

• $f_j \to f_\infty$ pointwise can imply $\hat{d}_{t,j} \to \hat{d}_{t,\infty}$ uniform/GH/SWIF if the null cones of g_∞ wider than of g_j (for large *j*)

Example 1: convergence but limiting $d_{\infty} \neq \hat{d}_{t,\infty}$

Example 2: SWIF and GH limits exist but disagree

Example 3: convergence to null distance $\hat{d}_{t,\infty}$

Candidate limit spaces

- the degenerate limits obtained are Lorentzian length spaces (Allen–B. 2022)
- our results in the context of warped products (properties of null distance and GH convergence) can be **extended to LLS** with suitable time functions, and are compatible with synethetic sectional curvature bounds (Kunzinger–Steinbauer 2022)
- suitable time functions (with various classical properties) actually exist on LLS (B.–García-Heveling 2021)

Summary

- null distance \hat{d}_{τ} is a way to obtain a meaningful **intrinsic**, **conformally invariant metric** on most spacetimes
- closely related to **causality**, but generally weaker ($J \subseteq \hat{d}_{\tau}$ -relation)
- if restricted to a nice class: the choice of **time function** τ may have global impact but at least produces equivalent metrics on compacta
- warped products with associated null distances converge in uniform/GH/SWIF sense to the same limit if warping functions converge uniformly (otherwise more complicated)

Thank you for your attention!