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� T. Kaluza (1919): unification of gravitation and electromagnetism from GR on

5d spacetime plus the cylinder condition

� O. Klein (1926): explains the cylinder condition by compactification.

Experimental problems: 1) A “tower” of particles, 2) instability of

extra-dimensions1

Theoretical problem: Neither the cylinder condition nor the small radius of the

compact dimension are invariant under general diffeo.

⇒ One must restrict diffeos to those preserving a base × fiber structure.

GR → GT
manifold → G− bundle

metric → connection

� C.N. Yang and R. Mills (1954): gauge theory with non-abelian group G and

Lagrangian L = − 1
2Tr(F 2), where F = curvature of the G-connection.

� Higgs mechanism (1964): adds a scalar field, otherwise the gauge bosons

are massless.
1R. Penrose, On the stability of extra space dimensions, in The future of Theoretical Physics and

Cosmology, Cambridge 2003
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� M = 4-dimensional Lorentzian spin manifold, S =spinor bundle.

� G = U(1)× SU(2)× SU(3) = gauge group.

� Fermion fields (= matter): sections of S ⊗ V , where V = G− vector bundle

of dim 24 (=number of different elem. fermions).

� Gauge bosons (photon, W and Z, gluons): connection 1-forms.

� Scalar boson (=Higgs field), section of irreducible SU(2)-bundle (C2-valued

field).

+ a bosonic Lagrangian

1. Lgauge = YM,

2. LHiggs = |DµH|2 − V (H), where V = quartic potential, H = (α, β).

+ a Fermionic Lagrangian

1. Lkinetic = (Ψ,DΨ),
2. Lminimal = (Ψ, AµγµΨ),

3. LY ukawa = α(νiL, Y
ν
ijν

j
R) + β(eiL, Y

e
ije

j
R) + . . .,

4. LMajorana = ((νiR)
c,Mijν

j
R).

Constraints: symmetries, anomaly freeness, renormalizability, experiments !
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� GT was born from an elaboration of GR.

� NCG was born from an elaboration of QM.

1. W. Heisenberg (1925): noncommutativity of phase space.

2. 1940’s: C∗-algebras.

3. 1990’s: Spectral triples

We will not talk about noncommutative field theory (deformation of coordinates),

derivation-based noncommutativity, . . .
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Th (Gelfand-Naimark) :

Compact spaces + continuous maps ⇋ commutative C∗-alg+C∗-morphisms

✞✝ ☎✆Def: A C∗-algebra A is a complete normed C-algebra with ∗ s.t. ‖a∗a‖ = ‖a‖2.

Ex: 1. A = C(X), with ‖.‖∞ and c.c.

2. A = closed ∗-subalgebra of B(H) with operator norm

and Hilbert adjoint.☛
✡

✟
✠Def: A state ω on a C∗-algebra is positive linear functional of norm 1.

A state is pure if it is not decomposable as a non-trivial convex combination.

On A = C(X), x ∈ X ⇋ pure state via x(f) := f(x) (Gelfand transform)

If A is not commutative, one pretends A = C(X̃) for some (non-existing) X̃ . . .
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Connes’ key insight: “ds = D−1”.

✓
✒

✏
✑

d(ω, ω′) = sup
a∈A

{|ω(a)− ω′(a)|, ‖[D, a]‖ ≤ 1}

(Connes’ distance formula)

−→ Gives back the geodesic distance in the case of a manifold.★

✧

✥

✦

Def: A (real, even) spectral triple is a multiplet (A,H, π,D, J, χ) with A a

C∗-algebra, H a Hilbert space, π a rep. of A, D, χ linear and J antilinear s.t.

1. χ2 = 1, χ∗ = χ, [χ, π(A)] = 0, {χ,D} = 0,

2. D∗ = D (formally)

3. J2 = ±1, J∗J = 1, [J,D] = 0, Jχ = ±χJ .

4. [π(A), Jπ(A)J−1] = 0 (order 0 condition)

signs ↔ KO dimension

Order 1 condition → later

D metric

J spin structure

χ orientation
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(M, g) = spin manifold. Spin structure σ = (S, ρ,H, χ, J) where

1. S is a complex vector bundle over M ,

2. ρ : Cl(TM, g) → End(S) is a bundle isomorphism,

3. χ = ikρ(e1 . . . en) where (e1, . . . , en) = positive orthonormal basis,

4. H is a positive spinor metric: H(ρ(v)φ, ψ) = H(φ, ρ(v)ψ) + norm.,

5. J is a bundle map S → S , antilinear in the fibres, anticommutes with

vectors, satisfies J2 = ±1, and J×J = ±1.

The canonical triple is:

� A = C(M),
� H = L2-completion of compactly supported spinors wrt

(Φ,Ψ) =

∫

M

Hx(Φx,Ψx)volg

� (π(f)Ψ)x = f(x)Ψx, χ and J as above,

� D =D = i
∑

i ρ(ei)∇ei where (ei) is orthonormal.

→ A ST with A commutative + smoothness conditions is of this form2.
2A. Connes, J. Noncommut. Geom. 7 (2013) 1-82 arXiv:0810.2088
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2 points separated by a distance δ. Which spectral triple ?

→A = C2, H = C2, D = 1
δ

(

0 1
1 0

)

, [D,

(

a1 0
0 a2

)

] = a(2)−a(1)
δ

(

0 1
−1 0

)

.

3 points with distances δij ?

A = C3, H = C3, D =





0 δ−1
12 δ−1

13

δ−1
12 0 δ−1

23

δ−1
13 δ−1

23 0



−→ Does not work at all !

Solution: (split graph)

✬

✫

✩

✪

G = (V,E) finite graph, δ : E → R∗
+ weight function

Ẽ := E × {−; +}, H = L2(Ẽ) = CE ⊗ C2 + canonical 〈., .〉.

π(a)F (e,±) = a(e±)F (e,±) =
⊕

e∈E

(

a(e−) 0
0 a(e+)

)

.

DF (e,±) = 1
δe
F (e,∓) =

⊕

e∈E

1
δe

(

0 1
1 0

)
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Ẽ := E × {−; +}, H = L2(Ẽ) = CE ⊗ C2 + canonical 〈., .〉.

π(a)F (e,±) = a(e±)F (e,±) =
⊕

e∈E

(

a(e−) 0
0 a(e+)

)

.

DF (e,±) = 1
δe
F (e,∓) =

⊕

e∈E

1
δe

(

0 1
1 0

)



A discrete example

Introduction

Noncommutative geometry in

a nutshell

Before we embark

Departure

From NC topology to NC

geometry

The canonical triple of a

spin manifold

A discrete example

Almost-commutative

spectral triples

Noncommutative 1-forms

The Noncommutative

Standard Model (1)

The Noncommutative

Standard Model (2)

Problems and shortcomings

Solving the fermion doubling

problem

NCG in non-Euclidean

signature

NCG and general covariance

Solving unimodularity

10 / 38

2 points separated by a distance δ. Which spectral triple ?

→A = C2, H = C2, D = 1
δ

(

0 1
1 0

)

, [D,

(

a1 0
0 a2

)

] = a(2)−a(1)
δ

(

0 1
−1 0

)

.

3 points with distances δij ?

A = C3, H = C3, D =





0 δ−1
12 δ−1

13

δ−1
12 0 δ−1

23

δ−1
13 δ−1

23 0



−→ Does not work at all !

Solution:
1 2

3

b

c

a

(b,-)

(b,+)

b

c

a

(a,+)

(a,-)
(c,-) (c,+)

b+=a+=3

(b,+)= (a,+)/

(split graph)

✬

✫

✩

✪

G = (V,E) finite graph, δ : E → R∗
+ weight function
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Given S1 = (A1,H1, . . .) and S2 = (A2,H2, . . .) one can form

S1⊗̂S2 = (A,H, . . .) where

� A = A1⊗̂A2,

� H = H1⊗̂H2,

� π = π1⊗̂π2,

� J = J1⊗̂J2,

� χ = χ1⊗̂χ2,

� D = D1⊗̂1 + 1⊗̂D2.

→ If S1 = can(M1) and S2 = can(M2), then S1⊗̂S2 = can(M1 ×M2),

→ KO dimensions add up,

→ If S1 = can(M1) and S2 is finite-dimensional, S is called

almost-commutative.
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1− form
♯ //

γ

44
vector field

⊂ // section of Cl(TM)
ρ //

operator

on spinor

fields

Ex: If a is a smooth function, [D, π(a)] = iγ(da).

⇒ {
∑

i

π(ai)[D, π(bi)]} = γ(Ω1(M))

On a general ST: Ω1
D := {

∑

i

π(ai)[D, π(bi)]} (noncommutative 1-forms)

Order 1 condition (C1) : [Ω1
D, Jπ(A)J−1] = 0

Let ω be self-adjoint. Fluctuated Dirac operator:

Dω = D + ω + JωJ−1

One can define dω :=
∑

i[D, ai][D, bi] modulo a “junk” ideal

and the curvature F (ω) = dω + ω2.
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Almost-commutative ST based on can(M, g) and finite dimensional ST

SF = (AF ,HF , . . .) such that

� AF = C⊕H⊕M3(C),
� HF = HR ⊕HL ⊕HR̄ ⊕HL̄, Hσ = C2 ⊗ (C⊕ C3

color)⊗ C3
gen,

� χF = [1R,−1L,−1R̄, 1L̄],

� JF =

(

0 −1antipart
1part 0

)

◦ c.c.,

� πF (λ, q,m) = [q̃λ, q̃, λ12 ⊕ 12 ⊗m,λ12 ⊕ 12 ⊗m]⊗ 13, where

qλ =

(

λ 0
0 λ∗

)

and q̃ = q ⊕ q ⊗ 13 ≃ q ⊗ 14.

� DF = {







0 Y † M† 0
Y 0 0 0
M 0 0 Y T

0 0 Y ∗ 0






, where

Y =

(

Yν 0
0 Ye

)

⊕

(

13 ⊗ Yu 0
0 13 ⊗ Yd

)

and M =

(

mν 0
0 0

)

⊕ 0.

Choice of DF strongly constrained by: 1) odd, 2) commutes with J , and 3) order

1 condition
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� Fermionic fields (elements of H = HF -valued L2 spinors),

� Bosonic fields ↔ fluctuated Dirac operators Dω ↔ NC 1-forms ω.

Th:

Ω1
DM ⊗̂1+1⊗̂DF

= Ω1
M ⊗̂π(AF )⊕ C∞(M,Ω1

DF
)

= gauge bosons ⊕ Higgs bosons !

� Fermionic action = (JΨ, DωΨ)
→ contains kinetic + minimal coupling + Yukawa + Majorana

� Bosonic action =

{

1) Connes-Lott:
∫

M
Tr(F 2

ω), or

2) Spectral action: Tr(f(D2
ω/m

2)) with f ≈ 1[0;1]
→ They contain kinetic gauge and Higgs term + Higgs potential.

→ They depend on the norm of the mass matrices.

→ Less constants than usual, hence makes predictions.

→ In particular gw = gY = gs.

→ The spectral action also contains Einstein-Hilbert action evaluated at g.
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Shortcomings:

1. It is a classical theory.

2. It is a Euclidean theory.

Well-known problems:

1. 4 times too many fermions (“fermion doubling”) → comes from HF needed

to represent AF .

2. There is an (anomalous) extra U(1)-symmetry (“unimodularity problem”) →
comes from M3(C).

3. It is experimentally ruled out → CL or spectral action + Wick rotation and

renormalization predict a Higgs mass 40% too large.

Lesser known/discussed problems:

1. Why real C∗-algebras ?

2. The massless photon condition.

3. One does not recover GR.

4. Is it possible in principle to obtain a general covariant theory from NCG ?

Spin structure & Hilbert space structure (spinor metric) depend on g. . .
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comes from M3(C).

3. It is experimentally ruled out → CL or spectral action + Wick rotation and

renormalization predict a Higgs mass 40% too large.

Lesser known/discussed problems:

1. Why real C∗-algebras ?

2. The massless photon condition.

3. One does not recover GR.

4. Is it possible in principle to obtain a general covariant theory from NCG ?

Spin structure & Hilbert space structure (spinor metric) depend on g. . .
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Barrett3 proposed that physical fields satisfy✓
✒

✏
✑

JΨ = Ψ, χΨ = Ψ

(Majorana-Weyl conditions)

� requires J2 = 1 and Jχ = χJ which constrains the total KO-dimension.

� Usual see-saw needs a symmetric M ⇒ constrains the finite KO-dim.

� Not compatible if M is a Euclidean 4-manifold !

� (Formally) works if M is a Lorentzian 4-manifold.

� Proper treatment needs a non-Euclidean finite part

Constraints on four signs (J× = ±J , χ× = ±χ):

1. M is a Lorentzian four-manifold,

2. MW conditions,

3. symmetry of M ,

4. non-vanishing of the fermionic kinetic terms,

5. non-vanishing of the Majorana mass term.

There exists a unique choice of signs for the finite part which solves all this4 !

3J. W. Barrett, J. Math. Phys., 48 (2007)
4N. Bizi, thesis, abs/1812.00038 (2018)
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☛
✡

✟
✠Convention: Clifford algebra of (V, g) generated by V with relations

vv′ + v′v = 2g(v, v′)

Canonical antiautomorphism: (v1 . . . vk)
T = vk . . . v1.

(V, g) Cl(V, g) (Cl(V ), c)

(S,HS) (End(S),×) (Cl(V ),×)∼=

up to λ = 0 S a spinor module a× := c(aT )

Th: ∃HS unique up to scalar multiple such that all v ∈ V are selfajoint

g positive definite ⇔ HS definite,

g non-positive definite ⇔ HS neutral

g anti-Lorentzian ⇔ ∃v ∈ V,HS(., v · .) is definite

and in this case v is timelike
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Let K be equipped with (., .) non-degenerate. A fundamental symmetry is an

operator η s.t. 〈., .〉η := (., η.) is positive definite and η2 = 1.

Th: If ∃η s.t. (K, 〈., .〉)η is a Hilbert space, then it is the case for all η and the

norms are all equivalent. K is then called a Krein space.

Let (M, g) be a spin semi-Riemannian manifold.

� On compactly supported spinor fields, one defines

(Ψ,Φ) =
∫

M
Hx(Ψx,Φx)volg → pre-Krein space

� Given a future-directed timelike vector fields v (congruence of observers),

one defines the scalar product 〈Ψ,Φ〉v =
∫

M
Hx(Ψx, vx · Φx)volg .

Th: v1, v2 defines equivalent norms iff the hyperbolic angle (v1(x), v2(x)) is

bounded on M .

� Physical interpretation: the Doppler shift between v1 and v2 is bounded.

� Generalization to all signatures using semi-Riemannian angle between

maximal negative definite subspaces5.

5 FB, N. Bizi, Doppler shift in semi-Riemannian signature and the non-uniqueness of the Krein space

of spinors, J. Math. Phys. 60 (2019)
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5 FB, N. Bizi, Doppler shift in semi-Riemannian signature and the non-uniqueness of the Krein space

of spinors, J. Math. Phys. 60 (2019)
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In indefinite signature, 〈., .〉 → (., .), † → ×.

J×J and χ×χ can be negative: two new signs : J×J = ǫκ, χ×χ = ǫ′′κ′′

ǫ, ǫ′′, κ, κ′′ depend on two integers [8]:

ν 0 2 4 6

ǫ 1 -1 -1 1

ǫ′′ 1 -1 1 -1

µ 0 2 4 6

κ 1 -1 -1 1

κ′′ 1 -1 1 -1

For a manifold of signature (p, q), µ = p+ q [8], ν = p− q [8].

In any case, µ, ν are additive wrt ⊗̂.

For more on this: N. Bizi, C. Brouder, FB, J. Math. Phys. 59, 062303 (2018)
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An IST is a ST except :

1. K pre-Krein space,

2. additional signs κ, κ′′ defing the metric dim mod 8

The SM IST is the same as the SM ST except :

1. M is a Lorentz 4-manifold,

2. KF is equipped with (ψ, φ) := ψ†χFφ,

3. DF = {







0 −Y † −M† 0
Y 0 0 0
M 0 0 −Y T

0 0 Y ∗ 0






,

� The CL action is not guaranteed to be well-defined (because of a projector),

� . . . but it works for the SM IST !

� . . . but it predicts a Higgs mass of 170 GeV

(FB and C. Brouder, Phys. Rev. D 103, 035003 (2021)).

⇒ a consistent and predictive NCG model exists which unifies gauge and Higgs

bosons, contains the see-saw mechanism (except if M = 0), has the right

number of fermions and the correct physical signature (but it has an extra-gauge

field and makes an incorrect prediction)
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� The spectral action contains the EH action, but. . .

� the configuration space {Dω|ω
× = ω} defines a unique g on M !

Natural idea: define

1. a pre-spectral triple T = a ST without Dirac op.,

2. the config space CT = {D|(T , D) = ST}.

Automorphisms:

1. Aut(T ) = {U |UU× = 1, Uπ(A)U−1 = π(A), Uχ = χU,UJ = JU},

2. Aut(T , D) = {U ∈ Aut(T )|UD = DU}.

If π faithful, we have a morphism α : Aut(T ) → Aut(A)
Let

1. ker(α) = Vert(T ),
2. Im(α) = HorT .

If α has a section, then Aut(T ) = Hor(T )⋉Vert(T ).
Let’s test the idea. . .
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Consider a parallelizable manifold, and (for n = 4):

1. A trivial bundle M × S, S = C
4,

2. gamma matrices γa ∈ End(S) (in Dirac or Weyl representation),

3. χ = γ5,

4. J = γ2 ◦ c.c,
5. spinor metric HS(ψ, ψ

′) = ψ†γ0ψ
′.

Each tetrad e = (ea) defines 1) a metric ge such that e is pseudo-orthonormal,

2) a ge-spin structure with rep ρe : CℓTM → End(S) s.t ρe(ea) = γa, and

3) a Dirac operator D(e) = i
∑

(±γa)∇
e
ea .

Symmetry group of GR := G = Diff(M)⋉ Spin(1, n− 1). Then

1. Hor(T ) = Diff(M) for all n,

2. Aut(T ) ⊃ G for all n, with = iff n < 6.

Let Γ = Span(γa|a = 0, . . . , 3). Then:

1. Ω1
D(e) := Ω1 is independent of e and is the space of Γ-valued fields.

2. This space is invariant under Diff(M) and Spin(1, n− 1).

⇒ Ω1 should be a background structure



Testing pre-ST

Introduction

Noncommutative geometry in

a nutshell

NCG in non-Euclidean

signature

NCG and general covariance

Does NCG really include

gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model

background

The

U(1)B−L -extension

Solving unimodularity

24 / 38

Consider a parallelizable manifold, and (for n = 4):

1. A trivial bundle M × S, S = C
4,

2. gamma matrices γa ∈ End(S) (in Dirac or Weyl representation),

3. χ = γ5,

4. J = γ2 ◦ c.c,
5. spinor metric HS(ψ, ψ

′) = ψ†γ0ψ
′.

Each tetrad e = (ea) defines 1) a metric ge such that e is pseudo-orthonormal,

2) a ge-spin structure with rep ρe : CℓTM → End(S) s.t ρe(ea) = γa, and

3) a Dirac operator D(e) = i
∑

(±γa)∇
e
ea .

Symmetry group of GR := G = Diff(M)⋉ Spin(1, n− 1). Then

1. Hor(T ) = Diff(M) for all n,

2. Aut(T ) ⊃ G for all n, with = iff n < 6.

Let Γ = Span(γa|a = 0, . . . , 3). Then:

1. Ω1
D(e) := Ω1 is independent of e and is the space of Γ-valued fields.

2. This space is invariant under Diff(M) and Spin(1, n− 1).

⇒ Ω1 should be a background structure



Testing pre-ST

Introduction

Noncommutative geometry in

a nutshell

NCG in non-Euclidean

signature

NCG and general covariance

Does NCG really include

gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model

background

The

U(1)B−L -extension

Solving unimodularity

24 / 38

Consider a parallelizable manifold, and (for n = 4):

1. A trivial bundle M × S, S = C
4,

2. gamma matrices γa ∈ End(S) (in Dirac or Weyl representation),

3. χ = γ5,

4. J = γ2 ◦ c.c,
5. spinor metric HS(ψ, ψ

′) = ψ†γ0ψ
′.

Each tetrad e = (ea) defines 1) a metric ge such that e is pseudo-orthonormal,

2) a ge-spin structure with rep ρe : CℓTM → End(S) s.t ρe(ea) = γa, and

3) a Dirac operator D(e) = i
∑

(±γa)∇
e
ea .

Symmetry group of GR := G = Diff(M)⋉ Spin(1, n− 1). Then

1. Hor(T ) = Diff(M) for all n,

2. Aut(T ) ⊃ G for all n, with = iff n < 6.

Let Γ = Span(γa|a = 0, . . . , 3). Then:

1. Ω1
D(e) := Ω1 is independent of e and is the space of Γ-valued fields.

2. This space is invariant under Diff(M) and Spin(1, n− 1).

⇒ Ω1 should be a background structure



Testing pre-ST

Introduction

Noncommutative geometry in

a nutshell

NCG in non-Euclidean

signature

NCG and general covariance

Does NCG really include

gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model

background

The

U(1)B−L -extension

Solving unimodularity

24 / 38

Consider a parallelizable manifold, and (for n = 4):

1. A trivial bundle M × S, S = C
4,

2. gamma matrices γa ∈ End(S) (in Dirac or Weyl representation),

3. χ = γ5,

4. J = γ2 ◦ c.c,
5. spinor metric HS(ψ, ψ

′) = ψ†γ0ψ
′.

Each tetrad e = (ea) defines 1) a metric ge such that e is pseudo-orthonormal,

2) a ge-spin structure with rep ρe : CℓTM → End(S) s.t ρe(ea) = γa, and

3) a Dirac operator D(e) = i
∑

(±γa)∇
e
ea .

Symmetry group of GR := G = Diff(M)⋉ Spin(1, n− 1). Then

1. Hor(T ) = Diff(M) for all n,

2. Aut(T ) ⊃ G for all n, with = iff n < 6.

Let Γ = Span(γa|a = 0, . . . , 3). Then:

1. Ω1
D(e) := Ω1 is independent of e and is the space of Γ-valued fields.

2. This space is invariant under Diff(M) and Spin(1, n− 1).

⇒ Ω1 should be a background structure



Another clue

Introduction

Noncommutative geometry in

a nutshell

NCG in non-Euclidean

signature

NCG and general covariance

Does NCG really include

gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model

background

The

U(1)B−L -extension

Solving unimodularity

25 / 38

The Clifford, spin-c and spin group are defined by

1. Γ(V, g) = {g ∈ Cl(V, g)|Adg(V
C) = V C},

2. Spinc(V, g) = {g ∈ Γ(V, g)|χg = gχ, gg× = ±1},

3. Spin(V, g) = {g ∈ Spinc|c(g) = g}.

The image of T ∗M under Clifford multiplication is Ω1 !
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� An Algebraic Background B is a pair (T ,Ω1) where T is a pre-ST and Ω1 is

an odd bimodule ⊂ End(K).
� A compatible Dirac operator on B is an operator D such that (T , D) is a ST

and Ω1
D ⊂ Ω1. (It is regular if Ω1

D = Ω1.)

� An automorphism of B is a Krein unitary U which commutes with χ and J
and stabilizes A and Ω1.

Let B(M) be the canonical background of a parallelizable semi-riemannian

manifold. Then the automorphism group of B(M) is:

Aut(B(M)) = Diff(M)⋉ Spin(p, q) for all p, q

The regular Dirac operators on B(M) are

D = SrD(r · e0)S
−1
r + ζ

� r is a field of invertible matrices: acts on tetrads e 7→ r · e,

� Sr ∈ End(K) is defined by Ψ 7→ | det r|−1/2Ψ,

� D(r · e0) = canonical Dirac operator defined by r · e0,

� (ζΨ)x = ζxΨx, s.t. ζ×x = ζx, [ζ, J ] = {ζ, χ} = 0.

⇒ There are additional centralizing fields

Separately invariant under automorphisms ⇒ can be removed.
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G = (V,E) finite graph with weight function δ : E → R
∗
+

2
c

3

1

a

❃❃❃❃❃❃❃❃ b

��������
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��������−

b

��������−

c

Connes’ distance reproduces the geodesic distance with the “split graph” ST:

� A = RV , Ẽ := E × {−; +}, H = L2(Ẽ) = CE ⊗ C2 + canonical 〈., .〉.
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, J = c.c., KO dim 0

T (G) = (A, H, π, χ, J),B(G) = (T (G),Ω1), S(G) = (T (G), D).

1. Hor(T (G)) = Permd(V ), + large config space,

2. Hor(B(G)) = Aut(G), config space ≃ {w : E → R ∪ {∞}},

3. Hor(S(G)) = Isom(G), no config space.
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BSM = B(M)⊗̂BF where BF is the same as the SM IST except DF is

replaced with Ω1
F = {









0 −Y †
0 q̃1 0 0

q̃2Y0 0 0 0
0 0 0 0
0 0 0 0









, q1, q2 ∈ H}.

For T ∈ End(K) define T o = JT×J−1. Then for u ∈ U(A), let

Υ(u) = uJuJ−1 = u(u−1)o.

Υ is a group homomorphism from U(A) into Aut(BM ).
Υ(U(A)) = group of local gauge transf. M → U(1)× SU(2)× U(3).

Th: If π1(M) = {1}, Y0 is invertible and Yν , Ye (resp. Yu, Yd) have no com-

mon eigenvector, then Aut(BSM ) is generated by

1. diffeo-spino-morphisms Uθ ⊗ 1, UΣ ⊗ 1 coming from the base manifold,

2. Υ(U(A)),
3. local B − L-transformations 1 ⊗ gB−L(t) where gB−L(t) =

[A(t), A(t), A(t)
∗
, A(t)

∗
]⊗ 13, A(t) = e−it12 ⊕ e

it

3 12 ⊗ 13

⇒ AB formalism applied to SM is yelling at us that we need another U(1)-gauge

field !
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Just replace AF by Aext
F = C⊕AF = C⊕ C⊕H⊕M3(C), with

πext
F (λ, µ, q,m) = [q̃λ, q̃, µ12 ⊕ 12 ⊗m,µ12 ⊕ 12 ⊗m]⊗ 13

and Ω1
F by

(Ω1
F )

ext ∋









0 Y †
0 q̃1 z1pν ⊗M†

0 0
q̃2Y0 0 0 0

z2pν ⊗M0 0 0 0
0 0 0 0









, z1, z2 ∈ C, q1, q2 ∈ H

� Only satisfies weak order 1 condition.

� The compatible finite Dirac are Φ(q) + Φ(q)o + σ(zM0).
� Bext

SM = B(M)⊗̂Bext
F has the same automorphism group as BSM.

� Its configuration space contains: SM fields + anomalous X + Z ′
B−L + 1

complex scalar σ(zM0), + flavour changing ζother.
� When ζother are thrown away and gravity is frozen, all fields are now

fluctuations.

⇒ The Connes-Lott action can be used on this model.

⇒ It is compatible with the experimental mHiggs !
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✗
✖

✔
✕

Def: A Jordan algebra is a real commutative algebra (A, ◦) such that

∀a, b ∈ A, (a2 ◦ b) ◦ a = a2 ◦ (b ◦ a) (1)

Ex: an associative algebra equipped with the product

a ◦ b =
1

2
(ab+ ba) (2)

A Jordan algebra is special if isomorphic to one this kind.★

✧

✥

✦

Def: A JB algebra is a normed Jordan algebra A which is complete in the norm

and s.t.

1. ‖a ◦ b‖ ≤ ‖a‖‖b‖,

2. ‖a2‖ = ‖a‖2,

3. ‖a2‖ ≤ ‖a2 + b2‖.

Ex: selfadjoint part of C∗-algebra (special).

� JB algebras admit a continuous functional calculus.

� A (unital) JB algebra is associative iff it is ≈ C(X,R), X (compact)

Hausdorff.
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� A (unital) JB algebra is associative iff it is ≈ C(X,R), X (compact)

Hausdorff.
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Th: Every finite-dimensional JB-algebra is a direct sum of ones on this list:

1. Hn(K) for K = R,C or H,

2. JSpin(n),
3. H3(O) (the Albert algebra).

An inner derivation of A is a Jordan derivation of the form

δ =
∑

i

[Lai
, Lbi ].

The Lie algebra of inner derivation will be denoted by DerInn(A).

If J = Hn(R), Hn(C), Hn(H) or JSpin(n), then

DerInn(J) = so(n), su(n), sp(n) or so(n) respectively.

Thanks to the magical formula [Lx, Ly] =
1
4ad[x,y] one can prove:

Th: Let A = C(M,AF ) with AF finite-dimensional and M is a Hausdorff

space. Then ad : [π(A), π(A)] → DerInn(π(A)) is an isomorphism.
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✬

✫

✩

✪

Def: A (real, even) special Jordan background is a gadget

B = (A,H, π,Ω1, χ, J) such that

1. A is a special Jordan algebra,

2. H is a Hilbert space,

3. π is a faithful associative representation of A,

4. π(A) is a JB algebra,

5. J and χ as usual,

6. Ω1 is an odd π(A)-module for the Jordan multiplication.

→ there is a well-defined theory of 1-forms & fluctuations

→ the fluctuation space is gauge-invariant under milder assumption than in the

associative case

→ gauge + Higgs fields decomposition works for almost-associative Jordan

backgrounds

→ particle models are naturally unimodular

→ no chiral U(1)-gauge group (but one can have Pati-Salam)

→ only in Euclidean signature for the moment
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Symmetries of known physics: Diff(M)⋉ G, where G=gauge group

key insight (Connes):

Aut(C(M,AF )) = Out⋉ Inn = Diff(M)⋉ Γ(Aut(AF ))
Let B be an AB with algebra A = C(M,AF ).
If AF is associative:

AutInn(A) U(A)
Ad Υ

Aut(B)

DerInn(A)

exp

Skew(A)
ad

exp

deΥ
G(A)

exp

(3)

If AF is Jordan:

AutInn(π(A)) U(A)
Υ

Aut(B)

DerInn(π(A))

exp

≈
[π(A), π(A)]

exp

deΥ
G(A)

exp

(4)
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� The 3 main tools of NCG: D, AC alge-

bras, Spectral action provide a unified un-

derstanding of all the bosonic fields.

� But it faced a number of technical and

conceptual problems.

� SA + Jordan background solves all known

problems (but has the wrong signature. . . )

� CL + associative background of

Lorentzian B-L extended SM more limited

in scope but compatible with known

physics (except for unimodularity. . . ).

Locks to break:

1. Adapt the Jordan backgrounds to Lorentz signature (seems feasible).

2. Define the SA in the Lorentz signature: still the major challenge despite

recent progress.

3. Possible worry even if this is adressed: all Higgs tend to have the same mass

with the SA.
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Complete bosonic action:

Lb = −160
N

3
F
Y
µνF

Y µν − 32NF
W
µνaF

Wµνa − 32NF
C
µνaF

Cµνa

−
64

3
NFZ′

µνF
Z′µν −

128

3
NF

Y
µνF

Z′µν + 16a|DµH|2 − 8bs|Dµz|
2

−8V0(|H|2 − 1)2 − 8W0(|z|
2 − 1)2 + 16sK(|H|2 − 1)(|z|2 − 1)

Normalization of kinetic terms: BY
µ = 1

2gY Yµ, BWa
µ = 1

2gwW
a
µ ,

B
Ca
µ = 1

2gsG
a
µ, Z ′

µ = 1
2gZ′ Ẑ ′

µ, H = kH̃ , z = lz̃, with

g2w = g2s =
5

3
g2Y =

2

3
g2Z′ =

1

32N
, κ = 64N

3 gY gZ′ =
√

2
5

k2 =
1

16a
, l2 = 1

8b

M2
W =

1

k2
g2w

=
1

4

1

32N
32Tr(YeY

†
e + YνY

†
ν + 3Mu + 3Md)

=
1

4N

∑

squared masses of fermions

In particular for N = 3, one obtains Mtop ≤ 2MW .
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An automorphism of the canonical ST not coming from a diffeo-spinomorphism is

possible as soon as dim ≥ 6.

Example: multiplication by sinh tγ1γ2 + cosh tγ3 . . . γ6.

Many automorphisms of the finite SM triple are not AB automorphism

(Krein-unitary commuting with J and χ but not stabilizing Ω1
F )

Ex: U = [A,B,A∗, B∗] with arbitrary unitary matrices A,B. (need not be

block-diagonal, other examples exist)
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