Hype-free Noncommutative Geometry

Fabien Besnard EPF fabien.besnard@epf.fr

17 June 2022

Introduction

The best idea we ever had (and why it doesn't work)

The Standard Model (classical aspects)

Noncommutative geometry in a nutshell

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Introduction

Introduction

The best idea we ever had (and why it doesn't work) The Standard Model

(classical aspects)

Noncommutative geometry in a nutshell

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

- T. Kaluza (1919): unification of gravitation and electromagnetism from GR on 5d spacetime *plus the cylinder condition*
 - O. Klein (1926): explains the cylinder condition by *compactification*.

Introduction

The best idea we ever had (and why it doesn't work) The Standard Model

(classical aspects) Noncommutative geometry in

a nutshell

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

- T. Kaluza (1919): unification of gravitation and electromagnetism from GR on 5d spacetime *plus the cylinder condition*
- O. Klein (1926): explains the cylinder condition by *compactification*.

Experimental problems: 1) A "tower" of particles, 2) instability of extra-dimensions¹

Introduction

The best idea we ever had (and why it doesn't work) The Standard Model (classical aspects)

Noncommutative geometry in a nutshell

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

- T. Kaluza (1919): unification of gravitation and electromagnetism from GR on
 5d spacetime *plus the cylinder condition*
- O. Klein (1926): explains the cylinder condition by *compactification*.

Experimental problems: 1) A "tower" of particles, 2) instability of extra-dimensions¹

Theoretical problem: Neither the cylinder condition nor the small radius of the compact dimension are invariant under general diffeo.

 \Rightarrow One must restrict diffeos to those preserving a base \times fiber structure.

Introduction

The best idea we ever had (and why it doesn't work) The Standard Model (classical aspects)

Noncommutative geometry in a nutshell

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

- T. Kaluza (1919): unification of gravitation and electromagnetism from GR on 5d spacetime *plus the cylinder condition*
- O. Klein (1926): explains the cylinder condition by *compactification*.

Experimental problems: 1) A "tower" of particles, 2) instability of extra-dimensions¹

Theoretical problem: Neither the cylinder condition nor the small radius of the compact dimension are invariant under general diffeo.

 \Rightarrow One must restrict diffeos to those preserving a base \times fiber structure.

 $\begin{array}{rccc} \mathrm{GR} & \to & \mathrm{GT} \\ \mathrm{manifold} & \to & G - \mathrm{bundle} \\ \mathrm{metric} & \to & \mathrm{connection} \end{array}$

- C.N. Yang and R. Mills (1954): gauge theory with non-abelian group G and Lagrangian $\mathcal{L} = -\frac{1}{2} \operatorname{Tr}(F^2)$, where $F = \operatorname{curvature}$ of the G-connection.
- Higgs mechanism (1964): adds a scalar field, otherwise the gauge bosons are massless.

¹R. Penrose, *On the stability of extra space dimensions*, in *The future of Theoretical Physics and Cosmology*, Cambridge 2003

The Standard Model (classical aspects)

Introduction

The best idea we ever had (and why it doesn't work)

The Standard Model (classical aspects)

Noncommutative geometry in a nutshell

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

- M = 4-dimensional Lorentzian spin manifold, S = spinor bundle.
- $\blacksquare \quad G = U(1) \times SU(2) \times SU(3) = \text{gauge group.}$
- Fermion fields (= matter): sections of $S \otimes V$, where V = G-vector bundle of dim 24 (=number of different elem. fermions).
- Gauge bosons (photon, W and Z, gluons): connection 1-forms.
- Scalar boson (=Higgs field), section of irreducible SU(2)-bundle (\mathbb{C}^2 -valued field).

The Standard Model (classical aspects)

Introduction

The best idea we ever had (and why it doesn't work)

The Standard Model (classical aspects)

Noncommutative geometry in a nutshell

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

- $\blacksquare M = 4 \text{-dimensional Lorentzian spin manifold}, S = \text{spinor bundle}.$
- $\blacksquare \quad G = U(1) \times SU(2) \times SU(3) = \text{gauge group.}$
- Fermion fields (= matter): sections of $S \otimes V$, where V = G-vector bundle of dim 24 (=number of different elem. fermions).
- Gauge bosons (photon, W and Z, gluons): connection 1-forms.
- Scalar boson (=Higgs field), section of irreducible SU(2)-bundle (\mathbb{C}^2 -valued field).
- + a bosonic Lagrangian
- 1. $\mathcal{L}_{gauge} = YM$, 2. $\mathcal{L}_{Higgs} = |D_{\mu}H|^2 - V(H)$, where V = quartic potential, $H = (\alpha, \beta)$.

+ a Fermionic Lagrangian

- 1. $\mathcal{L}_{kinetic} = (\Psi, \not \!\! D \Psi),$
- 2. $\mathcal{L}_{minimal} = (\Psi, A^{\mu} \gamma_{\mu} \Psi),$
- 3. $\mathcal{L}_{Yukawa} = \alpha(\nu_L^i, Y_{ij}^{\nu}\nu_R^j) + \beta(e_L^i, Y_{ij}^e e_R^j) + \dots,$
- 4. $\mathcal{L}_{Majorana} = ((\nu_R^i)^c, M_{ij}\nu_R^j).$

Constraints: symmetries, anomaly freeness, renormalizability, experiments !

Int	rod	lucti	ion	
	1 ()()			

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling

problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Noncommutative geometry in a nutshell

Before we embark

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling

problem NCG in non-Euclidean

signature

NCG and general covariance

Solving unimodularity

- GT was born from an elaboration of GR.
 - NCG was born from an elaboration of QM.

Before we embark

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

- GT was born from an elaboration of GR.
 - NCG was born from an elaboration of QM.
- 1. W. Heisenberg (1925): noncommutativity of *phase* space.
- 2. 1940's: C^* -algebras.
- 3. 1990's: Spectral triples

Before we embark

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

- GT was born from an elaboration of GR.
 - NCG was born from an elaboration of QM.
- 1. W. Heisenberg (1925): noncommutativity of *phase* space.
- 2. 1940's: C^* -algebras.
- 3. 1990's: Spectral triples

We will not talk about noncommutative field theory (deformation of coordinates), derivation-based noncommutativity, ...

Departure

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling

problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Th (Gelfand-Naimark) :

Compact spaces + continuous maps \Rightarrow commutative C^* -alg+ C^* -morphisms

Departure

Introduction

```
Noncommutative geometry in a nutshell
```

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Th (Gelfand-Naimark) :

Ex:

Compact spaces + continuous maps \Rightarrow commutative C^* -alg+ C^* -morphisms

Def: A C^* -algebra \mathcal{A} is a complete normed \mathbb{C} -algebra with * s.t. $||a^*a|| = ||a||^2$.

- 1. $\mathcal{A} = \mathcal{C}(X)$, with $\|.\|_{\infty}$ and c.c.
 - 2. $\mathcal{A} = \text{closed} * \text{-subalgebra of } B(\mathcal{H})$ with operator norm and Hilbert adjoint.

Departure

Introduction

```
Noncommutative geometry in a nutshell
```

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Th (Gelfand-Naimark) :

Compact spaces + continuous maps \Rightarrow commutative C^* -alg+ C^* -morphisms

Def: A C^* -algebra \mathcal{A} is a complete normed \mathbb{C} -algebra with * s.t. $||a^*a|| = ||a||^2$.

- **Ex:** 1. $\mathcal{A} = \mathcal{C}(X)$, with $\|.\|_{\infty}$ and c.c.
 - 2. $\mathcal{A} = \text{closed} * \text{-subalgebra of } B(\mathcal{H})$ with operator norm and Hilbert adjoint.

Def: A state ω on a C^* -algebra is positive linear functional of norm 1. A state is pure if it is not decomposable as a non-trivial convex combination.

On $\mathcal{A} = \mathcal{C}(X)$, $x \in X \rightleftharpoons$ pure state via x(f) := f(x) (Gelfand transform) If \mathcal{A} is not commutative, one *pretends* $\mathcal{A} = \mathcal{C}(\tilde{X})$ for some (non-existing) \tilde{X} ...

From NC topology to NC geometry

Introduction	Co
Noncommutative geometry in a nutshell	00
Before we embark	
Departure	
From NC topology to NC geometry	, , ,
The canonical triple of a spin manifold	
A discrete example	
Almost-commutative spectral triples	
Noncommutative 1-forms The Noncommutative Standard Model (1)	
The Noncommutative Standard Model (2)	
Problems and shortcomings	
Solving the fermion doubling problem	
NCG in non-Euclidean signature	
NCG and general covariance	
Solving unimodularity	- -

Connes' key insight: " $ds = D^{-1}$ ".

From NC topology to NC geometry

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling

problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Connes' key insight: "
$$ds=D^{-1}$$
".

$$d(\omega, \omega') = \sup_{a \in \mathcal{A}} \{ |\omega(a) - \omega'(a)|, \| [D, a] \| \le 1 \}$$

(Connes' distance formula)

 \rightarrow Gives back the geodesic distance in the case of a manifold.

From NC topology to NC geometry

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Connes' key insight: "
$$ds = D^{-1}$$
".

$$d(\omega, \omega') = \sup_{a \in \mathcal{A}} \{ |\omega(a) - \omega'(a)|, \| [D, a] \| \le 1 \}$$

(Connes' distance formula)

 \longrightarrow Gives back the geodesic distance in the case of a manifold.

Def: A (real, even) spectral triple is a multiplet $(\mathcal{A}, \mathcal{H}, \pi, D, J, \chi)$ with \mathcal{A} a C^* -algebra, \mathcal{H} a Hilbert space, π a rep. of \mathcal{A} , D, χ linear and J antilinear s.t. 1. $\chi^2 = 1, \chi^* = \chi, [\chi, \pi(\mathcal{A})] = 0, \{\chi, D\} = 0,$ 2. $D^* = D$ (formally) 3. $J^2 = \pm 1, J^*J = 1, [J, D] = 0, J\chi = \pm \chi J.$ 4. $[\pi(\mathcal{A}), J\pi(\mathcal{A})J^{-1}] = 0$ (order 0 condition)

> signs \leftrightarrow KO dimension Order 1 condition \rightarrow later

D	metric	
J	spin structure	
χ	orientation	

The canonical triple of a spin manifold

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

 $(M,g)={\rm spin}$ manifold. Spin structure $\sigma=(\mathcal{S},\rho,H,\chi,J)$ where

- 1. S is a complex vector bundle over M,
- 2. $\rho : \mathbb{C}l(TM, g) \to \operatorname{End}(\mathcal{S})$ is a bundle isomorphism,
- 3. $\chi = i^k \rho(e_1 \dots e_n)$ where $(e_1, \dots, e_n) =$ positive orthonormal basis,
- 4. *H* is a *positive spinor metric*: $H(\rho(v)\phi, \psi) = H(\phi, \rho(v)\psi)$ + norm.,
- 5. *J* is a bundle map $S \to S$, antilinear in the fibres, anticommutes with vectors, satisfies $J^2 = \pm 1$, and $J^{\times}J = \pm 1$.

The canonical triple of a spin manifold

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

 $(M,g)={\rm spin}$ manifold. Spin structure $\sigma=(\mathcal{S},\rho,H,\chi,J)$ where

- 1. S is a complex vector bundle over M,
- 2. $\rho: \mathbb{C}l(TM, g) \to \operatorname{End}(\mathcal{S})$ is a bundle isomorphism,
- 3. $\chi = i^k \rho(e_1 \dots e_n)$ where $(e_1, \dots, e_n) =$ positive orthonormal basis,
- 4. *H* is a *positive spinor metric*: $H(\rho(v)\phi, \psi) = H(\phi, \rho(v)\psi)$ + norm.,
- 5. J is a bundle map $S \to S$, antilinear in the fibres, anticommutes with vectors, satisfies $J^2 = \pm 1$, and $J^{\times}J = \pm 1$.

The canonical triple is:

- $\blacksquare \quad \mathcal{H} = L^2 \text{-completion of compactly supported spinors wrt}$

$$(\Phi, \Psi) = \int_M H_x(\Phi_x, \Psi_x) \operatorname{vol}_g$$

 $\begin{array}{ll} & (\pi(f)\Psi)_x = f(x)\Psi_x, \ \chi \ \text{and} \ J \ \text{as above,} \\ & D = D = i \sum_i \rho(e_i) \nabla_{e_i} \ \text{where} \ (e_i) \ \text{is orthonormal.} \end{array}$

 \rightarrow A ST with \mathcal{A} commutative + smoothness conditions is of this form².

²A. Connes, J. Noncommut. Geom. 7 (2013) 1-82 arXiv:0810.2088

2 points separated by a distance δ . Which spectral triple ? Introduction Noncommutative geometry in a nutshell Before we embark Departure From NC topology to NC geometry The canonical triple of a spin manifold A discrete example Almost-commutative spectral triples Noncommutative 1-forms The Noncommutative Standard Model (1) The Noncommutative Standard Model (2) Problems and shortcomings Solving the fermion doubling problem NCG in non-Euclidean signature NCG and general covariance Solving unimodularity

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

2 points separated by a distance
$$\delta$$
. Which spectral triple ?
 $\rightarrow \mathcal{A} = \mathbb{C}^2, \mathcal{H} = \mathbb{C}^2, D = \frac{1}{\delta} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, [D, \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}] = \frac{a(2) - a(1)}{\delta} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

3 points with distances δ_{ij} ?

$$\mathcal{A} = \mathbb{C}^{3}, \mathcal{H} = \mathbb{C}^{3}, D = \begin{pmatrix} 0 & \delta_{12}^{-1} & \delta_{13}^{-1} \\ \delta_{12}^{-1} & 0 & \delta_{23}^{-1} \\ \delta_{13}^{-1} & \delta_{23}^{-1} & 0 \end{pmatrix}$$

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

2 points separated by a distance
$$\delta$$
. Which spectral triple ?
 $\rightarrow \mathcal{A} = \mathbb{C}^2, \mathcal{H} = \mathbb{C}^2, D = \frac{1}{\delta} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, [D, \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}] = \frac{a(2) - a(1)}{\delta} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

3 points with distances δ_{ij} ?

$$\mathcal{A} = \mathbb{C}^3, \, \mathcal{H} = \mathbb{C}^3, \, D = \begin{pmatrix} 0 & \delta_{12}^{-1} & \delta_{13}^{-1} \\ \delta_{12}^{-1} & 0 & \delta_{23}^{-1} \\ \delta_{13}^{-1} & \delta_{23}^{-1} & 0 \end{pmatrix} \longrightarrow \text{Does not work at all }!$$

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

2 points separated by a distance
$$\delta$$
. Which spectral triple ?
 $\rightarrow \mathcal{A} = \mathbb{C}^2, \mathcal{H} = \mathbb{C}^2, D = \frac{1}{\delta} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, [D, \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}] = \frac{a(2) - a(1)}{\delta} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

3 points with distances δ_{ij} ?

b

а

С

2

$$\mathcal{A} = \mathbb{C}^{3}, \mathcal{H} = \mathbb{C}^{3}, D = \begin{pmatrix} 0 & \delta_{12}^{-1} & \delta_{13}^{-1} \\ \delta_{12}^{-1} & 0 & \delta_{23}^{-1} \\ \delta_{13}^{-1} & \delta_{23}^{-1} & 0 \end{pmatrix} \longrightarrow \text{Does not work at all }!$$

(b,+)

(c,-)-

С

b

(b,-)

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

2 points separated by a distance
$$\delta$$
. Which spectral triple ?
 $\rightarrow \mathcal{A} = \mathbb{C}^2, \mathcal{H} = \mathbb{C}^2, D = \frac{1}{\delta} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, [D, \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}] = \frac{a(2) - a(1)}{\delta} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

3 points with distances δ_{ij} ?

1

- 2

С

$$\mathcal{A} = \mathbb{C}^{3}, \mathcal{H} = \mathbb{C}^{3}, D = \begin{pmatrix} 0 & \delta_{12}^{-1} & \delta_{13}^{-1} \\ \delta_{12}^{-1} & 0 & \delta_{23}^{-1} \\ \delta_{13}^{-1} & \delta_{23}^{-1} & 0 \end{pmatrix} \longrightarrow \text{Does not work at all }!$$

Solution:
$$\int_{1-c}^{b} \int_{2}^{a} \int_{(b,-)}^{a} \int_{(c,-)-c}^{(b,+)} \int_{(c,-)-c}^{(a,+)} \int_{(a,-)}^{a} \int_{(b,+)\neq (a,+)}^{b+a+=3} (\text{split graph})$$

S

10/38

$$\begin{split} G &= (V, E) \text{ finite graph, } \delta : E \to \mathbb{R}^*_+ \text{ weight function} \\ \tilde{E} &:= E \times \{-;+\}, H = L^2(\tilde{E}) = \mathbb{C}^E \otimes \mathbb{C}^2 + \text{canonical } \langle .,. \rangle. \\ \pi(a)F(e,\pm) &= a(e^{\pm})F(e,\pm) = \bigoplus_{e \in E} \begin{pmatrix} a(e^-) & 0 \\ 0 & a(e^+) \end{pmatrix}. \\ DF(e,\pm) &= \frac{1}{\delta_e}F(e,\mp) = \bigoplus_{e \in E} \frac{1}{\delta_e} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{split}$$

Almost-commutative spectral triples

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Given $S_1 = (A_1, H_1, \ldots)$ and $S_2 = (A_2, H_2, \ldots)$ one can form $S_1 \hat{\otimes} S_2 = (A, H, \ldots)$ where

$$\mathcal{A} = \mathcal{A}_1 \hat{\otimes} \mathcal{A}_2,$$

$$\mathcal{H} = \mathcal{H}_1 \hat{\otimes} \mathcal{H}_2,$$

$$\pi = \pi_1 \hat{\otimes} \pi_2,$$

$$J = J_1 \hat{\otimes} J_2,$$

$$D = D_1 \hat{\otimes} 1 + 1 \hat{\otimes} D_2$$

Almost-commutative spectral triples

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Given $S_1 = (A_1, H_1, \ldots)$ and $S_2 = (A_2, H_2, \ldots)$ one can form $S_1 \hat{\otimes} S_2 = (A, H, \ldots)$ where

 $\mathcal{A} = \mathcal{A}_1 \hat{\otimes} \mathcal{A}_2,$ $\mathcal{H} = \mathcal{H}_1 \hat{\otimes} \mathcal{H}_2,$

 $\blacksquare \quad \pi = \pi_1 \hat{\otimes} \pi_2,$

 $J = J_1 \hat{\otimes} J_2,$

 $\chi = \chi_1 \hat{\otimes} \chi_2,$ $D = D_1 \hat{\otimes} 1 + 1 \hat{\otimes} D_2.$

 \rightarrow If $\mathcal{S}_1 = \operatorname{can}(M_1)$ and $\mathcal{S}_2 = \operatorname{can}(M_2)$, then $\mathcal{S}_1 \hat{\otimes} \mathcal{S}_2 = \operatorname{can}(M_1 \times M_2)$,

ightarrow KO dimensions add up,

 \rightarrow If $S_1 = \operatorname{can}(M_1)$ and S_2 is finite-dimensional, S is called *almost-commutative*.

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

NCG in non-Euclidean

Solving unimodularity

NCG and general covariance

signature

Order 1 condition (C_1) : $[\Omega_D^1, J\pi(\mathcal{A})J^{-1}] = 0$

One can define $d\omega := \sum_{i} [D, a_{i}] [D, b_{i}]$ modulo a "junk" ideal and the curvature $F(\omega) = d\omega + \omega^{2}$.

The Noncommutative Standard Model (1)

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Almost-commutative ST based on can(M, g) and finite dimensional ST $S_F = (\mathcal{A}_F, \mathcal{H}_F, \ldots)$ such that

$$\begin{aligned} \mathcal{A}_{F} &= \mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C}), \\ \mathcal{H}_{F} &= \mathcal{H}_{R} \oplus \mathcal{H}_{L} \oplus \mathcal{H}_{\bar{R}} \oplus \mathcal{H}_{\bar{L}}, H_{\sigma} = \mathbb{C}^{2} \otimes (\mathbb{C} \oplus \mathbb{C}_{\text{color}}^{3}) \otimes \mathbb{C}_{\text{gen}}^{3}, \\ \chi_{F} &= \begin{bmatrix} 1_{R}, -1_{L}, -1_{\bar{R}}, 1_{\bar{L}} \end{bmatrix}, \\ J_{F} &= \begin{pmatrix} 0 & -1_{antipart} \\ 1_{part} & 0 \end{pmatrix} \circ c.c., \\ \pi_{F}(\lambda, q, m) &= \begin{bmatrix} \tilde{q}_{\lambda}, \tilde{q}, \lambda 1_{2} \oplus 1_{2} \otimes m, \lambda 1_{2} \oplus 1_{2} \otimes m \end{bmatrix} \otimes 1_{3}, \text{ where} \\ q_{\lambda} &= \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{*} \end{pmatrix} \text{ and } \tilde{q} = q \oplus q \otimes 1_{3} \simeq q \otimes 1_{4}. \\ D_{F} &= \{ \begin{pmatrix} 0 & Y^{\dagger} & M^{\dagger} & 0 \\ Y & 0 & 0 & 0 \\ M & 0 & 0 & Y^{T} \\ 0 & 0 & Y^{*} & 0 \end{pmatrix}, \text{ where} \\ Y &= \begin{pmatrix} Y_{\nu} & 0 \\ 0 & Y_{e} \end{pmatrix} \oplus \begin{pmatrix} 1_{3} \otimes Y_{u} & 0 \\ 0 & 1_{3} \otimes Y_{d} \end{pmatrix} \text{ and } M = \begin{pmatrix} m_{\nu} & 0 \\ 0 & 0 \end{pmatrix} \oplus 0. \end{aligned}$$

Choice of D_F strongly constrained by: 1) odd, 2) commutes with J, and 3) order 1 condition

The Noncommutative Standard Model (2)

Introduction
Noncommutative geometry in a nutshell
Before we embark
Departure
From NC topology to NC geometry
The canonical triple of a spin manifold
A discrete example
Almost-commutative spectral triples
Noncommutative 1-forms The Noncommutative Standard Model (1)
The Noncommutative Standard Model (2)
Problems and shortcomings
Solving the fermion doubling problem
NCG in non-Euclidean signature
NCG and general covariance

Solving unimodularity

Fermionic fields (elements of $\mathcal{H} = \mathcal{H}_F$ -valued L^2 spinors),

Bosonic fields \leftrightarrow fluctuated Dirac operators $D_{\omega} \leftrightarrow$ NC 1-forms ω .

The Noncommutative Standard Model (2)

Introduction

- Noncommutative geometry in a nutshell
- Before we embark
- Departure
- From NC topology to NC geometry
- The canonical triple of a spin manifold
- A discrete example
- Almost-commutative spectral triples
- Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

- Problems and shortcomings Solving the fermion doubling problem
- NCG in non-Euclidean signature
- NCG and general covariance
- Solving unimodularity

- Fermionic fields (elements of $\mathcal{H} = \mathcal{H}_F$ -valued L^2 spinors),
- Bosonic fields \leftrightarrow fluctuated Dirac operators $D_{\omega} \leftrightarrow$ NC 1-forms ω .

Th:

$$\Omega^1_{D_M \hat{\otimes} 1+1 \hat{\otimes} D_F} = \Omega^1_M \hat{\otimes} \pi(A_F) \oplus \mathcal{C}^\infty(M, \Omega^1_{D_F})$$

The Noncommutative Standard Model (2)

Introduction

- Noncommutative geometry in a nutshell
- Before we embark

Departure

- From NC topology to NC geometry
- The canonical triple of a spin manifold
- A discrete example
- Almost-commutative spectral triples
- Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

- Fermionic fields (elements of $\mathcal{H} = \mathcal{H}_F$ -valued L^2 spinors),
- Bosonic fields \leftrightarrow fluctuated Dirac operators $D_{\omega} \leftrightarrow$ NC 1-forms ω .

Th:

$$\Omega^1_{D_M \hat{\otimes} 1+1 \hat{\otimes} D_F} = \Omega^1_M \hat{\otimes} \pi(A_F) \oplus \mathcal{C}^\infty(M, \Omega^1_{D_F})$$

= gauge bosons \oplus Higgs bosons !
The Noncommutative Standard Model (2)

Introduction

- Noncommutative geometry in a nutshell
- Before we embark

Departure

- From NC topology to NC geometry
- The canonical triple of a spin manifold
- A discrete example
- Almost-commutative spectral triples
- Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

```
NCG in non-Euclidean signature
```

NCG and general covariance

Solving unimodularity

- Fermionic fields (elements of $\mathcal{H} = \mathcal{H}_F$ -valued L^2 spinors),
- Bosonic fields \leftrightarrow fluctuated Dirac operators $D_{\omega} \leftrightarrow$ NC 1-forms ω .

Th:

$$\Omega^1_{D_M \hat{\otimes} 1+1 \hat{\otimes} D_F} = \Omega^1_M \hat{\otimes} \pi(A_F) \oplus \mathcal{C}^\infty(M, \Omega^1_{D_F})$$

= gauge bosons \oplus Higgs bosons !

Fermionic action = $(J\Psi, D_{\omega}\Psi)$

 \rightarrow contains kinetic + minimal coupling + Yukawa + Majorana

The Noncommutative Standard Model (2)

Introduction

- Noncommutative geometry in a nutshell
- Before we embark

Departure

From NC topology to NC geometry

Th:

- The canonical triple of a spin manifold
- A discrete example
- Almost-commutative spectral triples
- Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

- Fermionic fields (elements of $\mathcal{H} = \mathcal{H}_F$ -valued L^2 spinors),
- Bosonic fields \leftrightarrow fluctuated Dirac operators $D_{\omega} \leftrightarrow$ NC 1-forms ω .

$$\Omega^1_{D_M \hat{\otimes} 1 + 1 \hat{\otimes} D_F} = \Omega^1_M \hat{\otimes} \pi(A_F) \oplus \mathcal{C}^\infty(M, \Omega^1_{D_F})$$

= gauge bosons \oplus Higgs bosons !

- Fermionic action = $(J\Psi, D_{\omega}\Psi)$ \rightarrow contains kinetic + minimal coupling + Yukawa + Majorana Bosonic action = $\begin{cases} 1 \text{ Connes-Lott: } \int_M \text{Tr}(F_{\omega}^2), \text{ or} \\ 2 \text{ Spectral action: } \text{Tr}(f(D_{\omega}^2/m^2)) \text{ with } f \approx 1_{[0;1]} \\ \rightarrow \text{ They contain kinetic gauge and Higgs term + Higgs potential.} \\ \rightarrow \text{ They depend on the norm of the mass matrices.} \end{cases}$
 - \rightarrow Less constants than usual, hence makes predictions.

 \rightarrow In particular $g_w = g_Y = g_s$.

 \rightarrow The spectral action also contains Einstein-Hilbert action evaluated at g.

Introduction

Noncommutative geometry in a nutshell

- Before we embark
- Departure
- From NC topology to NC geometry
- The canonical triple of a spin manifold
- A discrete example
- Almost-commutative spectral triples
- Noncommutative 1-forms The Noncommutative
- Standard Model (1) The Noncommutative
- Standard Model (2)

Problems and shortcomings

- Solving the fermion doubling problem
- NCG in non-Euclidean signature
- NCG and general covariance
- Solving unimodularity

Shortcomings:

- 1. It is a classical theory.
- 2. It is a Euclidean theory.

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings

Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Shortcomings:

- 1. It is a classical theory.
- 2. It is a Euclidean theory.

Well-known problems:

1. 4 times too many fermions ("fermion doubling") \rightarrow comes from \mathcal{H}_F needed to represent A_F .

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings

Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Shortcomings:

- 1. It is a classical theory.
- 2. It is a Euclidean theory.

Well-known problems:

- 1. 4 times too many fermions ("fermion doubling") \rightarrow comes from \mathcal{H}_F needed to represent A_F .
- 2. There is an (anomalous) extra U(1)-symmetry ("unimodularity problem") \rightarrow comes from $M_3(\mathbb{C})$.

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings

Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Shortcomings:

- 1. It is a classical theory.
- 2. It is a Euclidean theory.

Well-known problems:

- 1. 4 times too many fermions ("fermion doubling") \rightarrow comes from \mathcal{H}_F needed to represent A_F .
- 2. There is an (anomalous) extra U(1)-symmetry ("unimodularity problem") \rightarrow comes from $M_3(\mathbb{C})$.
- 3. It is experimentally ruled out \rightarrow CL or spectral action + Wick rotation and renormalization predict a Higgs mass 40% too large.

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

- The canonical triple of a spin manifold
- A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings

Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Shortcomings:

- 1. It is a classical theory.
- 2. It is a Euclidean theory.

Well-known problems:

- 1. 4 times too many fermions ("fermion doubling") \rightarrow comes from \mathcal{H}_F needed to represent A_F .
- 2. There is an (anomalous) extra U(1)-symmetry ("unimodularity problem") \rightarrow comes from $M_3(\mathbb{C})$.
- 3. It is experimentally ruled out \rightarrow CL or spectral action + Wick rotation and renormalization predict a Higgs mass 40% too large.

Lesser known/discussed problems:

1. Why real C^* -algebras ?

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings

Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Shortcomings:

- 1. It is a classical theory.
- 2. It is a Euclidean theory.

Well-known problems:

- 1. 4 times too many fermions ("fermion doubling") \rightarrow comes from \mathcal{H}_F needed to represent A_F .
- 2. There is an (anomalous) extra U(1)-symmetry ("unimodularity problem") \rightarrow comes from $M_3(\mathbb{C})$.
- 3. It is experimentally ruled out \rightarrow CL or spectral action + Wick rotation and renormalization predict a Higgs mass 40% too large.

Lesser known/discussed problems:

- 1. Why real C^* -algebras ?
- 2. The massless photon condition.

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings

Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Shortcomings:

- 1. It is a classical theory.
- 2. It is a Euclidean theory.

Well-known problems:

- 1. 4 times too many fermions ("fermion doubling") \rightarrow comes from \mathcal{H}_F needed to represent A_F .
- 2. There is an (anomalous) extra U(1)-symmetry ("unimodularity problem") \rightarrow comes from $M_3(\mathbb{C})$.
- 3. It is experimentally ruled out \rightarrow CL or spectral action + Wick rotation and renormalization predict a Higgs mass 40% too large.

Lesser known/discussed problems:

- 1. Why real C^* -algebras ?
- 2. The massless photon condition.
- 3. One does not recover GR.

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings

Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Shortcomings:

- 1. It is a classical theory.
- 2. It is a Euclidean theory.

Well-known problems:

- 1. 4 times too many fermions ("fermion doubling") \rightarrow comes from \mathcal{H}_F needed to represent A_F .
- 2. There is an (anomalous) extra U(1)-symmetry ("unimodularity problem") \rightarrow comes from $M_3(\mathbb{C})$.
- 3. It is experimentally ruled out \rightarrow CL or spectral action + Wick rotation and renormalization predict a Higgs mass 40% too large.

Lesser known/discussed problems:

- 1. Why real C^* -algebras ?
- 2. The massless photon condition.
- 3. One does not recover GR.
- 4. Is it possible in principle to obtain a general covariant theory from NCG ? Spin structure & Hilbert space structure (spinor metric) depend on g...

Barrett³ proposed that physical fields satisfy Introduction Noncommutative geometry in $J\Psi = \Psi, \qquad \chi\Psi = \Psi$ a nutshell Before we embark (Majorana-Weyl conditions) Departure From NC topology to NC geometry The canonical triple of a spin manifold A discrete example Almost-commutative spectral triples Noncommutative 1-forms The Noncommutative Standard Model (1) The Noncommutative Standard Model (2) Problems and shortcomings Solving the fermion doubling problem NCG in non-Euclidean signature NCG and general covariance Solving unimodularity

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative

Standard Model (2)

Problems and shortcomings

Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Barrett³ proposed that physical fields satisfy

$$J\Psi = \Psi, \qquad \chi\Psi = \Psi$$

(Majorana-Weyl conditions)

requires $J^2 = 1$ and $J\chi = \chi J$ which constrains the total KO-dimension.

Usual see-saw needs a symmetric $M \Rightarrow$ constrains the finite KO-dim.

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings

Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Barrett³ proposed that physical fields satisfy

$$J\Psi = \Psi, \qquad \chi\Psi = \Psi$$

(Majorana-Weyl conditions)

- requires $J^2 = 1$ and $J\chi = \chi J$ which constrains the total KO-dimension.
- Usual see-saw needs a symmetric $M \Rightarrow$ constrains the finite KO-dim.
- Not compatible if M is a Euclidean 4-manifold !

Introduction

Noncommutative geometry in a nutshell

Before we embark

Departure

From NC topology to NC geometry

The canonical triple of a spin manifold

A discrete example

Almost-commutative spectral triples

Noncommutative 1-forms The Noncommutative Standard Model (1)

The Noncommutative Standard Model (2)

Problems and shortcomings Solving the fermion doubling problem

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Barrett³ proposed that physical fields satisfy

$$J\Psi = \Psi, \qquad \chi\Psi = \Psi$$

(Majorana-Weyl conditions)

- requires $J^2 = 1$ and $J\chi = \chi J$ which constrains the total KO-dimension.
- Usual see-saw needs a symmetric $M \Rightarrow$ constrains the finite KO-dim.
- Not compatible if M is a Euclidean 4-manifold !
- Formally) works if M is a Lorentzian 4-manifold.
- Proper treatment needs a non-Euclidean finite part

Constraints on four signs $(J^{\times} = \pm J, \chi^{\times} = \pm \chi)$:

- 1. \mathcal{M} is a Lorentzian four-manifold,
- 2. MW conditions,
- 3. symmetry of M,
- 4. non-vanishing of the fermionic kinetic terms,
- 5. non-vanishing of the Majorana mass term.

There exists a unique choice of signs for the finite part which solves all this⁴ !

³J. W. Barrett, J. Math. Phys., **48** (2007)

⁴N. Bizi, thesis, abs/1812.00038 (2018)

Introduction	
Noncommutative geometry a nutshell	in
NCG in non-Euclidean signature	
Spinorial Yoga	
pre-Krein vs Krein	
New signs	

NCG and general covariance

Solving unimodularity

NCG in non-Euclidean signature

Introduction

Noncommutative geometry in a nutshell

NCG in non-Euclidean signature

Spinorial Yoga

pre-Krein vs Krein

New signs

Indefinite spectral triples and the SM

NCG and general covariance

Solving unimodularity

Convention: Clifford algebra of (V,g) generated by V with relations vv' + v'v = 2g(v,v')

Canonical antiautomorphism: $(v_1 \dots v_k)^T = v_k \dots v_1$.

Introduction
Noncommutative geometry in
a nutshell
NCG in non-Euclidean
signature
Spinorial Yoga
pre-Krein vs Krein
New signs
Indefinite spectral triples
and the SM
NCG and general covariance
Solving unimodularity

Introduction
Noncommutative geometry in
a nutshell
NCG in non-Euclidean
signature
Spinorial Yoga
pre-Krein vs Krein
New signs
Indefinite spectral triples
and the SM
NCG and general covariance
Solving unimodularity

Th: $\exists H_S$ unique up to scalar multiple such that all $v \in V$ are selfajoint

Introduction
Noncommutative geometry in
a nutshell
NCG in non-Euclidean
signature
Spinorial Yoga
pre-Krein vs Krein
New signs
Indefinite spectral triples
and the SM
NCG and general covariance
Solving unimodularity

Th: $\exists H_S$ unique up to scalar multiple such that all $v \in V$ are selfajoint g positive definite $\Leftrightarrow H_S$ definite, g non-positive definite $\Leftrightarrow H_S$ neutral

Introduction
Noncommutative geometry in
a nutshell
NCG in non-Euclidean
signature
Spinorial Yoga
pre-Krein vs Krein
New signs
Indefinite spectral triples
and the SM
NCG and general covariance
Solving unimodularity

Th: $\exists H_S$ unique up to scalar multiple such that all $v \in V$ are selfajoint g positive definite $\Leftrightarrow H_S$ definite, g non-positive definite $\Leftrightarrow H_S$ neutral g anti-Lorentzian $\Leftrightarrow \exists v \in V, H_S(., v \cdot .)$ is definite and in this case v is timelike

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature Spinorial Yoga pre-Krein vs Krein New signs Indefinite spectral triples and the SM

NCG and general covariance

Solving unimodularity

Let \mathcal{K} be equipped with (.,.) non-degenerate. A *fundamental symmetry* is an operator η s.t. $\langle .,. \rangle_{\eta} := (.,\eta.)$ is positive definite and $\eta^2 = 1$.

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature

Spinorial Yoga

pre-Krein vs Krein

New signs

Indefinite spectral triples and the SM

NCG and general covariance

Solving unimodularity

Let \mathcal{K} be equipped with (.,.) non-degenerate. A *fundamental symmetry* is an operator η s.t. $\langle .,. \rangle_{\eta} := (.,\eta.)$ is positive definite and $\eta^2 = 1$.

Th: If $\exists \eta$ s.t. $(\mathcal{K}, \langle ., . \rangle)_{\eta}$ is a Hilbert space, then it is the case for all η and the norms are all equivalent. \mathcal{K} is then called a *Krein space*.

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature Spinorial Yoga pre-Krein vs Krein New signs Indefinite spectral triples and the SM

NCG and general covariance

Solving unimodularity

Let \mathcal{K} be equipped with (.,.) non-degenerate. A *fundamental symmetry* is an operator η s.t. $\langle .,. \rangle_{\eta} := (., \eta.)$ is positive definite and $\eta^2 = 1$.

Th: If $\exists \eta$ s.t. $(\mathcal{K}, \langle ., . \rangle)_{\eta}$ is a Hilbert space, then it is the case for all η and the norms are all equivalent. \mathcal{K} is then called a *Krein space*.

Let (M, g) be a spin semi-Riemannian manifold.

I On compactly supported spinor fields, one defines $(\Pi(\Phi) - \int H(\Pi(\Phi)) dx) dx$

$$(\Psi, \Phi) = \int_M H_x(\Psi_x, \Phi_x) \operatorname{vol}_g \to \operatorname{pre-Krein} \operatorname{space}$$

Given a future-directed timelike vector fields v (congruence of observers), one defines the scalar product $\langle \Psi, \Phi \rangle_v = \int_M H_x(\Psi_x, v_x \cdot \Phi_x) \operatorname{vol}_g$.

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature Spinorial Yoga pre-Krein vs Krein New signs Indefinite spectral triples and the SM NCG and general covariance

Solving unimodularity

Let \mathcal{K} be equipped with (.,.) non-degenerate. A *fundamental symmetry* is an operator η s.t. $\langle .,. \rangle_{\eta} := (.,\eta.)$ is positive definite and $\eta^2 = 1$.

Th: If $\exists \eta$ s.t. $(\mathcal{K}, \langle ., . \rangle)_{\eta}$ is a Hilbert space, then it is the case for all η and the norms are all equivalent. \mathcal{K} is then called a *Krein space*.

Let (M,g) be a spin semi-Riemannian manifold.

- On compactly supported spinor fields, one defines $(\Psi, \Phi) = \int_M H_x(\Psi_x, \Phi_x) \operatorname{vol}_q \to \text{pre-Krein space}$
- Given a future-directed timelike vector fields v (congruence of observers), one defines the scalar product $\langle \Psi, \Phi \rangle_v = \int_M H_x(\Psi_x, v_x \cdot \Phi_x) \operatorname{vol}_g$.

Th: v_1, v_2 defines equivalent norms iff the hyperbolic angle $(v_1(x), v_2(x))$ is bounded on M.

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature Spinorial Yoga pre-Krein vs Krein New signs Indefinite spectral triples and the SM

NCG and general covariance

Solving unimodularity

Let \mathcal{K} be equipped with (.,.) non-degenerate. A *fundamental symmetry* is an operator η s.t. $\langle .,. \rangle_{\eta} := (.,\eta.)$ is positive definite and $\eta^2 = 1$.

Th: If $\exists \eta$ s.t. $(\mathcal{K}, \langle ., . \rangle)_{\eta}$ is a Hilbert space, then it is the case for all η and the norms are all equivalent. \mathcal{K} is then called a *Krein space*.

Let (M,g) be a spin semi-Riemannian manifold.

- On compactly supported spinor fields, one defines $(\Psi, \Phi) = \int_M H_x(\Psi_x, \Phi_x) \operatorname{vol}_q \to \text{pre-Krein space}$
- Given a future-directed timelike vector fields v (congruence of observers), one defines the scalar product $\langle \Psi, \Phi \rangle_v = \int_M H_x(\Psi_x, v_x \cdot \Phi_x) \operatorname{vol}_g$.

Th: v_1, v_2 defines equivalent norms iff the hyperbolic angle $(v_1(x), v_2(x))$ is bounded on M.

Physical interpretation: the Doppler shift between v₁ and v₂ is bounded.
 Generalization to all signatures using semi-Riemannian angle between maximal negative definite subspaces⁵.

⁵ FB, N. Bizi, *Doppler shift in semi-Riemannian signature and the non-uniqueness of the Krein space of spinors*, J. Math. Phys. **60** (2019)

New signs

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature Spinorial Yoga pre-Krein vs Krein New signs

Indefinite spectral triples and the SM

```
NCG and general covariance
```

Solving unimodularity

In indefinite signature, $\langle ., . \rangle \to (., .), \dagger \to \times$. $J^{\times}J$ and $\chi^{\times}\chi$ can be negative: two new signs : $J^{\times}J = \epsilon \kappa, \ \chi^{\times}\chi = \epsilon'' \kappa''$

 $\epsilon,\epsilon^{\prime\prime},\kappa,\kappa^{\prime\prime}$ depend on two integers [8]:

ν	0	2	4	6	μ	0	2	4	6
ϵ	1	-1	-1	1	κ	1	-1	-1	1
ϵ''	1	-1	1	-1	κ''	1	-1	1	-1

For a manifold of signature (p,q), $\mu = p + q$ [8], $\nu = p - q$ [8].

In any case, μ, ν are additive wrt $\hat{\otimes}$.

For more on this: N. Bizi, C. Brouder, FB, J. Math. Phys. 59, 062303 (2018)

Introduction		An	15
Noncommutative geometry in a nutshell		4	1
NCG in non-Euclidean		1.	/
signature		2.	6
Spinorial Yoga	•		
pre-Krein vs Krein	•		
New signs	D D		
Indefinite spectral triples and the SM			
NCG and general covariance			
Solving unimodularity			

An IST is a ST *except*:

- . \mathcal{K} pre-Krein space,
- 2. additional signs κ, κ'' defing the metric dim mod 8

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
Spinorial Yoga
pre-Krein vs Krein
New signs
Indefinite spectral triples

ples and the SM

NCG and general covariance

Solving unimodularity

An IST is a ST *except*:

- 1. \mathcal{K} pre-Krein space,
- 2. additional signs κ, κ'' defing the metric dim mod 8

The SM IST is the same as the SM ST *except*:

1. \mathcal{M} is a Lorentz 4-manifold, 2. \mathcal{K}_F is equipped with $(\psi, \phi) := \psi^{\dagger} \chi_F \phi$, 3. $D_F = \left\{ \begin{pmatrix} 0 & -Y^{\dagger} & -M^{\dagger} & 0 \\ Y & 0 & 0 & 0 \\ M & 0 & 0 & -Y^T \\ 0 & 0 & Y^* & 0 \end{pmatrix} \right\}$

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
Spinorial Yoga
pre-Krein vs Krein
New signs
Indefinite spectral triples and the SM

NCG and general covariance

Solving unimodularity

An IST is a ST *except*:

- 1. \mathcal{K} pre-Krein space,
- 2. additional signs κ, κ'' define the metric dim mod 8

The SM IST is the same as the SM ST except:

- 1. \mathcal{M} is a Lorentz 4-manifold,
- 2. \mathcal{K}_F is equipped with $(\psi, \phi) := \psi^{\dagger} \chi_F \phi$,

3.
$$D_F = \left\{ \begin{pmatrix} 0 & -Y' & -M' & 0 \\ Y & 0 & 0 & 0 \\ M & 0 & 0 & -Y^T \\ 0 & 0 & Y^* & 0 \end{pmatrix} \right\},$$

The CL action is not guaranteed to be well-defined (because of a projector),

... but it works for the SM IST !

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
Spinorial Yoga
pre-Krein vs Krein
New signs
Indefinite spectral triples

NCG and general covariance

Solving unimodularity

and the SM

An IST is a ST except:

- 1. \mathcal{K} pre-Krein space,
- 2. additional signs κ, κ'' defing the metric dim mod 8

The SM IST is the same as the SM ST except:

- 1. \mathcal{M} is a Lorentz 4-manifold,
- 2. \mathcal{K}_F is equipped with $(\psi, \phi) := \psi^{\dagger} \chi_F \phi$,

3.
$$D_F = \left\{ \begin{pmatrix} 0 & -Y' & -M' & 0 \\ Y & 0 & 0 & 0 \\ M & 0 & 0 & -Y^T \\ 0 & 0 & Y^* & 0 \end{pmatrix} \right\}$$

The CL action is not guaranteed to be well-defined (because of a projector),

- I ... but it works for the SM IST !
- ... but it predicts a Higgs mass of 170 GeV

(FB and C. Brouder, Phys. Rev. D 103, 035003 (2021)).

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
Spinorial Yoga
pre-Krein vs Krein
New signs
Indefinite spectral triples

NCG and general covariance

Solving unimodularity

and the SM

An IST is a ST *except*:

- 1. \mathcal{K} pre-Krein space,
- 2. additional signs κ, κ'' defing the metric dim mod 8

The SM IST is the same as the SM ST except:

- 1. \mathcal{M} is a Lorentz 4-manifold,
- 2. \mathcal{K}_F is equipped with $(\psi, \phi) := \psi^{\dagger} \chi_F \phi$,

3.
$$D_F = \left\{ \begin{pmatrix} 0 & -Y' & -M' & 0 \\ Y & 0 & 0 & 0 \\ M & 0 & 0 & -Y^T \\ 0 & 0 & Y^* & 0 \end{pmatrix} \right\},$$

The CL action is not guaranteed to be well-defined (because of a projector),

- ... but it works for the SM IST !
- ... but it predicts a Higgs mass of 170 GeV

(FB and C. Brouder, Phys. Rev. D 103, 035003 (2021)).

 \Rightarrow a consistent and predictive NCG model exists which unifies gauge and Higgs bosons, contains the see-saw mechanism (except if M = 0), has the right number of fermions and the correct physical signature (but it has an extra-gauge field and makes an incorrect prediction) 21/38

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
NCG and general covariance
Does NCG really include gravity ?
Testing pre-ST
Another clue
Algebraic backgrounds
The case of a finite graph
The Standard Model background
The $U(1)_{B-L}$ -extension
Solving unimodularity

NCG and general covariance

Does NCG really include gravity ?

Introduction	
Noncommutative geometry in a nutshell	
NCG in non-Euclidean signature	• • •
NCG and general covariance	0 0 0
Does NCG really include gravity ?	• • •
Testing pre-ST	•
Another clue	•
Algebraic backgrounds	•
The case of a finite graph	0 0
The Standard Model background	D D D D D D
The $U(1)_{B-L}$ -extension	
Solving unimodularity	•

- The spectral action contains the EH action, but...
- the configuration space $\{D_{\omega}|\omega^{ imes}=\omega\}$ defines a unique g on M !

Does NCG really include gravity ?

Introduction	
Noncommutative geometry in a nutshell	
NCG in non-Euclidean signature	
NCG and general covariance	
Does NCG really include gravity ?	
Testing pre-ST	
Another clue	
Algebraic backgrounds	
The case of a finite graph)))
The Standard Model background	
The $U(1)_{B-L}$ -extension	
Solving unimodularity	

- The spectral action contains the EH action, but...
- the configuration space $\{D_{\omega} | \omega^{\times} = \omega\}$ defines a unique g on M !

Natural idea: define

- 1. a pre-spectral triple T = a ST without Dirac op.,
- 2. the config space $C_{\mathcal{T}} = \{D | (\mathcal{T}, D) = ST\}.$

Does NCG really include gravity ?

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature

NCG and general covariance Does NCG really include

gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model background

The $U(1)_{B-L}$ -extension

Solving unimodularity

- The spectral action contains the EH action, but...
- the configuration space $\{D_{\omega} | \omega^{\times} = \omega\}$ defines a unique g on M !

Natural idea: define

- 1. a pre-spectral triple T = a ST without Dirac op.,
- 2. the config space $C_{\mathcal{T}} = \{D | (\mathcal{T}, D) = ST\}.$

Automorphisms:

1. Aut
$$(\mathcal{T}) = \{ U | UU^{\times} = 1, U\pi(\mathcal{A})U^{-1} = \pi(\mathcal{A}), U\chi = \chi U, UJ = JU \},\$$

2.
$$\operatorname{Aut}(\mathcal{T}, D) = \{ U \in \operatorname{Aut}(\mathcal{T}) | UD = DU \}.$$

If π faithful, we have a morphism $\alpha : Aut(\mathcal{T}) \to Aut(\mathcal{A})$ Let

- 1. $\ker(\alpha) = \operatorname{Vert}(\mathcal{T}),$
- 2. $\operatorname{Im}(\alpha) = \operatorname{Hor}\mathcal{T}$.

If α has a section, then $Aut(\mathcal{T}) = Hor(T) \ltimes Vert(T)$. Let's test the idea...
Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature NCG and general covariance

Does NCG really include gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model

background

The $U(1)_{B-L}$ -extension

Solving unimodularity

Consider a *parallelizable* manifold, and (for n = 4):

- 1. A trivial bundle $M \times S$, $S = \mathbb{C}^4$,
- 2. gamma matrices $\gamma_a \in \operatorname{End}(S)$ (in Dirac or Weyl representation),
- 3. $\chi = \gamma_5$,
- 4. $J = \gamma_2 \circ c.c$,
- 5. spinor metric $H_S(\psi, \psi') = \psi^{\dagger} \gamma_0 \psi'$.

Introduction
Noncommutative geometry in
a nutshell
NCG in non-Euclidean
signature

NCG and general covariance

Does NCG really include gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model background

The $U(1)_{B-I}$ -extension

Solving unimodularity

Consider a *parallelizable* manifold, and (for n = 4):

- 1. A trivial bundle $M \times S$, $S = \mathbb{C}^4$,
- 2. gamma matrices $\gamma_a \in \text{End}(S)$ (in Dirac or Weyl representation),
- 3. $\chi = \gamma_5$,
- 4. $J = \gamma_2 \circ c.c$,

5. spinor metric
$$H_S(\psi,\psi')=\psi^\dagger\gamma_0\psi'.$$

Each tetrad $e = (e_a)$ defines 1) a metric g_e such that e is pseudo-orthonormal, 2) a g_e -spin structure with rep $\rho_e : \mathbb{C}\ell TM \to \operatorname{End}(S)$ s.t $\rho_e(e_a) = \gamma_a$, and 3) a Dirac operator $D(e) = i \sum (\pm \gamma_a) \nabla_{e_a}^e$.

Introduction
Noncommutative geometry in
a nutshell
NCG in non-Euclidean
signature

NCG and general covariance

Does NCG really include gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model background

The $U(1)_{B-L}$ -extension

Solving unimodularity

Consider a *parallelizable* manifold, and (for n = 4):

- 1. A trivial bundle $M \times S$, $S = \mathbb{C}^4$,
- 2. gamma matrices $\gamma_a \in \operatorname{End}(S)$ (in Dirac or Weyl representation),
- 3. $\chi = \gamma_5$,
- 4. $J = \gamma_2 \circ c.c$,

5. spinor metric
$$H_S(\psi,\psi')=\psi^\dagger\gamma_0\psi'.$$

Each tetrad $e = (e_a)$ defines 1) a metric g_e such that e is pseudo-orthonormal, 2) a g_e -spin structure with rep $\rho_e : \mathbb{C}\ell TM \to \mathrm{End}(S)$ s.t $\rho_e(e_a) = \gamma_a$, and 3) a Dirac operator $D(e) = i \sum (\pm \gamma_a) \nabla_{e_a}^e$. Symmetry group of GR := $G = \mathrm{Diff}(M) \ltimes \mathrm{Spin}(1, n - 1)$. Then

1. $\operatorname{Hor}(\mathcal{T}) = \operatorname{Diff}(M)$ for all n, 2. $\operatorname{Aut}(\mathcal{T}) \supset G$ for all n, with = iff n < 6.

Let $\Gamma = \text{Span}(\gamma_a | a = 0, \dots, 3)$. Then:

1. $\Omega^1_{D(e)} := \Omega^1$ is independent of e and is the space of Γ -valued fields.

2. This space is invariant under Diff(M) and Spin(1, n - 1).

Introduction
Noncommutative geometry in
a nutshell
NCG in non-Euclidean signature

NCG and general covariance

Does NCG really include gravity ?

```
Testing pre-ST
```

Another clue

```
Algebraic backgrounds
```

The case of a finite graph

The Standard Model background

```
The U(1)_{B-L} -extension
```

Solving unimodularity

Consider a *parallelizable* manifold, and (for n = 4):

- 1. A trivial bundle $M \times S$, $S = \mathbb{C}^4$,
- 2. gamma matrices $\gamma_a \in \operatorname{End}(S)$ (in Dirac or Weyl representation),
- 3. $\chi = \gamma_5$,
- 4. $J = \gamma_2 \circ c.c$,

5. spinor metric
$$H_S(\psi,\psi')=\psi^\dagger\gamma_0\psi'.$$

Each tetrad $e = (e_a)$ defines 1) a metric g_e such that e is pseudo-orthonormal, 2) a g_e -spin structure with rep $\rho_e : \mathbb{C}\ell TM \to \mathrm{End}(S)$ s.t $\rho_e(e_a) = \gamma_a$, and 3) a Dirac operator $D(e) = i \sum (\pm \gamma_a) \nabla_{e_a}^e$. Symmetry group of GR := $G = \mathrm{Diff}(M) \ltimes \mathrm{Spin}(1, n - 1)$. Then

1. $\operatorname{Hor}(\mathcal{T}) = \operatorname{Diff}(M)$ for all n, 2. $\operatorname{Aut}(\mathcal{T}) \supset G$ for all n, with = iff n < 6.

Let $\Gamma = \text{Span}(\gamma_a | a = 0, \dots, 3)$. Then:

1. $\Omega^1_{D(e)} := \Omega^1$ is independent of e and is the space of Γ -valued fields.

2. This space is invariant under Diff(M) and Spin(1, n - 1).

 $\Rightarrow \Omega^1$ should be a background structure

Another clue

Introduction	The
Noncommutative geometry in a nutshell	
NCG in non-Euclidean signature	1. 2.
NCG and general covariance	3
Does NCG really include gravity ?	0.
Testing pre-ST	
Another clue	
Algebraic backgrounds	
The case of a finite graph The Standard Model background The $U(1)_{B-L}$ -extension	
Solving unimodularity	

The Clifford, spin-c and spin group are defined by

1.
$$\Gamma(V,g) = \{g \in \mathbb{C}l(V,g) | \operatorname{Ad}_g(V^{\mathbb{C}}) = V^{\mathbb{C}}\},\$$

2. $\operatorname{Spin}^c(V,g) = \{g \in \Gamma(V,g) | \chi g = g\chi, gg^{\times} = \pm 1\},\$
3. $\operatorname{Spin}(V,g) = \{g \in \operatorname{Spin}^c | c(g) = g\}.\$

Another clue

Introduction	The C		
Noncommutative geometry in a nutshell			
NCG in non-Euclidean signature		1. 2.	1 S
NCG and general covariance		З	S
Does NCG really include gravity ?		0.	D
Testing pre-ST			
Another clue			
Algebraic backgrounds			
The case of a finite graph The Standard Model background The $U(1)_{B-L}$ -extension			
Solving unimodularity			

The Clifford, spin-c and spin group are defined by

1.
$$\Gamma(V,g) = \{g \in \mathbb{C}l(V,g) | \operatorname{Ad}_g(V^{\mathbb{C}}) = V^{\mathbb{C}}\},\$$

2. $\operatorname{Spin}^c(V,g) = \{g \in \Gamma(V,g) | \chi g = g\chi, gg^{\times} = \pm 1\},\$
3. $\operatorname{Spin}(V,g) = \{g \in \operatorname{Spin}^c | c(g) = g\}.\$

The image of $T^{\ast}M$ under Clifford multiplication is Ω^{1} !

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
NCG and general covariance
Does NCG really include gravity ?
Testing pre-ST
Another clue
Algebraic backgrounds
The case of a finite graph
The Standard Model background
The $U(1)_{B-L}$ -extension
Solving unimodularity

- An Algebraic Background \mathcal{B} is a pair (\mathcal{T}, Ω^1) where \mathcal{T} is a pre-ST and Ω^1 is an odd bimodule $\subset \operatorname{End}(\mathcal{K})$.
- A compatible Dirac operator on \mathcal{B} is an operator D such that (\mathcal{T}, D) is a ST and $\Omega_D^1 \subset \Omega^1$. (It is *regular* if $\Omega_D^1 = \Omega^1$.)
- An automorphism of \mathcal{B} is a Krein unitary U which commutes with χ and J and stabilizes \mathcal{A} and Ω^1 .

Introduction	
Noncommutative geometry in a nutshell	
NCG in non-Euclidean signature	
NCG and general covariance	
Does NCG really include gravity ?	
Testing pre-ST	
Another clue	
Algebraic backgrounds	
The case of a finite graph The Standard Model background The	
$U(1)_B - L$ -extension	

- An Algebraic Background \mathcal{B} is a pair (\mathcal{T}, Ω^1) where \mathcal{T} is a pre-ST and Ω^1 is an odd bimodule $\subset \operatorname{End}(\mathcal{K})$.
- A compatible Dirac operator on \mathcal{B} is an operator D such that (\mathcal{T}, D) is a ST and $\Omega_D^1 \subset \Omega^1$. (It is *regular* if $\Omega_D^1 = \Omega^1$.)
- An automorphism of \mathcal{B} is a Krein unitary U which commutes with χ and J and stabilizes \mathcal{A} and Ω^1 .

Let $\mathcal{B}(M)$ be the canonical background of a parallelizable semi-riemannian manifold. Then the automorphism group of $\mathcal{B}(M)$ is:

 $\operatorname{Aut}(\mathcal{B}(M)) = \operatorname{Diff}(M) \ltimes \operatorname{Spin}(p,q) \text{ for all } p,q$

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
NCG and general covariance
Does NCG really include gravity ?
Testing pre-ST
Another clue

```
Algebraic backgrounds
```

```
The case of a finite graph
The Standard Model
```

background

```
The U(1)_{B-L} -extension
```

```
Solving unimodularity
```

An Algebraic Background \mathcal{B} is a pair (\mathcal{T}, Ω^1) where \mathcal{T} is a pre-ST and Ω^1 is an odd bimodule $\subset \operatorname{End}(\mathcal{K})$.

• A compatible Dirac operator on \mathcal{B} is an operator D such that (\mathcal{T}, D) is a ST and $\Omega_D^1 \subset \Omega^1$. (It is *regular* if $\Omega_D^1 = \Omega^1$.)

An automorphism of \mathcal{B} is a Krein unitary U which commutes with χ and J and stabilizes \mathcal{A} and Ω^1 .

Let $\mathcal{B}(M)$ be the canonical background of a parallelizable semi-riemannian manifold. Then the automorphism group of $\mathcal{B}(M)$ is:

```
\operatorname{Aut}(\mathcal{B}(M)) = \operatorname{Diff}(M) \ltimes \operatorname{Spin}(p,q) \text{ for all } p,q
```

The regular Dirac operators on $\mathcal{B}(M)$ are

$$D = S_r D(r \cdot e_0) S_r^{-1} + \zeta$$

r is a field of invertible matrices: acts on tetrads e → r · e,
S_r ∈ End(K) is defined by Ψ → |det r|^{-1/2}Ψ,
D(r · e₀) = canonical Dirac operator defined by r · e₀,
(ζΨ)_x = ζ_xΨ_x, s.t. ζ_x[×] = ζ_x, [ζ, J] = {ζ, χ} = 0.

 \Rightarrow There are additional *centralizing fields*

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
NCG and general covariance
Does NCG really include gravity ?
Testing pre-ST
Another clue

```
Algebraic backgrounds
```

```
The case of a finite graph
The Standard Model
```

```
background
```

```
The U(1)_{B-L} -extension
```

```
Solving unimodularity
```

An Algebraic Background \mathcal{B} is a pair (\mathcal{T}, Ω^1) where \mathcal{T} is a pre-ST and Ω^1 is an odd bimodule $\subset \operatorname{End}(\mathcal{K})$.

• A compatible Dirac operator on \mathcal{B} is an operator D such that (\mathcal{T}, D) is a ST and $\Omega_D^1 \subset \Omega^1$. (It is *regular* if $\Omega_D^1 = \Omega^1$.)

An automorphism of \mathcal{B} is a Krein unitary U which commutes with χ and J and stabilizes \mathcal{A} and Ω^1 .

Let $\mathcal{B}(M)$ be the canonical background of a parallelizable semi-riemannian manifold. Then the automorphism group of $\mathcal{B}(M)$ is:

```
\operatorname{Aut}(\mathcal{B}(M)) = \operatorname{Diff}(M) \ltimes \operatorname{Spin}(p,q) \text{ for all } p,q
```

The regular Dirac operators on $\mathcal{B}(M)$ are

$$D = S_r D(r \cdot e_0) S_r^{-1} + \zeta$$

r is a field of invertible matrices: acts on tetrads e → r · e,
S_r ∈ End(K) is defined by Ψ → |det r|^{-1/2}Ψ,
D(r · e₀) = canonical Dirac operator defined by r · e₀,
(ζΨ)_x = ζ_xΨ_x, s.t. ζ_x[×] = ζ_x, [ζ, J] = {ζ, χ} = 0.

 \Rightarrow There are additional *centralizing fields* Separately invariant under automorphisms \Rightarrow can be removed.

The case of a finite graph

The case of a finite graph

Introduction 1 Noncommutative geometry in a nutshell NCG in non-Euclidean signature ľ NCG and general covariance Does NCG really include gravity ? Testing pre-ST Another clue Algebraic backgrounds The case of a finite graph The Standard Model background The $U(1)_{B-L}$ -extension Solving unimodularity

Introduction Noncommutative geometry in

a nutshell NCG in non-Euclidean

signature

NCG and general covariance

Does NCG really include gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model background

The $U(1)_{B-L}$ -extension

Solving unimodularity

Introduction Noncommutative geometry in a nutshell

NCG in non-Euclidean signature

NCG and general covariance

Does NCG really include gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model background

The $U(1)_{B-L}$ -extension

Solving unimodularity

Th: If $\pi_1(M) = \{1\}$, Y_0 is invertible and Y_{ν}, Y_e (resp. Y_u, Y_d) have no common eigenvector, then $Aut(\mathcal{B}_{SM})$ is generated by

1. diffeo-spino-morphisms $U_{ heta}\otimes 1$, $U_{\Sigma}\otimes 1$ coming from the base manifold,

Introduction Noncommutative geometry in a nutshell

NCG in non-Euclidean signature

NCG and general covariance

Does NCG really include gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model background

The $U(1)_{B-L}$ -extension

Solving unimodularity

Th: If $\pi_1(M) = \{1\}$, Y_0 is invertible and Y_{ν}, Y_e (resp. Y_u, Y_d) have no common eigenvector, then $Aut(\mathcal{B}_{SM})$ is generated by

1. diffeo-spino-morphisms $U_{\theta} \otimes 1$, $U_{\Sigma} \otimes 1$ coming from the base manifold, 2. $\Upsilon(U(\mathcal{A}))$,

Noncommutative geometry in a nutshell

NCG in non-Euclidean signature

NCG and general covariance

Does NCG really include gravity ?

Testing pre-ST

Introduction

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model background

The $U(1)_{B-L}$ -extension

Solving unimodularity

Th: If $\pi_1(M) = \{1\}$, Y_0 is invertible and Y_{ν}, Y_e (resp. Y_u, Y_d) have no common eigenvector, then $Aut(\mathcal{B}_{SM})$ is generated by

1. diffeo-spino-morphisms $U_ heta \otimes 1$, $U_\Sigma \otimes 1$ coming from the base manifold,

- 2. $\Upsilon(U(\mathcal{A}))$,
- 3. local B L-transformations $1 \otimes g_{B-L}(t)$ where $g_{B-L}(t) = [A(t), A(t), A(t)^*, A(t)^*] \otimes 1_3$, $A(t) = e^{-it} 1_2 \oplus e^{\frac{it}{3}} 1_2 \otimes 1_3$

Introduction Noncommutative geometry in a nutshell

NCG in non-Euclidean signature

NCG and general covariance

Does NCG really include gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model background

The $U(1)_{B-L}$ -extension

Solving unimodularity

Th: If $\pi_1(M) = \{1\}$, Y_0 is invertible and Y_{ν}, Y_e (resp. Y_u, Y_d) have no common eigenvector, then $Aut(\mathcal{B}_{SM})$ is generated by

1. diffeo-spino-morphisms $U_{ heta}\otimes 1, U_{\Sigma}\otimes 1$ coming from the base manifold,

- 2. $\Upsilon(U(\mathcal{A})),$
- 3. local B L-transformations $1 \otimes g_{B-L}(t)$ where $g_{B-L}(t) = [A(t), A(t), A(t)^*, A(t)^*] \otimes 1_3, A(t) = e^{-it} 1_2 \oplus e^{\frac{it}{3}} 1_2 \otimes 1_3$

 \Rightarrow AB formalism applied to SM is yelling at us that we need another U(1)-gauge field !

e •	
	Just replace \mathcal{A}_F by $\mathcal{A}_F^{ ext{ext}}=\mathbb{C}\oplus\mathcal{A}_F=\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{H}\oplus M_3(\mathbb{C})$, with
nutshell	
ICG in non-Euclidean ignature	$\pi_F^{\text{ext}}(\lambda,\mu,q,m) = [\tilde{q}_{\lambda},\tilde{q},\mu 1_2 \oplus 1_2 \otimes m,\mu 1_2 \oplus 1_2 \otimes m] \otimes$
ICG and general covariance	
Does NCG really include gravity ?	
Testing pre-ST	
Another clue	
Algebraic backgrounds	
The case of a finite graph	
The Standard Model background	
The $U(1)_{B-L}$ -extension	
Solving unimodularity	
•	
•	

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature

NCG and general covariance

Does NCG really include gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model background

The $U(1)_{B-L}$ -extension

Solving unimodularity

Just replace \mathcal{A}_F by $\mathcal{A}_F^{\mathrm{ext}} = \mathbb{C} \oplus \mathcal{A}_F = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$, with

 $\pi_F^{\text{ext}}(\lambda,\mu,q,m) = [\tilde{q}_{\lambda},\tilde{q},\mu \mathbf{1}_2 \oplus \mathbf{1}_2 \otimes m,\mu \mathbf{1}_2 \oplus \mathbf{1}_2 \otimes m] \otimes \mathbf{1}_3$

and
$$\Omega_F^1$$
 by

$$(\Omega_F^1)^{\text{ext}} \ni \begin{pmatrix} 0 & Y_0^{\dagger} \tilde{q}_1 & z_1 p_{\nu} \otimes M_0^{\dagger} & 0 \\ \tilde{q}_2 Y_0 & 0 & 0 & 0 \\ z_2 p_{\nu} \otimes M_0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, z_1, z_2 \in \mathbb{C}, q_1, q_2 \in \mathbb{H}$$

Only satisfies *weak* order 1 condition.

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature

NCG and general covariance

Does NCG really include gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model background

The $U(1)_{B-L}$ -extension

Solving unimodularity

Just replace \mathcal{A}_F by $\mathcal{A}_F^{\mathrm{ext}} = \mathbb{C} \oplus \mathcal{A}_F = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$, with

 $\pi_F^{\text{ext}}(\lambda,\mu,q,m) = [\tilde{q}_\lambda,\tilde{q},\mu \mathbf{1}_2 \oplus \mathbf{1}_2 \otimes m,\mu \mathbf{1}_2 \oplus \mathbf{1}_2 \otimes m] \otimes \mathbf{1}_3$

and
$$\Omega_F^1$$
 by

$$(\Omega_F^1)^{\text{ext}} \ni \begin{pmatrix} 0 & Y_0^{\dagger} \tilde{q}_1 & z_1 p_{\nu} \otimes M_0^{\dagger} & 0 \\ \tilde{q}_2 Y_0 & 0 & 0 & 0 \\ z_2 p_{\nu} \otimes M_0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, z_1, z_2 \in \mathbb{C}, q_1, q_2 \in \mathbb{H}$$

I Only satisfies *weak* order 1 condition.

• The compatible finite Dirac are $\Phi(q) + \Phi(q)^o + \sigma(zM_0)$.

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature

NCG and general covariance

Does NCG really include gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model background

The $U(1)_{B-L}$ -extension

Solving unimodularity

Just replace \mathcal{A}_F by $\mathcal{A}_F^{\mathrm{ext}} = \mathbb{C} \oplus \mathcal{A}_F = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$, with

 $\pi_F^{\text{ext}}(\lambda,\mu,q,m) = [\tilde{q}_{\lambda},\tilde{q},\mu \mathbf{1}_2 \oplus \mathbf{1}_2 \otimes m,\mu \mathbf{1}_2 \oplus \mathbf{1}_2 \otimes m] \otimes \mathbf{1}_3$

and
$$\Omega_F^1$$
 by

$$(\Omega_F^1)^{\text{ext}} \ni \begin{pmatrix} 0 & Y_0^{\dagger} \tilde{q}_1 & z_1 p_{\nu} \otimes M_0^{\dagger} & 0 \\ \tilde{q}_2 Y_0 & 0 & 0 & 0 \\ z_2 p_{\nu} \otimes M_0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, z_1, z_2 \in \mathbb{C}, q_1, q_2 \in \mathbb{H}$$

Only satisfies *weak* order 1 condition.

• The compatible finite Dirac are $\Phi(q) + \Phi(q)^o + \sigma(zM_0)$.

 $\mathcal{B}_{SM}^{ext} = \mathcal{B}(M) \hat{\otimes} \mathcal{B}_F^{ext}$ has the same automorphism group as \mathcal{B}_{SM} .

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature

NCG and general covariance

Does NCG really include gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model background

The $U(1)_{B-L}$ -extension

Solving unimodularity

Just replace \mathcal{A}_F by $\mathcal{A}_F^{\mathrm{ext}} = \mathbb{C} \oplus \mathcal{A}_F = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$, with

 $\pi_F^{\text{ext}}(\lambda,\mu,q,m) = [\tilde{q}_\lambda,\tilde{q},\mu \mathbf{1}_2 \oplus \mathbf{1}_2 \otimes m,\mu \mathbf{1}_2 \oplus \mathbf{1}_2 \otimes m] \otimes \mathbf{1}_3$

and
$$\Omega_F^1$$
 by

$$(\Omega_F^1)^{\text{ext}} \ni \begin{pmatrix} 0 & Y_0^{\dagger} \tilde{q}_1 & z_1 p_{\nu} \otimes M_0^{\dagger} & 0 \\ \tilde{q}_2 Y_0 & 0 & 0 & 0 \\ z_2 p_{\nu} \otimes M_0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, z_1, z_2 \in \mathbb{C}, q_1, q_2 \in \mathbb{H}$$

- Only satisfies weak order 1 condition.
- The compatible finite Dirac are $\Phi(q) + \Phi(q)^o + \sigma(zM_0)$.

 $\mathcal{B}_{SM}^{ext} = \mathcal{B}(M) \hat{\otimes} \mathcal{B}_F^{ext} \text{ has the same automorphism group as } \mathcal{B}_{SM}.$

- Its configuration space contains: SM fields + anomalous $X + Z'_{B-L} + 1$ complex scalar $\sigma(zM_0)$, + flavour changing ζ_{other} .
- When ζ_{other} are thrown away and gravity is frozen, all fields are now fluctuations.

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature

NCG and general covariance

Does NCG really include gravity ?

Testing pre-ST

Another clue

Algebraic backgrounds

The case of a finite graph

The Standard Model background

The $U(1)_{B-L}$ -extension

Solving unimodularity

Just replace \mathcal{A}_F by $\mathcal{A}_F^{\mathrm{ext}} = \mathbb{C} \oplus \mathcal{A}_F = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$, with

 $\pi_F^{\text{ext}}(\lambda,\mu,q,m) = [\tilde{q}_{\lambda},\tilde{q},\mu \mathbf{1}_2 \oplus \mathbf{1}_2 \otimes m,\mu \mathbf{1}_2 \oplus \mathbf{1}_2 \otimes m] \otimes \mathbf{1}_3$

and
$$\Omega_F^1$$
 by

$$(\Omega_F^1)^{\text{ext}} \ni \begin{pmatrix} 0 & Y_0^{\dagger} \tilde{q}_1 & z_1 p_{\nu} \otimes M_0^{\dagger} & 0 \\ \tilde{q}_2 Y_0 & 0 & 0 & 0 \\ z_2 p_{\nu} \otimes M_0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, z_1, z_2 \in \mathbb{C}, q_1, q_2 \in \mathbb{H}$$

- Only satisfies weak order 1 condition.
- The compatible finite Dirac are $\Phi(q) + \Phi(q)^o + \sigma(zM_0)$.

 $\mathcal{B}_{SM}^{ext} = \mathcal{B}(M) \hat{\otimes} \mathcal{B}_F^{ext} \text{ has the same automorphism group as } \mathcal{B}_{SM}.$

- Its configuration space contains: SM fields + anomalous $X + Z'_{B-L} + 1$ complex scalar $\sigma(zM_0)$, + flavour changing ζ_{other} .
- When ζ_{other} are thrown away and gravity is frozen, all fields are now fluctuations.

 \Rightarrow The Connes-Lott action can be used on this model. \Rightarrow It is compatible with the experimental m_{Higgs} !

Introduction	•
Noncommutative geometry in a nutshell	•
NCG in non-Euclidean signature	•
NCG and general covariance	•
Solving unimodularity	•
Jordan algebras	•
The classification	•
Special Jordan backgrounds	•

The idea that finally works

Conclusion

References (1)

Solving unimodularity

Jordan algebras

Introduction

Noncommutative geometry in a nutshell

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Jordan algebras

The classification

Special Jordan backgrounds

The idea that finally works

Conclusion

References (1)

Def: A Jordan algebra is a real commutative algebra (A, \circ) such that

$$\forall a, b \in A, \ (a^2 \circ b) \circ a = a^2 \circ (b \circ a) \tag{1}$$

Ex: an associative algebra equipped with the product

$$a \circ b = \frac{1}{2}(ab + ba) \tag{2}$$

Jordan algebras

Introduction

Noncommutative geometry in a nutshell

NCG in non-Euclidean signature

NCG and general covariance

Solving unimodularity

Jordan algebras

The classification

Special Jordan backgrounds

The idea that finally works

Conclusion

References (1)

Def: A Jordan algebra is a real commutative algebra (A, \circ) such that

$$\forall a, b \in A, \ (a^2 \circ b) \circ a = a^2 \circ (b \circ a) \tag{1}$$

Ex: an associative algebra equipped with the product

$$a \circ b = \frac{1}{2}(ab + ba) \tag{2}$$

A Jordan algebra is *special* if isomorphic to one this kind.

Def: A JB algebra is a normed Jordan algebra A which is complete in the norm and s.t.

1. $||a \circ b|| \le ||a|| ||b||$, 2. $||a^2|| = ||a||^2$, 3. $||a^2|| \le ||a^2 + b^2||$.

Ex: selfadjoint part of C^* -algebra (special).

- JB algebras admit a continuous functional calculus.
- A (unital) JB algebra is associative iff it is $\approx C(X, \mathbb{R})$, X (compact) Hausdorff.

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
NCG and general covariance
Solving unimodularity
Jordan algebras
The classification
Special Jordan backgrounds

The idea that finally works

Conclusion

References (1)

Th: Every finite-dimensional JB-algebra is a direct sum of ones on this list:

- 1. $H_n(\mathbb{K})$ for $\mathbb{K} = \mathbb{R}, \mathbb{C}$ or \mathbb{H} ,
- 2. JSpin(n),
- 3. $H_3(\mathbb{O})$ (the Albert algebra).

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
NCG and general covariance
Solving unimodularity
Jordan algebras
The classification
Special Jordan backgrounds
The idea that finally works
Conclusion

References (1)

Th: Every finite-dimensional JB-algebra is a direct sum of ones on this list:

- $H_n(\mathbb{K})$ for $\mathbb{K} = \mathbb{R}, \mathbb{C}$ or \mathbb{H} , 1.
- 2. JSpin(n),
- 3. $H_3(\mathbb{O})$ (the Albert algebra).

An *inner derivation* of A is a Jordan derivation of the form

$$\delta = \sum_{i} [L_{a_i}, L_{b_i}].$$

The Lie algebra of inner derivation will be denoted by $Der_{Inn}(A)$.

Introduction
Noncommutative geometry in
a nutshell
NCG in non-Euclidean
signature
NCG and general covariance
Solving unimodularity
Jordan algebras
The classification
Special Jordan backgrounds
The idea that finally works

Conclusion

References (1)

Th: Every finite-dimensional JB-algebra is a direct sum of ones on this list:
1. H_n(K) for K = R, C or H,
2. JSpin(n),
3. H₃(O) (the Albert algebra).

An *inner derivation* of A is a Jordan derivation of the form

$$\delta = \sum_{i} [L_{a_i}, L_{b_i}].$$

The Lie algebra of inner derivation will be denoted by $Der_{Inn}(A)$.

If $J = H_n(\mathbb{R}), H_n(\mathbb{C}), H_n(\mathbb{H})$ or JSpin(n), then $Der_{Inn}(J) = so(n), su(n), sp(n)$ or so(n) respectively.

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature NCG and general covariance Solving unimodularity Jordan algebras The classification

```
Special Jordan backgrounds
The idea that finally works
Conclusion
References (1)
```

Th: Every finite-dimensional JB-algebra is a direct sum of ones on this list: 1. $H_n(\mathbb{K})$ for $\mathbb{K} = \mathbb{R}, \mathbb{C}$ or \mathbb{H} ,

2.
$$\operatorname{JSpin}(n)$$
,

3. $H_3(\mathbb{O})$ (the Albert algebra).

An *inner derivation* of A is a Jordan derivation of the form

$$\delta = \sum_{i} [L_{a_i}, L_{b_i}].$$

The Lie algebra of inner derivation will be denoted by $Der_{Inn}(A)$.

If $J = H_n(\mathbb{R}), H_n(\mathbb{C}), H_n(\mathbb{H})$ or JSpin(n), then $Der_{Inn}(J) = so(n), su(n), sp(n)$ or so(n) respectively.

Thanks to the magical formula $[L_x, L_y] = \frac{1}{4}ad_{[x,y]}$ one can prove:

Th: Let $A = \mathcal{C}(M, A_F)$ with A_F finite-dimensional and M is a Hausdorff space. Then $ad : [\pi(A), \pi(A)] \to \text{Der}_{\text{Inn}}(\pi(A))$ is an isomorphism.

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
NCG and general covariance
Solving unimodularity
Jordan algebras
The classification

Special Jordan backgrounds The idea that finally works

Conclusion

References (1)

Def: A (real, even) special Jordan background is a gadget $\mathcal{B} = (A, H, \pi, \Omega^1, \chi, J)$ such that

- 1. A is a special Jordan algebra,
- 2. H is a Hilbert space,
- 3. π is a faithful associative representation of A,
- 4. $\pi(A)$ is a JB algebra,
- 5. J and χ as usual,
- 6. Ω^1 is an odd $\pi(A)$ -module for the Jordan multiplication.

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
NCG and general covariance
Solving unimodularity
Jordan algebras
The classification
Special Jordan backgrounds
The idea that finally works
Conclusion

References (1)

Def: A (real, even) special Jordan background is a gadget $\mathcal{B} = (A, H, \pi, \Omega^1, \chi, J)$ such that

- . A is a special Jordan algebra,
- 2. H is a Hilbert space,
- 3. π is a faithful associative representation of A,
- 4. $\pi(A)$ is a JB algebra,
- 5. J and χ as usual,

6. Ω^1 is an odd $\pi(A)$ -module for the Jordan multiplication.

 \rightarrow there is a well-defined theory of $1\mbox{-}forms$ & fluctuations

 \rightarrow the fluctuation space is gauge-invariant under milder assumption than in the associative case

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
NCG and general covariance
Solving unimodularity
Jordan algebras
The classification
Special Jordan backgrounds
The idea that finally works

Conclusion

References (1)

Def: A (real, even) special Jordan background is a gadget $\mathcal{B} = (A, H, \pi, \Omega^1, \chi, J)$ such that

- 1. A is a special Jordan algebra,
- 2. H is a Hilbert space,
- 3. π is a faithful associative representation of A,
- 4. $\pi(A)$ is a JB algebra,
- 5. J and χ as usual,

6. Ω^1 is an odd $\pi(A)$ -module for the Jordan multiplication.

 \rightarrow there is a well-defined theory of $1\mbox{-}forms$ & fluctuations

 \rightarrow the fluctuation space is gauge-invariant under milder assumption than in the associative case

 \rightarrow gauge + Higgs fields decomposition works for almost-associative Jordan backgrounds

 \rightarrow particle models are naturally unimodular

Introduction
Noncommutative geometry in a nutshell
NCG in non-Euclidean signature
NCG and general covariance
Solving unimodularity
Jordan algebras
The classification
Special Jordan backgrounds
The idea that finally works

References (1)

Def: A (real, even) special Jordan background is a gadget $\mathcal{B} = (A, H, \pi, \Omega^1, \chi, J)$ such that

- . A is a special Jordan algebra,
- 2. H is a Hilbert space,
- 3. π is a faithful associative representation of A,
- 4. $\pi(A)$ is a JB algebra,
- 5. J and χ as usual,

6. Ω^1 is an odd $\pi(A)$ -module for the Jordan multiplication.

ightarrow there is a well-defined theory of $1\mbox{-}{\rm forms}$ & fluctuations

 \rightarrow the fluctuation space is gauge-invariant under milder assumption than in the associative case

 \rightarrow gauge + Higgs fields decomposition works for almost-associative Jordan backgrounds

 \rightarrow particle models are naturally unimodular

 \rightarrow no chiral $U(1)\mbox{-}{\rm gauge}$ group (but one can have Pati-Salam)

 \rightarrow only in Euclidean signature for the moment

The idea that finally works

Introduction	Symmetries of known physics: $\operatorname{Diff}(M) \ltimes \mathcal{G}$, where \mathcal{G} =gauge group
Noncommutative geometry in a nutshell	
NCG in non-Euclidean signature	
NCG and general covariance	
Solving unimodularity	
Jordan algebras	
The classification	
Special Jordan backgrounds	
The idea that finally works	
Conclusion	
References (1)	
The idea that finally works

Introduction	Sum
Noncommutative geometry in a nutshell	key
NCG in non-Euclidean signature	Aut
NCG and general covariance	
Solving unimodularity	
Jordan algebras	
The classification	
Special Jordan backgrounds	
The idea that finally works	
Conclusion	
References (1)	

Symmetries of known physics: $\operatorname{Diff}(M) \ltimes \mathcal{G}$, where \mathcal{G} =gauge group key insight (Connes):

 $\operatorname{Aut}(\mathcal{C}(M, A_F)) = \operatorname{Out} \ltimes \operatorname{Inn} = \operatorname{Diff}(M) \ltimes \Gamma(\operatorname{Aut}(A_F))$

The idea that finally works

 Introduction

 Noncommutative geometry in a nutshell

 NCG in non-Euclidean signature

 NCG and general covariance

 Solving unimodularity

 Jordan algebras

 The classification

 Special Jordan backgrounds

 The idea that finally works

 Conclusion

 References (1)

Symmetries of known physics: $\operatorname{Diff}(M) \ltimes \mathcal{G}$, where \mathcal{G} =gauge group key insight (Connes): Aut $(\mathcal{C}(M, A_F)) = \operatorname{Out} \ltimes \operatorname{Inn} = \operatorname{Diff}(M) \ltimes \Gamma(\operatorname{Aut}(A_F))$ Let \mathcal{B} be an AB with algebra $A = \mathcal{C}(M, A_F)$. If A_F is associative:

$$\operatorname{Aut}_{\operatorname{Inn}}(A) \stackrel{\operatorname{Ad}}{\longleftarrow} U(A) \stackrel{\Upsilon}{\longrightarrow} \operatorname{Aut}(\mathcal{B}) \tag{3}$$

$$\operatorname{exp} \qquad \operatorname{exp} \qquad \operatorname{exp} \qquad \operatorname{exp} \qquad \operatorname{exp} \qquad \operatorname{exp} \qquad \operatorname{f} \qquad \operatorname{exp} \qquad \operatorname{f} \qquad$$

If A_F is Jordan:

Conclusion

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature NCG and general covariance Solving unimodularity Jordan algebras The classification Special Jordan backgrounds The idea that finally works Conclusion References (1)

- The 3 main tools of NCG: D, AC algebras, Spectral action provide a unified understanding of all the bosonic fields.
- But it faced a number of technical and conceptual problems.
- SA + Jordan background solves all known problems (but has the wrong signature...)
 - CL + associative background of Lorentzian B-L extended SM more limited in scope but compatible with known physics (except for unimodularity...).

- 1. Adapt the Jordan backgrounds to Lorentz signature (seems feasible).
- 2. Define the SA in the Lorentz signature: still the major challenge despite recent progress.
- 3. Possible worry even if this is adressed: all Higgs tend to have the same mass with the SA.

References (1)

Introduction and reviews

- A.H. Chamseddine and W.D. van Suijlekom, A survey of spectral models of gravity coupled to matter, arXiv:1904.12392
- W.D. van Suijlekom, *NCG and Particle Physics*, Springer, 2015
- G. Landi, An introduction to NC spaces and their geometries, Springer, 1997

Reference books:

- A. Connes and M. Marcolli, *NCG, Quantum Fields and Motives*, AMS, 2008
- J.M. Gracia-Bondía and J.C. Várilly and H. Figueroa, *Elements of NCG*, Birkhäuser, 2001
- A. Connes, *NCG*, Academic Press, 1994

About today's talk:

- FB, S. Farnsworth, *Particle models from special Jordan backgrounds and spectral triples*, arXiv:2206.07039
- FB, C. Brouder, Noncommutative geometry, the Lorentzian Standard Model and its B-L extension, Phys. Rev. D 103 (3), 035003 (2021)
- FB, Algebraic backgrounds a framework for NC Kaluza-Klein theory, arXiv:1902.09387, (2019) published in two parts in J. Math. Phys. 60 (2019)
- C. Brouder, N. Bizi, FB, Space and time dimensions of algebras with application to Lorentzian NCG and QED, JMP, 59, 6 (2018)
- FB, N. Bizi, *Doppler shift in semi-Riemannian signature and the non-uniqueness of the Krein space of spinors*, J. Math. Phys. **60**, 6 (2019)
- N. Bizi, Semi-Riemannian NCG, Gauge Theory, and the SM of Particle Physics, thesis, abs/1812.00038^{6 / 38}

Introduction Noncommutative geometry in a nutshell NCG in non-Euclidean signature NCG and general covariance Solving unimodularity Jordan algebras The classification Special Jordan backgrounds The idea that finally works Conclusion References (1)

Complete bosonic action:

$$\mathcal{L}_{b} = -160 \frac{N}{3} \mathbb{F}_{\mu\nu}^{Y} \mathbb{F}^{Y\mu\nu} - 32N \mathbb{F}_{\mu\nu a}^{W} \mathbb{F}^{W\mu\nu a} - 32N \mathbb{F}_{\mu\nu a}^{C} \mathbb{F}^{C\mu\nu a}$$
$$-\frac{64}{3} N \mathbb{F}_{\mu\nu}^{Z'} \mathbb{F}^{Z'\mu\nu} - \frac{128}{3} N \mathbb{F}_{\mu\nu}^{Y} \mathbb{F}^{Z'\mu\nu} + 16a |D_{\mu}H|^{2} - 8bs |D_{\mu}z|^{2}$$
$$-8V_{0}(|H|^{2} - 1)^{2} - 8W_{0}(|z|^{2} - 1)^{2} + 16sK(|H|^{2} - 1)(|z|^{2} - 1)$$

Normalization of kinetic terms: $\mathbb{B}_{\mu}^{Y} = \frac{1}{2}g_{Y}Y_{\mu}, \mathbb{B}_{\mu}^{Wa} = \frac{1}{2}g_{w}W_{\mu}^{a},$ $\mathbb{B}_{\mu}^{Ca} = \frac{1}{2}g_{s}G_{\mu}^{a}, Z_{\mu}' = \frac{1}{2}g_{Z'}\hat{Z}_{\mu}', H = k\tilde{H}, z = l\tilde{z}, \text{ with}$ $g_{w}^{2} = g_{s}^{2} = \frac{5}{3}g_{Y}^{2} = \frac{2}{3}g_{Z'}^{2} = \frac{1}{32N}, \quad \kappa = 64\frac{N}{3}g_{Y}g_{Z'} = \sqrt{\frac{2}{5}}$ $k^{2} = \frac{1}{16a}, \qquad l^{2} = \frac{1}{8b}$ $M_{W}^{2} = \frac{1}{k^{2}}g_{w}^{2}$ $= \frac{1}{4}\frac{1}{32N}32\text{Tr}(Y_{e}Y_{e}^{\dagger} + Y_{\nu}Y_{\nu}^{\dagger} + 3M_{u} + 3M_{d})$ $= \frac{1}{4N}\sum$ squared masses of fermions

In particular for N = 3, one obtains $M_{top} \leq 2M_W$.

37 / 38

```
Introduction
Noncommutative geometry in
a nutshell
NCG in non-Euclidean
signature
NCG and general covariance
Solving unimodularity
Jordan algebras
The classification
Special Jordan backgrounds
The idea that finally works
Conclusion
References (1)
```

An automorphism of the canonical ST not coming from a diffeo-spinomorphism is possible as soon as dim ≥ 6 . Example: multiplication by $\sinh t\gamma_1\gamma_2 + \cosh t\gamma_3 \dots \gamma_6$. Many automorphisms of the finite SM triple are not AB automorphism (Krein-unitary commuting with J and χ but not stabilizing Ω_F^1) Ex: $U = [A, B, A^*, B^*]$ with arbitrary unitary matrices A, B. (need not be block-diagonal, other examples exist)