An Introduction to Causal Fermion Systems and the Causal Action Principle

Felix Finster

Johannes-Kepler-Forschungszentrum für Mathematik, Regensburg

Fakultät für Mathematik Universität Regensburg

> CMO workshop "Mathematical and Conceptual Aspects of Quantum Theory" Oaxaca, México, June 2022

What is a causal fermion system?

- approach to fundamental physics
- novel mathematical model of spacetime
- physical equations are formulated in generalized spacetimes
- Different limiting cases:
 - Continuum limit: Quantized fermionic fields interacting via classical bosonic fields
 - QFT limit: fermionic and bosonic quantum fields (ongoing, more towards the end of the talk)

How causal fermion systems developed (\approx 1989-90)

starting point: Course on relativistic QM and QFT (following Bjorken-Drell / Itzykson-Zuber)

Dirac's hole theory (Dirac 1932)

How causal fermion systems developed (\approx 1989-90)

- Problems of the naive Dirac sea picture:
 - infinite charge density
 - infinite negative energy density
- ► Therefore, we were told in lecture:
 - Dirac sea is not visible due to symmetries (homogeneous, isotropic)
 - Only "deviations" of the sea are observed as particles and anti-particles
 - Forget about the Dirac sea, no longer needed.
- ► This procedure is implemented in the formalism:
 - Reinterpretation of creation as annihilation operators
 - Wick ordering of field operators in Hamiltonian

I was not convinced by this procedure:

 The interacting Dirac sea should be visible, for example in presence of external potential

$$(i\partial + A(x) - m)\psi = 0$$

▶ Pair creation seems an evidence that the Dirac sea is real.

How causal fermion systems developed (\approx 1989-90)

What is the way out?

- ► Take all the sea states into account.
- In order to avoid the problems of naive Dirac sea, formulate new type of equations, different structure of the physical equations

Goal in general terms:

Formulate a variational principle directly for the family of wave functions

- Intuitive picture: wave functions "organize themselves" in such a way that the Dirac sea configuration is a minimizer.
- In interacting situation the wave functions organize to solutions of the Dirac equation

$$(i\gamma^j\partial_j + e\gamma^j A(x) - m)\psi = 0$$

This should serve as the definition of A.

Motivating example: A discrete spacetime

Formulate a variational principle directly for a family of wave functions

 For simplicity begin with a discrete spacetime, for example 2d-lattice

 Do not make use of nearest neighbor relation and lattice spacing.
 Better and simpler: spacetime *M* is a discrete set of points.

Motivating example: A discrete spacetime

- ▶ Consider wave functions $\psi_1, \ldots, \psi_f : \mathcal{M} \to \mathbb{C}$ (with $f < \infty$)
- Introduce scalar product; orthonormalize,

 $\langle \psi_{\mathbf{k}} | \psi_{\mathbf{l}} \rangle = \delta_{\mathbf{k} \mathbf{l}} \,,$

gives *f*-dim Hilbert space $(\mathcal{H}, \langle . | . \rangle_{\mathcal{H}})$.

important object: for any lattice point (t, x) introduce

local correlation operator $F(t, x) : \mathcal{H} \to \mathcal{H}$

define matrix elements by

$$(\boldsymbol{F}(t,\boldsymbol{x}))_{k}^{j}=\overline{\psi_{j}(t,\boldsymbol{x})}\psi_{k}(t,\boldsymbol{x})$$

basis invariant:

 $\langle \psi, F(t, x) \phi \rangle_{\mathfrak{H}} = \overline{\psi(t, x)} \phi(t, x)$ for all $\psi, \phi \in \mathfrak{H}$

- Hermitian matrix
- Has rank at most one, is positive semi-definite

 $F(t,x) = e^*e$ with $e: \mathcal{H} \to \mathbb{C}, \quad \psi \mapsto \psi(x)$

Motivating example: A discrete spacetime

 $\mathfrak{F} := \{F \text{ Hermitian, rank one, positive semi-definite}\}$

general idea:

- disregard objects on the left
 - (nearest neighbors, lattice spacing)
- work instead with the objects on the right (only local correlation operators)

How to set up equations in this setting? Explain idea in simple example:

- ▶ local correlation operators $F_1, \ldots, F_f \in \mathcal{F}$
- product F_i F_j tells about correlation of wave functions at different space-time points
- ► $Tr(F_iF_i)$ is real number

minimize

$$S = \sum_{i,j=1}^{f} \operatorname{Tr}(F_i F_j)^2$$

under suitable constraints.

Causal Fermion Systems

Definition (Causal fermion system)

Let $(\mathcal{H}, \langle . | . \rangle_{\mathcal{H}})$ be Hilbert space Given parameter $n \in \mathbb{N}$ ("spin dimension") $\mathcal{F} := \Big\{ x \in L(\mathcal{H}) \text{ with the properties:} \Big\}$

- ► x is self-adjoint and has finite rank
- x has at most n positive

and at most *n* negative eigenvalues }

 ρ a measure on \mathcal{F}

- Let $x, y \in \mathcal{F}$. Then x and y are linear operators.
 - $\mathbf{x} \cdot \mathbf{y} \in L(H)$:
 - rank < 2n

• in general not self-adjoint: $(x \cdot y)^* = y \cdot x \neq x \cdot y$ thus non-trivial complex eigenvalues $\lambda_1^{xy}, \ldots, \lambda_{2n}^{xy}$

Causal action principle

Nontrivial eigenvalues of *xy*: $\lambda_1^{xy}, \ldots, \lambda_{2n}^{xy} \in \mathbb{C}$

Lagrangian
$$\mathcal{L}[A_{xy}] = \frac{1}{4n} \sum_{i,j=1}^{2n} \left(|\lambda_i^{xy}| - |\lambda_j^{xy}| \right)^2 \ge 0$$

action $\mathcal{S} = \iint_{\mathfrak{F} \times \mathfrak{F}} \mathcal{L}[A_{xy}] d\rho(x) d\rho(y) \in [0,\infty]$

Minimize S under variations of ρ , with constraints

volume constraint: $\rho(\mathcal{F}) = \text{const}$ trace constraint: $\int_{\mathcal{F}} \text{tr}(x) d\rho(x) = \text{const}$ boundedness constraint: $\iint_{\mathcal{F} \times \mathcal{F}} \sum_{i=1}^{2n} |\lambda_i^{xy}|^2 d\rho(x) d\rho(y) \leq C$

F.F., "Causal variational principles on measure spaces,"
 J. Reine Angew. Math. 646 (2010) 141–194

Let (\mathcal{M}, g) be a Lorentzian space-time, for simplicity 4-dimensional, globally hyperbolic, then automatically spin,

 $(SM, \prec . |. \succ)$ spinor bundle

- $S_p \mathcal{M} \simeq \mathbb{C}^4$
- spin scalar product

$$\prec . | . \succ_{p} : S_{p}\mathcal{M} \times S_{p}\mathcal{M} \to \mathbb{C}$$

is indefinite of signature (2,2)

 $(\mathcal{D} - m)\psi_m = 0$ Dirac equation

- Cauchy problem well-posed, global smooth solutions (for example symmetric hyperbolic systems)
- finite propagation speed

 $C^{\infty}_{sc}(\mathcal{M}, S\mathcal{M})$ spatially compact solutions

$$(\psi_m | \phi_m)_m := 2\pi \int_{\mathcal{N}} \prec \psi_m | \psi \phi_m \succ_x d\mu_{\mathcal{N}}(x)$$
 scalar product

completion gives Hilbert space $(\mathcal{H}_m, (.|.)_m)$

 \blacktriangleright Choose ${\mathcal H}$ as a subspace of the solution space,

$$\mathcal{H} = \overline{\mathrm{span}(\psi_1, \ldots, \psi_f)}$$

▶ To $x \in \mathbb{R}^4$ associate a local correlation operator

$$\langle \psi | F(\mathbf{x}) \phi \rangle = - \prec \psi(\mathbf{x}) | \phi(\mathbf{x}) \succ_{\mathbf{x}} \qquad \forall \psi, \phi \in \mathcal{H}$$

Is self-adjoint, rank ≤ 4
at most two positive and at most two negative eigenvalues
Here ultraviolet regularization may be necessary:

$$\langle \psi | F(\mathbf{x}) \phi \rangle = - \prec (\mathfrak{R}_{\varepsilon} \psi)(\mathbf{x}) | (\mathfrak{R}_{\varepsilon} \phi)(\mathbf{x}) \succ_{\mathbf{x}} \qquad \forall \psi, \phi \in \mathfrak{H}$$

 $\mathfrak{R}_{\varepsilon} : \mathfrak{H} \to C^{0}(\mathfrak{M}, S\mathfrak{M})$ regularization operators

 $\varepsilon > 0$: regularization scale (Planck length)

Thus F(x) ∈ 𝔅 where
 𝔅 = {F ∈ L(𝔅) with the properties:
 ▷ F is self-adjoint and has rank ≤ 4
 ▷ F has at most 2 positive
 and at most 2 negative eigenvalues }

Take push-forward measure

 $\rho := F_*(\mu_{\mathcal{M}}) \quad (\text{i.e. } \rho(\Omega) := \mu_{\mathcal{M}}(F^{-1}(\Omega)))$

We thus obtain a causal fermion system of spin dimension two.

One basic object: measure ρ on set \mathcal{F} of linear operators on \mathcal{H} , describes spacetime as well as all objects therein

- Underlying structure: family of fermionic wave functions
- Geometric structures encoded in these wave functions

Matter encodes geometry Quantum spacetime

- Causal action principle describes spacetime as a whole (similar to Einstein-Hilbert action in GR)
- Causal action principle is a nonlinear variational principle (similar to Einstein-Hilbert action or classical field theory)
- Linear dynamics of quantum theory recovered in limiting case (more details later)

Interpretation in terms of spacetime events

- operators in F can be interpreted as "possible local correlation operators" or simply as possible events
- ▶ operators in *M* are the events realized in spacetime
- spacetime is made up of all the realized events
- the physical equations relate the events to each other

For details on this connection:

 F.F, J. Fröhlich, C. Paganini, C. and M. Oppio, "Causal fermion systems and the ETH approach to quantum theory," arXiv:2004.11785 [math-ph] (2020) Let $(\rho, \mathcal{F}, \mathcal{H})$ be a causal fermion of spin dimension *n*, spacetime $M := \operatorname{supp} \rho$.

spacetime points are linear operators on $\mathcal H$

- For $x \in M$, consider eigenspaces of x.
- ► For *x*, *y* ∈ *M*,
 - consider operator products xy
 - project eigenspaces of x to eigenspaces of y

Gives rise to:

- quantum objects (spinors, wave functions)
- geometric structures (connection, curvature)
- causal structure, analytic structures

Spinors

$$S_{x}M := x(\mathcal{H}) \subset \mathcal{H}$$
$$\prec u | v \succ_{x} := -\langle u | x v \rangle_{\mathcal{H}}$$

"spin space", dim $S_x M \le 2n$ ("spin scalar product", inner product of signature ($\le n, \le n$)

Inherent structures in spacetime

Physical wave functions

 $\psi^{u}(x) = \pi_{x} u$ with $u \in \mathcal{H}$ physical wave function $\pi_{x} : \mathcal{H} \to \mathcal{H}$ orthogonal projection on $x(\mathcal{H})$

Inherent structures in spacetime

► The kernel of the fermionic projector:

$$P(y, x) = \pi_y x|_{S_x M} : S_x M \to S_y M$$

$$P(y, x) = -\sum_{i=1}^{f} |\psi^{e_i}(y) \succ \prec \psi^{e_i}(x)|$$
 where (e_i) ONB of \mathcal{H}

Geometric structures

P(*x*, *y*) : *S_yM* → *S_xM* yields relations between spin spaces.

Using a polar decomposition (\ldots, \ldots) one gets:

 $D_{x,y}$: $S_y M \to S_x M$ unitary "spin connection"

• tangent space T_x , carries Lorentzian metric,

 $abla_{x,y} : T_y \rightarrow T_x$ corresponding "metric connection"

holonomy of connection gives curvature

$$R(x, y, z) = \nabla_{x, y} \nabla_{y, z} \nabla_{z, x} : T_x \to T_x$$

Causal structure

Let $x, y \in M$. Then $x \cdot y \in L(H)$ has non-trivial complex eigenvalues $\lambda_1^{xy}, \ldots, \lambda_{2n}^{xy}$ Definition (causal structure) The points $x, y \in \mathcal{F}$ are called spacelike separated if $|\lambda_i^{xy}| = |\lambda_k^{xy}|$ for all $j, k = 1, \dots, 2n$ if $\lambda_1^{xy}, \ldots, \lambda_{2n}^{xy}$ are all real timelike separated and $|\lambda_i^{xy}| \neq |\lambda_k^{xy}|$ for some j, klightlike separated otherwise

Lagrangian is compatible with causal structure:

Lagrangian
$$\mathcal{L}(x, y) = \frac{1}{4n} \sum_{i,j=1}^{2n} \left(|\lambda_i^{xy}| - |\lambda_j^{xy}| \right)^2 \ge 0$$

thus x, y spacelike separated $\Rightarrow \mathcal{L}(x, y) = 0$

"points with spacelike separation do not interact"

local gauge principle:

freedom to perform local unitary transformations of the spinors

► Pauli exclusion principle:

Choose orthonormal basis ψ_1, \ldots, ψ_f of \mathcal{H} . Set

$$\Psi = \psi_1 \wedge \cdots \wedge \psi_f \,,$$

gives equivalent description by Hartree-Fock state.

 the "equivalence principle": symmetry under "diffeomorphisms" of *M* (note: *M* merely is a topological measure space)

Spacetime and causal structure are emergent

The continuum limit

Causal fermion system

- abstract mathematical framework
- quantum geometry, causal action

continuum limit

description in the continuum limit

- Dirac fields
- strong and electroweak gauge fields
- gravitational field
- fermion field: second-quantized
- bosonic field: classical

The continuum limit

Fundamental Theories of Physics 186

Felix Finster

The Continuum Limit of Causal Fermion Systems

D Springer

From Planck Scale Structures to Macroscopic Physics Fundamental Theories of Physics **186** Springer, 2016 548+xi pages

arXiv:1605.04742 [math-ph]

The causal action principle in the continuum limit

specify vacuum as sum of Dirac seas,

$$\begin{split} P(x,y) &= \sum_{\beta=1}^{g} P_{m_{\beta}}^{\text{sea}}(x,y) \\ P_{m_{\beta}}^{\text{sea}}(x,y) &= \int \frac{d^{4}k}{(2\pi)^{4}} \left(\not\!\!\! k + m_{\beta} \right) \delta(k^{2} - m_{\beta}^{2}) \,\Theta(-k^{0}) \, e^{-ik(x-y)} \end{split}$$

 β labels "generations" of elementary particles

 \implies Dynamical equations only if three generations (g = 3)

The causal action principle in the continuum limit

Model involving neutrinos and quarks:

$$P(x,y) = \sum_{\beta=1}^{3} \underbrace{P_{m_{\beta}}^{\text{sea}}(x,y) \oplus \cdots \oplus P_{m_{\beta}}^{\text{sea}}(x,y)}_{7 \text{ identical direct summands}} \oplus P_{\tilde{m}_{\beta}}^{\text{sea}}(x,y)$$

- again three generations
- $4 \times 8 = 32$ -component wave functions
- spin dimension 16
- Regularize on the scale ε (Planck scale), regularization of neutrinos breaks chiral symmetry

Remarks on methods for analyzing the continuum limit:

Consider the Dirac equation in an external potential

 $(i\partial + \mathcal{B} - mY)\psi = 0.$

- ► Question: Are the EL equations of causal action principle satisfied in the limit ε ↘ 0?
- Answer: Yes if and only if B has a certain structure and satisfies the classical field equations.

Going beyond the continuum limit

Basic question: What about objects in space (densities, probabilities, etc.)

- \blacktriangleright The scalar product $\langle .|.\rangle_{\mathcal{H}}$ is given abstractly
- A-priori missing: Representation as spatial integral. Is there an analog of the relation

$$\langle \psi | \phi
angle_{\mathcal{H}} = \int_{\mathcal{N}} \prec \psi | \phi \succ_{\mathbf{X}} d\mu_{\mathcal{N}}(\mathbf{X})$$

for Dirac spinors?

- Related question: What about current conservation? Are there conservation laws?
- Ultimately: What is the quantum state? What are quantum probabilities?

 F.F. and Kamran, N., "Fermionic Fock spaces and quantum states for causal fermion systems," arXiv:2101.10793 [math-ph], Ann. Henri Poincaré 23 (2022) 1359–1398

General setting:

Two minimizing causal fermion systems

- $(\mathcal{H}, \mathcal{F}, \rho)$ describing vacuum
- $(\tilde{\mathcal{H}}, \tilde{\mathcal{F}}, \tilde{\rho})$ describing the interacting spacetime
- corresponding spacetimes:

$$M := \operatorname{supp} \rho$$
, $\tilde{M} := \operatorname{supp} \tilde{\rho}$

• Goal: Compare $\tilde{\rho}$ and ρ at time *t*.

General ideas for the construction of a quantum state

Basic object: Nonlinear surface layer integral

• identify Hilbert spaces by choosing $V : \mathcal{H} \to \tilde{\mathcal{H}}$ unitary

$$egin{aligned} &\gamma^{ ilde{\Omega},\Omega}(ilde{
ho},
ho) \coloneqq = \int_{ ilde{\Omega}} oldsymbol{d} \widetilde{
ho}(x) \int_{M\setminus\Omega} oldsymbol{d}
ho(y) \, \mathcal{L}ig(x,y) \ &- \int_{ ilde{M}\setminus ilde{\Omega}} oldsymbol{d} \widetilde{
ho}(x) \int_{\Omega} oldsymbol{d}
ho(y) \, \mathcal{L}ig(x,y) \end{aligned}$$

Freedom in identifying the Hilbert spaces

identification of Hilbert spaces:

- Choose $V : \mathcal{H} \to \tilde{\mathcal{H}}$ unitary
- Work exclusively in H
- But: identification is not canonical, gives freedom

 $\rho \to \mathcal{U}\rho$, $(\mathcal{U}\rho)(\Omega) := \rho(\mathcal{U}^{-1}\Omega\mathcal{U})$

- \blacktriangleright This freedom is treated by integrating over $\ensuremath{\mathcal{U}}$
 - Let $\mathcal{G} \subset U(\mathcal{H})$ be compact subgroup
 - $\mu_{\mathfrak{G}}$ normalized Haar measure on \mathfrak{G}

partition function

$$Z(eta, ilde{
ho}) = \int_{\mathfrak{G}} \exp\left(eta \, \gamma^{ ilde{\Omega}, \Omega}(ilde{
ho}, \mathfrak{U}
ho)
ight) \, d\mu_{\mathfrak{G}}(\mathfrak{U})$$

where β free parameter (maybe discuss at the end)

How to "test" the interacting spacetime?

- Interacting spacetime can be arbitrarily complicated (interacting quantum fields, entanglement, collapse)
- describe by objects in the vacuum spacetime: free fields, wave functions, ...
- use insertions:

$$\frac{1}{Z^t} \int_{\mathfrak{S}} (\cdots) \exp\left(\beta \gamma^t (\tilde{\rho}, \mathfrak{U} \rho)\right) d\mu_{\mathfrak{S}}(\mathfrak{U})$$

formal analogy to path integral formalism

- For the insertions we need more structures of causal fermion system (H, F, ρ):
 - linearized fields
 - conserved surface layer integrals

The Euler-Lagrange equations

For clarity of presentation: leave out trace and boundedness constraints

$$\ell(\mathbf{x}) := \int_{\mathcal{F}} \mathcal{L}(\mathbf{x}, \mathbf{y}) \, d\rho(\mathbf{y}) - \mathfrak{s}$$

 $(\mathfrak{s} > 0$ Lagrange multiplier for volume constraint)

Lemma

Let ρ be a minimizer of the causal action. Then

$$\ell|_M \equiv \inf_{\mathcal{F}} \ell = 0$$

Linear perturbations

To simplify presentation assume that: ρ discrete minimizing measure describing the vacuum.

► What are linear perturbations of the measure?

$$\mathcal{F} \subset L(\mathcal{H})$$

Also a scalar weight function b(x) comes into play

▶ jet $v := (b, v) \in \mathfrak{J}$

Jet dynamics

The jet v = (b, v) satisfies the linearized field equations

$$0 = \langle \mathfrak{u}, \Delta \mathfrak{v} \rangle(x)$$

:= $\nabla_{\mathfrak{u}} \left(\int_{M} (\nabla_{1,\mathfrak{v}} + \nabla_{2,\mathfrak{v}}) \mathcal{L}(x,y) \, d\rho(y) - \nabla_{\mathfrak{v}} \, \mathfrak{s} \right)$

for all test jets u, where

$$\nabla_{\mathfrak{v}}g(x) := a(x)g(x) + (D_{v}g)(x)$$

There are also corresponding nonlinear field equations.

- F.F., J. Kleiner, "A Hamiltonian formulation of causal variational principles," arXiv:1612.07192 [math-ph], Calc. Var. Partial Differential Equations 56:73 (2017)
- F.F., "Perturbation theory for critical points of causal variational principles," arXiv:1703.05059 [math-ph] (2017), Adv. Theor. Math. Phys. 24 (2020) 563–619

Existence, Uniqueness, Finite Propagation Speed

for linearized fields

This holds "on the macroscopic scale"

 C. Dappiaggi, F.F., "The Cauchy problem and the causal structure of linearized fields for causal variational principles," arXiv:1811.10587 [math-ph], *Methods Appl. Anal.* 27 (2020) 1–56

based on energy estimates

Surface Layer Integrals

General structure of a surface layer integral:

$$\int_{\Omega} d\rho(x) \int_{M\setminus\Omega} d\rho(y) (\cdots) \mathcal{L}(x,y)$$

Surface Layer Integrals

 F.F., J. Kleiner, "Noether-like theorems for causal variational principles," arXiv:1506.09076 [math-ph], *Calc. Var. Partial Differential Equations* 55:35 (2016)

Conservation laws for surface layer integrals

- F.F., J. Kleiner, "A class of conserved surface layer integrals for causal variational principles," arXiv:1801.08715 [math-ph], Calc. Var. Partial Differential Equations 58:38 (2019)
- F.F., N. Kamran, "Complex structures on jet spaces and bosonic Fock space dynamics for causal variational principles," arXiv:1808.03177 [math-ph], *Pure Appl. Math. Q.* 17 (2021) 55–140

Surface layer integrals for linearized fields

conserved surface layer integrals:

$$\begin{split} \gamma^{\Omega}_{\rho} &: \mathfrak{J} \to \mathbb{R} & (\text{conserved one-form}) \\ \gamma^{\Omega}_{\rho}(\mathfrak{u}) &= \int_{\Omega} d\rho(x) \int_{M \setminus \Omega} d\rho(y) \left(\nabla_{1,\mathfrak{u}} - \nabla_{2,\mathfrak{u}} \right) \mathcal{L}(x,y) \\ \sigma^{\Omega}_{\rho} &: \mathfrak{J} \times \mathfrak{J} \to \mathbb{R} & (\text{symplectic form}) \\ \sigma^{\Omega}_{\rho}(\mathfrak{u},\mathfrak{v}) &= \int_{\Omega} d\rho(x) \int_{M \setminus \Omega} d\rho(y) \left(\nabla_{1,\mathfrak{u}} \nabla_{2,\mathfrak{v}} - \nabla_{2,\mathfrak{u}} \nabla_{1,\mathfrak{v}} \right) \mathcal{L}(x,y) \end{split}$$

 other useful surface layer integral (conserved in non-interacting case)

$$\begin{aligned} (.,.)^{\Omega}_{\rho} &: \mathfrak{J} \times \mathfrak{J} \to \mathbb{R} \qquad (\text{surface layer inner product}) \\ (\mathfrak{u}, \mathfrak{v})^{\Omega}_{\rho} &= \int_{\Omega} d\rho(x) \int_{\mathcal{M} \setminus \Omega} d\rho(y) \left(\nabla_{1,\mathfrak{u}} \nabla_{1,\mathfrak{v}} - \nabla_{2,\mathfrak{u}} \nabla_{2,\mathfrak{v}} \right) \mathcal{L}(x, y) \end{aligned}$$

give rise to complex structure

Surface layer integral for wave functions

Unitary invariance of causal action principle,

 $\mathfrak{U}_{\tau} := \exp(i\tau \mathcal{A})$ with $\mathcal{A}\psi := \langle u | \psi \rangle_{\mathfrak{H}} u$

described infinitesimally by commutator jets

$$\mathfrak{C} := (0, \mathfrak{C})$$
 with $\mathfrak{C}(x) := i[\mathcal{A}, x]$

$$\begin{split} \gamma^{\Omega}_{\rho}(\mathfrak{C}) &= \langle u | u \rangle^{\Omega}_{\rho} \quad \text{extended to} \\ \langle . | . \rangle^{\Omega}_{\rho} \; : \; \mathcal{W}^{\Omega}_{\rho} \times \mathcal{W}^{\Omega}_{\rho} \to \mathbb{C} \quad \text{(commutator inner product)} \\ \langle \psi | \phi \rangle^{\Omega}_{\rho} &= -2i \left(\int_{\Omega} d\rho(x) \int_{M \setminus \Omega} d\rho(y) - \int_{M \setminus \Omega} d\rho(x) \int_{\Omega} d\rho(y) \right) \\ & \times \prec \psi(x) \mid Q^{\text{dyn}}(x, y) \, \psi(y) \succ_{x} \; . \end{split}$$

- conserved if ψ , ϕ satisfy dynamical wave equation
- F.F., N. Kamran, M. Oppio, "The linear dynamics of wave functions in causal fermion systems," arXiv:2101.08673 [math-ph], J. Differential Equations 293 (2021) 115–187

Field Operators in the Vacuum

Canonical commutation/anti-commutation relations for z, z' ∈ h and ψ, ψ' ∈ ℋ^f_ρ ⊂ ℋ_ρ

$$\begin{split} & \left[a(\overline{z}), a^{\dagger}(z') \right] = (z|z')^{\Omega}_{\rho} \\ & \left[a(\overline{z}), a(\overline{z'}) \right] = 0 = \left[a^{\dagger}(z), a^{\dagger}(z') \right] \\ & \left\{ \Psi(\overline{\phi}), \Psi^{\dagger}(\phi') \right\} = \langle \phi | \phi' \rangle^{\Omega}_{\rho} \\ & \left\{ \Psi(\overline{\phi}), \Psi(\overline{\phi'}) \right\} = 0 = \left\{ \Psi^{\dagger}(\phi), \Psi^{\dagger}(\phi') \right\} \end{split}$$

- independent of time
- generate unital ∗-algebra A

Construction of the quantum state

• Quantum state ω^t at time *t*:

 $\omega^t: \mathscr{A} \to \mathbb{C} \qquad \text{linear and positive, i.e.}$

 $\omega^t(A^*A) \ge 0$ for all $A \in \mathscr{A}$

- More concretely, represented on Fock space:
 - With a density operator:

$$\omega^t(\boldsymbol{A}) = \operatorname{tr}_{\mathcal{F}}(\sigma^t \boldsymbol{A})$$

• As an expectation value (pure state):

$$\omega^t(\mathbf{A}) = \langle \Psi | \mathbf{A} | \Psi
angle_{\mathcal{F}}$$

General structure:

$$\omega^{t}(\cdots) := \frac{1}{Z} \int_{\mathfrak{G}} (\cdots) e^{\beta \gamma^{\tilde{\Omega},\Omega} \left(\tilde{\rho}, \mathfrak{U} \rho \right)} d\mu_{\mathfrak{G}}(\mathfrak{U})$$

How do the insertions look like?

DEFINITION

The state
$$\omega^{t}$$
 at time t is defined by

$$\omega^{t} \left(a^{\dagger}(z'_{1}) \cdots a^{\dagger}(z'_{p}) \Psi^{\dagger}(\phi'_{1}) \cdots \Psi^{\dagger}(\phi'_{r'}) \times a(\overline{z_{1}}) \cdots a(\overline{z_{q}}) \Psi(\overline{\phi_{1}}) \cdots \Psi(\overline{\phi_{r}}) \right)$$

$$:= \frac{1}{Z(\beta, \tilde{\rho})} \delta_{r'r} \frac{1}{\rho!} \sum_{\sigma, \sigma' \in S_{r}} (-1)^{\operatorname{sign}(\sigma) + \operatorname{sign}(\sigma')}$$

$$\times \int_{\mathcal{G}} \langle \tilde{\phi}_{\sigma(1)} | \pi^{t}_{\mathcal{U}} \tilde{\phi}'_{\sigma'(1)} \rangle_{\rho}^{\Omega} \cdots \langle \tilde{\phi}_{\sigma(r)} | \pi^{t}_{\mathcal{U}} \tilde{\phi}'_{\sigma'(r)} \rangle_{\rho}^{\Omega}$$

$$\times D_{\tilde{z}'_{1}} \gamma^{\tilde{\Omega}, \Omega}(\tilde{\rho}, \mathfrak{U}\rho) \cdots D_{\tilde{z}'_{p}} \gamma^{\tilde{\Omega}, \Omega}(\tilde{\rho}, \mathfrak{U}\rho) e^{\beta \gamma^{\tilde{\Omega}, \Omega}(\tilde{\rho}, \mathfrak{U}\rho)} d\mu_{\mathcal{G}}(\mathfrak{U})$$

Positivity of the quantum state

THEOREM

The state ω^t is positive, i.e.

 $\omega^t(A^*A) \ge 0$ for all $t \in \mathbb{R}$ and $A \in \mathscr{A}$

The proof makes use of

- Canonical commutation/anti-commutation relations
- Positivity of $(.|.)^{\Omega}_{\rho}$ and $\langle .|.\rangle^{\Omega}_{\rho}$
- Positivity of insertions:

$$oxed{D}_{ ilde{z}}\gamma^{ ilde{\Omega},\Omega}(ilde{
ho},\mathbb{U}
ho)\cdot oldsymbol{D}_{ ilde{z}}\gamma^{ ilde{\Omega},\Omega}(ilde{
ho},\mathbb{U}
ho) = ig|oldsymbol{D}_{ ilde{z}}\gamma^{ ilde{\Omega},\Omega}(ilde{
ho},\mathbb{U}
ho)ig|^2 \geq 0$$

$$\langle \psi \, | \, \pi^t_{\mathfrak{U}} \, \psi \rangle^{\Omega}_{
ho} \geq 0 \quad \text{and} \quad \langle \psi \, | \, (1 - \pi^t_{\mathfrak{U}}) \, \psi \rangle^{\Omega}_{
ho} \geq 0$$

 F.F. and Kamran, N., "Fermionic Fock spaces and quantum states for causal fermion systems," arXiv:2101.10793 [math-ph], Ann. Henri Poincaré 23 (2022) 1359–1398

Outlook: Computation of the quantum state

Main task: Compute the group integral

$$\int_{\mathfrak{G}} (\cdots) e^{\beta \gamma^{\tilde{\Omega},\Omega} \left(\tilde{\rho},\mathfrak{U}\rho \right)} d\mu_{\mathfrak{G}}(\mathfrak{U})$$

- Consider asymptotics dim $\mathcal{H} \to \infty$ and $\varepsilon \searrow 0$.
- Explicit analysis possible (Gaussian integrals, saddle point methods).
- Main findings:
 - Refined localized state is also positive
 - Allows for the description of general entangled states
- ► Is ongoing work with N. Kamran and M. Reintjes

Outlook: Dynamics of the quantum state

- Construction so far gives ω^t for all t
- Next steps:
 - Construct time evolution for the density operator

$$\mathfrak{L}_{t_0}^t : \, \sigma^{t_0} \to \sigma^t$$

• Is there a unitary time evolution on the Fock space?

$$\omega^t = U_{t_0}^t \omega^{t_0} \left(U_{t_0}^t
ight)^{-1}$$

- Answer: Yes. In this limiting case one gets QFT including loop diagrams, but with intrinsic regularization on scale ε.
- There are nonlinear corrections. Connection to collapse phenomena?
- Is ongoing work with N. Kamran and M. Reintjes

www.causal-fermion-system.com

Thank you for your attention!

Felix Finster Causal fermion systems

Representations of the quantum state

- GNS representation
 - Introduce scalar product on ${\mathscr A}$ by

$$\langle \boldsymbol{A} | \boldsymbol{A}' \rangle := \omega^t (\boldsymbol{A}^* \boldsymbol{A}') : \ \mathscr{A} \times \mathscr{A} \to \mathbb{C}$$

Forming the completion gives a Hilbert space.

- A has a natural representation on this Hilbert space.
- Setting Φ = 1,

$$\langle \Phi | \mathbf{A} \Phi \rangle = \omega^t (\mathbf{1}^* \mathbf{A} \mathbf{1}) = \omega^t (\mathbf{A})$$

• always exists, but in general not a Fock representation

Representation on the Fock space of vacuum

- choose *F* as the Fock space generated by acting with *A* on vacuum state (Dirac sea vacuum)
- construct density operator σ^t on \mathcal{F} with

$$\omega^t(\boldsymbol{A}) = \operatorname{tr}_{\mathcal{F}}(\sigma^t \boldsymbol{A})$$

- inductive construction for states involving *finite number of* particles and anti-particles
- in general diverges (inequivalent Fock vacua, ...)
- makes connection to perturbative description

Outlook: a quantum spacetime

a quantum space-time: $M \simeq \mathcal{M} \times \mathcal{B}$

- microscopic mixing, holographic mixing
- integrating over additional "degrees of freedom" B resembles path integral

... ...

► F.F., "Perturbative Quantum Field Theory in the Framework of the Fermionic Projector" arXiv:1310.4121 [math-ph], J. Math. Phys. **55** (2014) 042301

General structure:

- ▶ Nonlinear dynamics of $\tilde{\rho}$ (from causal action principle)
- Conservation laws hold (current conservation, conserved symplectic form, ...)
- Causality holds in the sense
 "pairs of points with spacelike separation do not interact" in particular: no superluminal signalling
- In approximation ("approximation of inhomogeneous fluctuating fields") one gets linear and unitary time evolution

 $U_{t_0}^t$: $\mathcal{F} \to \mathcal{F}$

As observed by J. Kleiner, this seems to indicate that causal fermion systems are an effective collapse theory.

A. Bassi, D. Dürr, G. Hinrichs, *"Uniqueness of the equation for quantum state vector collapse,"* Phys. Rev. Lett. **111**, 210401 (2013)

- No faster-than-light signalling
- Time evolution Markovian and homogeneous in time
- \implies collapse theory

Can this be adapted to causal fermion systems?

Summary and Outlook

No deterministic laws:

not possible to proceed in time steps

- No strong causation
- But causal propagation on macroscopic scales
 - based on positivity properties of surface layer integrals (energy estimates, ...)
- Causal fermion system approach is background-free
- correct limiting cases:
 - classical field theory: strong, electroweak forces and gravity
 - quantum field theory (work in progress)

What does causality mean?

There are causal relations:

- distinction spacelike, timelike
- direction of time
- Locality holds:

Spacetime regions with spacelike separation have independent dynamics

BUT

- ► relation "lies in the future of" not necessarily transitive
- no causation

Outlook: microscopic mixing

right now: effectively described by random matrices microscopic mixing

F.F., "Perturbative Quantum Field Theory in the Framework of the Fermionic Projector" arXiv:1310.4121 [math-ph], J. Math. Phys. **55** (2014) 042301

Outlook: Holographic Mixing

Ψ : ℋ → C⁰(M, SM) wave evaluation operator describing Minkowski vacuum,

 $(i\partial - m)\Psi = 0$

Decompose into holographic components:

$$\Psi_{\alpha}(x) := \Psi(x) B_{\alpha}$$
 with $B_{\alpha} \in L(\mathcal{H})$

 Perturb each holographic component by electromagnetic potential A_α,

$$\Delta \Psi_{\alpha} = s_m A_{\alpha} \Psi B_{\alpha}$$

- Gives rise to *microscopic fluctuations*
 - scaling behavior can be computed explicitly
- Approximation of inhomogeneous fluctuating fields gives bosonic loop diagrams

- Holographic components can be decoherent
- Choosing different u makes different holographic components "visible"

$$\omega^{t}(\cdots) := \frac{1}{Z^{t}} \int_{c} (\cdots) e^{\beta \gamma^{t} \left(\tilde{\rho}, \mathfrak{U} \rho \right)} d\mu_{\mathfrak{g}}(\mathfrak{U})$$

- ► U-dependence gives correlations between insertions
- ► This gives rise to entangled state.

Analysis of the causal action principle

$$\ell(\mathbf{x}) := \int_{\mathcal{F}} \mathcal{L}(\mathbf{x}, \mathbf{y}) \, d\rho(\mathbf{y})$$

(for clarity of presentation:

leave out Lagrange multipliers for constraints)

Lemma

Let ρ be a minimizer of the causal action. Then

$$\ell|_{M} \equiv \inf_{\mathcal{F}} \ell$$

Analysis of the causal action principle

Proof.

Consider variation $\tilde{\rho}_{\tau} = (1 - \tau) \rho + \tau \delta_{y}$

(where δ_y is the Dirac measure supported at *y*).

$$\begin{split} \mathcal{S}(\tilde{\rho}_{\tau}) &= \iint\limits_{\mathfrak{F}\times\mathfrak{F}} \mathcal{L}(x,y) \, d\tilde{\rho}_{\tau}(x) \, d\tilde{\rho}_{\tau}(y) \\ 0 &\leq \frac{d}{d\tau} \mathcal{S}(\tilde{\rho}_{\tau}) \big|_{\tau=0} = 2 \int_{\mathfrak{F}} d\dot{\tilde{\rho}}_{\tau} \big|_{\tau=0} \int_{\mathfrak{F}} d\rho \, \mathcal{L}(x,y) \\ &= 2 \left(\ell(y) - \int_{M} \ell(x) \, d\rho(x) \right) \end{split}$$

As a consequence,

$$\ell(\mathbf{y}) \geq \int_M \ell(\mathbf{x}) \, d\rho(\mathbf{x}) \, .$$

Gauß-like theorem

For simplicity leave out scalar components of jets.

$$(\Delta u)(x) = \int_{M} (D_{1,u} + D_{2,u}) \mathcal{L}(x, y) \, d\rho(y)$$

$$0 = D_{u}\ell = \int_{M} D_{1,u}\mathcal{L}(x, y) \, d\rho(y) \qquad \text{(EL eqns)}$$

Hence

$$(\Delta u)(x) = -\int_{M} (D_{1,u} - D_{2,u}) \mathcal{L}(x, y) d\rho(y)$$
$$\int_{\Omega} (\Delta u)(x) d\rho(x) = -\int_{\Omega} d\rho(x) \int_{M} d\rho(y) (D_{1,u} - D_{2,u}) \mathcal{L}(x, y)$$
$$= -\int_{\Omega} d\rho(x) \int_{M \setminus \Omega} d\rho(y) (D_{1,u} - D_{2,u}) \mathcal{L}(x, y)$$

(volume integral) = (surface layer integral)

Bosonic Fields in the Vacuum

give rise to complex structure:

$$\sigma(\boldsymbol{u},\boldsymbol{v}) = (\boldsymbol{u},\,\mathfrak{T}\,\boldsymbol{v})$$
$$\boldsymbol{J} := -(-\mathfrak{T}^2)^{-\frac{1}{2}}\,\mathfrak{T}\,, \qquad \boldsymbol{J}^* = -\boldsymbol{J},\,\,\boldsymbol{J}^2 = -\mathbf{1}$$

Complexify and decompose:

$$\bm{v}=\bm{v}^{hol}+\bm{v}^{ah}$$

On holomorphic jets introduce scalar product

$$(.|.)^t_{
ho} := \sigma^t_{
ho}(\,.\,,J\,.\,) \,:\, \Gamma^{\mathrm{hol}}_{
ho} imes \Gamma^{\mathrm{hol}}_{
ho} o \mathbb{C}$$

Completion gives complex Hilbert space $(\mathfrak{h}, (.|.)_{\rho}^{t})$.

Cauchy problem: Existence and uniqueness proven.

F.F. and N. Kamran, *"Complex Structures on Jet Spaces and Bosonic Fock Space Dynamics for Causal Variational Principles,"* arXiv:1808.03177 [math-ph], to appear in Pure Appl. Math. Q. (2021)

C. Dappiaggi and F.F., *"Linearized Fields for Causal Variational Principles: Existence Theory and Causal Structure,"* arXiv:1811.10587 [math-ph], Methods Appl. Anal. **27** 1–56 (2020)

Fermionic Fields in the Vacuum

dynamical wave equation:

$$\int_{M} Q^{\rm dyn}(x,y) \, \psi(y) = 0$$

scalar product defined as surface layer integral:

٠

is conserved in time, gives extended Hilbert space $\mathcal{H}_{\rho} \supset \mathcal{H}$.

► Cauchy problem: Existence and uniqueness proven.

F.F., N. Kamran and M. Oppio, "The Linear Dynamics of Wave Functions in Causal Fermion Systems," arXiv:2101.08673 [math-ph] physical picture:

"Measurement" in *M* with objects in *M*, using the identification given by *U* ▶ associate *z* to a linearized field *ž* in *M*:

$$\begin{array}{ll} \mathcal{P}_{\rho}: U \subset \mathfrak{J}_{\rho}^{\mathrm{lin}} \to \mathcal{B} & \text{perturbation map} \\ \mathcal{D}\mathcal{P}_{\rho}|_{\boldsymbol{w}}: \mathfrak{J}_{\rho,}^{\mathrm{lin}} \to \mathfrak{J}_{\tilde{\rho},}^{\mathrm{lin}} \\ \tilde{\boldsymbol{z}} := \mathcal{D}\mathcal{P}_{\rho}|_{\boldsymbol{w}} \, \boldsymbol{z} \,, & \overline{\tilde{\boldsymbol{z}}} := \mathcal{D}\mathcal{P}_{\rho}|_{\boldsymbol{w}} \, \boldsymbol{\overline{z}} \end{array}$$

perturb nonlinear surface layer integral:

 $D_{\widetilde{z}}\gamma^t(\widetilde{\rho},\mathfrak{U}\rho), \qquad D_{\widetilde{z}}\gamma^t(\widetilde{\rho},\mathfrak{U}\rho)$

Fermionic insertions

- Work with scalar product $\langle . | . \rangle_o^t$ in vacuum.
- Map wave functions from \tilde{M} to M:

$$\begin{split} \psi &= \pi_{\rho,\tilde{\rho}} \, \tilde{\psi} \,, \quad \psi(x) := \frac{1}{\tilde{\mathfrak{t}}(x)} \int_{\tilde{M}} \pi_x \, \mathfrak{U}^{-1} \, \tilde{\psi}(y) \, |xy|^2 \, d\tilde{\rho}(y) \\ & \tilde{\mathfrak{t}}(x) := \int_{\tilde{M}} |xy|^2 \, d\tilde{\rho}(y) \end{split}$$

• Gives subspace
$$\pi_{\rho,\tilde{\rho}}^{t} \mathcal{H} \subset \mathcal{H}_{\rho}$$
,

 $\pi^t_{\mathfrak{U}}: \mathfrak{H}^{\rho} \to \pi^t_{\rho, \tilde{\rho}} \mathfrak{H}$ orthogonal projection

- one-particle measurement: $\langle \psi \mid \pi_{\mathcal{U}}^t \phi \rangle_a^t$
- multi-particle measurement:

$$\frac{1}{\rho!} \sum_{\sigma,\sigma' \in S_{\rho}} (-1)^{\operatorname{sign}(\sigma) + \operatorname{sign}(\sigma')} \\ \times \langle \tilde{f}_{\sigma(1)} | \pi_{\mathfrak{U}}^{t} \tilde{f}_{\sigma'(1)} \rangle_{\rho}^{t} \cdots \langle \tilde{f}_{\sigma(\rho)} | \pi_{\mathfrak{U}}^{t} \tilde{f}_{\sigma'(\rho)} \rangle_{\rho}^{t}$$

Pauli exclusion principle arises

Can the state be written as follows?

$$\omega^{t}(\cdots) = \frac{1}{\beta^{k} Z^{t}(\beta, \tilde{\rho})} \underbrace{D \cdots D}_{k \text{ derivatives}} Z^{t}(\beta, \tilde{\rho})$$

Short answer: Yes, up to rather subtle technical issues.

$$Z^tig(eta, ilde
hoig) = {\displaystyle {\int_{\mathfrak{G}}\expig(eta\gamma^tig(ilde
ho,\mathfrak{U}
hoig)ig)\,} \, d\mu_{\mathfrak{G}}(\mathfrak{U})}$$