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What is a causal fermion system?

� approach to fundamental physics

� novel mathematical model of spacetime

� physical equations are formulated in generalized

spacetimes

� Different limiting cases:

Continuum limit: Quantized fermionic fields interacting via
classical bosonic fields

QFT limit: fermionic and bosonic quantum fields

(ongoing, more towards the end of the talk)
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How causal fermion systems developed (≈ 1989-90)

starting point: Course on relativistic QM and QFT

(following Bjorken-Drell / Itzykson-Zuber)

� Dirac’s hole theory (Dirac 1932)

ω

k

anti−particles

particles

Dirac sea
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How causal fermion systems developed (≈ 1989-90)

� Problems of the naive Dirac sea picture:

infinite charge density

infinite negative energy density

� Therefore, we were told in lecture:

Dirac sea is not visible due to symmetries
(homogeneous, isotropic)

Only “deviations” of the sea are observed as

particles and anti-particles
Forget about the Dirac sea, no longer needed.

� This procedure is implemented in the formalism:

Reinterpretation of creation as annihilation operators

Wick ordering of field operators in Hamiltonian
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How causal fermion systems developed (≈ 1989-90)

I was not convinced by this procedure:

� The interacting Dirac sea should be visible,

for example in presence of external potential

(
i∂/+ /A(x)− m

)
ψ = 0

� Pair creation seems an evidence that the Dirac sea is real.
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How causal fermion systems developed (≈ 1989-90)

What is the way out?

� Take all the sea states into account.

� In order to avoid the problems of naive Dirac sea,

formulate new type of equations,

different structure of the physical equations

Goal in general terms:

Formulate a variational principle

directly for the family of wave functions

Intuitive picture: wave functions “organize themselves” in

such a way that the Dirac sea configuration is a minimizer.

In interacting situation the wave functions organize to

solutions of the Dirac equation

(
iγ j∂j + eγ jA(x)− m

)
ψ = 0

This should serve as the definition of A.
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Motivating example: A discrete spacetime

Formulate a variational principle

directly for a family of wave functions

� For simplicity begin with a discrete spacetime, for example

2d-lattice

b

b

b

b

b

b

b

b

b

b

b

b

b

bbbbb

b b b b b b

∆x

∆t

lattice M

� Do not make use of nearest neighbor relation and lattice

spacing.

Better and simpler: spacetime M is a discrete set of points.
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Motivating example: A discrete spacetime

� Consider wave functions ψ1, . . . , ψf : M → C (with f <∞)

� Introduce scalar product; orthonormalize,

〈ψk |ψl〉 = δkl ,

gives f -dim Hilbert space (H, 〈.|.〉H).

important object: for any lattice point (t , x) introduce

local correlation operator F (t , x) : H → H

� define matrix elements by

(F (t , x))j
k = ψj(t , x)ψk (t , x)

basis invariant:

〈ψ,F (t , x)φ〉H = ψ(t , x)φ(t , x) for all ψ, φ ∈ H

� Hermitian matrix

� Has rank at most one, is positive semi-definite

F (t , x) = e∗e with e : H → C , ψ 7→ ψ(x)
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Motivating example: A discrete spacetime

F :=
{

F Hermitian, rank one, positive semi-definite
}

0

F ⊂ L(H)

M

F

bb b b b

bb b b b

bb b b b

bb b b b

b b b b

b

b
b

bb
b

b b b b b

b b
b b b

F (M)

general idea:

� disregard objects on the left

(nearest neighbors, lattice spacing)

� work instead with the objects on the right

(only local correlation operators)
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Motivating example: A discrete spacetime

How to set up equations in this setting?

Explain idea in simple example:

� local correlation operators F1, . . . ,Ff ∈ F

� product Fi Fj tells about correlation of wave functions

at different space-time points

� Tr(FiFj) is real number

� minimize

S =

f∑

i ,j=1

Tr(FiFj)
2

under suitable constraints.
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Causal Fermion Systems

Definition (Causal fermion system)

Let (H, 〈.|.〉H) be Hilbert space

Given parameter n ∈ N (“spin dimension”)

F :=
{

x ∈ L(H) with the properties:

� x is self-adjoint and has finite rank

� x has at most n positive

and at most n negative eigenvalues
}

ρ a measure on F

M
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Causal action principle

Let x , y ∈ F. Then x and y are linear operators.

x ·y ∈ L(H):

rank ≤ 2n

in general not self-adjoint: (x ·y)∗ = y ·x 6= x ·y

thus non-trivial complex eigenvalues λxy
1 , . . . , λ

xy
2n
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Causal action principle

Nontrivial eigenvalues of xy : λ
xy
1 , . . . , λ

xy
2n ∈ C

Lagrangian L[Axy ] =
1

4n

2n∑

i ,j=1

(
|λxy

i | − |λxy
j |

)2
≥ 0

action S =
x

F×F

L[Axy ] dρ(x) dρ(y) ∈ [0,∞]

Minimize S under variations of ρ, with constraints

volume constraint: ρ(F) = const

trace constraint:

ˆ

F

tr(x) dρ(x) = const

boundedness constraint:
x

F×F

2n∑

i=1

|λ
xy
i |2 dρ(x)dρ(y) ≤ C

� F.F., “Causal variational principles on measure spaces,”

J. Reine Angew. Math. 646 (2010) 141–194
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Example: Dirac spinors in Lorentzian space-time

Let (M,g) be a Lorentzian space-time,

for simplicity 4-dimensional, globally hyperbolic,

then automatically spin,

(SM,≺.|.≻) spinor bundle

SpM ≃ C
4

spin scalar product

≺.|.≻p : SpM × SpM → C

is indefinite of signature (2,2)

(D − m)ψm = 0 Dirac equation
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Example: Dirac spinors in Lorentzian space-time

� Cauchy problem well-posed, global smooth solutions

(for example symmetric hyperbolic systems)

� finite propagation speed

C∞
sc (M,SM) spatially compact solutions

(ψm|φm)m := 2π

ˆ

N

≺ψm|/νφm≻x dµN(x) scalar product

completion gives Hilbert space (Hm, (.|.)m)
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Example: Dirac spinors in Lorentzian space-time

� Choose H as a subspace of the solution space,

H = span(ψ1, . . . , ψf )

� To x ∈ R
4 associate a local correlation operator

〈ψ|F (x)φ〉 = −≺ψ(x)|φ(x)≻x ∀ψ, φ ∈ H

Is self-adjoint, rank ≤ 4

at most two positive and at most two negative eigenvalues

� Here ultraviolet regularization may be necessary:

〈ψ|F (x)φ〉 = −≺(Rεψ)(x)|(Rεφ)(x)≻x ∀ψ, φ ∈ H

Rε : H → C0(M,SM) regularization operators

ε > 0 : regularization scale (Planck length)
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Example: Dirac spinors in Lorentzian space-time

� Thus F (x) ∈ F where

F :=
{

F ∈ L(H) with the properties:

⊲ F is self-adjoint and has rank ≤ 4

⊲ F has at most 2 positive

and at most 2 negative eigenvalues
}
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Example: Dirac spinors in Lorentzian space-time

We obtain mapping x 7→ F (x) ∈ F ⊂ L(H)

Ft

~x

F ⊂ L(H)

Take push-forward measure

ρ := F∗(µM) (i.e. ρ(Ω) := µM

(
F−1(Ω)

)
)
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Example: Dirac spinors in Lorentzian space-time

M := suppρ

F ⊂ L(H)

We thus obtain a causal fermion system of spin dimension two.
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A few general remarks

One basic object: measure ρ on set F of linear operators on H,

describes spacetime as well as all objects therein

� Underlying structure: family of fermionic wave functions

� Geometric structures encoded in these wave functions

Matter encodes geometry

Quantum spacetime

� Causal action principle describes spacetime as a whole

(similar to Einstein-Hilbert action in GR)

� Causal action principle is a nonlinear variational principle

(similar to Einstein-Hilbert action or classical field theory)

� Linear dynamics of quantum theory recovered in limiting

case (more details later)
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Interpretation in terms of spacetime events

� operators in F can be interpreted as

“possible local correlation operators”

or simply as possible events

� operators in M are the events realized in spacetime

� spacetime is made up of all the realized events

� the physical equations relate the events to each other

For details on this connection:

� F.F, J. Fröhlich, C. Paganini, C. and M. Oppio,

“Causal fermion systems and the ETH approach to quantum theory,”

arXiv:2004.11785 [math-ph] (2020)
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Inherent structures of a causal fermion system

Let (ρ,F,H) be a causal fermion of spin dimension n,

spacetime M := suppρ.

spacetime points are linear operators on H

� For x ∈ M, consider eigenspaces of x .

� For x , y ∈ M,

consider operator products xy
project eigenspaces of x to eigenspaces of y

Gives rise to:

� quantum objects (spinors, wave functions)

� geometric structures (connection, curvature)

� causal structure, analytic structures
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Inherent structures of a causal fermion system

� Spinors

SxM := x(H) ⊂ H “spin space”, dimSxM ≤ 2n

≺u|v≻x := −〈u | x v〉H “spin scalar product”,

inner product of signature (≤ n,≤ n)

Hilbert space H

SxMSyM
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Inherent structures in spacetime

� Physical wave functions

ψu(x) = πx u with u ∈ H physical wave function

πx : H → H orthogonal projection on x(H)

SxMSyM u

ψu(x)ψu(y)
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Inherent structures in spacetime

� The kernel of the fermionic projector:

P(y , x) = πy x |Sx M : SxM → SyM

SxMSyM

φ ∈ SxM

P(y , x)φ

P(y , x) = −

f∑

i=1

|ψei (y)≻≺ψei (x)| where (ei) ONB of H
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Inherent structures in spacetime

� Geometric structures

P(x , y) : Sy M → Sx M yields relations between spin

spaces.

Using a polar decomposition (. . . , . . . ) one gets:

Dx,y : Sy M → Sx M unitary “spin connection”

tangent space Tx , carries Lorentzian metric,

∇x,y : Ty → Tx corresponding “metric connection”

holonomy of connection gives curvature

R(x , y , z) = ∇x,y ∇y ,z ∇z,x : Tx → Tx
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Causal structure

Let x , y ∈ M. Then

x ·y ∈ L(H) has non-trivial complex eigenvalues λ
xy
1 , . . . , λ

xy
2n

Definition (causal structure)

The points x , y ∈ F are called







spacelike separated if |λ
xy
j | = |λ

xy
k | for all j , k = 1, . . . ,2n

timelike separated if λxy
1 , . . . , λ

xy
2n are all real

and |λxy
j
| 6= |λxy

k
| for some j , k

lightlike separated otherwise

� Lagrangian is compatible with causal structure:

Lagrangian L(x , y) =
1

4n

2n
∑

i,j=1

(

|λxy
i | − |λxy

j |
)2

≥ 0

thus x , y spacelike separated ⇒ L(x , y) = 0

“points with spacelike separation do not interact”
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Underlying physical principles

� local gauge principle:

freedom to perform local unitary transformations of the

spinors

� Pauli exclusion principle:

Choose orthonormal basis ψ1, . . . , ψf of H. Set

Ψ = ψ1 ∧ · · · ∧ ψf ,

gives equivalent description by Hartree-Fock state.

� the “equivalence principle”:

symmetry under “diffeomorphisms” of M

(note: M merely is a topological measure space)

Spacetime and causal structure are emergent
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The continuum limit

Causal fermion system

� abstract mathematical framework

� quantum geometry, causal action

w
w
w
�

continuum limit

description in the continuum limit

Dirac fields

strong and electroweak gauge fields

gravitational field

� fermion field: second-quantized

� bosonic field: classical
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The continuum limit

Fundamental Theories

of Physics 186

Springer, 2016

548+xi pages

arXiv:1605.04742 [math-ph]
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The causal action principle in the continuum limit

� specify vacuum as sum of Dirac seas,

P(x , y) =

g
∑

β=1

Psea
mβ

(x , y)

Psea
mβ

(x , y) =

ˆ

d4k

(2π)4
(k/+ mβ) δ(k

2 − m2
β) Θ(−k0) e−ik(x−y)

β labels “generations” of elementary particles

=⇒ Dynamical equations only if three generations (g = 3)
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The causal action principle in the continuum limit

� Model involving neutrinos and quarks:

P(x , y) =

3∑

β=1

Psea
mβ

(x , y) ⊕ · · · ⊕ Psea
mβ

(x , y)
︸ ︷︷ ︸

7 identical direct summands

⊕Psea
m̃β

(x , y)

again three generations
4 × 8 = 32-component wave functions

spin dimension 16

� Regularize on the scale ε (Planck scale),

regularization of neutrinos breaks chiral symmetry
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The causal action principle in the continuum limit

Remarks on methods for analyzing the continuum limit:

� Consider the Dirac equation in an external potential

(i∂/+ B − mY )ψ = 0 .

� Question: Are the EL equations of causal action principle

satisfied in the limit εց 0?

� Answer: Yes if and only if B has a certain structure and

satisfies the classical field equations.
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Going beyond the continuum limit

Basic question: What about objects in space (densities,

probabilities, etc.)

� The scalar product 〈.|.〉H is given abstractly

� A-priori missing: Representation as spatial integral.

Is there an analog of the relation

〈ψ|φ〉H =

ˆ

N

≺ψ|φ≻x dµN(x)

for Dirac spinors?

� Related question: What about current conservation? Are

there conservation laws?

� Ultimately: What is the quantum state?

What are quantum probabilities?
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General ideas for the construction of a quantum state

� F.F. and Kamran, N., “Fermionic Fock spaces and quantum states for

causal fermion systems,”

arXiv:2101.10793 [math-ph], Ann. Henri Poincaré 23 (2022) 1359–1398

General setting:

� Two minimizing causal fermion systems

(H,F, ρ) describing vacuum
(H̃, F̃, ρ̃) describing the interacting spacetime

corresponding spacetimes:

M := supp ρ , M̃ := supp ρ̃

� Goal: Compare ρ̃ and ρ at time t .
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General ideas for the construction of a quantum state

� Basic object: Nonlinear surface layer integral

identify Hilbert spaces by choosing V : H → H̃ unitary

γΩ̃,Ω(ρ̃, ρ) :=

ˆ

Ω̃
d ρ̃(x)

ˆ

M\Ω
dρ(y) L

(
x , y

)

−

ˆ

M̃\Ω̃
d ρ̃(x)

ˆ

Ω
dρ(y) L

(
x , y

)

M \ Ωt

Ωt

M̃ \ Ω̃t

Ω̃t
x

y

x

y
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Freedom in identifying the Hilbert spaces

� identification of Hilbert spaces:

Choose V : H → H̃ unitary

Work exclusively in H

But: identification is not canonical, gives freedom

ρ→ Uρ , (Uρ)(Ω) := ρ(U−1ΩU)

� This freedom is treated by integrating over U

Let G ⊂ U(H) be compact subgroup

µG normalized Haar measure on G
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The partition function

� partition function

Z
(
β, ρ̃

)
=

 

G

exp
(

β γΩ̃,Ω
(
ρ̃,Uρ

))

dµG(U)

where β free parameter (maybe discuss at the end)
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How to “test” the interacting spacetime?

� Interacting spacetime can be arbitrarily complicated

(interacting quantum fields, entanglement, collapse)

� describe by objects in the vacuum spacetime:

free fields, wave functions, . . .

� use insertions:

1

Z t

 

G

(· · · ) exp
(

β γt
(
ρ̃,Uρ

))

dµG(U)

formal analogy to path integral formalism

For the insertions we need more structures of causal
fermion system (H,F, ρ):

linearized fields

conserved surface layer integrals
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The Euler-Lagrange equations

For clarity of presentation: leave out trace and boundedness

constraints

ℓ(x) :=

ˆ

F

L(x , y) dρ(y)− s

(s > 0 Lagrange multiplier for volume constraint)

Lemma

Let ρ be a minimizer of the causal action. Then

ℓ|M ≡ inf
F
ℓ = 0

ℓ

FM
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Linear perturbations

To simplify presentation assume that:

ρ discrete minimizing measure describing the vacuum.

� What are linear perturbations of the measure?

x1

F ⊂ L(H)
b

b
b

b

b b b b

b
b b b

x2

v(x1) v(x2)

Also a scalar weight function b(x) comes into play

� jet v := (b, v) ∈ J
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Jet dynamics

The jet v = (b, v) satisfies the linearized field equations

0 = 〈u,∆v〉(x)

:= ∇u

(
ˆ

M

(
∇1,v +∇2,v

)
L(x , y) dρ(y)−∇v s

)

for all test jets u, where

∇vg(x) := a(x)g(x) +
(
Dvg

)
(x)

There are also corresponding nonlinear field equations.

� F.F., J. Kleiner, “A Hamiltonian formulation of causal variational

principles,” arXiv:1612.07192 [math-ph], Calc. Var. Partial Differential

Equations 56:73 (2017)

� F.F., “Perturbation theory for critical points of causal variational

principles,” arXiv:1703.05059 [math-ph] (2017), Adv. Theor. Math.

Phys. 24 (2020) 563–619
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Existence, Uniqueness, Finite Propagation Speed

for linearized fields

b b
b b

b

b

b

b

b

b

b

b

b b b b b b

b
b b b

b b b b
b

b
b b b b b b b

b b
b b

b b
b b

b b

b b b b b b

b b
b

b

b b b
b b b b b b b

b b b b
bbbbbb

b b b b b b b b b

bbbbbb b b

b b b b b b b b
b b b

b b b b b
b

b

b

b b
b

b

b b b b b

b

b b b b b

b b b

b

b

b

b

b

b

b

b

b

b
b

b

bbbbbb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
bb b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

This holds “on the macroscopic scale”

� C. Dappiaggi, F.F., “The Cauchy problem and the causal structure of

linearized fields for causal variational principles,” arXiv:1811.10587

[math-ph], Methods Appl. Anal. 27 (2020) 1–56

based on energy estimates
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Surface Layer Integrals

General structure of a surface layer integral:

Ω

b
b

b
b

b b b

b

b

b

b

b

b b b b b b

b b b b
b b b b

b
b

b b b b b b b

b b b
b

b b b
b

b b

b b b b b b

b b
b

b

b b
b

b b b

b

b b b b

b b
b b

bbbbbb
b b b b b b b b b

bbbbbb b b

b b b b b b b b
b b b

b b b
b b

b
b

b

b
b

b
b

M \ Ω

ˆ

Ω
dρ(x)

ˆ

M\Ω
dρ(y) (· · · )L(x , y)
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Surface Layer Integrals

Typically: L(x , y) very small if x and y far apart

(Compton scale)

Ω

b
b

b
b

b b b

b

b

b

b

b

b b b b b b

b b b b
b b b b

b
b

b b b b b b b

b b b
b

b b b
b b b

b b b b b b

b b
b

b

b b
b

b b b

b

b b b b

b b
b b

bbb
bbb

b b b b b b b b b

bbbbbb b b

b b b b b b b b
b b b

b b b
b b

b
b

b

b
b

b
b

M \Ω ∼ m−1

� F.F., J. Kleiner, “Noether-like theorems for causal variational principles,”

arXiv:1506.09076 [math-ph], Calc. Var. Partial Differential Equations

55:35 (2016)
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Conservation laws for surface layer integrals

b
b

b b
b

b b

b

b

b

b

b

b b b b b b

b
b b b

b b b b
b

b
b b b b b b b

b b b
b

b b b
b b b

b b b b b b

b b
b

b

b b b
b b b

b

b b b b

b b b b
bbb

bbb
b b b b b b b b b

bbbbbb b b

b b b b b b b b
b b b

b b b b b
b

b

b

b
b

b
b

U

� F.F., J. Kleiner, “A class of conserved surface layer integrals for causal

variational principles,” arXiv:1801.08715 [math-ph], Calc. Var. Partial

Differential Equations 58:38 (2019)

� F.F., N. Kamran, “Complex structures on jet spaces and bosonic Fock

space dynamics for causal variational principles,”

arXiv:1808.03177 [math-ph], Pure Appl. Math. Q. 17 (2021) 55–140
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Surface layer integrals for linearized fields

� conserved surface layer integrals:

γΩρ : J → R (conserved one-form)

γΩρ (u) =

ˆ

Ω
dρ(x)

ˆ

M\Ω
dρ(y)

(
∇1,u −∇2,u

)
L(x , y)

σΩρ : J× J → R (symplectic form)

σΩρ (u, v) =

ˆ

Ω
dρ(x)

ˆ

M\Ω
dρ(y)

(
∇1,u∇2,v −∇2,u∇1,v

)
L(x , y)

� other useful surface layer integral

(conserved in non-interacting case)

(., .)Ωρ : J× J → R (surface layer inner product)

(u, v)Ωρ =

ˆ

Ω
dρ(x)

ˆ

M\Ω
dρ(y)

(
∇1,u∇1,v −∇2,u∇2,v

)
L(x , y)

give rise to complex structure
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Surface layer integral for wave functions

Unitary invariance of causal action principle,

Uτ := exp(iτA) with Aψ := 〈u|ψ〉H u

described infinitesimally by commutator jets

C := (0,C) with C(x) := i
[
A, x

]

γΩρ (C) = 〈u|u〉Ωρ extended to

〈.|.〉Ωρ : WΩ
ρ ×WΩ

ρ → C (commutator inner product)

〈ψ|φ〉Ωρ = −2i

(
ˆ

Ω
dρ(x)

ˆ

M\Ω
dρ(y)−

ˆ

M\Ω
dρ(x)

ˆ

Ω
dρ(y)

)

×≺ψ(x) | Qdyn(x , y)ψ(y)≻x .

� conserved if ψ, φ satisfy dynamical wave equation

� F.F., N. Kamran, M. Oppio, “The linear dynamics of wave functions in

causal fermion systems,” arXiv:2101.08673 [math-ph], J. Differential

Equations 293 (2021) 115–187
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Field Operators in the Vacuum

� Canonical commutation/anti-commutation relations

for z, z′ ∈ h and ψ,ψ′ ∈ Hf
ρ ⊂ Hρ

[
a(z),a†(z′)

]
= (z|z′)Ωρ

[
a(z),a(z′)

]
= 0 =

[
a†(z),a†(z′)

]

{
Ψ(φ),Ψ†(φ′)

}
= 〈φ|φ′〉Ωρ

{
Ψ(φ),Ψ(φ′)

}
= 0 =

{
Ψ†(φ),Ψ†(φ′)

}

independent of time

generate unital ∗-algebra A
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Construction of the quantum state

� Quantum state ωt at time t :

ωt : A → C linear and positive, i.e.

ωt(A∗A) ≥ 0 for all A ∈ A

� More concretely, represented on Fock space:

With a density operator:

ωt (A) = trF
(
σt A

)

As an expectation value (pure state):

ωt(A) = 〈Ψ|A|Ψ〉F

� General structure:

ωt(· · · ) :=
1

Z

ˆ

G

(· · · ) eβ γΩ̃,Ω
(
ρ̃,Uρ

)

dµG(U)

How do the insertions look like?
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Definition of the quantum state

DEFINITION

The state ωt at time t is defined by

ωt
(

a†(z′
1) · · · a

†(z′
p) Ψ

†(φ′1) · · ·Ψ
†(φ′r ′)

× a(z1) · · · a(zq) Ψ(φ1) · · ·Ψ(φr )
)

:=
1

Z
(
β, ρ̃

) δr ′r
1

p!

∑

σ,σ′∈Sr

(−1)sign(σ)+sign(σ′)

×

ˆ

G

〈φ̃σ(1) |π
t
U φ̃

′
σ′(1)〉

Ω
ρ · · · 〈φ̃σ(r) |π

t
U φ̃

′
σ′(r)〉

Ω
ρ

× Dz̃′

1
γΩ̃,Ω(ρ̃,Uρ) · · ·Dz̃′

p
γΩ̃,Ω(ρ̃,Uρ)

× D
z̃1
γΩ̃,Ω(ρ̃,Uρ) · · ·D

z̃q
γΩ̃,Ω(ρ̃,Uρ) eβ γΩ̃,Ω(ρ̃,Uρ) dµG(U)
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Positivity of the quantum state

THEOREM

The state ωt is positive, i.e.

ωt
(
A∗A

)
≥ 0 for all t ∈ R and A ∈ A

The proof makes use of
� Canonical commutation/anti-commutation relations

� Positivity of (.|.)Ωρ and 〈.|.〉Ωρ
� Positivity of insertions:

Dz̃γ
Ω̃,Ω(ρ̃,Uρ) · D

z̃
γΩ̃,Ω(ρ̃,Uρ) =

∣
∣Dz̃γ

Ω̃,Ω(ρ̃,Uρ)
∣
∣2 ≥ 0

〈ψ |πt
U ψ〉

Ω
ρ ≥ 0 and 〈ψ | (11 − πt

U)ψ〉
Ω
ρ ≥ 0

� F.F. and Kamran, N., “Fermionic Fock spaces and quantum states for

causal fermion systems,”

arXiv:2101.10793 [math-ph], Ann. Henri Poincaré 23 (2022) 1359–1398
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Outlook: Computation of the quantum state

� Main task: Compute the group integral

ˆ

G

(· · · ) eβ γΩ̃,Ω
(
ρ̃,Uρ

)

dµG(U)

Consider asymptotics dimH → ∞ and εց 0.

Explicit analysis possible (Gaussian integrals, saddle point
methods).

� Main findings:

Refined localized state is also positive

Allows for the description of general entangled states

� Is ongoing work with N. Kamran and M. Reintjes
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Outlook: Dynamics of the quantum state

� Construction so far gives ωt for all t

� Next steps:

Construct time evolution for the density operator

Lt
t0

: σt0 → σt

Is there a unitary time evolution on the Fock space?

ωt = U t
t0
ωt0

(
U t

t0

)−1

Answer: Yes. In this limiting case one gets QFT including

loop diagrams, but with intrinsic regularization on scale ε.
There are nonlinear corrections. Connection to collapse

phenomena?

� Is ongoing work with N. Kamran and M. Reintjes
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www.causal-fermion-system.com

Thank you for your attention!
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Representations of the quantum state

� GNS representation
Introduce scalar product on A by

〈A|A′〉 := ωt (A∗A′) : A × A → C

Forming the completion gives a Hilbert space.
A has a natural representation on this Hilbert space.

Setting Φ = 11,

〈Φ |AΦ〉 = ωt (11∗ A 11) = ωt(A)

always exists, but in general not a Fock representation

� Representation on the Fock space of vacuum
choose F as the Fock space generated by acting with A on

vacuum state (Dirac sea vacuum)

construct density operator σt on F with

ωt (A) = trF
(
σt A

)

inductive construction for states involving finite number of

particles and anti-particles
in general diverges (inequivalent Fock vacua, . . . )

makes connection to perturbative description
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Outlook: a quantum spacetime

M

a classical space-time:
M diffeomorphic to manifold

a quantum space-time:

M ≃ M × B

B

� microscopic mixing, holographic mixing

� integrating over additional “degrees of freedom” B
resembles path integral

. . . . . .

� F.F., “Perturbative Quantum Field Theory in the Framework of the

Fermionic Projector”

arXiv:1310.4121 [math-ph], J. Math. Phys. 55 (2014) 042301
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Outlook: Connection to collapse models

General structure:

� Nonlinear dynamics of ρ̃ (from causal action principle)

� Conservation laws hold

(current conservation, conserved symplectic form, . . . )

� Causality holds in the sense

“pairs of points with spacelike separation do not interact”

in particular: no superluminal signalling

� In approximation (“approximation of inhomogeneous

fluctuating fields”) one gets linear and unitary time

evolution

U t
t0

: F → F
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Outlook: Connection to collapse models

As observed by J. Kleiner, this seems to indicate that causal

fermion systems are an effective collapse theory.

A. Bassi, D. Dürr, G. Hinrichs, “Uniqueness of the equation for quantum

state vector collapse,” Phys. Rev. Lett. 111, 210401 (2013)

� No faster-than-light signalling

� Time evolution Markovian and homogeneous in time

=⇒ collapse theory

Can this be adapted to causal fermion systems?
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Summary and Outlook

� No deterministic laws:

not possible to proceed in time steps

� No strong causation

� But causal propagation on macroscopic scales

based on positivity properties of surface layer integrals

(energy estimates, . . . )

� Causal fermion system approach is background-free

� correct limiting cases:

classical field theory: strong, electroweak forces and gravity

quantum field theory (work in progress)
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What does causality mean?

� There are causal relations:

distinction spacelike, timelike

direction of time

� Locality holds:

Spacetime regions with spacelike separation

have independent dynamics

BUT

� relation “lies in the future of” not necessarily transitive

� no causation
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Outlook: microscopic mixing

M

a classical space-time:
M diffeomorphic to manifold

a quantum space-time:

M ≃ M × B

B

right now: effectively described by random matrices

microscopic mixing

F.F., “Perturbative Quantum Field Theory in the Framework of

the Fermionic Projector”

arXiv:1310.4121 [math-ph], J. Math. Phys. 55 (2014) 042301
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Outlook: Holographic Mixing

� Ψ : H → C0(M,SM) wave evaluation operator

describing Minkowski vacuum,

(i∂/− m)Ψ = 0

� Decompose into holographic components:

Ψα(x) := Ψ(x) Bα with Bα ∈ L(H)

� Perturb each holographic component by electromagnetic

potential Aα,

∆Ψα = sm /Aα ΨBα

� Gives rise to microscopic fluctuations

scaling behavior can be computed explicitly

� Approximation of inhomogeneous fluctuating fields

gives bosonic loop diagrams
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Quantum entanglement

� Holographic components can be decoherent

� Choosing different U makes different holographic

components “visible”

ωt(· · · ) :=
1

Z t

ˆ

G

(· · · ) eβ γt
(
ρ̃,Uρ

)

dµG(U)

� U-dependence gives correlations between insertions

� This gives rise to entangled state.
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Analysis of the causal action principle

ℓ(x) :=

ˆ

F

L(x , y) dρ(y)

(for clarity of presentation:

leave out Lagrange multipliers for constraints)

Lemma

Let ρ be a minimizer of the causal action. Then

ℓ|M ≡ inf
F
ℓ

ℓ

FM
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Analysis of the causal action principle

Proof.

Consider variation ρ̃τ = (1 − τ) ρ+ τ δy

(where δy is the Dirac measure supported at y).

S(ρ̃τ ) =
x

F×F

L(x , y) d ρ̃τ (x) d ρ̃τ (y)

0 ≤
d

dτ
S(ρ̃τ )

∣
∣
τ=0

= 2

ˆ

F

d ˙̃ρτ
∣
∣
τ=0

ˆ

F

dρ L(x , y)

= 2

(

ℓ(y)−

ˆ

M

ℓ(x)dρ(x)

)

As a consequence,

ℓ(y) ≥

ˆ

M

ℓ(x)dρ(x) .
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Gauß-like theorem

For simplicity leave out scalar components of jets.

(
∆u

)
(x) =

ˆ

M

(
D1,u + D2,u

)
L(x , y) dρ(y)

0 = Duℓ =

ˆ

M

D1,uL(x , y) dρ(y) (EL eqns)

Hence

(
∆u

)
(x) = −

ˆ

M

(
D1,u – D2,u

)
L(x , y) dρ(y)

ˆ

Ω

(
∆u

)
(x) dρ(x) = −

ˆ

Ω
dρ(x)

ˆ

M

dρ(y)
(
D1,u − D2,u

)
L(x , y)

= −

ˆ

Ω
dρ(x)

ˆ

M\Ω
dρ(y)

(
D1,u − D2,u

)
L(x , y)

(volume integral) = (surface layer integral)
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Bosonic Fields in the Vacuum

� give rise to complex structure:

σ(u, v) = (u, T v)

J := −(−T2)−
1
2 T , J∗ = −J, J2 = −11

Complexify and decompose:

v = vhol + vah

On holomorphic jets introduce scalar product

(.|.)t
ρ := σt

ρ( . , J . ) : Γhol
ρ × Γhol

ρ → C

Completion gives complex Hilbert space (h, (.|.)t
ρ).

� Cauchy problem: Existence and uniqueness proven.

F.F. and N. Kamran, “Complex Structures on Jet Spaces and Bosonic

Fock Space Dynamics for Causal Variational Principles,”

arXiv:1808.03177 [math-ph], to appear in Pure Appl. Math. Q. (2021)

C. Dappiaggi and F.F., “Linearized Fields for Causal Variational

Principles: Existence Theory and Causal Structure,”

arXiv:1811.10587 [math-ph], Methods Appl. Anal. 27 1–56 (2020)

Felix Finster Causal fermion systems



Fermionic Fields in the Vacuum

� dynamical wave equation:

ˆ

M

Qdyn(x , y) ψ(y) = 0

� scalar product defined as surface layer integral:

〈ψ|φ〉t
ρ = −2i

(
ˆ

Ωt

dρ(x)

ˆ

M\Ωt

dρ(y)−

ˆ

M\Ωt

dρ(x)

ˆ

Ωt

dρ(y)

)

× ≺ψ(x) | Qdyn(x , y)φ(y)≻x

is conserved in time,

gives extended Hilbert space Hρ ⊃ H.

� Cauchy problem: Existence and uniqueness proven.

F.F., N. Kamran and M. Oppio, “The Linear Dynamics of Wave

Functions in Causal Fermion Systems,” arXiv:2101.08673 [math-ph]
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Bosonic insertions

� physical picture:

“Measurement” in M̃ with objects in M,

using the identification given by U

� associate z to a linearized field z̃ in M̃:

Pρ : U ⊂ Jlin

ρ → B perturbation map

DPρ|w : Jlin

ρ, → Jlin

ρ̃,

z̃ := DPρ|w z , z̃ := DPρ|w z

� perturb nonlinear surface layer integral:

Dz̃γ
t(ρ̃,Uρ) , D

z̃
γt(ρ̃,Uρ)
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Fermionic insertions

� Work with scalar product 〈.|.〉t
ρ in vacuum.

� Map wave functions from M̃ to M:

ψ = πρ,ρ̃ ψ̃ , ψ(x) :=
1

t̃(x)

ˆ

M̃

πx U
−1 ψ̃(y) |xy |2 d ρ̃(y)

t̃(x) :=

ˆ

M̃

|xy |2 d ρ̃(y)

� Gives subspace πt
ρ,ρ̃H ⊂ Hρ,

πt
U : Hρ → πt

ρ,ρ̃H orthogonal projection

� one-particle measurement: 〈ψ |πt
U
φ〉t

ρ

� multi-particle measurement:

1

p!

∑

σ,σ′∈Sp

(−1)sign(σ)+sign(σ′)

× 〈f̃σ(1) |π
t
U f̃σ′(1)〉

t
ρ · · · 〈f̃σ(p) |π

t
U f̃σ′(p)〉

t
ρ

Pauli exclusion principle arises
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Realization of insertions as functional derivatives

� Can the state be written as follows?

ωt(· · · ) =
1

βk Z t
(
β, ρ̃

) D · · ·D
︸ ︷︷ ︸

k derivatives

Z t
(
β, ρ̃

)

Short answer: Yes, up to rather subtle technical issues.

Z t
(
β, ρ̃

)
=

 

G

exp
(

β γt
(
ρ̃,Uρ

))

dµG(U)
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