
Outer entropy = Bartnik-
Bray quasilocal mass

Jinzhao Wang 

ETH Zürich

arXiv: 2007.00030

Seminar@Regensburg



The Bekenstein-Hawking entropy of a black hole

• Bekenstein: a black hole must have entropy to be consistent with the 
second law of thermodynamics.  

• Bekenstein-Hawking: it is proportional to the area of the event horizon. 

• However, what kind of entropy is it? 

• Strominger-Vafa:  

• Ryu-Takayanagi:  

• However, the second law (Hawking’s area theorem) suggests that it 
should it be understood as a coarse-grained entropy. 

SBH = k log W

SBH = − Tr ρ log ρ

SBH = A[Σ]
4GNℏ



Entanglement Entropy in AdS/CFT
• The von Neumann entropy of a quantum state 

supported on a boundary subregion  is computed 
geometrically using the Ryu-Takayanagi (RT) 
surface , that is the codimension-two extremal 
surface homologous to the boundary. 

•  

• In the Riemannian setting, RT looks for the 
minimal surface; and in the spacetime setting, 
RT looks for the extremal surface (with mean 
curvatures) with minimal area. 

• For a two-sided black hole, the RT surface is the 
bifurcation surface (wormhole throat) that 
measures the entanglement entropy of a 
thermofield double state. It coincides with the BH 
entropy. 

• However, For a one-sided black hole formed from 
collapse, the RT surface is empty indicating a 
zero entropy for a pure black hole state. How 
should one make sense of the BH entropy then?

XRT

S(B) = Area[XRT(B)]/4G

B
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Ryu-Takayanagi, 2006

Hubeny-Rangamani—Takayanagi, 2007



• Let us assume the validity of the RT formula as a 
general prescription for the fine-grained gravitational 
entropy even in asym. flat. spacetimes. (e.g. path 
integral derivation, recent advances in island 
formulas.) 

• The outer entropy is introduced by Engelhardt & 
Wall (EW) as a coarse-grained Black Hole entropy 
associated with an apparent horizon . 
 

  

• EW shows that for an apparent horizon , the 
maximiser always exists.  
 

. 

• Statistical interpretation of the BH entropy and area 
law. Built-in area laws associated with trapping 
horizons.

Σ

$(Σ) := sup
ρ

SvN(ρ) : D(Ω) fixed

Σ

$(Σ) = Area[Σ]/4Gℏ
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A[XRT] = A[Σ]

Engelhardt, Wall, 2018

Bousso, Nomura, Remmen, 2019
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Outer entropy

gluing 
conditions

Engelhardt, Wall, 2018

Wall, 2013
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• The Bartnik (outer) mass  is defined as the infimum ADM mass over all 
horizon-free extensions of the given surface . 
 

 

• Bray proposed a dual/inner version of the Bartnik mass in his seminal paper proving 
the Riemannian Penrose Inequality (RPI) :  
 

,  where  in AF,  or 

in AH is the irreducible mass. 
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MB(Σ)
Σ

MBartnik(Σ) := inf
(Ω,h,K)

M(Ω, h, K) .

M(N, h, K) ≥ Mirr(A[Σ]) Mirr(A) = 1
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Minner(Σ) := sup
(Ω,h,K)

min
σ ⊂ Ω,
σ ∈ [Σ]

Mirr(A[σ])

Bartnik, 1989

Bray, 2001

Bartnik mass

Σ

(N, h, K)
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Minner(Σ) := sup
(Ω,h,K)

min
σ ⊂ Ω,
σ ∈ [Σ]

Mirr(A[σ])

Σinf
(Ω,h,K)

M(Ω, h, K) = Mirr(4ℏGN$(Σ)) • The outer entropy is a 
functional of the entire 
outer wedge data, so the 
RT surface is not 
necessarily inside the fill-
in wedge.  

RT(B)

Outer entropy = inner mass ?

= ?



•  is outer-minimising means that for any  enclosing ,  . 

•  is mean-convex (normal) means that . 

• Both (1) outer-minimisation and (2) mean-convexity are “necessary”.  We need 
them to “quasilocalise” the outer entropy 

• Bartnik: (1) is used to avoid “bag of gold”-like extensions trivialising the Bartnik 
mass. 
 
EW: (1), as part of their “minimar” condition, is used to ensure the HRT surface 
can be found following their procedure. 

• (2) and its Riemannian version is common. e.g. Bartnik mass, Weyl problem, 
positivity of Brown-York mass, Liu-Yau mass, etc.

Σ Σ′ Σ A[Σ] ≤ A[Σ′ ]

Σ ±θ± ≥ 0

Outer-minimising mean-convex surfaces



Our main result is that the outer entropy  is 

equivalent to the Bartnik-Bray inner mass   

assuming the DEC: 

   

for an outer-minimising, mean-convex . 

$(Σ)
Minner(Σ)

Minner(Σ) = Mirr(4ℏGN$(Σ))

Σ

Equivalence

The proof uses standard focusing arguments.  
Check out the details in the paper arXiv: 2007.00030

*Though motivated in AdS, this geometric statement also makes sense in flat space.



The area laws of trapping/dynamical horizons = monotonicity of the quasilocal 
mass. Both are the consequences of the variational definitions.

Implications: area laws

Engelhardt, Wall, 2018
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In the small sphere limit, any quasilocal mass 
should reduce to the stress tensor, so should 
the outer entropy. Using an algorithm to construct 
the fill-in developed by EWBNR, which is not 
provably optimal, we obtain 
      

 

 
 

      

$(Σl) = Ωn−2ln−2

4GNℏ
2l2Ωn−2GNT(e0, e0) |p

n − 1

n − 2
n − 3

lim
l→0

l−(n−1)Minner(Σl) = Ωn−2
n − 1 T(e0, e0) |p

Implications: local mass density



• The Penrose Inequality implies 
 
         . 

• It’s a quasilocal version of the Penrose inequality. It’s more interesting to ask when 

does the equality hold? i.e. Bartnik (outer) mass = inner mass. 
 
         . 

• This is a quasilocal statement that concerns the entropy and the energy of a 
closed surface. In words, it says the Bartnik mass of some closed surface is 
given by the irreducible mass of the largest black hole that can be fit behind it.

• The equality trivially holds if the Bartnik data can be isometrically embedded 
into Schwarzschild. However, generally the equality needs not to be realised 
on a particular spacetime. (Note that we have inf/sup in LHS/RHS.) 

inf
(Ω,h,K)

M(Ω, h, K) ≥ Mirr(4ℏGN$(Σ))

inf
(Ω,h,K)

M(Ω, h, K) = Mirr(4ℏGN$(Σ))

A quasilocal Penrose inequality



• Extension constructions by Mantoulidis-Schoen for Σ being an apparent horizon 
(MOTS) give non-trivial examples to the equality. 

• Evidence from the matching of small sphere limits for any small balls.   

• On the other hand, we know that the equality certainly doesn’t hold in general. For 
example, an off-centred ball in Schwarzschild has a positive Bartnik mass but 
zero inner mass as it admits no valid fill-in. 

• Question: under what conditions does the equality hold?

When does the equality hold? 

(Σ,γ,H) Jauregui, 11

Wiygul, 16

Mantoulidis-Schoen, 15
Cabrera Pacheco-Cederbaum-McCormick, 18

inf
(Ω,h,K)

M(Ω, h, K) = Mirr(4ℏGN$(Σ)) ?

https://arxiv.org/search/math?searchtype=author&query=Jauregui%2C+J+L
https://arxiv.org/search/math?searchtype=author&query=Jauregui%2C+J+L


• We’ve shown that the Bartnik-Bray quasilocal mass is equivalent 
to the Outer Entropy. 

• Can we find a procedure to construct the optimal fill-in that 
computes the inner mass/outer entropy for more general surfaces? 

• Under what conditions does the following equality hold? 
 

. inf
(Ω,h,K)

M(Ω, h, K) = Mirr(4ℏGN$(Σ))

Conclusion

Mantoulidis-Schoen, 15Mantoulidis-Schoen, 15Mantoulidis-Schoen, 15
Mantoulidis-Schoen, 15



Thank You !


