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Motivation

There must exist a formulation of quantum field theory
which does not depend on classical time.

Gravitation, as well as quantum theory, are emergent
phenomena.

How do fermions curve space-time? : a non-commutative
spinor space-time.

Unification of standard model with gravity required at all
energy scales, not just at Planck energy scales.
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Summary

B There must exist a reformulation of quantum field theory without classical time.

B Such a formulation has been developed as a matrix-valued Lagrangian dynamics.
B Elementary particles live in the non-commutative octonionic space.
B This space possibly determines the standard model, properties of

elementary particles, and dimensionless constants of the standard model, all at

low energies.

B The Left-Right symmetric extension of the standard model unifies it with
pre-gravitation.

B We predict that the neutrino is a Majorana particle.

B We predict three right-handed sterile neutrinos, a dark photon, and two spin-one
Lorentz bosons.

B Prior to measurement, a quantum system obeys L-R symmetry.

B Only classical systems live in 4D classical spacetime. Quantum systems live in an
octonionic space.

B Unification of standard model with gravitation is required at all energy scales, not j
just at the Planck energy scale.



Quantum superposition and gravitation

e A guantum object such as an electron has action of the order
Planck’s constant h

e |t obeys position superposition; hence the produced gravitation
IS not classical.

 This is an example of low-energy [hence weak]| quantum gravity.

* Only when the associated energy scale h/T is Planck energy,
does this become Planck scale guantum gravity.

* Hence, we need a pre-quantum, pre-spacetime theory at all
energy scales.
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Quantum gravity in the UV, Planck scale,

Non-commutative spacetime Unification of the four forces

Quantum gravity in the UV, Planck scale,
Unification of the four forces
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igh energies,
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Methodology

e Raise classical dynamical variables to the status of

matrices/operators, but do not impose quantum
commutation relations [Adler’s Trace Dynamics, 1996]

e First we do this for non-gravitational degrees of freedom:
S [ dt£(.q) ~ [ d Tric(.d)

* This matrix-valued Lagrangian dynamics has a novel
conserved charge:
i

* Assume this dynamics to hold at some time resolution T

 Coarse-graining over much larger time scales leads to the
emergence of quantum theory. 5/45



How to include gravitation in this
matrix dynamics?

e \What gravitational degrees of freedom are to be raised to

the status of matrices / operators?

e Answer: the eigenvalues of the Dirac operator on a curved

space-time manifold:

Tr[L$D?*] ~ L5 /d4x\/_R+O (LD) Z)\Q

* An atom of space-time:

Ai = Ai =B

/—TN

20, L% .
—5 |45 P51(JF

\Z — / dr Tr(qs;]

* An atom of space-time-matter:

L2

4B P 52(1F
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Including Yang-Mills fields

S dr L? , Q L? _ Q , L L? , Q
w= [ e (i) + Thm (ah v iTak) | | (s +i5ab) + T (i +i7ar) | |

which can also be written as
S d L? L? L? L? , , L? )
7 = / T—; TT{L—IQD { (QTB + L—§51Q}L:) + i% (QTB + L—J;ﬁlq}) ] X [ (C}B + L—];ﬁQQF) + ’L% (CIB + L—];BQQF) _

-Define ¢l = ¢, + Bi¢l: g2 = g + Bogr
SE/dTTr[, aOEL?D/LZ a1 = h/cLp

1 ) t 04262 T

TrL = 5&1&0 I'r _qqu 72 C.th_
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The free particle Lagrangian

39 1 ~ 1

Z(ioqu + Lgp); Qp = Z(

L2 ot L2 A Ly =\
L=Tr|—= (QB | 51@1?) (QB | L252QF>

L2 " L2
L="Tr {QBQB + = (51625’@3 T QB@2QF> T —pﬁlQF52QF}

iaqr + Lqr);

| - f <f L2 st Ly =~
Define: leed — B | L2 BIQFJ QQsed — QB | BQQF
_L229 T 'y
L — TT ﬁ@lsed QQsed

S 1 [ dr - L2 1 ) Atoms of
— = — / 7_—Pl I'r Q1sed Q2s€d Space-time-matter
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What is the noncommutative
spacetime?
e \What does the 4D spacetime manifold R4 get replaced by?
e Appeal to division algebras: R, C,H, O

e Quaternions: q = ag + alg + ag}’ + agl%

AN A A AN A

==k =—1sij=—ji=k: jk=—kj=1: ki=—ik =
 Octonions:

O = ag + a1e; + agzes + azes + aseq + ases + agep + arey
» Sedenions: not a division algebra

- Bosons and fermions live in octonionic spacetime: SL(2,0) ~ SO(1,9)
Qp = Qo+ Q1e1 + Q262 + (ze3 + Queq + Qses + Qpes + Qrer

Octonionic spacetime reveals the standard model ! 9/45



FROM DIVISION ALGEBRAS TO

CLIFFORD ALGEBRAS & ELEMENTARY PARTICLES



BIG PICTURE Three fermion generations mcludlng sterile neutrinos

Standard Model and pre-Gravitation

LH Fermions RH Fermions

U(1) is electric charge U(1) is square-root mass

Charge eigenstates

Mass eigenstates

LH Majorana Neutrino RH Majorana Neutrino

Higgs
LH anti-down quark 1/3 l I RH positron 1/3

LH up quark 2/3 RH up quark 2/3

LH positron 1 RH anti-down quark 1

SU(S)C X SU(Q)W X U(l)em SU(g)g X SU(Q)R X U(l)g



Complex Quaternions and the Clifford algebra Cl(2) (Furey, 2016)

A A A A

CoH 1, 4, ¢, 7, k, i1, ij, ik SL(2,C)

B Complex quaternions give a faithful representation of CI(2)

1 N A 1 A "
o= (-j+i);  a'=c(@+i);  a’=a"=0{aal}=1

These are fermionic ladder operators. N = Z oz,joz@- Sr
g

B Spinors can be defined as minimal left ideals of Clifford algebras.

(CoH)V V =aal Projector/“vacuum” ..Idempotent

B Two (complex) dim space: |74 A%
VL = %TJV + %%(XTV YR = %V* + wgozv* 11/45



B Using the complex quaternions one can describe:

. Left and Right handed Weyl spinors

. Dirac spinors and Majorana spinors

. Contra-variant and covariant four vectors
. Scalars

. Field strength tensors

These are all the Lorentz representations of the standard model.
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Complex Quaternions Complex Octonions

v v

Clifford Algebra Clifford Algebra

Charge

Spinor Consruction Quantisation

v
\4

L,R Weyl Spinors Quarks & Leptons
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Complex Octonions and the Clifford algebra CI(6) (Furey, 2016)

Cx 0O L, 2, e1, ea, e3, €4, €5, €g, €7 SL(2,0)

B A non-associative algebra

C ® O —)— Clifford Algebra

B Maps are associative

Fo(GoH)=(FoG)oH

14/45



B Most general left action map of C x O on itself :

M f = Cupetaepecf + Cijeie; f + Crenf + Cof
e f=—¢ieif i Seif=—f  i=]

B Hence octonionic chains exhibit Clifford algebra structure.

B The chains have a total of sixty-four complex degrees of freedom.

Hence they can be represented by 8x8 C matrices.
Endomorphismon C X O
Faithful representation of complex Clifford algebra CI(6)

1 . 1 . 1 .

oy = 5[—65 + ie4]; gy = 5[—63 + ieq]; a3 = 5[_66 + iesl;
1 , 1 . 1 .

al = 5[65 + teq); al = 5[63 + ieq]; al = 5[66 + ie2)]

{ag, i} = 0; {04:;[70‘;[’} :03; {O‘i’O‘;’} = 0ij

Number operator: N => ol o 15/45
1



B Continued...
- The ladder operators have a unitary symmetry which acts on them: U(3)

- Rotates lowering (raising) operators into lowering (raising) operators.

U3) =SU3) xU(1)/Zs

G2 is the automorphism group
of the octonions.

SU(3)xU(1)

« SU(3) is the element preserver
sub-group of G»

« U(1) is generated by a number
operator.
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Minimal Left Ideals of CI(6)

V = 04104204304504504 Projector / ldempotent / “Vacuum”
S = (C®0)V =ClsV S=(Co0)V* = ClgV*
|4 V*
oﬂiV Oz;V oz;;V a1 V™ as V'™ azV™
a3a2V aJ{oz;gV ozgoz];V a3V azag V™ V"
0%042041‘/ a3V’

Transformations on ladder operators ——> Transformations on basis vectors

Under SU(3) and Under U(1) 17/45



Transformations under SU(3)

V = 0410420430%04;04 Projector / I[dempotent / “Vacuum”
S = (C®0O)V = ClgV St =(CO)V* =ClgV*
V 1 v 1

oﬂiV Oz;V oz;gV 3 aV* o V™ asV™ 3

a3a2V aJ{oz;gV ozgoz];VQ a3V azag V™ gV
3*
atadalV 1 aragagV’ 1

Transformations on ladder operators ——> Transformations on basis vectors

Under SU(3) and Under U(1) 18/45



Transformations under U(1)

NSY = nS¢ n=40,1,1,1,2,2,2, 3} Q =N/3

SY = (CeO)V =ClgV 0 St = (C®O)V*=ClgV*

0 V 1 Ve 1
1/3 &V adV Vo 3 aVE VeV 3

—1/3

a3a2V aJ{oz;gV oz%oﬂiVﬁ agazV'” aza V" aoV”
2/3 —2/3 3
1 atadalV 1l -1 aiagagV’ 1

19/45



SY"=(CxO)V =ClgV qgd
0 V 110
1/3 VbV Vo 3 oy V*
~1/3
alalV odadV alalV3|asazV?
2/3 —2/3
| ayabalV 1) -1
1%
d
u
€+

Quarks and Leptons [Furey, 2016]

Q=N/3 =0,1/3,2/3,1

(C0O)V* =ClgV*
VA 1
as V™ Oégv* 3
s V™ 1oV
§>l<

ooz V™ 1

1%

d

U

e 20/45



Thus far :

- Start with complex octonions.

* Have them act on themselves.

» That generates the Clifford algebra CI(6)
» Spinors constructed to obtain states,

* which transform as one generation of standard model
particles under the unbroken SU(3)c x U(1)em

Ratios of electric charge are a consequence of
symmetries of the octonion algebra.

Do mass ratios also result from some symmetry

of the octonion algebra®?
21/45



Division Algebras and the Weak Symmetry

B Cl(4) and right minimum ideals used to demonstrate correct
action of SU(2)L on one generation of leptons.

- Furey (2018)

B Two copies of CI(6): one for electro-color and one for the
Weak-Lorentz symmetry: one generation of quarks and leptons.

- Stoica (2018)

B However, the Cl(4) of weak symmetry can be made from the CI(6)
of the electro-colour symmetry !

B How to describe three fermion generations using division
algebras? Need to consider the next two exceptional Lie groups
F4 and Es. 20/45



Left-Right symmetric fermions and sterile neutrinos

from complex split biquaternions and bioctonions

CZ(O,B) {1,61,62,63,6162,6263,6361,616263}

(176176276162), (6162637626376361763)

W = €1€2€3 Split complex number w? =1 © = —w

(1,e1,e2,e1€2), w(l,—e1, —e2, —e1€2)
Complex Split Biquaternions ('](3)
Co(HoH)=2=CD®H D= (1,w)

RH Leptons Vg = LT iere2 Y, = Tt
- R= "9 L=""9
O = (61 _I_/I/€2)/2 _+__—€1—|—’I:62 __—61—’2:62
eR_ 9 €r = 9
LH Leptons
S . . 1 y 1—14 e1 — i B .
o = W(_el — 7/62)/2 Vi, = +;6162 VR = ;6162 e}: Zw( L 2262) esz(elJ;wQ)



Complex split bioctonions and Cl(7) & L-R symmetric model

Writing CI(7) as a sum of two copies of C X O with opposite parity.

CZ(O, 7) from (17 €1,€2,€3,€4, €5, €4, 68) D Cd(l, —€1, —€2, —€3, —€4, —€5, —€g¢, _68)

Z Z
€8 — €1€9€3€4€5€¢4 W = €1€9€3€E4E5E5E7

C(0a0)2 C®D®O D= (1,w) CIl(7)

One generation of L-R symmetric fermions

—e5 + ey —e3 + e —eg + €2
1 = 9 o = . X3 =
2 2 2
— _ T T T
()} = ayonas Q0T = ] (a3 Ol Ol (g
—e5 + ey —e3 + e —e6 + 1€
x1 — —W 9 s (X — —W 9 s (X3 — —W 9

Constructing the L-R basis states in CI(7) :
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U(1)em

| eft-handed Particles

U(1)grav

Right-handed Particles

— teg+1 —teg + 1 — teg+1 —teg + 1
2 2 2 2
es + 1€ es — 1€ —er — 1 — )
Vad1 = (es ! (es ) Vad1 = w( s — iea) Vi :w( es + deq)
2 2 2 2
es + 1e e3 — e —eq — 1€ —es3 + e
V= (e3 : 1) (e3 : 1) Vad2=w( 32 1) Vd2:w( 32 1)
eg + te eg — 1€ —eg — 1€ —eg + 1€
Vads = (es 5 2) (e 5 2) Vad3=w( 62 2) Vd3=w( 62 2)
Vul = leg _;ieS) Vaul = leg _2i65) Vul = (e ;i%) Vaul = (e —2i65)
e1 + e e1 — e e1 + e e1 — 1e
Vu2 — ( ! 9 3) Vau2 — ( ! 9 3) Vu2 — ( ! 9 3) Vau2 — ( ! 9 3)
eo + e ey — 1€ es + 1e eo — 1€
Vu3:(22 6) ch1’1¢3:(22 6) ‘/u3:(22 6) Vau3:(22 6)
Ve+:_(z+268) _(—2—21—68) Ve+_w(z—|—268) Ve_:w(—z;—eg)

 CI(7) gives one generation of L-R symmetric fermions
» Each set has SU(3) x U(1) symmetry.
e SU((2)L. and SU(2)r act only on left (right) handed particles.

* This is the L-R symmetric extension of SM: SU(3)c x SU(2)L x SU(2)r x U(1)



Why is the square-root-mass ratio for down / up / electron
(1:2/3:1/3)
In reverse order of their electric charge ratio
(1/3:2/3:1)

?

Es as a symmetry group for unification of standard model
with ‘would-be-gravity’ [Complexified exceptional Jordan Algebra]

H, = [SU(3) x SU(3) x SU(3)]/Zs, Hy = Spin(10)  Intersection :SU(3) x SU(2)r x SU(2)r x U(1)

Outside the intersection: SU(3) X SU(3) and Spin(6) ~ SO(1,5) ~ SL(2,H)
26/45



Why three fermion generations?

 Automorphism group of sedenions:

Aut(S) = Aut(0) x S5 Sz is isomorphic to SO(8): Triality

E6 F4 F4 EG6

EW SU(3)c
G2

LOR Go

EW

SU(3)c

EG F4 F4 EG
G2



L-R Symmetry and its Breaking

Square-root mass

Bl Before: U(1) chargeis: Qgem = (0,1/3,2/3,1) /
M After: Two DIFFERENT U(1) charges:  Q and Qe

Inynir X 21N Quemn =In(af) =Ina+1Inf < Q + Qgrav
Bl Before: Unification of standard model with gravity

Idempotent is Dirac neutrino (VL + VR)/2

Theory is L-R Symmetric!! 8P Qctonionic Space-time

Dirac Neutrino
LH(anti-down-quark)-RH(positron) Qgem= 1/3
LH(up-quark)-RH(up-quark) Qgem = 2/3
LH(positron)-RH(anti-down-quark) Qgem = 1

SU(3)_c X SU(3)_g CI(7) 28/45



After L-R symmetry breaking (same as EW symmetry breaking)

LH Fermions RH Fermions
U(1) is electric charge U(1) is square-root mass
LH Majorana Neutrino RH Majorana Neutrino
LH anti-down quark 1/3 RH positron 1/3

LH up quark 2/3 RH up quark 2/3

LH positron 1 RH anti-down quark 1

SU(S)C X SU(2)W X U(l)em SU(3)9 X SU(Q)R X U(l)g



Gen |

E_6 and three generations Particles Anti-particles Idempotent
Particles = Lepto-quarks Dirac N_eutrino
Unification
SU(3)_color X SU(3)_gravicolor Pl -> AP
API -> PII
Pll -> APII
Cci(7 cl(7 APII -> Pl
Charge-Mass = €4/ 11 (7 (7) Plll -> APIII
Weak-Lorentz .
— eXP[Q + Qgrav] / WeaHQ@EZ AR F
P AP P AP

Weak-Lorentz

Ci(7) CI(7) ci(7) Cl(7)
Gen lll Gen ll

Jordan eigenvalues distinguish the three generations




The free particle Lagrangian

39 1 ~ 1

Z(ioqu + Lgp); Qp = Z(

L2 ot L2 A Ly =\
L=Tr|—= (QB | 51@1?) (QB | L252QF>

L2 " L2
L="Tr {QBQB + = (51625’@3 T QB@2QF> T —pﬁlQF52QF}

iaqr + Lqr);

| - f <f L2 st Ly =~
Define: leed — B | L2 BIQFJ QQsed — QB | BQQF
_L229 T 'y
L — TT ﬁ@lsed QQsed

S 1 [ dr - L2 1 ) Atoms of
— = — / 7_—Pl I'r Q1sed Q2s€d Space-time-matter
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Mass Ratios & FSC from the Exceptional Jordan Algebra .J;(0)

B This is the algebra of 3 x 3 Hermitian matrices with octonionic entries

{1 T3 T2 - Automorphism group is Fa

X(&x)= |23 & w1

ro T1 &3 * For complexified EJA: Ee

B Characteristic equation: \*> — Tr(X)\? + S(X)\ — Det(X) =0
3
Tr(X)=& +& +&, Det(X)=~E&E +2 Re(x1xo03) Zﬁzx T

S(x) = &1&a + £283 +E3861 — 2121 — oo — T3T3

B We will determine mass ratios from roots of this cubic equation.

 Octonionic entries: States representing fermions.

X (&, )

» Diagonal entries: Electric charge. 30/45



Octonionic representation for three generations

B Choose f=1, choose one color, and map states to real octonions:

Gen | (assuming Majorana neutrino)

i1 » Obtain second and
v — /Y7 A ©6 . .
2 2 third generation states by
Vo, — 365 +res —> }165 n lees rotation in the respective
L - fermionic plane, respectively
Vu=Zea+ 765 — Zea+ 76 by angles 27 /3 and 4w /3
1 1 1
‘/e‘*' — —j—l — 2167 — —4_161 — 1—167
Gen |l
VM__66+\/§ v _ —es —e3— V3 —3e
Ve 4 @ 8
V_—e4—62—\/§— 3e1 v _e1+e7+\/§—\/§e3 Gen I”
c — ] ap — 8
Vu¥=—e6;\/§ V., = € es +8\/§+\/§e2
Vt:—e4—62+\/§+\/§61 v _81-{-67—\/5-1—\/563
8 oo 8
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Jordan matrices and Jordan eigenvalues

I 0 VT V,u_ I 1 VaT V;,u_ _é ‘/t ‘70- I % Vab ;s-
XI/ — ‘77' Q VI/ Xe+ — VaT 1— Ve+ Xu — ‘/t % Vu Xad — Vab % Vad
v, V, 0| Ve Ve 1] V. V. 2% Vas Va1
The Jordan Eigenvalues
Neutrinos: \/g 0 \/g
Magntitude 3/4 —_—
2 T 2
» Anti-neutrino has Espog L \/ ¢ — L + \/ s
same eigenvalues 3 8 % 3 8
as the neutrino! 3 i & \/ § - - 4 \/ §
3 3 3 3 8
Charged Leptons 3 3
Mag. 3/8 1 o \/_ ] 1 _'_ \/_
3 3

These are all numbers in Base four "

Charge eigenstates are NOT mass eigenstates
34/45



Mass ratios for charged fermions [Casimir of SO(1,5), along with spin]

Mass ratios: Square root of the mass of a charged fermion with respect to the down quark

Down quark Strange quark Bottom quark
1+./3/8 1+./3/8 % 1+,/3/8 5 1+,/3/8
S 1-/3/8 . 1-J3/8 1
1-./3/8 :
Up quark Charm quark Top quark
2 e /8 2 2
2/3 R S SN E V3/8 3
3 72 § e
3 J3/8 7-3/8 3-.3/8
Positron Muon Tau lepton
1/3 1+ 3/ 1/3+,/3/ L% bk Lt 3/ 1/3+J3/

il
—X
3

= |1/3 ﬁ' 371-/3/8 " 1- |1/3-ﬁ|

These have the same fundamental status as electric charge ratios



Theory vs Experiment [assuming Majorana neutrino]

Square root

mass ratios

Particles Theoretical mass|Minimum experi-|Maximum experi-
ratio mental value mental value

muon /electron 14.10 14.37913078 14.37913090

taun/electron 5H8.64 58.9660 58.9700

charm /up 23.57 21.04 26.87

top /up 289.26 248.18 310.07

strange /down 4.16 4.21 4.86

bottom/down 28.44 28.25 30.97

Comparison of theoretically predicted square-root mass ratio with experimentally known range

36/45



Mass ratios: Majorana neutrino vs. Dirac neutrino

VM —=ie;/2

|74

VP =

(1 -+ i€7)/2

Square root mass ratios

Particles Theoretical mass ratio (D) Theoretical mass|Minimum experi-|Maximum experi-
ratio (M) mental value mental value

muon/electron  17.30 14.10 14.37913078 14.37913090

taun/electron 171.27 58.64 58.9660 58.9700

charm/up 3.39 23.57 21.04 26.87

top/up 4.05 289.26 248.18 310.07

strange/down 9.89 4.16 4.21 4.86

bottom /down 218.00 28.44 28.25 30.97

37/45




Fine structure constant

Experiment

0.0072973525693(11) = 1/137.035999084(21)

Spinor spacetime vs. Minkowski spacetime

The Karolyhazy correction

39/45



The Koide formula

- Koide observed for the charged leptons that:

Me + My, + My

(Ve + /Ty, + /My )?

- Using the mass-ratios we have found [assuming Majorana neutrino]

2
= 0.666661(7) ~

Me + My, + My

(v/Me + VMt Vi )?
* Remarkably, assuming Dirac neutrino, the Koide ratio we get is

(1++/3/2)% + (1-+/3/2)2 2

32 3
e Strongly supports: Quantum systems are L-R symmetric and live in
spinor space-time, prior to a guantum measurement.

2
= 0.669163 ~ 3

40/45



The Cabibbo angle

- Koide proposed the following relation for the Cabibbo angle

tan 0. —\/_2\/7\/7\/7\/7\/7—0.225

* Our theoretical mass ratios (assuming Majorana neutrino) give 0.222

* Assuming Dirac neutrino, the answer is 0.09
 Can the other angles be predicted?

* What about the other dimensionless constants of the standard
model?

41/45



Can we understand neutrino masses?

- Jordan eigenvalues assuming Majorana neutrino

—v/3/2,0,3/2

Jordan eigenvalues assuming Dirac neutrino

~1/2-+v3/2, 1, —1/2+43/2

42/45



Sterile neutrinos

* Interact only via gravity.
* This cannot be classical gravity.

» When we introduce sterile neutrinos, we bring quantum
gravity on par with the standard model interactions.

* Introducing sterile neutrinos requires unification of standard
model interactions with gravitation.

* Only after this is done, can one make reliable predictions
for experimental signatures of sterile neutrinos.

43/45



What causes Left-Right symmetry breaking?

- Critical entanglement amongst fermions, leading to the
quantum - classical transition, and emergence of
4D classical curved space-time. SU(2)L X SU(2)r breaks.

« Only classical systems live in 4D spacetime
[compactification without compactification].

e Quantum systems obey L-R symmetry (group Es).

* The mechanism in the early universe is the same as
IS In the laboratory today: quantum entanglement.

» Does this theory give the theoretical basis for MOND?

44/45



Summary

B There must exist a reformulation of quantum field theory without classical time.

B Such a formulation has been developed as a matrix-valued Lagrangian dynamics.
B Elementary particles live in the non-commutative octonionic space-time.

B This space-time determines the standard model, properties of elementary particles,
and dimensionless constants of the standard model.

B The Left-Right symmetric extension of the standard model unifies it with gravitation.
B We predict that the neutrino is a Majorana particle.

B We predict three right-handed sterile neutrinos, a dark photon, and two spin-one
Lorentz bosons.

B Prior to measurement, a quantum system obeys L-R symmetry.

B Only classical systems live in 4D classical spacetime. Quantum systems live in an
octonionic space-time.

B Unification of standard model with gravitation is required at all energy scales, not
just at the Planck energy scale. 45/45



