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Outline of the talk

m Preliminaries: Lorentzian geometry and globally hyperbolic
spacetimes.

m Paracausal deformations of globally hyperbolic metrics.

m Convex combinations of normally hyperbolic operators and the
Mgller operators.

m Conclusions.

Based on a recent paper with V.Moretti and S.Murro:
Paracausal deformations of Lorentzian metric and geometric Mgller
isomorphisms in algebraic quantum field theory. (2021).
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+

78

m Causal sets J*(A) = Au points in M reachable by future/past
directed smooth causal curves.

4/20



Global hyperbolicity

m Spacetime: smooth, connected, oriented, time-oriented n + 1
dimensional Lorentzian manifold.

5/20



Global hyperbolicity

m Spacetime: smooth, connected, oriented, time-oriented n + 1
dimensional Lorentzian manifold.

m Cauchy hypersurface: ~ c M it intersects once any
inextendible future-directed smooth timelike curve.

5/20



Global hyperbolicity

m Spacetime: smooth, connected, oriented, time-oriented n + 1
dimensional Lorentzian manifold.

m Cauchy hypersurface: ~ c M it intersects once any
inextendible future-directed smooth timelike curve.

m Temporal function: t € C*(M,R) with time-like past directed
gradient, strictly increasing along future directed causal curves.

5/20



Global hyperbolicity

m Spacetime: smooth, connected, oriented, time-oriented n + 1
dimensional Lorentzian manifold.

m Cauchy hypersurface: ~ c M it intersects once any
inextendible future-directed smooth timelike curve.

m Temporal function: t € C*(M,R) with time-like past directed
gradient, strictly increasing along future directed causal curves.

m Globally hyperbolic spacetime: g € GH(M) if no closed
timelike curves 4+ compact diamonds J*(P) n J~(Q) for all
P,Qe M.

5/20



Global hyperbolicity

Spacetime: smooth, connected, oriented, time-oriented n + 1
dimensional Lorentzian manifold.

m Cauchy hypersurface: ~ c M it intersects once any
inextendible future-directed smooth timelike curve.

m Temporal function: t € C*(M,R) with time-like past directed
gradient, strictly increasing along future directed causal curves.

m Globally hyperbolic spacetime: g € GH(M) if no closed
timelike curves 4+ compact diamonds J*(P) n J~(Q) for all
P,Qe M.

m Globally hyperbolic <= a Cauchy hypersurface exists.

5/20



Global hyperbolicity

m Spacetime: smooth, connected, oriented, time-oriented n + 1
dimensional Lorentzian manifold.

m Cauchy hypersurface: ~ c M it intersects once any
inextendible future-directed smooth timelike curve.

m Temporal function: t € C*(M,R) with time-like past directed
gradient, strictly increasing along future directed causal curves.

m Globally hyperbolic spacetime: g € GH(M) if no closed
timelike curves 4+ compact diamonds J*(P) n J~(Q) for all
P,Qe M.

m Globally hyperbolic <= a Cauchy hypersurface exists.

Theorem (Bernal-Sanchez)

(M, g) globally hyperbolic = 3

5/20



Global hyperbolicity

m Spacetime: smooth, connected, oriented, time-oriented n + 1
dimensional Lorentzian manifold.

m Cauchy hypersurface: ~ c M it intersects once any
inextendible future-directed smooth timelike curve.

m Temporal function: t € C*(M,R) with time-like past directed
gradient, strictly increasing along future directed causal curves.

m Globally hyperbolic spacetime: g € GH(M) if no closed
timelike curves 4+ compact diamonds J*(P) n J~(Q) for all
P,Qe M.

m Globally hyperbolic <= a Cauchy hypersurface exists.

Theorem (Bernal-Sanchez)

(M, g) globally hyperbolic = 3

m a Cauchy temporal function i.e t=1(ty) = ¥ (smooth);

5/20



Global hyperbolicity

m Spacetime: smooth, connected, oriented, time-oriented n + 1
dimensional Lorentzian manifold.

m Cauchy hypersurface: ~ c M it intersects once any
inextendible future-directed smooth timelike curve.

m Temporal function: t € C*(M,R) with time-like past directed
gradient, strictly increasing along future directed causal curves.

m Globally hyperbolic spacetime: g € GH(M) if no closed
timelike curves 4+ compact diamonds J*(P) n J~(Q) for all
P,Qe M.

m Globally hyperbolic <= a Cauchy hypersurface exists.

Theorem (Bernal-Sanchez)

(M, g) globally hyperbolic = 3
m a Cauchy temporal function i.e t=1(ty) = ¥ (smooth);
s M = Jiff R x X ,

5/20



Global hyperbolicity

m Spacetime: smooth, connected, oriented, time-oriented n + 1
dimensional Lorentzian manifold.

m Cauchy hypersurface: ~ c M it intersects once any
inextendible future-directed smooth timelike curve.

m Temporal function: t € C*(M,R) with time-like past directed
gradient, strictly increasing along future directed causal curves.

m Globally hyperbolic spacetime: g € GH(M) if no closed
timelike curves 4+ compact diamonds J*(P) n J~(Q) for all
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m Globally hyperbolic <= a Cauchy hypersurface exists.

Theorem (Bernal-Sanchez)

(M, g) globally hyperbolic = 3
m a Cauchy temporal function i.e t=1(ty) = ¥ (smooth);
s M = Jiff R x X ,

m an isometry h = —[32dt?> + h;, h; family of Riemannian metrics
on the slices.
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Proofs of these statments are done pointwise: exercises about

quadratic forms.
gy will be important later!
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Partial ordering of metrics Il

Hyp: g€ T(M) g’ € GH(M); x,A € C*(M,[0,1])
Cauchy hypersurfaces of g’ are Cauchy for g;
g,8x 8x € GH(M).

Sketch of the proof: v € TpM g'spacelike => v is g spacelike.

Therefore ¥ is g’ spacelike = X is g spacelike.
g timelike curves are g’ timelike, so they intersect ¥ once = X is g

Cauchy.
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The paracausal relation |

Definition (Paracausal relation)

8,8' € GHm
g is paracausally related to g (g ~ g’) if there is a finite sequence
g=g,g,...,8v = g € GHm such that, for k=0,...,N —1,
(i) gk < k41 or gkr1 < gk
(i) (a) if gk < gkt1, then VET < VEHT forall pe M,
(b) if ges1 < gk, then VEHT < VET for all p e M.
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The paracausal relation

k1t
V§k+ VF

p
@ D
8k-1 2 8k 8k = 8k-1

At each step the future cones of one metric are included in the future
cones of the other metric!
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Paracausally related metrics: example

M = Rr+1
o = —dt ® dt + Y7 dx’ @ dx’

m=—dr@dr+ " dy' @ dy’
T=xy,t=y, Yk =xx if k>1.

The partially ordered (P.O.) sequence relating 1o ~ n;:

o 31
4 v,

\z/%_ )

P 4 P
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Sufficient conditions

Paracausal relation: sufficient conditions
g~g
VEY A VET 2
3 common Cauchy temp. function with t=1(s) compact;

3 g-Cauchy temp. function with
m t~!(s) compact and g’ spacelike;
m dt is g’ past directed.

Equivalent characterization

g ~ g <= 3 asequence {gi} = GH(M) such that
VET A VEST 2 g YPe M.
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m A complex hemitian vector bundle E equipped with metric
compatible connection V.

m The space of its smooth sections I'(E).

= Normally hyperbolic operator:
A linear second order differential operator N : ['(E) — I'(E) with

on(§) = —g*(€,€) Ide.
m Solutions:Kers(N) := {f € [&.(E) | Nf = 0}
m Symplectic form o} : Ker,(N)xKer, (N) — C

Easiest example of n.h.o: Klein-Gordon operator K = [J, + m? on
the trivial bundle.
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problem for N is well-posed.

Moreover the solution " propagates with finite speed”.
(1)+(2) = normally hyperbolic operators on globally hyperbolic
spacetimes are Green hyperbolic.

Definition (Green hyperbolic operators)

There exist advanced Green operator and retarded Green
operator G*: [, /¢ (E) — I'(E)

m GEoNf=NoGEf=fforallfe [oc/te(E)

m supp (GT) < J¥(suppf) for all § € [/ (E);

The kernel is characterized by the causal propagator

G:=GYr, & — G lr.e) : Tc(E) > T(E).
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hyperbolic metrics g and g’.

What's the relation between the solution spaces of N and N’,
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Convex combination of normally hyperbolic

operators

Let us fix a differentiable manifold M and two different globally
hyperbolic metrics g and g’.

Question

What's the relation between the solution spaces of N and N’,
normally hyperbolic respectively w.r.t g and g’?

Gluing the operators
m Let x € C*(M,[0,1]) with x = 0 before ty and x = 1 after t;
(t1 > to).What about the Cauchy problem for
Ny = (1 —=x)N+ xN?
m Principal symbol:
72(Ny, €) = —(1 = x)gd (&, €)lde — xgf (€, €)Ide = —g} (€, €)lde
with g, = ((1 - x)g* + xg")’
Gluing spacetimes!: g < g/ = g, € GH(M) = N, Green-hyp
on (M, g,).
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The Mgller map for ordered metrics

Mgller maps

g < g’ = 1 isomorphisms:
Ry =1d — G (Ny —N): Ker&(N) — Ker(Ny)
R_ = 1d — Gy, (N = Ny) : KerfX (N, ) — Kerg& (N')

R=R_oR, : Ker&(N) — Ker& (N')
The spaces of classical fields are isomorphic!

Symplectic forms preserved:

agN,/(RW» R®) = ogN(\Il7 &) for every W, ® € Kerg (N).
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The Mgller operator for paracausally related
metrics

Paracausally related metrics: g’ ~ g;
P.0O. sequence of metrics: gy := g,81,...,8v := & € GHwm;

Natural n.o. operators:
No := N,Ny,...,Ny:=N":T(E) > T'(E) ;

m Sequence of Mdgller operators: Ry := R@Rgf) if gk < gk+1 or
R = (Rgf))’l(Rg())*l if ki1 < gk

General Mgller operator: R =Ry ---Ry_1.
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The Mgller operator and its adjoint

m Mdgller operator:
R:T(E) - I'(E)

m New definition of the adjoint operator:
| <000 1T = vol () = | < (T18) G0 66) > vol o)
M M

f€ Dom(T),h e T.(E)
m Adjoint Mdgller operator:

R — Rfe’ : [(E) — ['.(E)

Causal propagators

The Mgller operator intertwines the causal propagators.
RGNRTe = Gy
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Quantization: the Mgller =-isomorphism

@nKers (N)®" .
Vy@Ps—Py@Wy—oN(¥,¢)ld’
Mgller x-isomorphisms:

CCR #-algebras: A =

R:A—-A,;

States: w : A — C such that

w(ld)=1  w(a*a) = 0;

m Pullback of states:
W =woTR;

The singularity structure of the states is preserved!

The isomorphism preserves Hadamard states

WF (w2) = {(x, ke v, —ky) € T*M?\{0}](x, ke) ~| (v, ky), kx=0}.
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Conclusions

Free classical and quantum field theories on curved backgrounds are
structurally comparable when the background metrics are
paracausally related.

For future research we plan to:

m study the paracausal relation of globally hyperbolic metrics in
more detail;

m extend the Mgller #-isomorphism to an isomorphism of more
interesting algebras used in perturbative algebraic quantum field
theory (Wick products, T-products);

m mimic the costruction to incorporate the (non normally
hyperbolic) Proca (work in progress) and Maxwell fields.

Thanks for the attention!
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