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Preliminaries: Lorentzian geometry

Lorentzian manifold pn ` 1q-dimensional manifold pM, gq with
g P ΓpT˚Mbs T˚Mq and signature p´,`, ...,`q;

Dual metric g 7 P ΓpTMbs TMq;

Vectors vP P TP M classified as

Time-like gPpvP , vPq ă 0,
Space-like gPpvP , vPq ą 0 or vp “ 0,
Light-like gPpvP , vPq “ 0.

Curves classified by tangent vector; hypersurfaces by normal
vector.

Open Lightcone VP set of all time-like vectors at P P M

Time orientation: smooth choice of ”future”

future light-cone
V`P .

Causal sets J˘pAq “ AY points in M reachable by future/past
directed smooth causal curves.
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Global hyperbolicity

Spacetime: smooth, connected, oriented, time-oriented n ` 1
dimensional Lorentzian manifold.

Cauchy hypersurface: Σ Ă M it intersects once any
inextendible future-directed smooth timelike curve.
Temporal function: t P C8pM,Rq with time-like past directed
gradient, strictly increasing along future directed causal curves.
Globally hyperbolic spacetime: g P GHpMq if no closed
timelike curves + compact diamonds J`pPq X J´pQq for all
P,Q P M.
Globally hyperbolic ðñ a Cauchy hypersurface exists.

Theorem (Bernal-Sànchez)

pM, gq globally hyperbolic ùñ D

a Cauchy temporal function i.e t´1pt0q “ Σ (smooth);

M –diff Rˆ Σ ;

an isometry h “ ´β2dt2 ` ht , ht family of Riemannian metrics
on the slices.
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pM, gq globally hyperbolic ùñ D

a Cauchy temporal function i.e t´1pt0q “ Σ (smooth);

M –diff Rˆ Σ ;

an isometry h “ ´β2dt2 ` ht , ht family of Riemannian metrics
on the slices.

5/20



Paracausal
deformations of

globally
hyperbolic

spacetimes and
their applications

in AQFT

Daniele Volpe

Global hyperbolicity

Spacetime: smooth, connected, oriented, time-oriented n ` 1
dimensional Lorentzian manifold.
Cauchy hypersurface: Σ Ă M it intersects once any
inextendible future-directed smooth timelike curve.
Temporal function: t P C8pM,Rq with time-like past directed
gradient, strictly increasing along future directed causal curves.
Globally hyperbolic spacetime: g P GHpMq if no closed
timelike curves + compact diamonds J`pPq X J´pQq for all
P,Q P M.

Globally hyperbolic ðñ a Cauchy hypersurface exists.

Theorem (Bernal-Sànchez)

pM, gq globally hyperbolic ùñ D

a Cauchy temporal function i.e t´1pt0q “ Σ (smooth);

M –diff Rˆ Σ ;

an isometry h “ ´β2dt2 ` ht , ht family of Riemannian metrics
on the slices.

5/20



Paracausal
deformations of

globally
hyperbolic

spacetimes and
their applications

in AQFT

Daniele Volpe

Global hyperbolicity

Spacetime: smooth, connected, oriented, time-oriented n ` 1
dimensional Lorentzian manifold.
Cauchy hypersurface: Σ Ă M it intersects once any
inextendible future-directed smooth timelike curve.
Temporal function: t P C8pM,Rq with time-like past directed
gradient, strictly increasing along future directed causal curves.
Globally hyperbolic spacetime: g P GHpMq if no closed
timelike curves + compact diamonds J`pPq X J´pQq for all
P,Q P M.
Globally hyperbolic ðñ a Cauchy hypersurface exists.

Theorem (Bernal-Sànchez)
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Partial ordering of metrics I

MpMq Lorentzian metrics.

T pMq time oriented Lorentzian metrics.

GHpMq globally hyperbolic Lorentzian metrics.

Preorder relation on MpMq

g ĺ g 1 ðñ V g
p Ă V g 1

p for all p P M.

Hyp: g , g 1 PMpMq; χ, λ P C8pM, r0, 1sq, g ĺ g 1.

1 g ĺ g 1 ðñ g17 ĺ g 7

2 gχ “ pp1´ χqg
7 ` χg 17q5 and gλ “ p1´ λqg ` λg

1 PMpMq;

3 g ĺ gλ ĺ g 1 g ĺ gχ ĺ g 1.

Proofs of these statments are done pointwise: exercises about
quadratic forms.
gχ will be important later!
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Hyp: g , g 1 PMpMq; χ, λ P C8pM, r0, 1sq, g ĺ g 1.

1 g ĺ g 1 ðñ g17 ĺ g 7

2 gχ “ pp1´ χqg
7 ` χg 17q5 and gλ “ p1´ λqg ` λg

1 PMpMq;

3 g ĺ gλ ĺ g 1 g ĺ gχ ĺ g 1.

Proofs of these statments are done pointwise: exercises about
quadratic forms.
gχ will be important later!
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Partial ordering of metrics II

Hyp: g P T pMq g 1 P GHpMq; χ, λ P C8pM, r0, 1sq

1 Cauchy hypersurfaces of g 1 are Cauchy for g ;

2 g , gλ, gχ P GHpMq.

Sketch of the proof: v P TP M g 1spacelike ùñ v is g spacelike.
Therefore Σ is g 1 spacelike ùñ Σ is g spacelike.
g timelike curves are g 1 timelike, so they intersect Σ once ùñ Σ is g
Cauchy.
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The paracausal relation I

Definition (Paracausal relation)

g , g 1 P GHM

g is paracausally related to g (g » g 1) if there is a finite sequence
g “ g , g 1, . . . , gN “ g 1 P GHM such that, for k “ 0, . . . ,N ´ 1,

(i) gk ĺ gk`1 or gk`1 ĺ gk

(ii) (a) if gk ĺ gk`1, then V gk`
p Ă V

gk`1`
p for all p P M,

(b) if gk`1 ĺ gk , then V
gk`1`
p Ă V

gp`
p for all p P M.
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The paracausal relation

At each step the future cones of one metric are included in the future
cones of the other metric!
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Paracausally related metrics: example

M “ Rn`1

η0 “ ´dt b dt `
řn`1

i“1 dx i b dx i

η1 “ ´dτ b dτ `
řn`1

i“1 dy i b dy i

τ “ x1, t “ y1, yk “ xk if k ą 1.

The partially ordered (P.O.) sequence relating η0 » η1:
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Not paracausally related metrics: example

Minkowski cylinders Rˆ S1

with opposite time orientations:

One metric in the sequence R GHpMq:
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Sufficient conditions

Paracausal relation: sufficient conditions

g » g 1

1 V g`
P X V g 1`

P ‰ H;

2 D common Cauchy temp. function with t´1psq compact;

3 D g-Cauchy temp. function with

t´1
psq compact and g 1 spacelike;

dt is g 1 past directed.

Equivalent characterization

g » g 1 ðñ D a sequence tgiu Ă GHpMq such that

V gi`

P X V
gi`1`

P ‰ H @P P M.
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Normally hyperbolic operators

A spacetime pM, gq.

A complex hemitian vector bundle E equipped with metric
compatible connection ∇.

The space of its smooth sections ΓpEq.

Normally hyperbolic operator:
A linear second order differential operator N : ΓpEq Ñ ΓpEq with
σNpξq “ ´g

7pξ, ξq IdE.

Solutions:KerscpNq :“ tf P Γg
scpEq | Nf “ 0u

Symplectic form σN
g : KerscpNqxKerscpNq Ñ C

Easiest example of n.h.o: Klein-Gordon operator K “ lg `m2 on
the trivial bundle.
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The Cauchy problem

1 If the metric tensor g is globally hyperbolic

ùñ the Cauchy
problem for N is well-posed.

2 Moreover the solution ”propagates with finite speed”.

(1)+(2) ùñ normally hyperbolic operators on globally hyperbolic
spacetimes are Green hyperbolic.

Definition (Green hyperbolic operators)

There exist advanced Green operator and retarded Green
operator G˘ : Γpc{fcpEq Ñ ΓpEq

G˘ ˝ N f “ N ˝ G˘f “ f for all f P Γpc{fcpEq ,

supp pG˘fq Ă J˘psupp fq for all f P Γpc{fcpEq;

The kernel is characterized by the causal propagator
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Convex combination of normally hyperbolic
operators

Let us fix a differentiable manifold M and two different globally
hyperbolic metrics g and g 1.

Question

What’s the relation between the solution spaces of N and N1,
normally hyperbolic respectively w.r.t g and g 1?

Gluing the operators

Let χ P C8pM, r0, 1sq with χ “ 0 before t0 and χ “ 1 after t1

(t1 ą t0).What about the Cauchy problem for
Nχ “ p1´ χqN` χN1?

Principal symbol:
σ2pNχ, ξq “ ´p1´ χqg

7

0pξ, ξqIdE ´ χg
7

1pξ, ξqIdE “ ´g
7
χpξ, ξqIdE .

with gχ “ pp1´ χqg
7 ` χg 17q5

Gluing spacetimes!: g ĺ g 1 ùñ gχ P GHpMq ùñ Nχ Green-hyp
on pM, gχq.
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The Møller map for ordered metrics

Møller maps

g ĺ g 1 ùñ D isomorphisms:
R` “ Id´ G`NχpNχ ´ Nq : Kerg

scpNq Ñ Ker
gχ
sc pNχq

R´ “ Id´ G´N1
pN1 ´ Nχq : Ker

gχ
sc pNχq Ñ Kerg 1

sc pN
1q

R “ R´ ˝ R` : Kerg
scpNq Ñ Kerg 1

sc pN
1q

The spaces of classical fields are isomorphic!

Symplectic forms preserved:

σN1

g 1 pRΨ,RΦq “ σN
g pΨ,Φq for every Ψ,Φ P Kerg

scpNq.
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The Møller operator for paracausally related
metrics

Paracausally related metrics: g 1 » g ;

P.O. sequence of metrics: g0 :“ g , g1, . . . , gN :“ g 1 P GHM;

Natural n.o. operators:
N0 :“ N,N1, . . . ,NN :“ N1 : ΓpEq Ñ ΓpEq ;

Sequence of Møller operators: Rk :“ R
pkq
´ R

pkq
` if gk ĺ gk`1 or

Rk :“ pR
pkq
` q

´1pR
pkq
´ q

´1 if gk`1 ĺ gk .

General Møller operator: R “ R0 ¨ ¨ ¨RN´1.
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The Møller operator and its adjoint

Møller operator:
R : ΓpEq Ñ ΓpEq

New definition of the adjoint operator:
ż

M

ă hpxq | pTfqpxq ą vol g 1pxq “

ż

M

ă
`

T:gg1h
˘

pxq | fpxq ą vol g pxq

f P DompTq, h P ΓcpEq

Adjoint Møller operator:

R Ñ R:gg1 : ΓcpEq Ñ ΓcpEq

Causal propagators

The Møller operator intertwines the causal propagators.

RGNR:gg1 “ GN1

18/20
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Quantization: the Møller ˚-isomorphism

CCR ˚-algebras: A “ ‘nKer g
scpNq

bn

ΨψbΦφ´ΦφbΨψ´σN
g pψ,φqId

;

Møller ˚-isomorphisms:

R : AÑ A1;

States: ω : AÑ C such that

ωpIdq “ 1 ωpa˚aq ě 0;

Pullback of states:
ω1 “ ω ˝R;

The singularity structure of the states is preserved!

The isomorphism preserves Hadamard states

WF pω2q “ tpx , kx ; y ,´ky q P T
˚M2zt0u|px , kxq „‖ py , ky q, kxŹ0u.
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R : AÑ A1;

States: ω : AÑ C such that

ωpIdq “ 1 ωpa˚aq ě 0;

Pullback of states:
ω1 “ ω ˝R;

The singularity structure of the states is preserved!

The isomorphism preserves Hadamard states

WF pω2q “ tpx , kx ; y ,´ky q P T
˚M2zt0u|px , kxq „‖ py , ky q, kxŹ0u.
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Outlook

Conclusions

Free classical and quantum field theories on curved backgrounds are
structurally comparable when the background metrics are
paracausally related.

For future research we plan to:

study the paracausal relation of globally hyperbolic metrics in
more detail;

extend the Møller ˚-isomorphism to an isomorphism of more
interesting algebras used in perturbative algebraic quantum field
theory (Wick products, T-products);

mimic the costruction to incorporate the (non normally
hyperbolic) Proca (work in progress) and Maxwell fields.

Thanks for the attention!
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