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Overview of the talk
▶ Main topic: Programme for constructing examples of QFTs from a

small set of mathematical data (“Borchers triples”)

▶ Focus here specifically on chiral halves of CFTs as minimal examples
▶ Will describe map

Borchers triplesÐ→ QFTs

▶ The map Borchers triples → QFTs creates a lot of data (QFT) from
little input:

Translation symmetry→Möbius symmetry
Single (von Neumann) algebra→ infinite collection of observable algebras
Key tool: Modular theory.

▶ The map Borchers triples → QFTs might result in pathological/
non-local QFTs (that we want to avoid).

▶ Will show explicit examples that are “very non-local” (not known
before); these are constructed with the help of a deformation
procedure inspired by quantization.
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Principles of QFT in minimal setting (“spacetime = R”)
1 Locality
2 Covariance
3 Vacuum

3 / 12



Borchers triples
Definition
A (one-dimensional) Borchers triple (M, T,Ω) consists of a von
Neumann algebra M ⊂ B(H) and a unitary rep. T of R on H s.t.
● T has positive generator. The T -invariant vectors are CΩ.
● T (x)MT (−x) ⊂M for x ≥ 0.
● Ω is cyclic for M and for M′.

This implies that Ω separates M: Let A ∈M,B′ ∈M′.

AΩ = 0 ⇒ 0 = B′AΩ = AB′Ω ⇒ A = 0.

A cyclic+separating vector is called a “standard vector”.
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Modular theory in 5 minutes
(M,Ω): von Neumann algebra with standard vector.

The map
S ∶MΩ ∋ AΩz→ A∗Ω ∈MΩ

is a well-defined, densely defined, closable antilinear operator.
Has polar decomposition

S = J∆1/2.

Tomita’s Theorem:
JMJ =M′, ∆itM∆−it =M, t ∈ R.

Modular theory provides us with a natural one-parameter group of
automorphisms of M, and a conjugation exchanging M and M′.
In context of Borchers triple: Borchers’ Theorem:

JT (x)J = T (−x), ∆itT (x)∆−it

The “modular data” J,∆ extend the representation T from R to
the affine group (“ax + b group”). J =TCP, ∆it = dilations
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Borchers triples → QFTs
Let (M, T,Ω) be a Borchers triple, and (a, b) ⊂ R an interval. Set

A(a, b) ∶= T (a)MT (−a) ∩ T (b)M′T (−b).

▶ Then I ↦ A(I) satisfies the principles of locality and covariance
(under the ax + b group).

▶ If Ω is cyclic for A(a, b) (“standard situation”), get more modular
groups: ∆it

(A(a,b),Ω).
▶ In this case, the symmetry extends further, to the Möbius group

Möb = PSL(2,R)

x↦ ax + b
cx + d

, x ∈ R ∪ {∞} ≅ S1

▶ May compactify R to S1, get all structures of a CFT on S1.

Theorem ([Longo,Guido,Wiesbrock 98])

In standard situation, this construction yields a conformal net on S1.
There exists a bijection between (strongly additive) conformal nets
and standard Borchers triples.

6 / 12



Borchers triples → QFTs
Let (M, T,Ω) be a Borchers triple, and (a, b) ⊂ R an interval. Set

A(a, b) ∶= T (a)MT (−a) ∩ T (b)M′T (−b).

▶ Then I ↦ A(I) satisfies the principles of locality and covariance
(under the ax + b group).

▶ If Ω is cyclic for A(a, b) (“standard situation”), get more modular
groups: ∆it

(A(a,b),Ω).
▶ In this case, the symmetry extends further, to the Möbius group

Möb = PSL(2,R)

x↦ ax + b
cx + d

, x ∈ R ∪ {∞} ≅ S1

▶ May compactify R to S1, get all structures of a CFT on S1.

Theorem ([Longo,Guido,Wiesbrock 98])

In standard situation, this construction yields a conformal net on S1.
There exists a bijection between (strongly additive) conformal nets
and standard Borchers triples.

6 / 12



Borchers triples → QFTs
Let (M, T,Ω) be a Borchers triple, and (a, b) ⊂ R an interval. Set

A(a, b) ∶= T (a)MT (−a) ∩ T (b)M′T (−b).

▶ Then I ↦ A(I) satisfies the principles of locality and covariance
(under the ax + b group).

▶ If Ω is cyclic for A(a, b) (“standard situation”), get more modular
groups: ∆it

(A(a,b),Ω).

▶ In this case, the symmetry extends further, to the Möbius group
Möb = PSL(2,R)

x↦ ax + b
cx + d

, x ∈ R ∪ {∞} ≅ S1

▶ May compactify R to S1, get all structures of a CFT on S1.

Theorem ([Longo,Guido,Wiesbrock 98])

In standard situation, this construction yields a conformal net on S1.
There exists a bijection between (strongly additive) conformal nets
and standard Borchers triples.

6 / 12



Borchers triples → QFTs
Let (M, T,Ω) be a Borchers triple, and (a, b) ⊂ R an interval. Set

A(a, b) ∶= T (a)MT (−a) ∩ T (b)M′T (−b).

▶ Then I ↦ A(I) satisfies the principles of locality and covariance
(under the ax + b group).

▶ If Ω is cyclic for A(a, b) (“standard situation”), get more modular
groups: ∆it

(A(a,b),Ω).
▶ In this case, the symmetry extends further, to the Möbius group

Möb = PSL(2,R)

x↦ ax + b
cx + d

, x ∈ R ∪ {∞} ≅ S1

▶ May compactify R to S1, get all structures of a CFT on S1.

Theorem ([Longo,Guido,Wiesbrock 98])

In standard situation, this construction yields a conformal net on S1.
There exists a bijection between (strongly additive) conformal nets
and standard Borchers triples.

6 / 12



Borchers triples → QFTs
Let (M, T,Ω) be a Borchers triple, and (a, b) ⊂ R an interval. Set

A(a, b) ∶= T (a)MT (−a) ∩ T (b)M′T (−b).

▶ Then I ↦ A(I) satisfies the principles of locality and covariance
(under the ax + b group).

▶ If Ω is cyclic for A(a, b) (“standard situation”), get more modular
groups: ∆it

(A(a,b),Ω).
▶ In this case, the symmetry extends further, to the Möbius group

Möb = PSL(2,R)

x↦ ax + b
cx + d

, x ∈ R ∪ {∞} ≅ S1

▶ May compactify R to S1, get all structures of a CFT on S1.

Theorem ([Longo,Guido,Wiesbrock 98])

In standard situation, this construction yields a conformal net on S1.
There exists a bijection between (strongly additive) conformal nets
and standard Borchers triples.

6 / 12



Degrees of non-locality: the local subspace Hloc ⊂ H

Hloc ∶= A(I)Ω ⊂H, I ⊂ R bounded interval

Theorem ([Bostelmann,GL,Morsella 11])
This space is independent of I and invariant under the net A.

Three cases:
1 Hloc =H. (standard case)

Here we can construct a conformal net directly on H.
2 CΩ ⊊Hloc ⊊H. (intermediate case)

Here the construction works as in (1) after restriction to Hloc.
3 Hloc = CΩ. (singular case)

Here all data are trivial – this is the situation that we want to avoid.

(1) and (2) are known to occur frequently, many examples. Charley
Scotford has lots of examples arising from scaling limits.

Does case (3) occur? Answer from 2019: Yes. [Longo, Tanimoto,
Ueda 19] have free probability construction to get an example of (3).
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The algebra at infinity
Let (M, T,Ω) be a BT, write αx = AdT (x), σt = Ad∆it, N = α1(M).
The algebra at infinity:

X ∶= ⋂
t∈R

σt(N ∨ JNJ) = ⋂
I∈I
A(I)′.

.

Remarks/Lemmas:
The larger X , the smaller Hloc.
X = C1⇐⇒Hloc =H (standard case).
X = B(H)⇐⇒Hloc = CΩ (singular case)⇐⇒ PΩ = ∣Ω⟩⟨Ω∣ ∈X

A ∈ A(I) ⇒ AΩ = APΩΩ = PΩAΩ = ⟨Ω,AΩ⟩ ⋅Ω
⇒ A = ⟨Ω,AΩ⟩ ⋅ 1

How to construct elements in X

Let A ∈M, B′ ∈M′, and let L be a weak limit point of
σt(α1(A)α−1(B′)) as t→ −∞. Then L ∈X . .
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1d vs 2d theories, holography
Plan: Find a BT such that σt(α1(A)α−1(B′))→ PΩ weakly as t→ −∞.

This will rely on a representation T (x, y) of two-dimensional
translation symmetry

▶ Need to extend QFT (I ↦ A(I), U,Ω) to 2d theory

▶ Not known in general, but always possible in free field theory (free
U(1)-current)

T1(x) = eixP , T̃1(y) = eiyP
′
. P ′ = sec.quant.(P −1)
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Warped convolution in 5 minutes [Buchholz,GL,Summer 2011]

Setup: Hilbert space H with unitary rep. T of Rd, d ≥ 2. Write
αx = AdT (x) for action on B(H).

Fix a deformation parameter Q, an antisymmetric (d × d)-matrix.
Define space of smooth vectors H∞ and space of smooth operators
C∞ ⊂ B(H) as usual.
For A ∈ C∞, Ψ ∈H∞, define deformed (“warped”) operator

AQΨ ∶= (2π)−d∬ e−i(p,x)αQp(A)T (x)Ψdpdx

“deformation quantization for operators”
Facts: AQ extends to a bounded operator. A↦ AQ is a faithful
representation of the Rieffel-deformed C∗-algebra (CQ,×Q, ∥ ⋅ ∥Q).

▶ If (M, T,Ω) is a 2d Borchers triple, set

MQ ∶= {AQ ∶ A ∈M∞}′′.

Then also (MQ, T,Ω) is a Borchers triple if Q is “positive”.
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In 2d setting, “Q positive” means

Qκ = (
0 κ
κ 0

) , κ ≥ 0

κ = 0 is the undeformed situation = free field theory, standard
situation, Hloc =H, many local fields/observables.

For κ > 0, oscillatory terms eiκ sinh(θ−θ′) show up in momentum
space correlation functions.
Behaviour of scaling limits w-lim

t→−∞
σt(α1(A)α−1(B′)) is modified.

Theorem ([GL/Scotford 2021])
Consider the free field triple (M, T,Ω), and let κ > 0. Then, for any
A ∈MQκ and any B′ ∈MQκ

′,

w-lim
t→−∞

σt(α1(A)α−1(B′)) = ω(AB)PΩ + ω(A)ω(B)P ⊥Ω

Hence (Hloc)Q = CΩ (singular case, no local observables).

proof partially relies on a Riemann-Lebesgue type argument

∫ dp1⋯dpn dq′Φn(p)Ψn(p)f+(q′)g+(q′)
n

∏
l=1

ei(pl,QκΛtq
′) Ð→ 0 as t→ −∞
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Outlook, open questions, conjectures
Our examples show:

Singular case (3) exists and can be realized by deformation.
The local subspace Hloc varies discontinuously with κ (Hloc =H for
κ = 0, but Hloc = CΩ for κ > 0)

Conjecture
Take any 1d Borchers triple that allows a 2d holographic description and
deform it with deformation parameter κ > 0. Then (Hloc)Q = CΩ.

These non-local examples complement local constructive
approaches (inverse scattering programme for 2d integrable models)
should inform novel local constructions.
currently under investigation in Erlangen: Does this non-local
behaviour show up in, for example, entropic or thermal properties?
Aim at criteria avoiding the non-local case.
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