Synthetic (metric) methods in General Relativity and Lorentzian geometry

Part II: Applications

Working Seminar "Mathematical Physics" University of Regensburg

Clemens Sämann Faculty of Mathematics University of Vienna, Austria

Nov 5, 2021

 $X \text{ set}, \leq \text{preorder on } X, \ll \text{transitive relation contained in } \leq, d \text{ metric on } X, \tau \colon X \times X \to [0, \infty] \text{ lower semicontinuous (with respect to } d)$

Definition

 (X, d, \ll, \leq, τ) is a Lorentzian pre-length space if

 $\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z),$

and $\tau(x,y) = 0$ if $x \leq y$ and $\tau(x,y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

• smooth spacetimes (M,g) with usual time separation function $\tau(p,q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\}$

finite directed graphs

X set, \leq preorder on X, \ll transitive relation contained in \leq , d metric on X, $\tau: X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$$

and $\tau(x, y) = 0$ if $x \nleq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

• smooth spacetimes (M, g) with usual time separation function $\tau(p, q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\}$

finite directed graphs

X set, \leq preorder on X, \ll transitive relation contained in \leq , d metric on X, $\tau: X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$$

and $\tau(x,y) = 0$ if $x \nleq y$ and $\tau(x,y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

- smooth spacetimes (M,g) with usual time separation function $\tau(p,q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\}$
- finite directed graphs

X set, \leq preorder on X, \ll transitive relation contained in \leq , d metric on X, $\tau: X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$$

and $\tau(x,y) = 0$ if $x \nleq y$ and $\tau(x,y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

- smooth spacetimes (M,g) with usual time separation function $\tau(p,q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\}$
- finite directed graphs

(causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)

- timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
- timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
- applications to contact geometry (Hedicke '21)
- Inull distance and Lorentzian length spaces (Kunzinger-Steinbauer '21)
- time functions on Lorentzian (pre-)length spaces (Burtscher-García-Heveling '21)

- Causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
- timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
- timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
- applications to contact geometry (Hedicke '21)
- In ull distance and Lorentzian length spaces (Kunzinger-Steinbauer '21)
- time functions on Lorentzian (pre-)length spaces (Burtscher-García-Heveling '21)

- Causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
- timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
- inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
- timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
- applications to *contact geometry* (Hedicke '21)
- **6** null distance and Lorentzian length spaces (Kunzinger-Steinbauer '21)
- time functions on Lorentzian (pre-)length spaces (Burtscher-García-Heveling '21)

- causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
- timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
- (inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
- Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems (Alexander-Graf-Kunzinger-S. '21)
- timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
- applications to *contact geometry* (Hedicke '21)
- In ull distance and Lorentzian length spaces (Kunzinger-Steinbauer '21)
- time functions on Lorentzian (pre-)length spaces (Burtscher-García-Heveling '21)

- causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
- timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
- inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
- Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems (Alexander-Graf-Kunzinger-S. '21)
- timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
- applications to *contact geometry* (Hedicke '21)
- In ull distance and Lorentzian length spaces (Kunzinger-Steinbauer '21)
- time functions on Lorentzian (pre-)length spaces (Burtscher-García-Heveling '21)

- causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
- timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
- inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
- Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems (Alexander-Graf-Kunzinger-S. '21)
- timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
- o applications to contact geometry (Hedicke '21)
- In ull distance and Lorentzian length spaces (Kunzinger-Steinbauer '21)
- time functions on Lorentzian (pre-)length spaces (Burtscher-García-Heveling '21)

- causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
- timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
- inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
- Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems (Alexander-Graf-Kunzinger-S. '21)
- timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
- o applications to contact geometry (Hedicke '21)
- *onull distance* and Lorentzian length spaces (Kunzinger-Steinbauer '21)
- time functions on Lorentzian (pre-)length spaces (Burtscher-García-Heveling '21)

- causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
- timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
- inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
- Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems (Alexander-Graf-Kunzinger-S. '21)
- timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
- o applications to contact geometry (Hedicke '21)
- Inull distance and Lorentzian length spaces (Kunzinger-Steinbauer '21)
- time functions on Lorentzian (pre-)length spaces (Burtscher-García-Heveling '21)

- Causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
- timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
- inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
- Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems (Alexander-Graf-Kunzinger-S. '21)
- timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
- applications to *contact geometry* (Hedicke '21)
- null distance and Lorentzian length spaces (Kunzinger-Steinbauer '21)
- time functions on Lorentzian (pre-)length spaces (Burtscher-García-Heveling '21)
- Solution analog of Hausdorff dimension, measure (McCann-S. '21)

- causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
- timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
- Inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
- Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems (Alexander-Graf-Kunzinger-S. '21)
- timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
- applications to *contact geometry* (Hedicke '21)
- **o** null distance and Lorentzian length spaces (Kunzinger-Steinbauer '21)
- time functions on Lorentzian (pre-)length spaces (Burtscher-García-Heveling '21)
- Icorentzian analog of Hausdorff dimension, measure (McCann-S. '21)

joint work with Grant, Kunzinger AGAG 2019

When is a spacetime *maximal*? (i.e. no *isometric embedding* into larger spacetime)

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike geodesics have infinite τ -length, then X is inextendible as a regular Lorentzian length space

Corollary

(M,g) strongly causal, smooth and timelike geodesically complete spacetime, then (M,g) is inextendible as a regular Lorentzian length space

When is a spacetime *maximal*? (i.e. no *isometric embedding* into larger spacetime)

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike geodesics have infinite τ -length, then X is inextendible as a regular Lorentzian length space

Corollary

(M,g) strongly causal, smooth and timelike geodesically complete spacetime, then (M,g) is inextendible as a regular Lorentzian length space

When is a spacetime *maximal*? (i.e. no *isometric embedding* into larger spacetime)

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike geodesics have infinite τ -length, then X is inextendible as a regular Lorentzian length space

Corollary

(M,g) strongly causal, smooth and timelike geodesically complete spacetime, then (M,g) is inextendible as a regular Lorentzian length space

When is a spacetime *maximal*? (i.e. no *isometric embedding* into larger spacetime)

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike geodesics have infinite τ -length, then X is inextendible as a regular Lorentzian length space

Corollary

(M,g) strongly causal, smooth and timelike geodesically complete spacetime, then (M,g) is inextendible as a regular Lorentzian length space

Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems

joint work with S. Alexander, M. Graf, M. Kunzinger, Comm. Anal. Geom. to appear, 2021

Generalized cones (1/2)

Definition (Generalized cones)

Given a metric space (X, d), an open interval I, and a continuous function $f: I \to (0, \infty)$, we call $Y = I \times_f X$ a generalized cone or warped product with one-dim. base and f warping function.

 $\gamma = (\alpha, \beta) : J \to Y$ absolutely continuous (w.r.t. the product topology on $I \times X$) then α , β AC and $\dot{\alpha}$ metric derivative v_{β} of β exist almost everywhere

$$v_{\beta}(t) := \lim_{s \to 0} \frac{d(\beta(t+s), \beta(t))}{|s|}, \text{ satisfies } L(\beta) = \int_{J} v_{\beta}$$

Generalized cones (1/2)

Definition (Generalized cones)

Given a metric space (X, d), an open interval I, and a continuous function $f: I \to (0, \infty)$, we call $Y = I \times_f X$ a generalized cone or warped product with one-dim. base and f warping function.

 $\gamma = (\alpha, \beta) : J \to Y$ absolutely continuous (w.r.t. the product topology on $I \times X$) then α, β AC and $\dot{\alpha}$ metric derivative v_{β} of β exist almost everywhere

$$v_{\beta}(t) := \lim_{s \to 0} \frac{d(\beta(t+s), \beta(t))}{|s|}, \text{ satisfies } L(\beta) = \int_{J} v_{\beta}$$

Generalized cones (1/2)

Definition (Generalized cones)

Given a metric space (X, d), an open interval I, and a continuous function $f: I \to (0, \infty)$, we call $Y = I \times_f X$ a generalized cone or warped product with one-dim. base and f warping function.

 $\gamma = (\alpha, \beta) : J \to Y$ absolutely continuous (w.r.t. the product topology on $I \times X$) then α , β AC and $\dot{\alpha}$ metric derivative v_{β} of β exist almost everywhere

$$v_{\beta}(t) := \lim_{s \to 0} \frac{d(\beta(t+s), \beta(t))}{|s|}, \text{ satisfies } L(\beta) = \int_{J} v_{\beta}$$

Generalized cones (2/2)

Definition

X metric space, $I \subseteq \mathbb{R}$ interval, $f: I \to (0, \infty)$ continuous, $Y = I \times_f X$ generalized cone, $\gamma = (\alpha, \beta): J \to Y \text{ AC}; \gamma$ is

$$\begin{cases} \mbox{timelike} & \\ \mbox{null} & \mbox{if} & -\dot{\alpha}^2 + (f\circ\alpha)^2 v_\beta^2 & \begin{cases} < 0 \\ = 0 \\ \le 0 \,, \end{cases} \end{cases}$$

a.e. and γ is *future/past directed causal* if $\dot{\alpha} > 0$ or $\dot{\alpha} < 0$ a.e. *length* of a causal curve $L(\gamma) := \int_a^b \sqrt{\dot{\alpha}^2 - (f \circ \alpha)^2 v_\beta^2}$

For this talk: (X,d) locally compact geodesic length space

Generalized cones (2/2)

Definition

X metric space, $I \subseteq \mathbb{R}$ interval, $f: I \to (0, \infty)$ continuous, $Y = I \times_f X$ generalized cone, $\gamma = (\alpha, \beta): J \to Y$ AC; γ is

$$\begin{cases} \mbox{timelike} & \\ \mbox{null} & \mbox{if} & -\dot{\alpha}^2 + (f\circ\alpha)^2 v_\beta^2 & \begin{cases} < 0 \\ = 0 \\ \le 0 \,, \end{cases} \end{cases}$$

a.e. and γ is *future/past directed causal* if $\dot{\alpha} > 0$ or $\dot{\alpha} < 0$ a.e. *length* of a causal curve $L(\gamma) := \int_a^b \sqrt{\dot{\alpha}^2 - (f \circ \alpha)^2 v_\beta^2}$

For this talk: (X, d) locally compact geodesic length space

Generalized cones (2/2)

Definition

X metric space, $I \subseteq \mathbb{R}$ interval, $f: I \to (0, \infty)$ continuous, $Y = I \times_f X$ generalized cone, $\gamma = (\alpha, \beta): J \to Y$ AC; γ is

$$\begin{cases} \mbox{timelike} & \\ \mbox{null} & \mbox{if} & -\dot{\alpha}^2 + (f\circ\alpha)^2 v_\beta^2 & \begin{cases} < 0 \\ = 0 \\ \le 0 \,, \end{cases} \end{cases}$$

a.e. and γ is *future/past directed causal* if $\dot{\alpha} > 0$ or $\dot{\alpha} < 0$ a.e. *length* of a causal curve $L(\gamma) := \int_a^b \sqrt{\dot{\alpha}^2 - (f \circ \alpha)^2 v_\beta^2}$

For this talk: (X, d) locally compact geodesic length space

«, \leq , I^{\pm} , J^{\pm} and the Lorentzian time separation au as usual

 $\gamma = (\alpha,\beta): [a,b] \to Y$ future directed causal, maximizing \rightsquigarrow

- fiber component β minimizing in (X, d)
- converse (β min. $\implies \gamma$ max.) does not hold! (problem: right parametrization of α)
- Fiber independence: base component α depends *only* on length of β (independent of β , (X, d) otherwise) I.e., take any other (X', d') and maximizing curve β' with $L^d(\beta) = L^{d'}(\beta')$ and $v_\beta = v_{\beta'}$, then $\gamma' = (\alpha, \beta')$ is maximizing causal/timelike for $I \times_f X' \implies \tau(p, q)$ depends only on $p_0, q_0, d_X(\bar{p}, \bar{q})$ (and f)!

«, \leq , $I^{\pm},\,J^{\pm}$ and the Lorentzian time separation τ as usual

 $\gamma = (\alpha,\beta): [a,b] \to Y$ future directed causal, maximizing \leadsto

- fiber component β minimizing in (X, d)
- converse (β min. $\implies \gamma$ max.) does not hold! (problem: right parametrization of α)
- Fiber independence: base component α depends *only* on length of β (independent of β , (X, d) otherwise) I.e., take any other (X', d') and maximizing curve β' with $L^d(\beta) = L^{d'}(\beta')$ and $v_\beta = v_{\beta'}$, then $\gamma' = (\alpha, \beta')$ is maximizing causal/timelike for $I \times_f X' \implies \tau(p, q)$ depends only on $p_0, q_0, d_X(\bar{p}, \bar{q})$ (and f)!

«, \leq , $I^{\pm},\,J^{\pm}$ and the Lorentzian time separation τ as usual

 $\gamma = (\alpha,\beta): [a,b] \to Y$ future directed causal, maximizing \leadsto

- fiber component β minimizing in (X, d)
- converse (β min. $\implies \gamma$ max.) does not hold! (problem: right parametrization of α)
- Fiber independence: base component α depends *only* on length of β (independent of β , (X, d) otherwise) I.e., take any other (X', d') and maximizing curve β' with $L^d(\beta) = L^{d'}(\beta')$ and $v_\beta = v_{\beta'}$, then $\gamma' = (\alpha, \beta')$ is maximizing causal/timelike for $I \times_f X' \implies \tau(p, q)$ depends only on $p_0, q_0, d_X(\bar{p}, \bar{q})$ (and f)!

«, \leq , $I^{\pm},\,J^{\pm}$ and the Lorentzian time separation τ as usual

 $\gamma = (\alpha,\beta): [a,b] \to Y$ future directed causal, maximizing \leadsto

- fiber component β minimizing in (X, d)
- converse (β min. $\implies \gamma$ max.) does not hold! (problem: right parametrization of α)

• Fiber independence: base component α depends *only* on length of β (independent of β , (X, d) otherwise) I.e., take any other (X', d') and maximizing curve β' with $L^d(\beta) = L^{d'}(\beta')$ and $v_\beta = v_{\beta'}$, then $\gamma' = (\alpha, \beta')$ is maximizing causal/timelike for $I \times_f X' \implies \tau(p,q)$ depends only on $p_0, q_0, d_X(\bar{p}, \bar{q})$ (and f)!

«, \leq , $I^{\pm},\,J^{\pm}$ and the Lorentzian time separation τ as usual

 $\gamma = (\alpha,\beta): [a,b] \to Y$ future directed causal, maximizing \leadsto

- fiber component β minimizing in (X, d)
- converse (β min. $\implies \gamma$ max.) does not hold! (problem: right parametrization of α)
- Fiber independence: base component α depends *only* on length of β (independent of β , (X, d) otherwise) I.e., take any other (X', d') and maximizing curve β' with $L^d(\beta) = L^{d'}(\beta')$ and $v_\beta = v_{\beta'}$, then $\gamma' = (\alpha, \beta')$ is maximizing causal/timelike for $I \times_f X' \implies \tau(p, q)$ depends only on $p_0, q_0, d_X(\bar{p}, \bar{q})$ (and f)!

• I⁺ open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel & Grant '12)

• $h_{p_0} \colon (a_{p_0}, b_{p_0})
ightarrow I$ as the unique maximal solution of the ODE

$$\frac{d}{ds}h_{p_0} = f \circ h_{p_0}, \qquad h_{p_0}(0) = p_0$$

Then: h_{p_0} is strictly increasing, bijective and C^1 and

 $I^+((p_0,\bar{p})) = \{(q_0,\bar{q}) \in Y : \, d(\bar{p},\bar{q}) < b_{p_0} \text{ and } q_0 > h_{p_0}(d(\bar{p},\bar{q}))\}$

In particular, I⁺ open and push-up holds

- ∂I⁺((p₀, p
)) = ∂J⁺((p₀, p
)) = continuous graph over B_{bp0}(p
) ⊆ X
 & its height depends only on the distance to p
 !
- If X is geodesic: $J^+ = I^+ \cup \partial I^+$

$\implies Y = I \times_f X$ is a Lorentzian pre-length space

- I⁺ open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel & Grant '12)
- $h_{p_0} \colon (a_{p_0}, b_{p_0}) \to I$ as the unique maximal solution of the ODE

$$\frac{d}{ds}h_{p_0} = f \circ h_{p_0}, \qquad h_{p_0}(0) = p_0$$

Then: h_{p_0} is strictly increasing, bijective and C^1 and $I^+((p_0, \bar{p})) = \{(q_0, \bar{q}) \in Y : d(\bar{p}, \bar{q}) < b_{p_0} \text{ and } q_0 > h_{p_0}(d(\bar{p}, \bar{q}))\}$

- In particular, I^+ open and push-up holds
- ∂I⁺((p₀, p
)) = ∂J⁺((p₀, p
)) = continuous graph over B_{bp0}(p
) ⊆ X
 & its height depends only on the distance to p
 !
- If X is geodesic: $J^+ = I^+ \cup \partial I^+$

$\implies Y = I \times_f X$ is a Lorentzian pre-length space

- I⁺ open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel & Grant '12)
- $h_{p_0} \colon (a_{p_0}, b_{p_0}) \to I$ as the unique maximal solution of the ODE

$$\frac{d}{ds}h_{p_0} = f \circ h_{p_0}, \qquad h_{p_0}(0) = p_0$$

Then: h_{p_0} is strictly increasing, bijective and C^1 and

 $I^+((p_0,\bar{p})) = \{(q_0,\bar{q}) \in Y: \, d(\bar{p},\bar{q}) < b_{p_0} \text{ and } q_0 > h_{p_0}(d(\bar{p},\bar{q}))\}$

ullet In particular, I^+ open and push-up holds

- ∂I⁺((p₀, p

)) = ∂J⁺((p₀, p

)) = continuous graph over B_{bp0}(p
) ⊆ X & its height depends only on the distance to p
 !
- If X is geodesic: $J^+ = I^+ \cup \partial I^+$

$\implies Y = I \times_f X$ is a Lorentzian pre-length space

- I⁺ open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel & Grant '12)
- $h_{p_0} \colon (a_{p_0}, b_{p_0}) \to I$ as the unique maximal solution of the ODE

$$\frac{d}{ds}h_{p_0} = f \circ h_{p_0}, \qquad h_{p_0}(0) = p_0$$

Then: h_{p_0} is strictly increasing, bijective and C^1 and $I^+((p_0, \bar{p})) = \{(q_0, \bar{q}) \in Y : d(\bar{p}, \bar{q}) < b_{p_0} \text{ and } q_0 > h_{p_0}(d(\bar{p}, \bar{q}))\}$

In particular, I⁺ open and push-up holds

- ∂I⁺((p₀, p

)) = ∂J⁺((p₀, p

)) = continuous graph over B_{bp0}(p

) ⊆ X & its height depends only on the distance to p

 !
- If X is geodesic: $J^+ = I^+ \cup \partial I^+$

$\implies Y = I \times_f X$ is a Lorentzian pre-length space
- I⁺ open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel & Grant '12)
- $h_{p_0} \colon (a_{p_0}, b_{p_0}) \to I$ as the unique maximal solution of the ODE

$$\frac{d}{ds}h_{p_0} = f \circ h_{p_0}, \qquad h_{p_0}(0) = p_0$$

Then: h_{p_0} is strictly increasing, bijective and C^1 and $I^+((p_0, \bar{p})) = \{(q_0, \bar{q}) \in Y : d(\bar{p}, \bar{q}) < b_{p_0} \text{ and } q_0 > h_{p_0}(d(\bar{p}, \bar{q}))\}$

- In particular, I^+ open and push-up holds
- $\partial I^+((p_0,\bar{p})) = \partial J^+((p_0,\bar{p})) = \text{continuous graph over } B_{b_{p_0}}(\bar{p}) \subseteq X$ & its height depends only on the distance to $\bar{p}!$
- If X is geodesic: $J^+ = I^+ \cup \partial I^+$

$\implies Y = I \times_f X$ is a Lorentzian pre-length space

 $(+ more work \implies Y$ is a regular strongly causal Lorentzian length space)

- I⁺ open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel & Grant '12)
- $h_{p_0} \colon (a_{p_0}, b_{p_0}) \to I$ as the unique maximal solution of the ODE

$$\frac{d}{ds}h_{p_0} = f \circ h_{p_0}, \qquad h_{p_0}(0) = p_0$$

Then: h_{p_0} is strictly increasing, bijective and C^1 and $I^+((p_0, \bar{p})) = \{(q_0, \bar{q}) \in Y : d(\bar{p}, \bar{q}) < b_{p_0} \text{ and } q_0 > h_{p_0}(d(\bar{p}, \bar{q}))\}$

In particular, I⁺ open and push-up holds

- $\partial I^+((p_0,\bar{p})) = \partial J^+((p_0,\bar{p})) = \text{continuous graph over } B_{b_{p_0}}(\bar{p}) \subseteq X$ & its height depends only on the distance to $\bar{p}!$
- If X is geodesic: $J^+ = I^+ \cup \partial I^+$

$\implies Y = I \times_f X$ is a Lorentzian pre-length space

 $(+ \mathsf{more} \; \mathsf{work} \; \Longrightarrow \; Y$ is a regular strongly causal Lorentzian length space)

- I⁺ open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel & Grant '12)
- $h_{p_0} \colon (a_{p_0}, b_{p_0}) \to I$ as the unique maximal solution of the ODE

$$\frac{d}{ds}h_{p_0} = f \circ h_{p_0}, \qquad h_{p_0}(0) = p_0$$

Then: h_{p_0} is strictly increasing, bijective and C^1 and $I^+((p_0, \bar{p})) = \{(q_0, \bar{q}) \in Y : d(\bar{p}, \bar{q}) < b_{p_0} \text{ and } q_0 > h_{p_0}(d(\bar{p}, \bar{q}))\}$

- In particular, I^+ open and push-up holds
- $\partial I^+((p_0,\bar{p})) = \partial J^+((p_0,\bar{p})) = \text{continuous graph over } B_{b_{p_0}}(\bar{p}) \subseteq X$ & its height depends only on the distance to $\bar{p}!$
- If X is geodesic: $J^+ = I^+ \cup \partial I^+$

$\implies Y = I \times_f X$ is a Lorentzian pre-length space

 $(+ \mathsf{more} \; \mathsf{work} \; \Longrightarrow \; Y$ is a regular strongly causal Lorentzian length space)

- I⁺ open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel & Grant '12)
- $h_{p_0} \colon (a_{p_0}, b_{p_0}) \to I$ as the unique maximal solution of the ODE

$$\frac{d}{ds}h_{p_0} = f \circ h_{p_0}, \qquad h_{p_0}(0) = p_0$$

Then: h_{p_0} is strictly increasing, bijective and C^1 and $I^+((p_0, \bar{p})) = \{(q_0, \bar{q}) \in Y : d(\bar{p}, \bar{q}) < b_{p_0} \text{ and } q_0 > h_{p_0}(d(\bar{p}, \bar{q}))\}$

• In particular, I^+ open and push-up holds

- $\partial I^+((p_0,\bar{p})) = \partial J^+((p_0,\bar{p})) = \text{continuous graph over } B_{b_{p_0}}(\bar{p}) \subseteq X$ & its height depends only on the distance to $\bar{p}!$
- If X is geodesic: $J^+ = I^+ \cup \partial I^+$

 \implies $Y = I \times_f X$ is a Lorentzian pre-length space

 $(+ \text{ more work} \implies Y \text{ is a regular strongly causal Lorentzian length space})$

Theorem

X curvature bounded below (above) by K, $I \times_f \mathbb{M}^2(K)$ timelike curvature bounded below (above) by K', then $Y = I \times_f X$ timelike curvature bounded below (above) by K'

Special case: f smooth, then $I \times_f \mathbb{M}^2(K)$ smooth Lorentzian manifold \rightsquigarrow sectional curvatures easily computable

 $f'' - K'f \le 0$ and X curv. bounded below by $K = \sup K'f^2 - (f')^2 \implies I \times_f X$ timelike curvature bounded below by K'

Theorem

Theorem

X curvature bounded below (above) by K, $I \times_f \mathbb{M}^2(K)$ timelike curvature bounded below (above) by K', then $Y = I \times_f X$ timelike curvature bounded below (above) by K'

Special case: f smooth, then $I \times_f \mathbb{M}^2(K)$ smooth Lorentzian manifold \rightsquigarrow sectional curvatures easily computable

 $f'' - K'f \le 0$ and X curv. bounded below by $K = \sup K'f^2 - (f')^2 \implies I \times_f X$ timelike curvature bounded below by K'

Theorem

Theorem

X curvature bounded below (above) by K, $I \times_f \mathbb{M}^2(K)$ timelike curvature bounded below (above) by K', then $Y = I \times_f X$ timelike curvature bounded below (above) by K'

Special case: f smooth, then $I \times_f \mathbb{M}^2(K)$ smooth Lorentzian manifold \rightsquigarrow sectional curvatures easily computable

 $f'' - K'f \le 0$ and X curv. bounded below by $K = \sup K'f^2 - (f')^2 \implies I \times_f X$ timelike curvature bounded below by K'

Theorem

Theorem

X curvature bounded below (above) by K, $I \times_f \mathbb{M}^2(K)$ timelike curvature bounded below (above) by K', then $Y = I \times_f X$ timelike curvature bounded below (above) by K'

Special case: f smooth, then $I \times_f \mathbb{M}^2(K)$ smooth Lorentzian manifold \rightsquigarrow sectional curvatures easily computable

 $f'' - K'f \le 0$ and X curv. bounded below by $K = \sup K'f^2 - (f')^2 \implies I \times_f X$ timelike curvature bounded below by K'

Theorem

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone? if $f \to 0$ in finite time $(I \neq (-\infty, \infty))$ properties of f from timelike curvature bounds?

Theorem

- (i) f satisfies $f'' Kf \le 0$ (analogous: timelike curvature bounded above by $K \implies f'' Kf \ge 0$)
- (ii) K < 0, then $a > -\infty$ and $b < \infty$; hence time separation function τ_Y of Y bounded by $b a \rightsquigarrow Y$ is *timelike geodesically incomplete*
- (iii) K = 0 and f non-constant, then $a > -\infty$ or $b < \infty$; hence Y past or future *timelike geodesically incomplete*

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone? if $f \to 0$ in finite time $(I \neq (-\infty, \infty))$ properties of f from timelike curvature bounds?

Theorem

- (i) f satisfies $f'' Kf \le 0$ (analogous: timelike curvature bounded above by $K \implies f'' Kf \ge 0$)
- (ii) K < 0, then $a > -\infty$ and $b < \infty$; hence time separation function τ_Y of Y bounded by $b a \rightsquigarrow Y$ is *timelike geodesically incomplete*
- (iii) K = 0 and f non-constant, then $a > -\infty$ or $b < \infty$; hence Y past or future *timelike geodesically incomplete*

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone? if $f \to 0$ in finite time $(I \neq (-\infty, \infty))$ properties of f from timelike curvature bounds?

Theorem

- (i) f satisfies $f'' Kf \le 0$ (analogous: timelike curvature bounded above by $K \implies f'' Kf \ge 0$)
- (ii) K < 0, then $a > -\infty$ and $b < \infty$; hence time separation function τ_Y of Y bounded by $b a \rightsquigarrow Y$ is *timelike geodesically incomplete*
- (iii) K = 0 and f non-constant, then $a > -\infty$ or $b < \infty$; hence Y past or future *timelike geodesically incomplete*

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone? if $f \to 0$ in finite time $(I \neq (-\infty, \infty))$ properties of f from timelike curvature bounds?

Theorem

- (i) f satisfies $f'' Kf \le 0$ (analogous: timelike curvature bounded above by $K \implies f'' Kf \ge 0$)
- (ii) K < 0, then $a > -\infty$ and $b < \infty$; hence time separation function τ_Y of Y bounded by $b a \rightsquigarrow Y$ is *timelike geodesically incomplete*
- (iii) K = 0 and f non-constant, then $a > -\infty$ or $b < \infty$; hence Y past or future *timelike geodesically incomplete*

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone? if $f \to 0$ in finite time $(I \neq (-\infty, \infty))$ properties of f from timelike curvature bounds?

Theorem

- (i) f satisfies $f'' Kf \le 0$ (analogous: timelike curvature bounded above by $K \implies f'' Kf \ge 0$)
- (ii) K < 0, then a > -∞ and b < ∞; hence time separation function τ_Y of Y bounded by b a → Y is *timelike geodesically incomplete* (iii) K = 0 and f non-constant, then a > ∞ or b < ∞ is hence X past or
- (iii) K = 0 and f non-constant, then $a > -\infty$ or $b < \infty$; hence Y past or future *timelike geodesically incomplete*

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone? if $f \to 0$ in finite time $(I \neq (-\infty, \infty))$ properties of f from timelike curvature bounds?

Theorem

X geodesic length space, $Y = I \times_f X$ with I = (a, b), $f : I \to (0, \infty)$ smooth, Y timelike curvature bounded below by K, then:

- (i) f satisfies $f'' Kf \le 0$ (analogous: timelike curvature bounded above by $K \implies f'' Kf \ge 0$)
- (ii) K < 0, then $a > -\infty$ and $b < \infty$; hence time separation function τ_Y of Y bounded by $b a \rightsquigarrow Y$ is *timelike geodesically incomplete*

(iii) K = 0 and f non-constant, then $a > -\infty$ or $b < \infty$; hence Y past or future *timelike geodesically incomplete*

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone? if $f \to 0$ in finite time $(I \neq (-\infty, \infty))$ properties of f from timelike curvature bounds?

Theorem

- (i) f satisfies $f'' Kf \le 0$ (analogous: timelike curvature bounded above by $K \implies f'' Kf \ge 0$)
- (ii) K < 0, then $a > -\infty$ and $b < \infty$; hence time separation function τ_Y of Y bounded by $b a \rightsquigarrow Y$ is *timelike geodesically incomplete*
- (iii) K = 0 and f non-constant, then $a > -\infty$ or $b < \infty$; hence Y past or future *timelike geodesically incomplete*

- \bullet Assume not, then $\exists K'>K, J\subset I \text{ s.t. } f''>K'f$ on J
- Look at $Y' := J \times_f \mathbb{R} \rightsquigarrow$ smooth, has TL sectional curvature $\mathcal{R} = \frac{f''}{f} > K' \implies Y'$ has TL curv. bounded above by K' > K
- Fiber independence \implies for timelike comparison triangles $\Delta' \in Y'$ with x'z'-side perpendicular to \mathbb{R} and $\Delta \in Y$ with xz-side "perpendicular" to X (and $q' \in y'z'$, $q \in yz$):

$$\tau_{Y'}(x',q') = \tau_Y(x,q)$$

• Since Y has TL curv. bounded below by K,

 $\tau_Y(x,q) \le \tau_{\mathbb{L}^2(K)}(x''',q''')$

• On the other hand, since Y' has TL curv. bounded above by K',

$$\tau_{Y'}(x',q') \ge \tau_{\mathbb{L}^2(K')}(x'',q'')$$

- \bullet Assume not, then $\exists K'>K, J\subset I \text{ s.t. } f''>K'f \text{ on }J$
- Look at $Y' := J \times_f \mathbb{R} \rightsquigarrow$ smooth, has TL sectional curvature $\mathcal{R} = \frac{f''}{f} > K' \implies Y'$ has TL curv. bounded above by K' > K
- Fiber independence \implies for timelike comparison triangles $\Delta' \in Y'$ with x'z'-side perpendicular to \mathbb{R} and $\Delta \in Y$ with xz-side "perpendicular" to X (and $q' \in y'z'$, $q \in yz$):

$$\tau_{Y'}(x',q') = \tau_Y(x,q)$$

• Since Y has TL curv. bounded below by K,

$$\tau_Y(x,q) \le \tau_{\mathbb{L}^2(K)}(x''',q''')$$

• On the other hand, since Y' has TL curv. bounded above by K',

$$\tau_{Y'}(x',q') \ge \tau_{\mathbb{L}^2(K')}(x'',q'')$$

- Assume not, then $\exists K' > K, J \subset I$ s.t. f'' > K'f on J
- Look at $Y' := J \times_f \mathbb{R} \rightsquigarrow$ smooth, has TL sectional curvature $\mathcal{R} = \frac{f''}{f} > K' \implies Y'$ has TL curv. bounded above by K' > K
- Fiber independence \implies for timelike comparison triangles $\Delta' \in Y'$ with x'z'-side perpendicular to \mathbb{R} and $\Delta \in Y$ with xz-side "perpendicular" to X (and $q' \in y'z'$, $q \in yz$):

$$\tau_{Y'}(x',q') = \tau_Y(x,q)$$

• Since Y has TL curv. bounded below by K,

 $\tau_Y(x,q) \le \tau_{\mathbb{L}^2(K)}(x''',q''')$

• On the other hand, since Y' has TL curv. bounded above by K',

 $\tau_{Y'}(x',q') \ge \tau_{\mathbb{L}^2(K')}(x'',q'')$

- \bullet Assume not, then $\exists K'>K, J\subset I \text{ s.t. } f''>K'f$ on J
- Look at $Y' := J \times_f \mathbb{R} \rightsquigarrow$ smooth, has TL sectional curvature $\mathcal{R} = \frac{f''}{f} > K' \implies Y'$ has TL curv. bounded above by K' > K
- Fiber independence \implies for timelike comparison triangles $\Delta' \in Y'$ with x'z'-side perpendicular to \mathbb{R} and $\Delta \in Y$ with xz-side "perpendicular" to X (and $q' \in y'z'$, $q \in yz$):

$$\tau_{Y'}(x',q') = \tau_Y(x,q)$$

• Since Y has TL curv. bounded below by K,

$$\tau_Y(x,q) \le \tau_{\mathbb{L}^2(K)}(x''',q''')$$

• On the other hand, since Y' has TL curv. bounded above by K',

 $\tau_{Y'}(x',q') \ge \tau_{\mathbb{L}^2(K')}(x'',q'')$

- \bullet Assume not, then $\exists K'>K, J\subset I \text{ s.t. } f''>K'f$ on J
- Look at $Y' := J \times_f \mathbb{R} \rightsquigarrow$ smooth, has TL sectional curvature $\mathcal{R} = \frac{f''}{f} > K' \implies Y'$ has TL curv. bounded above by K' > K
- Fiber independence \implies for timelike comparison triangles $\Delta' \in Y'$ with x'z'-side perpendicular to \mathbb{R} and $\Delta \in Y$ with xz-side "perpendicular" to X (and $q' \in y'z'$, $q \in yz$):

$$\tau_{Y'}(x',q') = \tau_Y(x,q)$$

• Since Y has TL curv. bounded below by K,

$$\tau_Y(x,q) \le \tau_{\mathbb{L}^2(K)}(x''',q''')$$

• On the other hand, since Y' has TL curv. bounded above by K',

$$\tau_{Y'}(x',q') \ge \tau_{\mathbb{L}^2(K')}(x'',q'')$$

- \bullet Assume not, then $\exists K'>K, J\subset I \text{ s.t. } f''>K'f$ on J
- Look at $Y' := J \times_f \mathbb{R} \rightsquigarrow$ smooth, has TL sectional curvature $\mathcal{R} = \frac{f''}{f} > K' \implies Y'$ has TL curv. bounded above by K' > K
- Fiber independence \implies for timelike comparison triangles $\Delta' \in Y'$ with x'z'-side perpendicular to \mathbb{R} and $\Delta \in Y$ with xz-side "perpendicular" to X (and $q' \in y'z'$, $q \in yz$):

$$\tau_{Y'}(x',q') = \tau_Y(x,q)$$

• Since Y has TL curv. bounded below by K,

$$\tau_Y(x,q) \le \tau_{\mathbb{L}^2(K)}(x^{\prime\prime\prime},q^{\prime\prime\prime})$$

• On the other hand, since Y' has TL curv. bounded above by K',

$$\tau_{Y'}(x',q') \ge \tau_{\mathbb{L}^2(K')}(x'',q'')$$

- \bullet Assume not, then $\exists K'>K, J\subset I \text{ s.t. } f''>K'f$ on J
- Look at $Y' := J \times_f \mathbb{R} \rightsquigarrow$ smooth, has TL sectional curvature $\mathcal{R} = \frac{f''}{f} > K' \implies Y'$ has TL curv. bounded above by K' > K
- Fiber independence \implies for timelike comparison triangles $\Delta' \in Y'$ with x'z'-side perpendicular to \mathbb{R} and $\Delta \in Y$ with xz-side "perpendicular" to X (and $q' \in y'z'$, $q \in yz$):

$$\tau_{Y'}(x',q') = \tau_Y(x,q)$$

• Since Y has TL curv. bounded below by K,

$$\tau_Y(x,q) \le \tau_{\mathbb{L}^2(K)}(x^{\prime\prime\prime},q^{\prime\prime\prime})$$

• On the other hand, since Y' has TL curv. bounded above by K',

$$\tau_{Y'}(x',q') \ge \tau_{\mathbb{L}^2(K')}(x'',q'')$$

A Lorentzian analog for Hausdorff dimension and measure

joint work with Robert J. McCann, preprint 2021

Hausdorff measures and dimension

Definition

(X,d) metric space, $A\subseteq X$, $\delta>0,~N\in[0,\infty)$

$$\mathcal{H}^{N}_{\delta}(A) := \inf\{c_{N} \sum_{i} \operatorname{diam}(A_{i})^{N} : A \subseteq \bigcup_{i} A_{i}, \operatorname{diam}(A_{i}) \le \delta\}$$

N-dimensional Hausdorff measure $\mathcal{H}^N(A) := \sup_{\delta > 0} \mathcal{H}^N_{\delta}(A)$

Definition

Hausdorff dimension $\dim^H(A) := \inf\{N \ge 0 : \mathcal{H}^N(A) = 0\}$

Hausdorff measures and dimension

Definition

(X,d) metric space, $A\subseteq X$, $\delta>0,~N\in[0,\infty)$

$$\mathcal{H}^{N}_{\delta}(A) := \inf\{c_{N} \sum_{i} \operatorname{diam}(A_{i})^{N} : A \subseteq \bigcup_{i} A_{i}, \operatorname{diam}(A_{i}) \leq \delta\}$$

N-dimensional Hausdorff measure $\mathcal{H}^N(A) := \sup_{\delta > 0} \mathcal{H}^N_{\delta}(A)$

Definition

Hausdorff dimension
$$\dim^{H}(A) := \inf\{N \ge 0 : \mathcal{H}^{N}(A) = 0\}$$

Theorem (Cheeger-Colding 1997)

 $(M_n, g_n, p_n)_n$ sequence of pointed (complete, connected) Riemannian mf., same dim. N, *Ricci curvature* uniformly bounded below, $(M_n, g_n, p_n) \rightarrow (X, d, p)$ pointed Gromov-Hausdorff \Rightarrow either \bigcirc $\operatorname{vol}^{g_n}(B_1^{M_n}(p_n)) \rightarrow 0$ (collapsed) or

② $\inf_n \operatorname{vol}^{g_n}(B_1^{M_n}(p_n)) > 0$ (non-collapsed); in this case $\dim^H(X) = N$, $\mathcal{H}^N(X) > 0$ and *renormalized limit measure* = $c \mathcal{H}^N$

 $\sim
ightarrow$

(X, d, m) metric measure space, synthetic lower Ricci curvature bounded by $K \in \mathbb{R}$ and dimension bounded above by $N \rightsquigarrow CD(K, N)$ (using optimal transport, convexity/concavity of functionals on the space of probability measures) (Lott-Villani 2009, Sturm 2006) *Riemannian condition* $\rightsquigarrow RCD(K, N)$ -spaces (Ambrosio-Gigli-Savaré 2014)

Theorem (Cheeger-Colding 1997)

 $(M_n, g_n, p_n)_n$ sequence of pointed (complete, connected) Riemannian mf., same dim. N, *Ricci curvature* uniformly bounded below, $(M_n, g_n, p_n) \rightarrow (X, d, p)$ pointed Gromov-Hausdorff \Rightarrow either $\texttt{vol}^{g_n}(B_1^{M_n}(p_n)) \rightarrow 0$ (collapsed) or

◎ $\inf_n \operatorname{vol}^{g_n}(B_1^{M_n}(p_n)) > 0$ (non-collapsed); in this case $\dim^H(X) = N$, $\mathcal{H}^N(X) > 0$ and renormalized limit measure = $c \mathcal{H}^N$

 $\sim \rightarrow$

(X, d, m) metric measure space, synthetic lower Ricci curvature bounded by $K \in \mathbb{R}$ and dimension bounded above by $N \rightsquigarrow CD(K, N)$ (using optimal transport, convexity/concavity of functionals on the space of probability measures) (Lott-Villani 2009, Sturm 2006) *Riemannian condition* \rightsquigarrow RCD(K, N)-spaces (Ambrosio-Gigli-Savaré 2014)

Theorem (Cheeger-Colding 1997)

 $(M_n, g_n, p_n)_n$ sequence of pointed (complete, connected) Riemannian mf., same dim. N, *Ricci curvature* uniformly bounded below, $(M_n, g_n, p_n) \rightarrow (X, d, p)$ pointed Gromov-Hausdorff \Rightarrow either $\texttt{vol}^{g_n}(B_1^{M_n}(p_n)) \rightarrow 0$ (collapsed) or

(a) $\inf_{n} \operatorname{vol}^{g_n}(B_1^{M_n}(p_n)) > 0$ (non-collapsed); in this case $\dim^H(X) = N$, $\mathcal{H}^N(X) > 0$ and renormalized limit measure $= c \mathcal{H}^N$

 \sim

(X, d, m) metric measure space, synthetic lower Ricci curvature bounded by $K \in \mathbb{R}$ and dimension bounded above by $N \rightsquigarrow CD(K, N)$ (using optimal transport, convexity/concavity of functionals on the space of probability measures) (Lott-Villani 2009, Sturm 2006)

Riemannian condition \rightsquigarrow RCD(K, N)-spaces (Ambrosio-Gigli-Savaré 2014)

Theorem (Cheeger-Colding 1997)

 $(M_n, g_n, p_n)_n$ sequence of pointed (complete, connected) Riemannian mf., same dim. N, *Ricci curvature* uniformly bounded below, $(M_n, g_n, p_n) \rightarrow (X, d, p)$ pointed Gromov-Hausdorff \Rightarrow either $\texttt{vol}^{g_n}(B_1^{M_n}(p_n)) \rightarrow 0$ (collapsed) or

• inf_n vol^{g_n} $(B_1^{M_n}(p_n)) > 0$ (non-collapsed); in this case $\dim^H(X) = N$, $\mathcal{H}^N(X) > 0$ and renormalized limit measure $= c \mathcal{H}^N$

 \sim

(X, d, m) metric measure space, synthetic lower Ricci curvature bounded by $K \in \mathbb{R}$ and dimension bounded above by $N \rightsquigarrow CD(K, N)$ (using optimal transport, convexity/concavity of functionals on the space of probability measures) (Lott-Villani 2009, Sturm 2006) *Riemannian condition* $\rightsquigarrow RCD(K, N)$ -spaces (Ambrosio-Gigli-Savaré 2014)

Definition (DePhilippis-Gigli 2018)

 $\mathsf{RCD}(\mathsf{K},\mathsf{N})$ -space (X,d,m) is *non-collapsed* if $m=\mathcal{H}^N$

Theorem (Brué-Semola 2019)

(X, d, m) metric measure space satisfying $\mathsf{RCD}(K, N)$ $(K \in \mathbb{R}, N \in (1, \infty)) \Rightarrow \exists k \in \mathbb{N} : 1 \le k \le N \text{ s.t. } m|_R \text{ a.c. wrt } \mathcal{H}^k$ and $m(X \setminus R) = 0$

Bakry-Émery Ricci tensor: $\operatorname{Ric}_V^N := \operatorname{Ric} + \operatorname{Hess}(V) - \frac{dV \otimes dV}{N-n}$ amounts to replacing $d\operatorname{vol}^g$ by $e^{-V} d\operatorname{vol}^g \rightsquigarrow$ generalization to non-smooth setting $e^{-V} d\mathcal{H}^N$

Definition (DePhilippis-Gigli 2018)

 $\mathsf{RCD}(\mathsf{K},\mathsf{N})$ -space (X,d,m) is *non-collapsed* if $m = \mathcal{H}^N$

Theorem (Brué-Semola 2019)

(X, d, m) metric measure space satisfying $\mathsf{RCD}(K, N)$ $(K \in \mathbb{R}, N \in (1, \infty)) \Rightarrow \exists k \in \mathbb{N} : 1 \le k \le N \text{ s.t. } m|_R \text{ a.c. wrt } \mathcal{H}^k$ and $m(X \setminus R) = 0$

Bakry-Émery Ricci tensor: $\operatorname{Ric}_V^N := \operatorname{Ric} + \operatorname{Hess}(V) - \frac{dV \otimes dV}{N-n}$ amounts to replacing $d\operatorname{vol}^g$ by $e^{-V} d\operatorname{vol}^g \rightsquigarrow$ generalization to non-smooth setting $e^{-V} d\mathcal{H}^N$

Definition (DePhilippis-Gigli 2018)

 $\mathsf{RCD}(\mathsf{K},\mathsf{N})$ -space (X,d,m) is *non-collapsed* if $m = \mathcal{H}^N$

Theorem (Brué-Semola 2019)

(X, d, m) metric measure space satisfying $\mathsf{RCD}(K, N)$ $(K \in \mathbb{R}, N \in (1, \infty)) \Rightarrow \exists k \in \mathbb{N} : 1 \le k \le N \text{ s.t. } m|_R \text{ a.c. wrt } \mathcal{H}^k$ and $m(X \setminus R) = 0$

Bakry-Émery Ricci tensor: $\operatorname{Ric}_V^N := \operatorname{Ric} + \operatorname{Hess}(V) - \frac{dV \otimes dV}{N-n}$ amounts to replacing $d\operatorname{vol}^g$ by $e^{-V} d\operatorname{vol}^g \rightsquigarrow$ generalization to non-smooth setting $e^{-V} d\mathcal{H}^N$

Lorentzian analog of Hausdorff measures

Definition

 $X \text{ set, } \leq \text{preorder on } X \text{, } \tau \colon X \times X \to [0,\infty] \text{, } J(x,y) := J^+(x) \cap J^-(y)$

$$\rho^N(J(x,y)) := \omega_N \tau(x,y)^N$$

 $\omega_N:=\frac{\pi^{\frac{N-1}{2}}}{N\,\Gamma(\frac{N+1}{2})2^{N-1}}\text{, }\Gamma\text{ Euler's gamma function, }N\in[0,\infty)$

 $\mathbb{N}
i N \geq 2$: $ho^N(J(x,y)) =$ vol. CD in N-dim Minkowski w eq. time-sep.

Definition

X as above, d metric on X, $A \subseteq X$, $\delta > 0$, $N \in [0, \infty)$

$$\mathcal{V}^{N}_{\delta}(A) := \inf\{\sum_{i} \rho^{N}(J_{i}) : A \subseteq \bigcup_{i} J_{i}, \operatorname{diam}(J_{i}) \le \delta, J_{i} = J(x_{i}, y_{i})\}$$

N-dimensional Lorentzian measure $\mathcal{V}^N(A) := \sup_{\delta > 0} \mathcal{V}^N_{\delta}(A)$

Lorentzian analog of Hausdorff measures

Definition

 $X \text{ set, } \leq \text{preorder on } X \text{, } \tau \colon X \times X \to [0,\infty] \text{, } J(x,y) := J^+(x) \cap J^-(y)$

$$\rho^N(J(x,y)) := \omega_N \tau(x,y)^N$$

 $\omega_N:=\frac{\pi^{\frac{N-1}{2}}}{N\,\Gamma(\frac{N+1}{2})2^{N-1}},\,\Gamma \text{ Euler's gamma function, }N\in[0,\infty)$

 $\mathbb{N} \ni N \ge 2$: $\rho^N(J(x,y)) =$ vol. CD in N-dim Minkowski w eq. time-sep.

Definition

X as above, d metric on X, $A \subseteq X$, $\delta > 0$, $N \in [0, \infty)$

$$\mathcal{V}^{N}_{\delta}(A) := \inf\{\sum_{i} \rho^{N}(J_{i}) : A \subseteq \bigcup_{i} J_{i}, \operatorname{diam}(J_{i}) \le \delta, J_{i} = J(x_{i}, y_{i})\}$$

N-dimensional Lorentzian measure $\mathcal{V}^N(A) := \sup_{\delta > 0} \mathcal{V}^N_{\delta}(A)$

Lorentzian analog of Hausdorff measures

Definition

 $X \text{ set, } \leq \text{preorder on } X \text{, } \tau \colon X \times X \to [0,\infty] \text{, } J(x,y) := J^+(x) \cap J^-(y)$

$$\rho^N(J(x,y)) := \omega_N \tau(x,y)^N$$

 $\omega_N:=\frac{\pi^{\frac{N-1}{2}}}{N\,\Gamma(\frac{N+1}{2})2^{N-1}}\text{, }\Gamma\text{ Euler's gamma function, }N\in[0,\infty)$

 $\mathbb{N} \ni N \ge 2$: $\rho^N(J(x,y)) = \textit{vol. CD}$ in N-dim Minkowski w eq. time-sep.

Definition

X as above, d metric on $X,\,A\subseteq X,\,\delta>0,\,N\in[0,\infty)$

$$\mathcal{V}_{\delta}^{N}(A) := \inf\{\sum_{i} \rho^{N}(J_{i}) : A \subseteq \bigcup_{i} J_{i}, \operatorname{diam}(J_{i}) \le \delta, J_{i} = J(x_{i}, y_{i})\}$$

N-dimensional Lorentzian measure $\mathcal{V}^N(A) := \sup_{\delta > 0} \mathcal{V}^N_{\delta}(A)$

Synthetic dimension

Definition

 (X,d,\ll,\leq,τ) Lorentzian pre-length space, $A\subseteq X,$ the synthetic dimension of A is

$$\dim^{\tau}(A) := \inf\{N \ge 0 : \mathcal{V}^N(A) < \infty\}$$

Proposition

X locally d-uniform $(\tau = o(1))$ Lorentzian pre-length space, $A \subseteq X$ $N = \dim^{\tau}(A)$ if and only if $\forall k < N < K$: $\mathcal{V}^{k}(A) = \infty$, $\mathcal{V}^{K}(A) = 0$; thus

$$\dim^{\tau}(A) = \inf\{N \ge 0 : \mathcal{V}^N(A) = 0\}$$
Synthetic dimension

Definition

 (X,d,\ll,\leq,τ) Lorentzian pre-length space, $A\subseteq X,$ the synthetic dimension of A is

$$\dim^{\tau}(A) := \inf\{N \ge 0 : \mathcal{V}^N(A) < \infty\}$$

Proposition

X locally d-uniform $(\tau = o(1))$ Lorentzian pre-length space, $A \subseteq X$ $N = \dim^{\tau}(A)$ if and only if $\forall k < N < K$: $\mathcal{V}^{k}(A) = \infty$, $\mathcal{V}^{K}(A) = 0$; thus

$$\dim^{\tau}(A) = \inf\{N \ge 0 : \mathcal{V}^N(A) = 0\}$$

Null curves are zero-dimensional

 $\gamma\colon [a,b]\to X \text{ future directed } \frac{\textit{null}}{\textit{curve in strongly causal Lorentzian pre-length space: } \dim^\tau(\gamma([a,b]))=0$

Proposition

 $\gamma \colon [a,b] \to X$ f.d. *causal* curve, X strongly causal: $\mathcal{V}^1(\gamma([a,b])) \leq L_{\tau}(\gamma)$; all causal diamonds J(x,y) *closed* (e.g. X is globally hyperbolic), then

 $\mathcal{V}^1(\gamma([a,b])) = L_\tau(\gamma)$

Countable sets are zero dimensional and measured by their cardinality

X strongly causal, $N \in [0, \infty)$; additionally in case N > 0 assume $\forall x \in X$, $\forall U$ nhd. of $x \exists x^{\pm} \in U$ s.t. $x^{-} < x < x^{+}$, $x^{-} \not\ll x \not\ll x^{+}$: $A \subseteq X$ *countable*, then $\mathcal{V}^{N}(A) = 0$ for N > 0; and $A \subseteq X$ *arbitrary* then $\mathcal{V}^{0}(A) = |A|$ (cardinality of A)

Null curves are zero-dimensional

 $\begin{array}{l} \gamma\colon [a,b]\to X \text{ future directed } \textit{null} \text{ curve in strongly causal Lorentzian} \\ \text{pre-length space: } \dim^\tau(\gamma([a,b]))=0 \end{array}$

Proposition

 $\gamma \colon [a,b] \to X$ f.d. *causal* curve, X strongly causal: $\mathcal{V}^1(\gamma([a,b])) \leq L_{\tau}(\gamma)$; all causal diamonds J(x,y) *closed* (e.g. X is globally hyperbolic), then

$\mathcal{V}^{1}(\gamma([a,b])) = L_{\tau}(\gamma)$

Countable sets are zero dimensional and measured by their cardinality

X strongly causal, $N \in [0, \infty)$; additionally in case N > 0 assume $\forall x \in X$, $\forall U$ nhd. of $x \exists x^{\pm} \in U$ s.t. $x^{-} < x < x^{+}$, $x^{-} \not\ll x \not\ll x^{+}$: $A \subseteq X$ *countable*, then $\mathcal{V}^{N}(A) = 0$ for N > 0; and $A \subseteq X$ *arbitrary* then $\mathcal{V}^{0}(A) = |A|$ (cardinality of A)

Null curves are zero-dimensional

 $\begin{array}{l} \gamma\colon [a,b]\to X \text{ future directed } \textit{null} \text{ curve in strongly causal Lorentzian} \\ \text{pre-length space: } \dim^\tau(\gamma([a,b]))=0 \end{array}$

Proposition

 $\begin{array}{l} \gamma\colon [a,b]\to X \text{ f.d. } \textit{causal} \text{ curve, } X \text{ strongly causal: } \mathcal{V}^1(\gamma([a,b]))\leq L_\tau(\gamma); \\ \text{all causal diamonds } J(x,y) \text{ closed (e.g. } X \text{ is globally hyperbolic), then} \end{array}$

$$\mathcal{V}^1(\gamma([a,b])) = L_\tau(\gamma)$$

Countable sets are zero dimensional and measured by their cardinality

X strongly causal, $N \in [0, \infty)$; additionally in case N > 0 assume $\forall x \in X$, $\forall U$ nhd. of $x \exists x^{\pm} \in U$ s.t. $x^{-} < x < x^{+}$, $x^{-} \not\ll x \not\ll x^{+}$: $A \subseteq X$ *countable*, then $\mathcal{V}^{N}(A) = 0$ for N > 0; and $A \subseteq X$ *arbitrary* then $\mathcal{V}^{0}(A) = |A|$ (cardinality of A)

Null curves are zero-dimensional

 $\begin{array}{l} \gamma\colon [a,b]\to X \text{ future directed } \textit{null} \text{ curve in strongly causal Lorentzian} \\ \text{pre-length space: } \dim^\tau(\gamma([a,b]))=0 \end{array}$

Proposition

 $\gamma \colon [a,b] \to X$ f.d. *causal* curve, X strongly causal: $\mathcal{V}^1(\gamma([a,b])) \leq L_{\tau}(\gamma)$; all causal diamonds J(x,y) *closed* (e.g. X is globally hyperbolic), then

$$\mathcal{V}^1(\gamma([a,b])) = L_\tau(\gamma)$$

Countable sets are zero dimensional and measured by their cardinality X strongly causal, $N \in [0, \infty)$; additionally in case N > 0 assume $\forall x \in X$, $\forall U$ nhd. of $x \exists x^{\pm} \in U$ s.t. $x^{-} < x < x^{+}$, $x^{-} \not\ll x \not\ll x^{+}$: $A \subseteq X$ countable, then $\mathcal{V}^{N}(A) = 0$ for N > 0; and $A \subseteq X$ arbitrary then $\mathcal{V}^{0}(A) = |A|$ (cardinality of A)

Dimension and measure of Minkowski subspaces

Lemma

restriction of \mathcal{V}^k to spacelike subspace of Minkowski spacetime \mathbb{R}^n_1 with algebraic dimension k is *positive multiple of Hausdorff measure*

Linear *null* hypersurfaces have geometric *codimension two*

Lemma

 $n \geq 2, S \subset \mathbb{R}^n_1$ null subspace of algebraic dimension $k \neq n$, then $\dim^{\tau}(S) = k - 1$ and Lorentzian measure splits as $\mathcal{V}^{k-1} = c \mathcal{H}^{k-1} \times \mathcal{H}^0$ on $S = R \times \mathbb{R}\nu$, where R spacelike subspace of $S, \nu \in S$ null vector

Dimension and measure of Minkowski subspaces

Lemma

restriction of \mathcal{V}^k to spacelike subspace of Minkowski spacetime \mathbb{R}^n_1 with algebraic dimension k is *positive multiple of Hausdorff measure*

Linear null hypersurfaces have geometric codimension two

Lemma

 $n \geq 2, S \subset \mathbb{R}_1^n$ null subspace of algebraic dimension $k \neq n$, then $\dim^{\tau}(S) = k - 1$ and Lorentzian measure splits as $\mathcal{V}^{k-1} = c \mathcal{H}^{k-1} \times \mathcal{H}^0$ on $S = R \times \mathbb{R}\nu$, where R spacelike subspace of $S, \nu \in S$ null vector

Dimension and measure of Minkowski subspaces

Lemma

restriction of \mathcal{V}^k to spacelike subspace of Minkowski spacetime \mathbb{R}^n_1 with algebraic dimension k is *positive multiple of Hausdorff measure*

Linear null hypersurfaces have geometric codimension two

Lemma

 $n \geq 2$, $S \subset \mathbb{R}_1^n$ null subspace of algebraic dimension $k \neq n$, then $\dim^{\tau}(S) = k - 1$ and Lorentzian measure splits as $\mathcal{V}^{k-1} = c \mathcal{H}^{k-1} \times \mathcal{H}^0$ on $S = R \times \mathbb{R}\nu$, where R spacelike subspace of S, $\nu \in S$ null vector

Theorem

- $\mathcal{V}^n = \mathrm{vol}^g$
- $\dim^{\tau}(M) = n$
- use appropriate cylindrical neighborhoods
- machinery of Federer: Geometric measure theory 1969
- *doubling* of causal diamonds and doubling of vol^g

Theorem

- $\mathcal{V}^n = \mathrm{vol}^g$
- $\dim^{\tau}(M) = n$
- use appropriate cylindrical neighborhoods
- machinery of Federer: Geometric measure theory 1969
- *doubling* of causal diamonds and doubling of vol^g

Theorem

- $\mathcal{V}^n = \mathrm{vol}^g$
- $\dim^{\tau}(M) = n$
- use appropriate cylindrical neighborhoods
- machinery of Federer: Geometric measure theory 1969
- *doubling* of causal diamonds and doubling of vol^g

Theorem

- $\mathcal{V}^n = \mathrm{vol}^g$
- $\dim^{\tau}(M) = n$
- use appropriate *cylindrical neighborhoods*
- machinery of Federer: Geometric measure theory 1969
- doubling of causal diamonds and doubling of vol^g

Theorem

- $\mathcal{V}^n = \mathrm{vol}^g$
- $\dim^{\tau}(M) = n$
- use appropriate *cylindrical neighborhoods*
- machinery of Federer: Geometric measure theory 1969
- doubling of causal diamonds and doubling of vol^g

Definition

(X,d) metric space, Borel measure μ on X is *doubling* if $\exists C\geq 0:$ $\forall x\in X,\ r>0$

- $0 < \mu(B_r(x)) < \infty$
- $(a) \ \mu(B_{2r}(x)) \le C\mu(B_r(x))$

Theorem (well-known)

(X,d) metric space, μ doubling measure with doubling constant $C\Rightarrow \dim^H(X) \leq \log_2(C)$

Theorem (Sturm 2006)

(X, d, m) metric measure space satisfying ${\rm CD}(K, N) \Rightarrow m$ (locally) doubling and $\dim^H(X) \le N$

Definition

(X,d) metric space, Borel measure μ on X is doubling if $\exists C \geq 0 : \forall x \in X, \ r > 0$

- $0 < \mu(B_r(x)) < \infty$
- $(B_{2r}(x)) \le C\mu(B_r(x))$

Theorem (well-known)

(X,d) metric space, μ doubling measure with doubling constant $C\Rightarrow \dim^H(X) \leq \log_2(C)$

Theorem (Sturm 2006)

(X,d,m) metric measure space satisfying $\mathsf{CD}(K,N) \Rightarrow m$ (locally) doubling and $\dim^H(X) \leq N$

Definition

(X,d) metric space, Borel measure μ on X is doubling if $\exists C \geq 0 : \forall x \in X, \ r > 0$

- $0 < \mu(B_r(x)) < \infty$
- $(B_{2r}(x)) \le C\mu(B_r(x))$

Theorem (well-known)

(X,d) metric space, μ doubling measure with doubling constant $C \Rightarrow \dim^H(X) \leq \log_2(C)$

Theorem (Sturm 2006)

(X,d,m) metric measure space satisfying $\mathsf{CD}(K,N) \Rightarrow m$ (locally) doubling and $\dim^H(X) \leq N$

Definition

(X,d) metric space, Borel measure μ on X is doubling if $\exists C \geq 0 : \forall x \in X, \ r > 0$

- $0 < \mu(B_r(x)) < \infty$
- $(a) \ \mu(B_{2r}(x)) \le C\mu(B_r(x))$

Theorem (well-known)

(X,d) metric space, μ doubling measure with doubling constant $C \Rightarrow \dim^H(X) \leq \log_2(C)$

Theorem (Sturm 2006)

(X,d,m) metric measure space satisfying ${\rm CD}(K,N)\Rightarrow m$ (locally) doubling and $\dim^H(X)\leq N$

 \mathbb{R}^{n-1}

 \mathbb{R}^{n-1}

- $W = (0, B) \times Z$
- 3 $\partial_t = \partial_{x^0}$ unif. TL
- $W' \subseteq W$ open, caus. conv. in W s.t. $p = (t, x), q = (s, x) \in W'$: $\hat{p} = (t - \lambda(s - t), x),$ $\hat{q} = (s + \lambda(s - t), x) \in W$

5 $p = (t, x) \ll q = (s, x),$

 $\bigcirc W$ arb. small, g.h.

 \mathbb{R}^{n-1}

- W open, conn., rel. comp. chart
- $W = (0, B) \times Z$
- $\partial_t = \partial_{x^0} \text{ unif. TL}$
- $W' \subseteq W$ open, caus. conv. in W s.t. $p = (t, x), q = (s, x) \in W'$: $\hat{p} = (t - \lambda(s - t), x),$ $\hat{q} = (s + \lambda(s - t), x) \in W$
- W

 $\bigcirc W$ arb. small, g.h.

- W open, conn., rel. comp. chart
- $W = (0, B) \times Z$
- 3 $\partial_t = \partial_{x^0}$ unif. TL

```
🗊 W arb. small, g.h.
```


- W open, conn., rel. comp. chart
- $W = (0, B) \times Z$
- 3 $\partial_t = \partial_{x^0}$ unif. TL
- $W' \subseteq W \text{ open,} \\ \mathsf{caus. conv. in } W \text{ s.t.} \\ p = (t, x), q = (s, x) \in W': \\ \hat{p} = (t \lambda(s t), x), \\ \hat{q} = (s + \lambda(s t), x) \in W$

 $\bigcirc W$ arb. small, g.h.

- W open, conn., rel. comp. chart
- $W = (0, B) \times Z$
- 3 $\partial_t = \partial_{x^0}$ unif. TL

 $\bigcirc W$ arb. small, g.h.

cylindrical nhd. W: $\operatorname{vol}^g(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^g(J(p, q))$

Definition

Borel measure m on M is *loc. causally doubling* if \forall cyl. nhds. $(W', W) \exists L \geq 1$:

- $@ 0 < m(J(p,q,W)) < \infty \ (p,q \in W \text{ with } p \ll q)$
- $\bigcirc \ m(\overline{W}) < \infty$

Theorem

(M,g) cont., causally plain, strongly causal spacetime; m loc. causally doubling measure, loc. doubling constant L on all suff. small cyl. nhds \Rightarrow

cylindrical nhd. W: $\operatorname{vol}^g(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^g(J(p, q))$

Definition

Borel measure m on M is *loc. causally doubling* if \forall cyl. nhds. $(W', W) \exists L \geq 1$:

- $\ \, { \ O \ } \ \, \forall p=(t,x),q=(s,x)\in W': \ \, m(J(\hat{p},\hat{q},W))\leq L\,m(J(p,q))$
- $0 < m(J(p,q,W)) < \infty \ (p,q \in W \text{ with } p \ll q)$
- $m(W) < \infty$

Theorem

(M,g) cont., causally plain, strongly causal spacetime; m loc. causally doubling measure, loc. doubling constant L on all suff. small cyl. nhds \Rightarrow

cylindrical nhd. W:
$$\operatorname{vol}^g(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^g(J(p, q))$$

Definition

Borel measure m on M is *loc. causally doubling* if \forall cyl. nhds. $(W', W) \exists L \geq 1$:

$$\ \, { \ O \ } \ \, \forall p=(t,x),q=(s,x)\in W' { : \ } m(J(\hat{p},\hat{q},W))\leq L\,m(J(p,q))$$

2
$$0 < m(J(p,q,W)) < \infty$$
 $(p,q \in W \text{ with } p \ll q)$

 $m(W) < \infty$

Theorem

(M,g) cont., causally plain, strongly causal spacetime; m loc. causally doubling measure, loc. doubling constant L on all suff. small cyl. nhds \Rightarrow

cylindrical nhd. W: $\operatorname{vol}^g(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^g(J(p, q))$

Definition

Borel measure m on M is *loc. causally doubling* if \forall cyl. nhds. $(W', W) \exists L \geq 1$:

- $\ \, { \ O \ } \ \, \forall p=(t,x),q=(s,x)\in W' { : \ } m(J(\hat{p},\hat{q},W))\leq L\,m(J(p,q))$
- $\ \ \textbf{0} < m(J(p,q,W)) < \infty \ (p,q \in W \text{ with } p \ll q)$
- $m(\overline{W}) < \infty$

Theorem

(M,g) cont., causally plain, strongly causal spacetime; m loc. causally doubling measure, loc. doubling constant L on all suff. small cyl. nhds \Rightarrow

cylindrical nhd. W: $\operatorname{vol}^g(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^g(J(p, q))$

Definition

Borel measure m on M is *loc. causally doubling* if \forall cyl. nhds. $(W', W) \exists L \geq 1$:

$$\ \, { \ O \ } \ \, \forall p=(t,x),q=(s,x)\in W' { : \ } m(J(\hat{p},\hat{q},W))\leq L\,m(J(p,q))$$

$$0 < m(J(p,q,W)) < \infty (p,q \in W \text{ with } p \ll q)$$

$$m(\overline{W}) < \infty$$

Theorem

(M,g) cont., causally plain, strongly causal spacetime; m loc. causally doubling measure, loc. doubling constant L on all suff. small cyl. nhds \Rightarrow

$$\dim(M) = \dim^{\tau}(M) \le \log_{1+2\lambda}(L)$$

Synthetic TL Ricci curvature bounds and doubling

$$B_r^\tau(x) := \{ y \in X : \tau(x,y) < r \}, \ E_r := E \cap \overline{B_r^\tau(x)}$$

Lemma

glob. hyp. locally causally closed measured Lorentzian length space sat. wTCD^e_p(K, N) ($K \in \mathbb{R}, N \in [1, \infty)$, $p \in (0, 1)$) $\Rightarrow \exists L = L(K, N) \geq 1$: $\forall x_0 \in X, E \subseteq I^+(x_0) \cup \{x_0\}$ comp., τ -star-shaped wrt $x_0, r > 0$ small

 $m(E_{2r}) \le L m(E_r)$

does *NOT* imply doubling for causal diamonds!

Theorem

(M,g) cont., glob. hyp. TL non-branching, causally plain spacetime sat. $\mathsf{TMCP}_{\mathsf{p}}^{\mathsf{e}}(K,N)$ wrt vol^{g} $(K \in \mathbb{R}, N \in [1,\infty), \mathsf{p} \in (0,1))$ (+causally-reversed) \Rightarrow

$\dim(M) = \dim^{\tau}(M) \le N$

Clemens Sämann, University of Vienna Working Seminar "Mathematical Physics"

Synthetic TL Ricci curvature bounds and doubling

$$B^\tau_r(x) := \{y \in X : \tau(x,y) < r\}, \ E_r := E \cap \overline{B^\tau_r(x)}$$

Lemma

glob. hyp. locally causally closed measured Lorentzian length space sat. wTCD^e_p(K, N) (K $\in \mathbb{R}$, N $\in [1, \infty)$, p $\in (0, 1)$) $\Rightarrow \exists L = L(K, N) \geq 1$: $\forall x_0 \in X, E \subseteq I^+(x_0) \cup \{x_0\}$ comp., τ -star-shaped wrt $x_0, r > 0$ small

 $m(E_{2r}) \le L m(E_r)$

does NOT imply doubling for causal diamonds!

Theorem

(M,g) cont., glob. hyp. TL non-branching, causally plain spacetime sat. $\mathsf{TMCP}_{\mathsf{p}}^{\mathsf{e}}(K,N)$ wrt vol^{g} $(K \in \mathbb{R}, N \in [1,\infty), \mathsf{p} \in (0,1))$ (+causally-reversed) \Rightarrow

$\dim(M) = \dim^{\tau}(M) \le N$

Clemens Sämann, University of Vienna Working Seminar "Mathematical Physics"

Synthetic TL Ricci curvature bounds and doubling

$$B^\tau_r(x) := \{y \in X : \tau(x,y) < r\}, \ E_r := E \cap \overline{B^\tau_r(x)}$$

Lemma

glob. hyp. locally causally closed measured Lorentzian length space sat. wTCD^e_p(K, N) (K $\in \mathbb{R}$, N $\in [1, \infty)$, p $\in (0, 1)$) $\Rightarrow \exists L = L(K, N) \geq 1$: $\forall x_0 \in X, E \subseteq I^+(x_0) \cup \{x_0\}$ comp., τ -star-shaped wrt $x_0, r > 0$ small

 $m(E_{2r}) \le L m(E_r)$

does *NOT* imply doubling for causal diamonds!

Theorem

(M,g) cont., glob. hyp. TL non-branching, causally plain spacetime sat. $\mathsf{TMCP}_{\mathsf{p}}^{\mathsf{e}}(K,N)$ wrt vol^{g} $(K \in \mathbb{R}, N \in [1,\infty), \mathsf{p} \in (0,1))$ (+causally-reversed) \Rightarrow

$\dim(M) = \dim^{\tau}(M) \le N$

Clemens Sämann, University of Vienna Working Seminar "Mathematical Physics"
Synthetic TL Ricci curvature bounds and doubling

$$B_r^\tau(x) := \{ y \in X : \tau(x, y) < r \}, \ E_r := E \cap \overline{B_r^\tau(x)}$$

Lemma

glob. hyp. locally causally closed measured Lorentzian length space sat. wTCD^e_p(K, N) (K $\in \mathbb{R}$, N $\in [1, \infty)$, p $\in (0, 1)$) $\Rightarrow \exists L = L(K, N) \geq 1$: $\forall x_0 \in X, E \subseteq I^+(x_0) \cup \{x_0\}$ comp., τ -star-shaped wrt $x_0, r > 0$ small

 $m(E_{2r}) \le L m(E_r)$

does *NOT* imply doubling for causal diamonds!

Theorem

(M,g) cont., glob. hyp. TL non-branching, causally plain spacetime sat. $\mathsf{TMCP}_{\mathsf{p}}^{\mathsf{e}}(K,N)$ wrt vol^{g} $(K \in \mathbb{R}, N \in [1,\infty), \mathsf{p} \in (0,1))$ (+causally-reversed) \Rightarrow

 $\dim(M) = \dim^{\tau}(M) \le N$

• *general warped products* of Lorentzian length spaces and length spaces

- how to *define doubling* of *causal diamonds* in general, i.e., not on manifolds?
- measures on *hypersurfaces*
- applications to singularity theorems
- further relation to synthetic timelike Ricci curvature bounds
- relation to Hausdorff measure/dimension wrt *Sormani-Vega null* distance

- *general warped products* of Lorentzian length spaces and length spaces
- how to *define doubling* of *causal diamonds* in general, i.e., not on manifolds?
- measures on *hypersurfaces*
- applications to singularity theorems
- further relation to synthetic timelike Ricci curvature bounds
- relation to Hausdorff measure/dimension wrt *Sormani-Vega null* distance

- *general warped products* of Lorentzian length spaces and length spaces
- how to *define doubling* of *causal diamonds* in general, i.e., not on manifolds?
- measures on *hypersurfaces*
- applications to singularity theorems
- further relation to synthetic timelike *Ricci curvature bounds*
- relation to Hausdorff measure/dimension wrt *Sormani-Vega null* distance

- *general warped products* of Lorentzian length spaces and length spaces
- how to *define doubling* of *causal diamonds* in general, i.e., not on manifolds?
- measures on *hypersurfaces*
- applications to singularity theorems
- further relation to synthetic timelike *Ricci curvature bounds*
- relation to Hausdorff measure/dimension wrt *Sormani-Vega null distance*

- *general warped products* of Lorentzian length spaces and length spaces
- how to *define doubling* of *causal diamonds* in general, i.e., not on manifolds?
- measures on *hypersurfaces*
- applications to singularity theorems
- further relation to synthetic timelike *Ricci curvature bounds*
- relation to Hausdorff measure/dimension wrt *Sormani-Vega null distance*

- *general warped products* of Lorentzian length spaces and length spaces
- how to *define doubling* of *causal diamonds* in general, i.e., not on manifolds?
- measures on *hypersurfaces*
- applications to singularity theorems
- further relation to synthetic timelike *Ricci curvature bounds*
- relation to Hausdorff measure/dimension wrt *Sormani-Vega null* distance

- *general warped products* of Lorentzian length spaces and length spaces
- how to *define doubling* of *causal diamonds* in general, i.e., not on manifolds?
- measures on *hypersurfaces*
- applications to singularity theorems
- further relation to synthetic timelike *Ricci curvature bounds*
- relation to Hausdorff measure/dimension wrt *Sormani-Vega null* distance

References

L. Aké Hau, A. J. Cabrera Pacheco, D. A. Solis

On the causal hierarchy of Lorentzian length spaces. Classical and Quantum Gravity 37, 215013, 2020.

S. Alexander, M. Graf, M. Kunzinger, C.S.

Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems. <u>Comm. Anal. Geom.</u> to appear, arXiv:1909.09575.

F. Cavalletti, A. Mondino.

Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications. <u>preprint</u>, arXiv:2004.08934 [math.MG].

J. D. E. Grant, M. Kunzinger, C.S.

Inextendibility of spacetimes and Lorentzian length spaces. <u>Ann. Global Anal.</u> Geom. 55, no. 1, 133–147, 2019.

M. Kunzinger, C.S.

Lorentzian length spaces. Ann. Global Anal. Geom. 54, no. 3, 399-447, 2018.

🔋 R. J. McCann, C.S.

A Lorentzian analog for Hausdorff dimension and measure. preprint arXiv:2110.04386, 2021.