Synthetic (metric) methods in General Relativity and Lorentzian geometry

Part II: Applications

Working Seminar "Mathematical Physics" University of Regensburg

Clemens Sämann
Faculty of Mathematics
University of Vienna, Austria

Nov 5, 2021

Lorentzian pre-length spaces

X set, \leq preorder on X, \ll transitive relation contained in \leq, d metric on $X, \tau: X \times X \rightarrow[0, \infty]$ lower semicontinuous (with respect to d)
\qquad
\square

Lorentzian pre-length spaces

X set, \leq preorder on X, \ll transitive relation contained in \leq, d metric on $X, \tau: X \times X \rightarrow[0, \infty]$ lower semicontinuous (with respect to d)

Definition

(X, d, \ll, \leq, τ) is a Lorentzian pre-length space if

$$
\tau(x, z) \geq \tau(x, y)+\tau(y, z) \quad(x \leq y \leq z)
$$

and $\tau(x, y)=0$ if $x \not \leq y$ and $\tau(x, y)>0 \Leftrightarrow x \ll y$;
τ is called time separation function

Lorentzian pre-length spaces

X set, \leq preorder on X, \ll transitive relation contained in \leq, d metric on $X, \tau: X \times X \rightarrow[0, \infty]$ lower semicontinuous (with respect to d)

Definition

(X, d, \ll, \leq, τ) is a Lorentzian pre-length space if

$$
\tau(x, z) \geq \tau(x, y)+\tau(y, z) \quad(x \leq y \leq z)
$$

and $\tau(x, y)=0$ if $x \not \leq y$ and $\tau(x, y)>0 \Leftrightarrow x \ll y$;
τ is called time separation function
examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q):=\sup \left\{L_{g}(\gamma): \gamma\right.$ f.d. causal from p to $\left.q\right\}$

Lorentzian pre-length spaces

X set, \leq preorder on X, \ll transitive relation contained in \leq, d metric on $X, \tau: X \times X \rightarrow[0, \infty]$ lower semicontinuous (with respect to d)

Definition

(X, d, \ll, \leq, τ) is a Lorentzian pre-length space if

$$
\tau(x, z) \geq \tau(x, y)+\tau(y, z) \quad(x \leq y \leq z)
$$

and $\tau(x, y)=0$ if $x \not \leq y$ and $\tau(x, y)>0 \Leftrightarrow x \ll y$;
τ is called time separation function
examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q):=\sup \left\{L_{g}(\gamma): \gamma\right.$ f.d. causal from p to $\left.q\right\}$
- finite directed graphs

More on Lorentzian (pre-)length spaces

(1) causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
(2)
(3)

4
(5)
(6)

More on Lorentzian (pre-)length spaces

(1) causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
(2) timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
©
(1)
©
©

More on Lorentzian (pre-)length spaces

(1) causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
(2) timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
(3) inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
(1)
'20, Mondino-Suhr '18, Cavalletti-Mondino '20)
(6)
©
©

More on Lorentzian (pre-)length spaces

(1) causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
(2) timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
(3) inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
(9) Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems (Alexander-Graf-Kunzinger-S. '21)
©
©
©
B

More on Lorentzian (pre-)length spaces

(1) causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
(2) timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
(3) inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
(9) Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems (Alexander-Graf-Kunzinger-S. '21)
(6) timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
©
0
(

More on Lorentzian (pre-)length spaces

(1) causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
(2) timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
(3) inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
(9) Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems (Alexander-Graf-Kunzinger-S. '21)
(5) timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
(0) applications to contact geometry (Hedicke '21)
©
B

More on Lorentzian (pre-)length spaces

(1) causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
(2) timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
(3) inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
(9) Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems (Alexander-Graf-Kunzinger-S. '21)
(5) timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
(0) applications to contact geometry (Hedicke '21)
(1) null distance and Lorentzian length spaces (Kunzinger-Steinbauer '21)

B

More on Lorentzian (pre-)length spaces

(1) causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
(2) timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
(3) inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
(9) Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems
(Alexander-Graf-Kunzinger-S. '21)
(3) timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
(0) applications to contact geometry (Hedicke '21)
(1) null distance and Lorentzian length spaces (Kunzinger-Steinbauer '21)
(8) time functions on Lorentzian (pre-)length spaces (Burtscher-García-Heveling '21)

More on Lorentzian (pre-)length spaces

(1) causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
(2) timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
(3) inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
(9) Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems (Alexander-Graf-Kunzinger-S. '21)
(5) timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
© applications to contact geometry (Hedicke '21)
(1) null distance and Lorentzian length spaces (Kunzinger-Steinbauer '21)
(8) time functions on Lorentzian (pre-)length spaces (Burtscher-García-Heveling '21)
(0) Lorentzian analog of Hausdorff dimension, measure (McCann-S. '21)

More on Lorentzian (pre-)length spaces

(1) causal ladder (Kunzinger-S. '18, Aké Hau-Cabrera Pacheco-Solis '20)
(2) timelike, causal sectional curvature bounds via triangle comparison (Kunzinger-S. '18)
(3) inextendibility of spacetimes, curv. blow-up (Grant-Kunzinger-S. '19)
(9) Generalized cones, i.e., Lorentzian warped products of length spaces with 1-dim base and singularity theorems (Alexander-Graf-Kunzinger-S. '21)
(5) timelike Ricci curvature bounds and singularity theorems (McCann '20, Mondino-Suhr '18, Cavalletti-Mondino '20)
(0) applications to contact geometry (Hedicke '21)
(1) null distance and Lorentzian length spaces (Kunzinger-Steinbauer '21)
(8) time functions on Lorentzian (pre-)length spaces (Burtscher-García-Heveling '21)
(9) Lorentzian analog of Hausdorff dimension, measure (McCann-S. '21)

Inextendibility of spacetimes

 joint work with Grant, Kunzinger AGAG 2019
Inextendibility of spacetimes

When is a spacetime maximal? (i.e. no isometric embedding into larger spacetime)

Inextendibility of spacetimes

When is a spacetime maximal? (i.e. no isometric embedding into larger spacetime)

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike geodesics have infinite τ-length, then X is inextendible as a regular Lorentzian length space

Inextendibility of spacetimes

When is a spacetime maximal? (i.e. no isometric embedding into larger spacetime)

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike geodesics have infinite τ-length, then X is inextendible as a regular Lorentzian length space

Corollary

(M, g) strongly causal, smooth and timelike geodesically complete spacetime, then (M, g) is inextendible as a regular Lorentzian length space

Inextendibility of spacetimes

When is a spacetime maximal? (i.e. no isometric embedding into larger spacetime)

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike geodesics have infinite τ-length, then X is inextendible as a regular Lorentzian length space

Corollary

(M, g) strongly causal, smooth and timelike geodesically complete spacetime, then (M, g) is inextendible as a regular Lorentzian length space
being non-regular is related to (timelike/causal) curvature unbounded

Generalized cones as Lorentzian length spaces: Causality,

 curvature, and singularity theorems joint work with S. Alexander, M. Graf, M. Kunzinger, Comm. Anal. Geom. to appear, 2021
Generalized cones $(1 / 2)$

Definition (Generalized cones)

Given a metric space (X, d), an open interval I, and a continuous function $f: I \rightarrow(0, \infty)$, we call $Y=I \times_{f} X$ a generalized cone or warped product with one-dim. base and f warping function.
everywhere

Generalized cones $(1 / 2)$

Definition (Generalized cones)

Given a metric space (X, d), an open interval I, and a continuous function $f: I \rightarrow(0, \infty)$, we call $Y=I \times_{f} X$ a generalized cone or warped product with one-dim. base and f warping function.
$\gamma=(\alpha, \beta): J \rightarrow Y$ absolutely continuous (w.r.t. the product topology on $I \times X)$ then

Generalized cones $(1 / 2)$

Definition (Generalized cones)

Given a metric space (X, d), an open interval I, and a continuous function $f: I \rightarrow(0, \infty)$, we call $Y=I \times_{f} X$ a generalized cone or warped product with one-dim. base and f warping function.
$\gamma=(\alpha, \beta): J \rightarrow Y$ absolutely continuous (w.r.t. the product topology on $I \times X)$ then α, β AC and $\dot{\alpha}$ metric derivative v_{β} of β exist almost everywhere

$$
v_{\beta}(t):=\lim _{s \rightarrow 0} \frac{d(\beta(t+s), \beta(t))}{|s|}, \quad \text { satisfies } L(\beta)=\int_{J} v_{\beta}
$$

Generalized cones (2/2)

Definition

X metric space, $I \subseteq \mathbb{R}$ interval, $f: I \rightarrow(0, \infty)$ continuous, $Y=I \times_{f} X$ generalized cone, $\gamma=(\alpha, \beta): J \rightarrow Y \mathrm{AC} ; \gamma$ is

$$
\left\{\begin{array}{l}
\text { timelike } \\
\text { null } \\
\text { causal }
\end{array} \quad \text { if } \quad-\dot{\alpha}^{2}+(f \circ \alpha)^{2} v_{\beta}^{2}\left\{\begin{array}{l}
<0 \\
=0 \\
\leq 0
\end{array}\right.\right.
$$

a.e. and γ is future/past directed causal if $\dot{\alpha}>0$ or $\dot{\alpha}<0$ a.e.

Generalized cones (2/2)

Definition

X metric space, $I \subseteq \mathbb{R}$ interval, $f: I \rightarrow(0, \infty)$ continuous, $Y=I \times_{f} X$ generalized cone, $\gamma=(\alpha, \beta): J \rightarrow Y \mathrm{AC} ; \gamma$ is

$$
\left\{\begin{array}{l}
\text { timelike } \\
\text { null } \\
\text { causal }
\end{array} \quad \text { if } \quad-\dot{\alpha}^{2}+(f \circ \alpha)^{2} v_{\beta}^{2}\left\{\begin{array}{l}
<0 \\
=0 \\
\leq 0
\end{array}\right.\right.
$$

a.e. and γ is future/past directed causal if $\dot{\alpha}>0$ or $\dot{\alpha}<0$ a.e. length of a causal curve $L(\gamma):=\int_{a}^{b} \sqrt{\dot{\alpha}^{2}-(f \circ \alpha)^{2} v_{\beta}^{2}}$

Generalized cones (2/2)

Definition

X metric space, $I \subseteq \mathbb{R}$ interval, $f: I \rightarrow(0, \infty)$ continuous, $Y=I \times_{f} X$ generalized cone, $\gamma=(\alpha, \beta): J \rightarrow Y \mathrm{AC} ; \gamma$ is

$$
\left\{\begin{array}{l}
\text { timelike } \\
\text { null } \\
\text { causal }
\end{array} \quad \text { if } \quad-\dot{\alpha}^{2}+(f \circ \alpha)^{2} v_{\beta}^{2}\left\{\begin{array}{l}
<0 \\
=0 \\
\leq 0
\end{array}\right.\right.
$$

a.e. and γ is future/past directed causal if $\dot{\alpha}>0$ or $\dot{\alpha}<0$ a.e. length of a causal curve $L(\gamma):=\int_{a}^{b} \sqrt{\dot{\alpha}^{2}-(f \circ \alpha)^{2} v_{\beta}^{2}}$

For this talk: (X, d) locally compact geodesic length space

Causal structure of generalized cones $(1 / 2)$

$\ll, \leq, I^{ \pm}, J^{ \pm}$and the Lorentzian time separation τ as usual $=(\alpha, \beta):[a, b] \rightarrow Y$ future directed causal, maximizing - fiber component β minimizing in (X, d)

Causal structure of generalized cones $(1 / 2)$

$\ll, \leq, I^{ \pm}, J^{ \pm}$and the Lorentzian time separation τ as usual $\gamma=(\alpha, \beta):[a, b] \rightarrow Y$ future directed causal, maximizing \leadsto - fiber component β mi

- converse $(\beta \mathrm{min} . ~$
parametrization of $\alpha)$

Causal structure of generalized cones $(1 / 2)$

$\ll, \leq, I^{ \pm}, J^{ \pm}$and the Lorentzian time separation τ as usual
$\gamma=(\alpha, \beta):[a, b] \rightarrow Y$ future directed causal, maximizing \leadsto

- fiber component β minimizing in (X, d)
- converse ($\beta \mathrm{min} . \Longrightarrow \gamma$ max.) does not hold! (problem: right parametrization of α)

Causal structure of generalized cones $(1 / 2)$

$\ll, \leq, I^{ \pm}, J^{ \pm}$and the Lorentzian time separation τ as usual
$\gamma=(\alpha, \beta):[a, b] \rightarrow Y$ future directed causal, maximizing \leadsto

- fiber component β minimizing in (X, d)
- converse ($\beta \mathrm{min}$. $\Longrightarrow \gamma$ max.) does not hold! (problem: right parametrization of α)

Causal structure of generalized cones $(1 / 2)$

$\ll, \leq, I^{ \pm}, J^{ \pm}$and the Lorentzian time separation τ as usual
$\gamma=(\alpha, \beta):[a, b] \rightarrow Y$ future directed causal, maximizing \leadsto

- fiber component β minimizing in (X, d)
- converse (β min. $\Longrightarrow \gamma$ max.) does not hold! (problem: right parametrization of α)
- Fiber independence: base component α depends only on length of β (independent of $\beta,(X, d)$ otherwise)
I.e., take any other (X^{\prime}, d^{\prime}) and maximizing curve β^{\prime} with $L^{d}(\beta)=L^{d^{\prime}}\left(\beta^{\prime}\right)$ and $v_{\beta}=v_{\beta^{\prime}}$, then $\gamma^{\prime}=\left(\alpha, \beta^{\prime}\right)$ is maximizing causal/timelike for $I \times_{f} X^{\prime} \Longrightarrow \tau(p, q)$ depends only on $p_{0}, q_{0}, d_{X}(\bar{p}, \bar{q})($ and $f)!$

Causal structure of generalized cones $(2 / 2)$

- I^{+}open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel \& Grant '12)

Causal structure of generalized cones $(2 / 2)$

- I^{+}open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel \& Grant '12)
- $h_{p_{0}}:\left(a_{p_{0}}, b_{p_{0}}\right) \rightarrow I$ as the unique maximal solution of the ODE

$$
\frac{d}{d s} h_{p_{0}}=f \circ h_{p_{0}}, \quad h_{p_{0}}(0)=p_{0}
$$

Causal structure of generalized cones $(2 / 2)$

- I^{+}open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel \& Grant '12)
- $h_{p_{0}}:\left(a_{p_{0}}, b_{p_{0}}\right) \rightarrow I$ as the unique maximal solution of the ODE

$$
\frac{d}{d s} h_{p_{0}}=f \circ h_{p_{0}}, \quad h_{p_{0}}(0)=p_{0}
$$

Then: $h_{p_{0}}$ is strictly increasing, bijective and C^{1} and

Causal structure of generalized cones $(2 / 2)$

- I^{+}open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel \& Grant '12)
- $h_{p_{0}}:\left(a_{p_{0}}, b_{p_{0}}\right) \rightarrow I$ as the unique maximal solution of the ODE

$$
\frac{d}{d s} h_{p_{0}}=f \circ h_{p_{0}}, \quad h_{p_{0}}(0)=p_{0}
$$

Then: $h_{p_{0}}$ is strictly increasing, bijective and C^{1} and

$$
I^{+}\left(\left(p_{0}, \bar{p}\right)\right)=\left\{\left(q_{0}, \bar{q}\right) \in Y: d(\bar{p}, \bar{q})<b_{p_{0}} \text { and } q_{0}>h_{p_{0}}(d(\bar{p}, \bar{q}))\right\}
$$

Causal structure of generalized cones $(2 / 2)$

- I^{+}open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel \& Grant '12)
- $h_{p_{0}}:\left(a_{p_{0}}, b_{p_{0}}\right) \rightarrow I$ as the unique maximal solution of the ODE

$$
\frac{d}{d s} h_{p_{0}}=f \circ h_{p_{0}}, \quad h_{p_{0}}(0)=p_{0}
$$

Then: $h_{p_{0}}$ is strictly increasing, bijective and C^{1} and

$$
I^{+}\left(\left(p_{0}, \bar{p}\right)\right)=\left\{\left(q_{0}, \bar{q}\right) \in Y: d(\bar{p}, \bar{q})<b_{p_{0}} \text { and } q_{0}>h_{p_{0}}(d(\bar{p}, \bar{q}))\right\}
$$

- In particular, I^{+}open and push-up holds

Causal structure of generalized cones $(2 / 2)$

- I^{+}open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel \& Grant '12)
- $h_{p_{0}}:\left(a_{p_{0}}, b_{p_{0}}\right) \rightarrow I$ as the unique maximal solution of the ODE

$$
\frac{d}{d s} h_{p_{0}}=f \circ h_{p_{0}}, \quad h_{p_{0}}(0)=p_{0}
$$

Then: $h_{p_{0}}$ is strictly increasing, bijective and C^{1} and $I^{+}\left(\left(p_{0}, \bar{p}\right)\right)=\left\{\left(q_{0}, \bar{q}\right) \in Y: d(\bar{p}, \bar{q})<b_{p_{0}}\right.$ and $\left.q_{0}>h_{p_{0}}(d(\bar{p}, \bar{q}))\right\}$

- In particular, I^{+}open and push-up holds
- $\partial I^{+}\left(\left(p_{0}, \bar{p}\right)\right)=\partial J^{+}\left(\left(p_{0}, \bar{p}\right)\right)=$ continuous graph over $B_{b_{p_{0}}}(\bar{p}) \subseteq X$ \& its height depends only on the distance to \bar{p} !

Causal structure of generalized cones $(2 / 2)$

- I^{+}open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel \& Grant '12)
- $h_{p_{0}}:\left(a_{p_{0}}, b_{p_{0}}\right) \rightarrow I$ as the unique maximal solution of the ODE

$$
\frac{d}{d s} h_{p_{0}}=f \circ h_{p_{0}}, \quad h_{p_{0}}(0)=p_{0}
$$

Then: $h_{p_{0}}$ is strictly increasing, bijective and C^{1} and $I^{+}\left(\left(p_{0}, \bar{p}\right)\right)=\left\{\left(q_{0}, \bar{q}\right) \in Y: d(\bar{p}, \bar{q})<b_{p_{0}}\right.$ and $\left.q_{0}>h_{p_{0}}(d(\bar{p}, \bar{q}))\right\}$

- In particular, I^{+}open and push-up holds
- $\partial I^{+}\left(\left(p_{0}, \bar{p}\right)\right)=\partial J^{+}\left(\left(p_{0}, \bar{p}\right)\right)=$ continuous graph over $B_{b_{p_{0}}}(\bar{p}) \subseteq X$ \& its height depends only on the distance to \bar{p} !
- If X is geodesic: $J^{+}=I^{+} \cup \partial I^{+}$

Causal structure of generalized cones $(2 / 2)$

- I^{+}open and push-up? (Not necessarily in low regularity, cf. bubbling examples by Chrusciel \& Grant '12)
- $h_{p_{0}}:\left(a_{p_{0}}, b_{p_{0}}\right) \rightarrow I$ as the unique maximal solution of the ODE

$$
\frac{d}{d s} h_{p_{0}}=f \circ h_{p_{0}}, \quad h_{p_{0}}(0)=p_{0}
$$

Then: $h_{p_{0}}$ is strictly increasing, bijective and C^{1} and

$$
I^{+}\left(\left(p_{0}, \bar{p}\right)\right)=\left\{\left(q_{0}, \bar{q}\right) \in Y: d(\bar{p}, \bar{q})<b_{p_{0}} \text { and } q_{0}>h_{p_{0}}(d(\bar{p}, \bar{q}))\right\}
$$

- In particular, I^{+}open and push-up holds
- $\partial I^{+}\left(\left(p_{0}, \bar{p}\right)\right)=\partial J^{+}\left(\left(p_{0}, \bar{p}\right)\right)=$ continuous graph over $B_{b_{p_{0}}}(\bar{p}) \subseteq X$ \& its height depends only on the distance to \bar{p} !
- If X is geodesic: $J^{+}=I^{+} \cup \partial I^{+}$
$\Longrightarrow Y=I \times_{f} X$ is a Lorentzian pre-length space
(+ more work $\Longrightarrow Y$ is a regular strongly causal Lorentzian length space)

Curvature bounds for generalized cones

Theorem
X curvature bounded below (above) by $K, I \times_{f} \mathbb{M}^{2}(K)$ timelike curvature bounded below (above) by K^{\prime}, then $Y=I \times_{f} X$ timelike curvature bounded below (above) by K^{\prime}

Curvature bounds for generalized cones

Theorem

X curvature bounded below (above) by $K, I \times_{f} \mathbb{M}^{2}(K)$ timelike curvature bounded below (above) by K^{\prime}, then $Y=I \times_{f} X$ timelike curvature bounded below (above) by K^{\prime}

Special case: f smooth, then $I \times_{f} \mathbb{M}^{2}(K)$ smooth Lorentzian manifold \rightsquigarrow sectional curvatures easily computable

Curvature bounds for generalized cones

Theorem

X curvature bounded below (above) by $K, I \times_{f} \mathbb{M}^{2}(K)$ timelike curvature bounded below (above) by K^{\prime}, then $Y=I \times_{f} X$ timelike curvature bounded below (above) by K^{\prime}

Special case: f smooth, then $I \times_{f} \mathbb{M}^{2}(K)$ smooth Lorentzian manifold \rightsquigarrow sectional curvatures easily computable
$f^{\prime \prime}-K^{\prime} f \leq 0$ and X curv. bounded below by $K=\sup K^{\prime} f^{2}-\left(f^{\prime}\right)^{2} \Longrightarrow$ $I \times_{f} X$ timelike curvature bounded below by K^{\prime}

Curvature bounds for generalized cones

Theorem

X curvature bounded below (above) by $K, I \times_{f} \mathbb{M}^{2}(K)$ timelike curvature bounded below (above) by K^{\prime}, then $Y=I \times_{f} X$ timelike curvature bounded below (above) by K^{\prime}

Special case: f smooth, then $I \times{ }_{f} \mathbb{M}^{2}(K)$ smooth Lorentzian manifold \rightsquigarrow sectional curvatures easily computable
$f^{\prime \prime}-K^{\prime} f \leq 0$ and X curv. bounded below by $K=\sup K^{\prime} f^{2}-\left(f^{\prime}\right)^{2} \Longrightarrow$ $I \times_{f} X$ timelike curvature bounded below by K^{\prime}

Theorem

$Y=I \times_{f} X$ timelike curvature bounded below (above) by K^{\prime}, $Y^{\prime}=I \times_{f} \mathbb{M}^{2}(K)$ timelike curvature bounded above (below) by K^{\prime}, then X curvature bounded below (above) by K

Singularity theorems

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone?

Singularity theorems

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone? if $f \rightarrow 0$ in finite time $(I \neq(-\infty, \infty))$

Singularity theorems

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone? if $f \rightarrow 0$ in finite time $(I \neq(-\infty, \infty))$ properties of f from timelike curvature bounds?

Singularity theorems

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone? if $f \rightarrow 0$ in finite time $(I \neq(-\infty, \infty))$ properties of f from timelike curvature bounds?

Theorem

X geodesic length space, $Y=I \times_{f} X$ with $I=(a, b), f: I \rightarrow(0, \infty)$ smooth, Y timelike curvature bounded below by K, then:

Singularity theorems

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone? if $f \rightarrow 0$ in finite time $(I \neq(-\infty, \infty))$ properties of f from timelike curvature bounds?

Theorem

X geodesic length space, $Y=I \times_{f} X$ with $I=(a, b), f: I \rightarrow(0, \infty)$ smooth, Y timelike curvature bounded below by K, then:
(i) f satisfies $f^{\prime \prime}-K f \leq 0$ (analogous: timelike curvature bounded above by $K \Longrightarrow f^{\prime \prime}-K f \geq 0$)

Singularity theorems

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone? if $f \rightarrow 0$ in finite time $(I \neq(-\infty, \infty))$ properties of f from timelike curvature bounds?

Theorem

X geodesic length space, $Y=I \times_{f} X$ with $I=(a, b), f: I \rightarrow(0, \infty)$ smooth, Y timelike curvature bounded below by K, then:
(i) f satisfies $f^{\prime \prime}-K f \leq 0$ (analogous: timelike curvature bounded above by $K \Longrightarrow f^{\prime \prime}-K f \geq 0$)
(ii) $K<0$, then $a>-\infty$ and $b<\infty$; hence time separation function τ_{Y} of Y bounded by $b-a \leadsto Y$ is timelike geodesically incomplete

Singularity theorems

incomplete timelike geodesics (i.e., inextendible timelike geodesics of finite length) in generalized cone? if $f \rightarrow 0$ in finite time $(I \neq(-\infty, \infty))$ properties of f from timelike curvature bounds?

Theorem

X geodesic length space, $Y=I \times_{f} X$ with $I=(a, b), f: I \rightarrow(0, \infty)$ smooth, Y timelike curvature bounded below by K, then:
(i) f satisfies $f^{\prime \prime}-K f \leq 0$ (analogous: timelike curvature bounded above by $K \Longrightarrow f^{\prime \prime}-K f \geq 0$)
(ii) $K<0$, then $a>-\infty$ and $b<\infty$; hence time separation function τ_{Y} of Y bounded by $b-a \leadsto Y$ is timelike geodesically incomplete
(iii) $K=0$ and f non-constant, then $a>-\infty$ or $b<\infty$; hence Y past or future timelike geodesically incomplete

Sketch of the proof

- Assume not, then $\exists K^{\prime}>K, J \subset I$ s.t. $f^{\prime \prime}>K^{\prime} f$ on J

Sketch of the proof

- Assume not, then $\exists K^{\prime}>K, J \subset I$ s.t. $f^{\prime \prime}>K^{\prime} f$ on J
- Look at $Y^{\prime}:=J \times_{f} \mathbb{R} \rightsquigarrow$ smooth, has TL sectional curvature $\mathcal{R}=\frac{f^{\prime \prime}}{f}>K^{\prime} \Longrightarrow Y^{\prime}$ has TL curv. bounded above by $K^{\prime}>K$

Sketch of the proof

- Assume not, then $\exists K^{\prime}>K, J \subset I$ s.t. $f^{\prime \prime}>K^{\prime} f$ on J
- Look at $Y^{\prime}:=J \times_{f} \mathbb{R} \rightsquigarrow$ smooth, has TL sectional curvature $\mathcal{R}=\frac{f^{\prime \prime}}{f}>K^{\prime} \Longrightarrow Y^{\prime}$ has TL curv. bounded above by $K^{\prime}>K$
- Fiber independence \Longrightarrow for timelike comparison triangles $\Delta^{\prime} \in Y^{\prime}$ with $x^{\prime} z^{\prime}$-side perpendicular to \mathbb{R} and $\Delta \in Y$ with $x z$-side "perpendicular" to X (and $q^{\prime} \in y^{\prime} z^{\prime}, q \in y z$):

$$
\tau_{Y^{\prime}}\left(x^{\prime}, q^{\prime}\right)=\tau_{Y}(x, q)
$$

-

Sketch of the proof

- Assume not, then $\exists K^{\prime}>K, J \subset I$ s.t. $f^{\prime \prime}>K^{\prime} f$ on J
- Look at $Y^{\prime}:=J \times_{f} \mathbb{R} \rightsquigarrow$ smooth, has TL sectional curvature $\mathcal{R}=\frac{f^{\prime \prime}}{f}>K^{\prime} \Longrightarrow Y^{\prime}$ has TL curv. bounded above by $K^{\prime}>K$
- Fiber independence \Longrightarrow for timelike comparison triangles $\Delta^{\prime} \in Y^{\prime}$ with $x^{\prime} z^{\prime}$-side perpendicular to \mathbb{R} and $\Delta \in Y$ with $x z$-side "perpendicular" to X (and $q^{\prime} \in y^{\prime} z^{\prime}, q \in y z$):

$$
\tau_{Y^{\prime}}\left(x^{\prime}, q^{\prime}\right)=\tau_{Y}(x, q)
$$

- Since Y has TL curv. bounded below by K,

$$
\tau_{Y}(x, q) \leq \tau_{\mathbb{L}^{2}(K)}\left(x^{\prime \prime \prime}, q^{\prime \prime \prime}\right)
$$

Sketch of the proof

- Assume not, then $\exists K^{\prime}>K, J \subset I$ s.t. $f^{\prime \prime}>K^{\prime} f$ on J
- Look at $Y^{\prime}:=J \times_{f} \mathbb{R} \rightsquigarrow$ smooth, has TL sectional curvature $\mathcal{R}=\frac{f^{\prime \prime}}{f}>K^{\prime} \Longrightarrow Y^{\prime}$ has TL curv. bounded above by $K^{\prime}>K$
- Fiber independence \Longrightarrow for timelike comparison triangles $\Delta^{\prime} \in Y^{\prime}$ with $x^{\prime} z^{\prime}$-side perpendicular to \mathbb{R} and $\Delta \in Y$ with $x z$-side "perpendicular" to X (and $q^{\prime} \in y^{\prime} z^{\prime}, q \in y z$):

$$
\tau_{Y^{\prime}}\left(x^{\prime}, q^{\prime}\right)=\tau_{Y}(x, q)
$$

- Since Y has TL curv. bounded below by K,

$$
\tau_{Y}(x, q) \leq \tau_{\mathbb{L}^{2}(K)}\left(x^{\prime \prime \prime}, q^{\prime \prime \prime}\right)
$$

- On the other hand, since Y^{\prime} has TL curv. bounded above by K^{\prime},

$$
\tau_{Y^{\prime}}\left(x^{\prime}, q^{\prime}\right) \geq \tau_{\mathbb{L}^{2}\left(K^{\prime}\right)}\left(x^{\prime \prime}, q^{\prime \prime}\right)
$$

Sketch of the proof

- Assume not, then $\exists K^{\prime}>K, J \subset I$ s.t. $f^{\prime \prime}>K^{\prime} f$ on J
- Look at $Y^{\prime}:=J \times_{f} \mathbb{R} \rightsquigarrow$ smooth, has TL sectional curvature $\mathcal{R}=\frac{f^{\prime \prime}}{f}>K^{\prime} \Longrightarrow Y^{\prime}$ has TL curv. bounded above by $K^{\prime}>K$
- Fiber independence \Longrightarrow for timelike comparison triangles $\Delta^{\prime} \in Y^{\prime}$ with $x^{\prime} z^{\prime}$-side perpendicular to \mathbb{R} and $\Delta \in Y$ with $x z$-side "perpendicular" to X (and $q^{\prime} \in y^{\prime} z^{\prime}, q \in y z$):

$$
\tau_{Y^{\prime}}\left(x^{\prime}, q^{\prime}\right)=\tau_{Y}(x, q)
$$

- Since Y has TL curv. bounded below by K,

$$
\tau_{Y}(x, q) \leq \tau_{\mathbb{L}^{2}(K)}\left(x^{\prime \prime \prime}, q^{\prime \prime \prime}\right)
$$

- On the other hand, since Y^{\prime} has TL curv. bounded above by K^{\prime},

$$
\tau_{Y^{\prime}}\left(x^{\prime}, q^{\prime}\right) \geq \tau_{\mathbb{L}^{2}\left(K^{\prime}\right)}\left(x^{\prime \prime}, q^{\prime \prime}\right)
$$

- And since $K^{\prime}>K, \tau_{\mathbb{L}^{2}\left(K^{\prime}\right)}\left(x^{\prime \prime}, q^{\prime \prime}\right)>\tau_{\mathbb{L}^{2}(K)}\left(x^{\prime \prime \prime}, q^{\prime \prime \prime}\right)$

Sketch of the proof

- Assume not, then $\exists K^{\prime}>K, J \subset I$ s.t. $f^{\prime \prime}>K^{\prime} f$ on J
- Look at $Y^{\prime}:=J \times_{f} \mathbb{R} \rightsquigarrow$ smooth, has TL sectional curvature $\mathcal{R}=\frac{f^{\prime \prime}}{f}>K^{\prime} \Longrightarrow Y^{\prime}$ has TL curv. bounded above by $K^{\prime}>K$
- Fiber independence \Longrightarrow for timelike comparison triangles $\Delta^{\prime} \in Y^{\prime}$ with $x^{\prime} z^{\prime}$-side perpendicular to \mathbb{R} and $\Delta \in Y$ with $x z$-side "perpendicular" to X (and $q^{\prime} \in y^{\prime} z^{\prime}, q \in y z$):

$$
\tau_{Y^{\prime}}\left(x^{\prime}, q^{\prime}\right)=\tau_{Y}(x, q)
$$

- Since Y has TL curv. bounded below by K,

$$
\tau_{Y}(x, q) \leq \tau_{\mathbb{L}^{2}(K)}\left(x^{\prime \prime \prime}, q^{\prime \prime \prime}\right)
$$

- On the other hand, since Y^{\prime} has TL curv. bounded above by K^{\prime},

$$
\tau_{Y^{\prime}}\left(x^{\prime}, q^{\prime}\right) \geq \tau_{\mathbb{L}^{2}\left(K^{\prime}\right)}\left(x^{\prime \prime}, q^{\prime \prime}\right)
$$

- And since $K^{\prime}>K, \tau_{\mathbb{L}^{2}\left(K^{\prime}\right)}\left(x^{\prime \prime}, q^{\prime \prime}\right)>\tau_{\mathbb{L}^{2}(K)}\left(x^{\prime \prime \prime}, q^{\prime \prime \prime}\right)$
- Contradiction!

A Lorentzian analog for Hausdorff dimension and measure

 joint work with Robert J. McCann, preprint 2021
Hausdorff measures and dimension

Definition

(X, d) metric space, $A \subseteq X, \delta>0, N \in[0, \infty)$

$$
\mathcal{H}_{\delta}^{N}(A):=\inf \left\{c_{N} \sum_{i} \operatorname{diam}\left(A_{i}\right)^{N}: A \subseteq \bigcup_{i} A_{i}, \operatorname{diam}\left(A_{i}\right) \leq \delta\right\}
$$

N-dimensional Hausdorff measure $\mathcal{H}^{N}(A):=\sup _{\delta>0} \mathcal{H}_{\delta}^{N}(A)$

Hausdorff measures and dimension

Definition

(X, d) metric space, $A \subseteq X, \delta>0, N \in[0, \infty)$

$$
\mathcal{H}_{\delta}^{N}(A):=\inf \left\{c_{N} \sum_{i} \operatorname{diam}\left(A_{i}\right)^{N}: A \subseteq \bigcup_{i} A_{i}, \operatorname{diam}\left(A_{i}\right) \leq \delta\right\}
$$

N-dimensional Hausdorff measure $\mathcal{H}^{N}(A):=\sup _{\delta>0} \mathcal{H}_{\delta}^{N}(A)$

Definition

Hausdorff dimension $\operatorname{dim}^{H}(A):=\inf \left\{N \geq 0: \mathcal{H}^{N}(A)=0\right\}$

Ricci-limit spaces and (R)CD(K,N)-spaces (1/2)

Theorem (Cheeger-Colding 1997)

$\left(M_{n}, g_{n}, p_{n}\right)_{n}$ sequence of pointed (complete, connected) Riemannian mf., same dim. N, Ricci curvature uniformly bounded below, $\left(M_{n}, g_{n}, p_{n}\right) \rightarrow(X, d, p)$ pointed Gromov-Hausdorff \Rightarrow either
(1) $\operatorname{vol}^{g_{n}}\left(B_{1}^{M_{n}}\left(p_{n}\right)\right) \rightarrow 0$ (collapsed) or

Ricci-limit spaces and (R)CD(K,N)-spaces (1/2)

Theorem (Cheeger-Colding 1997)

$\left(M_{n}, g_{n}, p_{n}\right)_{n}$ sequence of pointed (complete, connected) Riemannian mf., same dim. N, Ricci curvature uniformly bounded below, $\left(M_{n}, g_{n}, p_{n}\right) \rightarrow(X, d, p)$ pointed Gromov-Hausdorff \Rightarrow either
(1) $\operatorname{vol}^{g_{n}}\left(B_{1}^{M_{n}}\left(p_{n}\right)\right) \rightarrow 0$ (collapsed) or
(2) $\inf _{n} \operatorname{vol}^{g_{n}}\left(B_{1}^{M_{n}}\left(p_{n}\right)\right)>0$ (non-collapsed); in this case $\operatorname{dim}^{H}(X)=N, \mathcal{H}^{N}(X)>0$ and renormalized limit measure $=c \mathcal{H}^{N}$

Ricci-limit spaces and (R)CD(K,N)-spaces (1/2)

Theorem (Cheeger-Colding 1997)

$\left(M_{n}, g_{n}, p_{n}\right)_{n}$ sequence of pointed (complete, connected) Riemannian mf., same dim. N, Ricci curvature uniformly bounded below, $\left(M_{n}, g_{n}, p_{n}\right) \rightarrow(X, d, p)$ pointed Gromov-Hausdorff \Rightarrow either
(1) $\operatorname{vol}^{g_{n}}\left(B_{1}^{M_{n}}\left(p_{n}\right)\right) \rightarrow 0$ (collapsed) or
(2) $\inf _{n} \operatorname{vol}^{g_{n}}\left(B_{1}^{M_{n}}\left(p_{n}\right)\right)>0$ (non-collapsed); in this case $\operatorname{dim}^{H}(X)=N, \mathcal{H}^{N}(X)>0$ and renormalized limit measure $=c \mathcal{H}^{N}$
(X, d, m) metric measure space, synthetic lower Ricci curvature bounded by $K \in \mathbb{R}$ and dimension bounded above by $N \leadsto \mathrm{CD}(\mathrm{K}, \mathrm{N})$ (using optimal transport, convexity/concavity of functionals on the space of probability measures) (Lott-Villani 2009, Sturm 2006)

Ricci-limit spaces and (R)CD(K,N)-spaces (1/2)

Theorem (Cheeger-Colding 1997)

$\left(M_{n}, g_{n}, p_{n}\right)_{n}$ sequence of pointed (complete, connected) Riemannian mf., same dim. N, Ricci curvature uniformly bounded below, $\left(M_{n}, g_{n}, p_{n}\right) \rightarrow(X, d, p)$ pointed Gromov-Hausdorff \Rightarrow either
(1) $\operatorname{vol}^{g_{n}}\left(B_{1}^{M_{n}}\left(p_{n}\right)\right) \rightarrow 0$ (collapsed) or
(2) $\inf _{n} \operatorname{vol}^{g_{n}}\left(B_{1}^{M_{n}}\left(p_{n}\right)\right)>0$ (non-collapsed); in this case $\operatorname{dim}^{H}(X)=N, \mathcal{H}^{N}(X)>0$ and renormalized limit measure $=c \mathcal{H}^{N}$

[^0]
Ricci-limit spaces and (R)CD(K,N)-spaces $(2 / 2)$

Definition (DePhilippis-Gigli 2018)
 $\mathrm{RCD}(\mathrm{K}, \mathrm{N})$-space (X, d, m) is non-collapsed if $m=\mathcal{H}^{N}$

Ricci-limit spaces and (R$) \mathrm{CD}(\mathrm{K}, \mathrm{N})$-spaces $(2 / 2)$

Definition (DePhilippis-Gigli 2018)
 $\mathrm{RCD}(\mathrm{K}, \mathrm{N})$-space (X, d, m) is non-collapsed if $m=\mathcal{H}^{N}$

```
Theorem (Brué-Semola 2019)
( }X,d,m)\mathrm{ metric measure space satisfying RCD ( }K,N
(K\in\mathbb{R},N\in(1,\infty))=>\existsk\in\mathbb{N}:1\leqk\leqN s.t. m\mp@subsup{|}{R}{}\mathrm{ a.c. wrt }\mp@subsup{\mathcal{H}}{}{k}\mathrm{ and}
m(X\R)=0
```


Ricci-limit spaces and $(\mathrm{R}) \mathrm{CD}(\mathrm{K}, \mathrm{N})$-spaces $(2 / 2)$

```
Definition (DePhilippis-Gigli 2018)
RCD(K,N)-space ( }X,d,m)\mathrm{ is non-collapsed if m= H
```


Theorem (Brué-Semola 2019)

(X, d, m) metric measure space satisfying $\mathrm{RCD}(K, N)$ $(K \in \mathbb{R}, N \in(1, \infty)) \Rightarrow \exists k \in \mathbb{N}: 1 \leq k \leq N$ s.t. $\left.m\right|_{R}$ a.c. wrt \mathcal{H}^{k} and $m(X \backslash R)=0$

Bakry-Émery Ricci tensor: $\operatorname{Ric}_{V}^{N}:=\operatorname{Ric}+\operatorname{Hess}(V)-\frac{d V \otimes d V}{N-n}$ amounts to replacing $d \mathrm{vol}^{g}$ by $e^{-V} d \mathrm{vol}^{g} \leadsto$ generalization to non-smooth setting $e^{-V} d \mathcal{H}^{N}$

Lorentzian analog of Hausdorff measures

Definition

X set, \leq preorder on $X, \tau: X \times X \rightarrow[0, \infty], J(x, y):=J^{+}(x) \cap J^{-}(y)$

$$
\rho^{N}(J(x, y)):=\omega_{N} \tau(x, y)^{N}
$$

$\omega_{N}:=\frac{\pi^{\frac{N-1}{2}}}{N \Gamma\left(\frac{N+1}{2}\right) 2^{N-1}}, \Gamma$ Euler's gamma function, $N \in[0, \infty)$

Lorentzian analog of Hausdorff measures

Definition

X set, \leq preorder on $X, \tau: X \times X \rightarrow[0, \infty], J(x, y):=J^{+}(x) \cap J^{-}(y)$

$$
\rho^{N}(J(x, y)):=\omega_{N} \tau(x, y)^{N}
$$

$\omega_{N}:=\frac{\pi^{\frac{N-1}{2}}}{N \Gamma\left(\frac{N+1}{2}\right) 2^{N-1}}, \Gamma$ Euler's gamma function, $N \in[0, \infty)$
$\mathbb{N} \ni N \geq 2: \rho^{N}(J(x, y))=$ vol. $C D$ in N-dim Minkowski w eq. time-sep.

Lorentzian analog of Hausdorff measures

Definition

X set, \leq preorder on $X, \tau: X \times X \rightarrow[0, \infty], J(x, y):=J^{+}(x) \cap J^{-}(y)$

$$
\rho^{N}(J(x, y)):=\omega_{N} \tau(x, y)^{N}
$$

$\omega_{N}:=\frac{\pi^{\frac{N-1}{2}}}{N \Gamma\left(\frac{N+1}{2}\right) 2^{N-1}}, \Gamma$ Euler's gamma function, $N \in[0, \infty)$
$\mathbb{N} \ni N \geq 2: \rho^{N}(J(x, y))=$ vol. $C D$ in N-dim Minkowski w eq. time-sep.

Definition

X as above, d metric on $X, A \subseteq X, \delta>0, N \in[0, \infty)$

$$
\mathcal{V}_{\delta}^{N}(A):=\inf \left\{\sum_{i} \rho^{N}\left(J_{i}\right): A \subseteq \bigcup_{i} J_{i}, \operatorname{diam}\left(J_{i}\right) \leq \delta, J_{i}=J\left(x_{i}, y_{i}\right)\right\}
$$

N-dimensional Lorentzian measure $\mathcal{V}^{N}(A):=\sup _{\delta>0} \mathcal{V}_{\delta}^{N}(A)$

Synthetic dimension

Definition

(X, d, \ll, \leq, τ) Lorentzian pre-length space, $A \subseteq X$, the synthetic dimension of A is

$$
\operatorname{dim}^{\tau}(A):=\inf \left\{N \geq 0: \mathcal{V}^{N}(A)<\infty\right\}
$$

Synthetic dimension

Definition

(X, d, \ll, \leq, τ) Lorentzian pre-length space, $A \subseteq X$, the synthetic dimension of A is

$$
\operatorname{dim}^{\tau}(A):=\inf \left\{N \geq 0: \mathcal{V}^{N}(A)<\infty\right\}
$$

Proposition

X locally d-uniform ($\tau=o(1)$) Lorentzian pre-length space, $A \subseteq X$ $N=\operatorname{dim}^{\tau}(A)$ if and only if $\forall k<N<K: \mathcal{V}^{k}(A)=\infty, \mathcal{V}^{K}(A)=0$; thus

$$
\operatorname{dim}^{\tau}(A)=\inf \left\{N \geq 0: \mathcal{V}^{N}(A)=0\right\}
$$

One-dimensional measure versus length

Null curves are zero-dimensional
$\gamma:[a, b] \rightarrow X$ future directed null curve in strongly causal Lorentzian pre-length space: $\operatorname{dim}^{\tau}(\gamma([a, b]))=0$
all causal diamonds $J(x, y)$ closed (e.g. X is globally hyperbolic), then

One-dimensional measure versus length

Null curves are zero-dimensional

$\gamma:[a, b] \rightarrow X$ future directed null curve in strongly causal Lorentzian pre-length space: $\operatorname{dim}^{\tau}(\gamma([a, b]))=0$

Proposition

$\gamma:[a, b] \rightarrow X$ f.d. causal curve, X strongly causal: $\mathcal{V}^{1}(\gamma([a, b])) \leq L_{\tau}(\gamma) ;$

One-dimensional measure versus length

Null curves are zero-dimensional

$\gamma:[a, b] \rightarrow X$ future directed null curve in strongly causal Lorentzian pre-length space: $\operatorname{dim}^{\tau}(\gamma([a, b]))=0$

Proposition

$\gamma:[a, b] \rightarrow X$ f.d. causal curve, X strongly causal: $\mathcal{V}^{1}(\gamma([a, b])) \leq L_{\tau}(\gamma)$; all causal diamonds $J(x, y)$ closed (e.g. X is globally hyperbolic), then

$$
\mathcal{V}^{1}(\gamma([a, b]))=L_{\tau}(\gamma)
$$

One-dimensional measure versus length

Null curves are zero-dimensional

$\gamma:[a, b] \rightarrow X$ future directed null curve in strongly causal Lorentzian pre-length space: $\operatorname{dim}^{\tau}(\gamma([a, b]))=0$

Proposition

$\gamma:[a, b] \rightarrow X$ f.d. causal curve, X strongly causal: $\mathcal{V}^{1}(\gamma([a, b])) \leq L_{\tau}(\gamma)$; all causal diamonds $J(x, y)$ closed (e.g. X is globally hyperbolic), then

$$
\mathcal{V}^{1}(\gamma([a, b]))=L_{\tau}(\gamma)
$$

Countable sets are zero dimensional and measured by their cardinality X strongly causal, $N \in[0, \infty)$; additionally in case $N>0$ assume $\forall x \in X$, $\forall U$ nhd. of $x \exists x^{ \pm} \in U$ s.t. $x^{-}<x<x^{+}, x^{-} \ll x \nless x^{+}: A \subseteq X$ countable, then $\mathcal{V}^{N}(A)=0$ for $N>0$; and $A \subseteq X$ arbitrary then $\mathcal{V}^{0}(A)=|A|($ cardinality of $A)$

Dimension and measure of Minkowski subspaces

Lemma
 restriction of \mathcal{V}^{k} to spacelike subspace of Minkowski spacetime \mathbb{R}_{1}^{n} with algebraic dimension k is positive multiple of Hausdorff measure

Dimension and measure of Minkowski subspaces

Lemma
 restriction of \mathcal{V}^{k} to spacelike subspace of Minkowski spacetime \mathbb{R}_{1}^{n} with algebraic dimension k is positive multiple of Hausdorff measure

Linear null hypersurfaces have geometric codimension two

Dimension and measure of Minkowski subspaces

Lemma

restriction of \mathcal{V}^{k} to spacelike subspace of Minkowski spacetime \mathbb{R}_{1}^{n} with algebraic dimension k is positive multiple of Hausdorff measure

Linear null hypersurfaces have geometric codimension two

Lemma

$n \geq 2, S \subset \mathbb{R}_{1}^{n}$ null subspace of algebraic dimension $k \neq n$, then $\operatorname{dim}^{\tau}(S)=k-1$ and Lorentzian measure splits as $\mathcal{V}^{k-1}=c \mathcal{H}^{k-1} \times \mathcal{H}^{0}$ on $S=R \times \mathbb{R} \nu$, where R spacelike subspace of $S, \nu \in S$ null vector

Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of $\operatorname{dim} n$

- $\mathcal{V}^{n}=\operatorname{vol}^{g}$
- use appropriate cylindrical neighborhoods

Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of $\operatorname{dim} n$

- $\mathcal{V}^{n}=\mathrm{vol}^{g}$
- $\operatorname{dim}^{\tau}(M)=n$
- use appropriate cylindrical neighborhoods
- machinewy of Enderar. Geamatric mansure theory 1969

Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of $\operatorname{dim} n$

- $\mathcal{V}^{n}=\mathrm{vol}^{g}$
- $\operatorname{dim}^{\tau}(M)=n$
- use appropriate cylindrical neighborhoods

Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of $\operatorname{dim} n$

- $\mathcal{V}^{n}=\mathrm{vol}^{g}$
- $\operatorname{dim}^{\tau}(M)=n$
- use appropriate cylindrical neighborhoods
- machinery of Federer: Geometric measure theory 1969

Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of $\operatorname{dim} n$

- $\mathcal{V}^{n}=\mathrm{vol}^{g}$
- $\operatorname{dim}^{\tau}(M)=n$
- use appropriate cylindrical neighborhoods
- machinery of Federer: Geometric measure theory 1969
- doubling of causal diamonds and doubling of vol^{g}

Doubling measures in metric spaces

Definition

(X, d) metric space, Borel measure μ on X is doubling if $\exists C \geq 0$: $\forall x \in X, r>0$
(1) $0<\mu\left(B_{r}(x)\right)<\infty$

Doubling measures in metric spaces

Definition

(X, d) metric space, Borel measure μ on X is doubling if $\exists C \geq 0$: $\forall x \in X, r>0$
(1) $0<\mu\left(B_{r}(x)\right)<\infty$
(2) $\mu\left(B_{2 r}(x)\right) \leq C \mu\left(B_{r}(x)\right)$

Doubling measures in metric spaces

Definition

(X, d) metric space, Borel measure μ on X is doubling if $\exists C \geq 0$:
$\forall x \in X, r>0$
(1) $0<\mu\left(B_{r}(x)\right)<\infty$
(2) $\mu\left(B_{2 r}(x)\right) \leq C \mu\left(B_{r}(x)\right)$

Theorem (well-known)
(X, d) metric space, μ doubling measure with doubling constant $C \Rightarrow$

$$
\operatorname{dim}^{H}(X) \leq \log _{2}(C)
$$

Doubling measures in metric spaces

Definition

(X, d) metric space, Borel measure μ on X is doubling if $\exists C \geq 0$:
$\forall x \in X, r>0$
(1) $0<\mu\left(B_{r}(x)\right)<\infty$
(2) $\mu\left(B_{2 r}(x)\right) \leq C \mu\left(B_{r}(x)\right)$

Theorem (well-known)
(X, d) metric space, μ doubling measure with doubling constant $C \Rightarrow$ $\operatorname{dim}^{H}(X) \leq \log _{2}(C)$

Theorem (Sturm 2006)
(X, d, m) metric measure space satisfying $\mathrm{CD}(K, N) \Rightarrow m$ (locally) doubling and $\operatorname{dim}^{H}(X) \leq N$

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open, caus. conv. in W

Doubling of causal diamonds in cont. spacetimes (1/2)

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open, caus. conv. in W s.t. $p=(t, x), q=(s, x) \in W^{\prime}:$ $\hat{p}=(t-\lambda(s-t), x)$,
$\hat{q}=(s+\lambda(s-t), x) \in W$

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open,
caus. conv. in W s.t.
$p=(t, x), q=(s, x) \in W^{\prime}:$
$\hat{p}=(t-\lambda(s-t), x)$,
$\hat{q}=(s+\lambda(s-t), x) \in W$

Doubling of causal diamonds in cont. spacetimes (1/2)

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open,
caus. conv. in W s.t.
$p=(t, x), q=(s, x) \in W^{\prime}:$
$\hat{p}=(t-\lambda(s-t), x)$,
$\hat{q}=(s+\lambda(s-t), x) \in W$
(3) $p=(t, x) \ll q=(s, x)$,

Doubling of causal diamonds in cont. spacetimes (1/2)

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open,
caus. conv. in W s.t.
$p=(t, x), q=(s, x) \in W^{\prime}:$
$\hat{p}=(t-\lambda(s-t), x)$,
$\hat{q}=(s+\lambda(s-t), x) \in W$
(6) $p=(t, x) \ll q=(s, x)$,
$u=(r, y) \ll v=(l, y) \in W^{\prime}$,
$l-r \leq 2(s-t)$,
$J(p, q) \cap J(u, v) \neq \emptyset$

Doubling of causal diamonds in cont. spacetimes (1/2)

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open,
caus. conv. in W s.t.
$p=(t, x), q=(s, x) \in W^{\prime}:$
$\hat{p}=(t-\lambda(s-t), x)$,
$\hat{q}=(s+\lambda(s-t), x) \in W$
(6) $p=(t, x) \ll q=(s, x)$,
$u=(r, y) \ll v=(l, y) \in W^{\prime}$,
$l-r \leq 2(s-t)$,
$J(p, q) \cap J(u, v) \neq \emptyset$
$\Rightarrow J(u, v) \subseteq J(\hat{p}, \hat{q}, W)$

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open, caus. conv. in W s.t.
$p=(t, x), q=(s, x) \in W^{\prime}:$
$\hat{p}=(t-\lambda(s-t), x)$,
$\hat{q}=(s+\lambda(s-t), x) \in W$
(6) $p=(t, x) \ll q=(s, x)$,
$u=(r, y) \ll v=(l, y) \in W^{\prime}$,
$l-r \leq 2(s-t)$,
$J(p, q) \cap J(u, v) \neq \emptyset$
$\Rightarrow J(u, v) \subseteq J(\hat{p}, \hat{q}, W)$

Doubling of causal diamonds in cont. spacetimes (1/2)

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open, caus. conv. in W s.t.
$p=(t, x), q=(s, x) \in W^{\prime}$:
$\hat{p}=(t-\lambda(s-t), x)$,
$\hat{q}=(s+\lambda(s-t), x) \in W$
(6) $p=(t, x) \ll q=(s, x)$,
$u=(r, y) \ll v=(l, y) \in W^{\prime}$,
$l-r \leq 2(s-t)$,
$J(p, q) \cap J(u, v) \neq \emptyset$
$\Rightarrow J(u, v) \subseteq J(\hat{p}, \hat{q}, W)$
(0) W arb. small, g.h.

Doubling of causal diamonds in cont. spacetimes $(2 / 2)$

$$
\text { cylindrical nhd. W: } \quad \operatorname{vol}^{g}(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^{g}(J(p, q))
$$

Doubling of causal diamonds in cont. spacetimes $(2 / 2)$

cylindrical nhd. W:

$$
\operatorname{vol}^{g}(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^{g}(J(p, q))
$$

Definition

Borel measure m on M is loc. causally doubling if \forall cyl. nhds. (W^{\prime}, W) $\exists L \geq 1$:
(1) $\forall p=(t, x), q=(s, x) \in W^{\prime}: m(J(\hat{p}, \hat{q}, W)) \leq L m(J(p, q))$

Doubling of causal diamonds in cont. spacetimes $(2 / 2)$

cylindrical nhd. W:

$$
\operatorname{vol}^{g}(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^{g}(J(p, q))
$$

Definition

Borel measure m on M is loc. causally doubling if \forall cyl. nhds. (W^{\prime}, W) $\exists L \geq 1$:
(1) $\forall p=(t, x), q=(s, x) \in W^{\prime}: m(J(\hat{p}, \hat{q}, W)) \leq L m(J(p, q))$
(2) $0<m(J(p, q, W))<\infty(p, q \in W$ with $p \ll q)$

Doubling of causal diamonds in cont. spacetimes $(2 / 2)$

cylindrical nhd. W:

$$
\operatorname{vol}^{g}(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^{g}(J(p, q))
$$

Definition

Borel measure m on M is loc. causally doubling if \forall cyl. nhds. (W^{\prime}, W) $\exists L \geq 1$:
(1) $\forall p=(t, x), q=(s, x) \in W^{\prime}: m(J(\hat{p}, \hat{q}, W)) \leq L m(J(p, q))$
(2) $0<m(J(p, q, W))<\infty(p, q \in W$ with $p \ll q)$
(3) $m(\bar{W})<\infty$

Doubling of causal diamonds in cont. spacetimes $(2 / 2)$

cylindrical nhd. W:

$$
\operatorname{vol}^{g}(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^{g}(J(p, q))
$$

Definition

Borel measure m on M is loc. causally doubling if \forall cyl. nhds. (W^{\prime}, W) $\exists L \geq 1$:
(1) $\forall p=(t, x), q=(s, x) \in W^{\prime}: m(J(\hat{p}, \hat{q}, W)) \leq \operatorname{Lm}(J(p, q))$
(2) $0<m(J(p, q, W))<\infty(p, q \in W$ with $p \ll q)$
(3) $m(\bar{W})<\infty$

Theorem

(M, g) cont., causally plain, strongly causal spacetime; m loc. causally doubling measure, loc. doubling constant L on all suff. small cyl. nhds \Rightarrow

$$
\operatorname{dim}(M)=\operatorname{dim}^{\tau}(M) \leq \log _{1+2 \lambda}(L)
$$

Synthetic TL Ricci curvature bounds and doubling

$$
B_{r}^{\tau}(x):=\{y \in X: \tau(x, y)<r\}, E_{r}:=E \cap \overline{B_{r}^{\tau}(x)}
$$

Synthetic TL Ricci curvature bounds and doubling

$$
B_{r}^{\tau}(x):=\{y \in X: \tau(x, y)<r\}, E_{r}:=E \cap \overline{B_{r}^{\tau}(x)}
$$

Lemma
glob. hyp. locally causally closed measured Lorentzian length space sat. $\mathrm{w} \mathrm{TCD}_{\mathrm{p}}^{\mathrm{e}}(K, N)(K \in \mathbb{R}, N \in[1, \infty), \mathrm{p} \in(0,1)) \Rightarrow \exists L=L(K, N) \geq 1$: $\forall x_{0} \in X, E \subseteq I^{+}\left(x_{0}\right) \cup\left\{x_{0}\right\}$ comp., τ-star-shaped wrt $x_{0}, r>0$ small

$$
m\left(E_{2 r}\right) \leq L m\left(E_{r}\right)
$$

Synthetic TL Ricci curvature bounds and doubling

$$
B_{r}^{\tau}(x):=\{y \in X: \tau(x, y)<r\}, E_{r}:=E \cap \overline{B_{r}^{\tau}(x)}
$$

Lemma
glob. hyp. locally causally closed measured Lorentzian length space sat. $\mathrm{w} \mathrm{TCD}_{\mathrm{p}}^{\mathrm{e}}(K, N)(K \in \mathbb{R}, N \in[1, \infty), \mathrm{p} \in(0,1)) \Rightarrow \exists L=L(K, N) \geq 1$: $\forall x_{0} \in X, E \subseteq I^{+}\left(x_{0}\right) \cup\left\{x_{0}\right\}$ comp., τ-star-shaped wrt $x_{0}, r>0$ small

$$
m\left(E_{2 r}\right) \leq L m\left(E_{r}\right)
$$

does NOT imply doubling for causal diamonds!

Synthetic TL Ricci curvature bounds and doubling

$$
B_{r}^{\tau}(x):=\{y \in X: \tau(x, y)<r\}, E_{r}:=E \cap \overline{B_{r}^{\tau}(x)}
$$

Lemma

glob. hyp. locally causally closed measured Lorentzian length space sat. $\mathrm{w} \mathrm{TCD}_{\mathrm{p}}^{\mathrm{e}}(K, N)(K \in \mathbb{R}, N \in[1, \infty), \mathrm{p} \in(0,1)) \Rightarrow \exists L=L(K, N) \geq 1$: $\forall x_{0} \in X, E \subseteq I^{+}\left(x_{0}\right) \cup\left\{x_{0}\right\}$ comp., τ-star-shaped wrt $x_{0}, r>0$ small

$$
m\left(E_{2 r}\right) \leq L m\left(E_{r}\right)
$$

does NOT imply doubling for causal diamonds!

Theorem

(M, g) cont., glob. hyp. TL non-branching, causally plain spacetime sat. $\operatorname{TMCP}_{\mathrm{p}}{ }^{(}(K, N) \mathrm{wrt} \mathrm{vol}^{g}(K \in \mathbb{R}, N \in[1, \infty), \mathrm{p} \in(0,1))$
(+causally-reversed) \Rightarrow

$$
\operatorname{dim}(M)=\operatorname{dim}^{\tau}(M) \leq N
$$

Outlook

- general warped products of Lorentzian length spaces and length spaces

Outlook

- general warped products of Lorentzian length spaces and length spaces
- how to define doubling of causal diamonds in general, i.e., not on manifolds?
- measures on hypersurfaces
- applications to singularity theorems

Outlook

- general warped products of Lorentzian length spaces and length spaces
- how to define doubling of causal diamonds in general, i.e., not on manifolds?
- measures on hypersurfaces
- applications to singularity theorems
- further relation to synthetic timelike Ricci curvature bounds

Outlook

- general warped products of Lorentzian length spaces and length spaces
- how to define doubling of causal diamonds in general, i.e., not on manifolds?
- measures on hypersurfaces
- applications to singularity theorems
- relation to Hausdorff measure/dimension wrt Sormani-Vega null distance

Outlook

- general warped products of Lorentzian length spaces and length spaces
- how to define doubling of causal diamonds in general, i.e., not on manifolds?
- measures on hypersurfaces
- applications to singularity theorems
- further relation to synthetic timelike Ricci curvature bounds
- relation to Hausdorff measure/dimension wrt Sormani-Vega null distance Thanks!

Outlook

- general warped products of Lorentzian length spaces and length spaces
- how to define doubling of causal diamonds in general, i.e., not on manifolds?
- measures on hypersurfaces
- applications to singularity theorems
- further relation to synthetic timelike Ricci curvature bounds
- relation to Hausdorff measure/dimension wrt Sormani-Vega null distance

Outlook

- general warped products of Lorentzian length spaces and length spaces
- how to define doubling of causal diamonds in general, i.e., not on manifolds?
- measures on hypersurfaces
- applications to singularity theorems
- further relation to synthetic timelike Ricci curvature bounds
- relation to Hausdorff measure/dimension wrt Sormani-Vega null distance

Thanks!

References

围 L．Aké Hau，A．J．Cabrera Pacheco，D．A．Solis
On the causal hierarchy of Lorentzian length spaces．Classical and Quantum Gravity 37，215013， 2020.
围 S．Alexander，M．Graf，M．Kunzinger，C．S．
Generalized cones as Lorentzian length spaces：Causality，curvature，and singularity theorems．Comm．Anal．Geom．to appear，arXiv：1909．09575．
圊 F．Cavalletti，A．Mondino．
Optimal transport in Lorentzian synthetic spaces，synthetic timelike Ricci curvature lower bounds and applications．preprint，arXiv：2004．08934［math．MG］．
國 J．D．E．Grant，M．Kunzinger，C．S．
Inextendibility of spacetimes and Lorentzian length spaces．Ann．Global Anal．
Geom．55，no．1，133－147， 2019.
M．Kunzinger，C．S．
Lorentzian length spaces．Ann．Global Anal．Geom．54，no．3，399－447， 2018.
R．J．McCann，C．S．
A Lorentzian analog for Hausdorff dimension and measure．preprint arXiv：2110．04386， 2021.

[^0]: $~$
 (X, d, m) metric measure space, synthetic lower Ricci curvature bounded by $K \in \mathbb{R}$ and dimension bounded above by $N \leadsto \mathrm{CD}(\mathrm{K}, \mathrm{N})$ (using optimal transport, convexity/concavity of functionals on the space of probability measures) (Lott-Villani 2009, Sturm 2006)
 Riemannian condition $\leadsto \mathrm{RCD}(\mathrm{K}, \mathrm{N})$-spaces (Ambrosio-Gigli-Savaré 2014)

