Synthetic (metric) methods in General Relativity and Lorentzian geometry

Part I: Lorentzian length spaces

Working Seminar "Mathematical Physics" University of Regensburg

Clemens Sämann Faculty of Mathematics University of Vienna, Austria

Nov 4, 2021

Why a synthetic approach to Lorentzian geometry?

- need for *low regularity* (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for *causality* and *(timelike/causal)* curvature bounds with continuous metrics
- notion of (timelike/causal) curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity (no Lorentzian metric): *causal fermion systems*, causal sets, etc.

Why a *synthetic* approach to Lorentzian geometry?

- need for *low regularity* (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for *causality* and *(timelike/causal)* curvature bounds with continuous metrics
- notion of (timelike/causal) curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity (no Lorentzian metric): *causal fermion systems*, causal sets, etc.

Why a synthetic approach to Lorentzian geometry?

- need for *low regularity* (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for *causality* and *(timelike/causal)* curvature bounds with continuous metrics
- notion of (timelike/causal) curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity (no Lorentzian metric): *causal fermion systems*, causal sets, etc.

Why a *synthetic* approach to Lorentzian geometry?

- need for *low regularity* (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for *causality* and *(timelike/causal)* curvature bounds with continuous metrics
- notion of (timelike/causal) curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity (no Lorentzian metric): *causal fermion systems*, causal sets, etc.

Why a *synthetic* approach to Lorentzian geometry?

- need for *low regularity* (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for *causality* and *(timelike/causal)* curvature bounds with continuous metrics
- notion of (timelike/causal) curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity (no Lorentzian metric): *causal fermion systems*, causal sets, etc.

Why a *synthetic* approach to Lorentzian geometry?

- need for *low regularity* (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for *causality* and *(timelike/causal)* curvature bounds with continuous metrics
- notion of (timelike/causal) curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity (no Lorentzian metric): *causal fermion systems*, causal sets, etc.

Why a *synthetic* approach to Lorentzian geometry?

- need for *low regularity* (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for *causality* and *(timelike/causal)* curvature bounds with continuous metrics
- notion of (timelike/causal) curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity (no Lorentzian metric): *causal fermion systems*, causal sets, etc.

Kronheimer and Penrose (1967): On the structure of causal spaces

- abstract approach to causality theory
- allow more general spaces than manifolds
- develop causality conditions in GR and popularize Alexandrov topology
- reconstruction of causality relations from others
- applications to *causal boundary*, certain approaches to *Quantum Gravity* (causal sets, etc.)

- ightarrow synthetic approach to Lorentzian geometry
 - synthetic *sectional curvature* bounds via *triangle comparison* (Kunzinger, S. 2018)
 - synthetic *Ricci curvature* bounds via *optimal transport* (Cavalletti, Mondino 2020)
 - non-smooth spacetimes; inextendibility; singularity theorems

Kronheimer and Penrose (1967): On the structure of causal spaces

- abstract approach to *causality theory*
- allow more general spaces than manifolds
- develop *causality conditions* in GR and popularize *Alexandrov topology*
- reconstruction of causality relations from others
- applications to *causal boundary*, certain approaches to *Quantum Gravity* (causal sets, etc.)

- ightarrow synthetic approach to Lorentzian geometry
 - synthetic *sectional curvature* bounds via *triangle comparison* (Kunzinger, S. 2018)
 - synthetic *Ricci curvature* bounds via *optimal transport* (Cavalletti, Mondino 2020)
 - non-smooth spacetimes; inextendibility; singularity theorems

Kronheimer and Penrose (1967): On the structure of causal spaces

- abstract approach to *causality theory*
- allow more general spaces than manifolds
- develop *causality conditions* in GR and popularize *Alexandrov topology*
- reconstruction of causality relations from others
- applications to *causal boundary*, certain approaches to *Quantum Gravity* (causal sets, etc.)

- ightarrow synthetic approach to Lorentzian geometry
 - synthetic *sectional curvature* bounds via *triangle comparison* (Kunzinger, S. 2018)
 - synthetic *Ricci curvature* bounds via *optimal transport* (Cavalletti, Mondino 2020)
 - non-smooth spacetimes; inextendibility; singularity theorems

Kronheimer and Penrose (1967): On the structure of causal spaces

- abstract approach to *causality theory*
- allow more general spaces than manifolds
- develop *causality conditions* in GR and popularize *Alexandrov topology*
- reconstruction of causality relations from others
- applications to *causal boundary*, certain approaches to *Quantum Gravity* (causal sets, etc.)

- ightarrow synthetic approach to Lorentzian geometry
 - synthetic *sectional curvature* bounds via *triangle comparison* (Kunzinger, S. 2018)
 - synthetic *Ricci curvature* bounds via *optimal transport* (Cavalletti, Mondino 2020)
 - non-smooth spacetimes; inextendibility; singularity theorems

Kronheimer and Penrose (1967): On the structure of causal spaces

- abstract approach to *causality theory*
- allow more general spaces than manifolds
- develop *causality conditions* in GR and popularize *Alexandrov topology*
- reconstruction of causality relations from others
- applications to *causal boundary*, certain approaches to *Quantum Gravity* (causal sets, etc.)

- ightarrow synthetic approach to Lorentzian geometry
 - synthetic *sectional curvature* bounds via *triangle comparison* (Kunzinger, S. 2018)
 - synthetic *Ricci curvature* bounds via *optimal transport* (Cavalletti, Mondino 2020)
 - non-smooth spacetimes; inextendibility; singularity theorems

Kronheimer and Penrose (1967): On the structure of causal spaces

- abstract approach to *causality theory*
- allow more general spaces than manifolds
- develop *causality conditions* in GR and popularize *Alexandrov topology*
- reconstruction of causality relations from others
- applications to *causal boundary*, certain approaches to *Quantum Gravity* (causal sets, etc.)

- → *synthetic* approach to Lorentzian geometry
 - synthetic *sectional curvature* bounds via *triangle comparison* (Kunzinger, S. 2018)
 - synthetic *Ricci curvature* bounds via *optimal transport* (Cavalletti, Mondino 2020)
 - non-smooth spacetimes; inextendibility; singularity theorems

Kronheimer and Penrose (1967): On the structure of causal spaces

- abstract approach to *causality theory*
- allow more general spaces than manifolds
- develop *causality conditions* in GR and popularize *Alexandrov topology*
- reconstruction of causality relations from others
- applications to *causal boundary*, certain approaches to *Quantum Gravity* (causal sets, etc.)

- → *synthetic* approach to Lorentzian geometry
 - synthetic *sectional curvature* bounds via *triangle comparison* (Kunzinger, S. 2018)
 - synthetic *Ricci curvature* bounds via *optimal transport* (Cavalletti, Mondino 2020)
 - non-smooth spacetimes; inextendibility; singularity theorems

Kronheimer and Penrose (1967): On the structure of causal spaces

- abstract approach to *causality theory*
- allow more general spaces than manifolds
- develop *causality conditions* in GR and popularize *Alexandrov topology*
- reconstruction of causality relations from others
- applications to *causal boundary*, certain approaches to *Quantum Gravity* (causal sets, etc.)

going beyond causality: include (abstract) *time-separation function* (cf. Busemann 1967)

 \rightsquigarrow *synthetic* approach to Lorentzian geometry

- synthetic *sectional curvature* bounds via *triangle comparison* (Kunzinger, S. 2018)
- synthetic *Ricci curvature* bounds via *optimal transport* (Cavalletti, Mondino 2020)
- non-smooth spacetimes; inextendibility; singularity theorems

Kronheimer and Penrose (1967): On the structure of causal spaces

- abstract approach to *causality theory*
- allow more general spaces than manifolds
- develop *causality conditions* in GR and popularize *Alexandrov topology*
- reconstruction of causality relations from others
- applications to *causal boundary*, certain approaches to *Quantum Gravity* (causal sets, etc.)

going beyond causality: include (abstract) *time-separation function* (cf. Busemann 1967)

 \rightsquigarrow *synthetic* approach to Lorentzian geometry

- synthetic *sectional curvature* bounds via *triangle comparison* (Kunzinger, S. 2018)
- synthetic *Ricci curvature* bounds via *optimal transport* (Cavalletti, Mondino 2020)
- non-smooth spacetimes; inextendibility; singularity theorems

Kronheimer and Penrose (1967): On the structure of causal spaces

- abstract approach to *causality theory*
- allow more general spaces than manifolds
- develop *causality conditions* in GR and popularize *Alexandrov topology*
- reconstruction of causality relations from others
- applications to *causal boundary*, certain approaches to *Quantum Gravity* (causal sets, etc.)

going beyond causality: include (abstract) *time-separation function* (cf. Busemann 1967)

→ *synthetic* approach to Lorentzian geometry

- synthetic *sectional curvature* bounds via *triangle comparison* (Kunzinger, S. 2018)
- synthetic *Ricci curvature* bounds via *optimal transport* (Cavalletti, Mondino 2020)
- non-smooth spacetimes; inextendibility; singularity theorems

Kronheimer and Penrose (1967): On the structure of causal spaces

- abstract approach to *causality theory*
- allow more *general spaces* than manifolds
- develop *causality conditions* in GR and popularize *Alexandrov topology*
- reconstruction of causality relations from others
- applications to *causal boundary*, certain approaches to *Quantum Gravity* (causal sets, etc.)

going beyond causality: include (abstract) *time-separation function* (cf. Busemann 1967)

→ *synthetic* approach to Lorentzian geometry

- synthetic *sectional curvature* bounds via *triangle comparison* (Kunzinger, S. 2018)
- synthetic *Ricci curvature* bounds via *optimal transport* (Cavalletti, Mondino 2020)
- non-smooth spacetimes; inextendibility; singularity theorems

Semi-Riemannian curvature bounds and triangles

Theorem (Toponogov)

(smooth) Riemannian manifold has $Sec(g) \ge K$ (\le) if $\forall \triangle abc$ (small enough), p, q on the sides of $\triangle abc$

 $d(p,q) \geq \bar{d}(\bar{p},\bar{q}) \qquad (d(p,q) \leq \bar{d}(\bar{p},\bar{q}))$

Definition

(smooth) semi-Riemannian manifold has $Sec(g) \ge K$ (\le) if *spacelike* sectional curvatures $\ge K$ (\le) and *timelike* sectional curvatures $\le K$ (\ge

Theorem (Alexander, Bishop 2008)

(smooth) semi-Riemannian manifold has $Sec(g) \ge K$ (\le) if \forall geodesic $\triangle abc$ (small enough), p, q on the sides of $\triangle abc$

 $d_{\text{signed}}(p,q) \ge \bar{d}_{\text{signed}}(\bar{p},\bar{q}) \qquad (d_{\text{signed}}(p,q) \le \bar{d}_{\text{signed}}(\bar{p},\bar{q}))$

Semi-Riemannian curvature bounds and triangles

Theorem (Toponogov)

(smooth) Riemannian manifold has $Sec(g) \ge K$ (\le) if $\forall \triangle abc$ (small enough), p, q on the sides of $\triangle abc$

 $d(p,q) \ge \bar{d}(\bar{p},\bar{q}) \qquad (d(p,q) \le \bar{d}(\bar{p},\bar{q}))$

Definition

(smooth) semi-Riemannian manifold has $Sec(g) \ge K$ (\le) if *spacelike* sectional curvatures $\ge K$ (\le) and *timelike* sectional curvatures $\le K$ (\ge)

Theorem (Alexander, Bishop 2008)

(smooth) semi-Riemannian manifold has $Sec(g) \ge K$ (\le) if \forall geodesic $\triangle abc$ (small enough), p, q on the sides of $\triangle abc$

 $d_{\text{signed}}(p,q) \ge \bar{d}_{\text{signed}}(\bar{p},\bar{q}) \qquad (d_{\text{signed}}(p,q) \le \bar{d}_{\text{signed}}(\bar{p},\bar{q}))$

Semi-Riemannian curvature bounds and triangles

Theorem (Toponogov)

(smooth) Riemannian manifold has $Sec(g) \ge K$ (\le) if $\forall \triangle abc$ (small enough), p, q on the sides of $\triangle abc$

 $d(p,q) \ge \bar{d}(\bar{p},\bar{q}) \qquad (d(p,q) \le \bar{d}(\bar{p},\bar{q}))$

Definition

(smooth) semi-Riemannian manifold has $Sec(g) \ge K$ (\le) if *spacelike* sectional curvatures $\ge K$ (\le) and *timelike* sectional curvatures $\le K$ (\ge)

Theorem (Alexander, Bishop 2008)

(smooth) semi-Riemannian manifold has $Sec(g) \ge K$ (\le) if \forall geodesic $\triangle abc$ (small enough), p, q on the sides of $\triangle abc$

 $d_{\text{signed}}(p,q) \ge \bar{d}_{\text{signed}}(\bar{p},\bar{q}) \qquad (d_{\text{signed}}(p,q) \le \bar{d}_{\text{signed}}(\bar{p},\bar{q}))$

(X,d) a metric space, $\gamma\colon [a,b]\to X$ a continuous curve (path)

Definition

the *length* of γ is

$$L_d(\gamma) := \sup \{ \sum_{i=0}^{N-1} d(\gamma(t_i), \gamma(t_{i+1})) : N \in \mathbb{N}, a \le t_0 < t_1 < \ldots < t_N \le b \},\$$

the length metric \hat{d} associated to d is defined as

 $\hat{d}(x,y) := \inf\{L_d(\lambda) : \lambda \text{ path connecting } x \text{ and } y\} \quad (x,y \in X)$

Definition

a metric space (X, d) is a *length space* if $d = \hat{d}$, i.e.,

$d(x,y) = \inf \{L_d(\lambda) : \lambda \text{ path connecting } x \text{ and } y\}$

Clemens Sämann, University of Vienna Working Seminar "Mathematical Physics"

(X,d) a metric space, $\gamma\colon [a,b]\to X$ a continuous curve (path)

Definition

the *length* of γ is

$$L_d(\gamma) := \sup \{ \sum_{i=0}^{N-1} d(\gamma(t_i), \gamma(t_{i+1})) : N \in \mathbb{N}, a \le t_0 < t_1 < \ldots < t_N \le b \},\$$

the length metric \hat{d} associated to d is defined as

 $\hat{d}(x,y):=\inf\{L_d(\lambda):\lambda ext{ path connecting }x ext{ and }y\}\quad (x,y\in X)$

Definition

a metric space (X,d) is a *length space* if $d=\hat{d}$, i.e.,

$d(x,y) = \inf\{L_d(\lambda) : \lambda \text{ path connecting } x \text{ and } y\}$

Clemens Sämann, University of Vienna Working

Working Seminar "Mathematical Physics"

(X,d) a metric space, $\gamma\colon [a,b]\to X$ a continuous curve (path)

Definition

the *length* of γ is

$$L_d(\gamma) := \sup \{ \sum_{i=0}^{N-1} d(\gamma(t_i), \gamma(t_{i+1})) : N \in \mathbb{N}, a \le t_0 < t_1 < \ldots < t_N \le b \},\$$

the length metric \hat{d} associated to d is defined as

 $\hat{d}(x,y) := \inf\{L_d(\lambda) : \lambda \text{ path connecting } x \text{ and } y\} \quad (x,y \in X)$

Definition

a metric space (X,d) is a *length space* if $d=\hat{d}$, i.e.,

 $d(x,y) = \inf\{L_d(\lambda) : \lambda \text{ path connecting } x \text{ and } y\}$

Clemens Sämann, University of Vienna Working Seminar "Mathematical Physics"

(X,d) a metric space, $\gamma\colon [a,b]\to X$ a continuous curve (path)

Definition

the *length* of γ is

$$L_d(\gamma) := \sup \{ \sum_{i=0}^{N-1} d(\gamma(t_i), \gamma(t_{i+1})) : N \in \mathbb{N}, a \le t_0 < t_1 < \ldots < t_N \le b \},\$$

the length metric \hat{d} associated to d is defined as

 $\hat{d}(x,y) := \inf\{L_d(\lambda) : \lambda \text{ path connecting } x \text{ and } y\} \quad (x,y \in X)$

Definition

a metric space (X, d) is a *length space* if $d = \hat{d}$, i.e.,

 $d(x,y) = \inf\{L_d(\lambda) : \lambda \text{ path connecting } x \text{ and } y\}$

 $k\in\mathbb{R},~M_k^{\rm Riem}$ 2D (Riemannian) model space of constant curvature k (X,d) a length space

Definition

(X,d) has curvature bounded from below by $k \ /$ from above by k if $\forall x \in X \exists$ nhd. U of X s.t. $\forall \triangle abc$ in U and any point p on the side \bar{ac}

 $d(p,b) \ge \bar{d}(\bar{p},\bar{b}) \quad / \quad d(p,b) \le \bar{d}(\bar{p},\bar{b})$

 $ar{d}$ metric of $M_k^{
m Riem}$, $rianglear{a}ar{b}ar{c}$ comparison triangle in $M_k^{
m Riem}$ (i.e., with the same side lengths)

no differential structure, curvature tensor etc. ~ *Lorentzian* setting? Causal relations and time separation function Alexander, Bishop 2008: *triangle comparison* characterizes semi-Riemannian *sectional curvature* bounds

 $k\in\mathbb{R},~M_k^{\rm Riem}$ 2D (Riemannian) model space of constant curvature k (X,d) a length space

Definition

(X,d) has curvature bounded from below by $k \ /$ from above by k if $\forall x \in X \exists$ nhd. U of X s.t. $\forall \triangle abc$ in U and any point p on the side \bar{ac}

 $d(p,b) \ge \bar{d}(\bar{p},\bar{b}) \quad / \quad d(p,b) \le \bar{d}(\bar{p},\bar{b})$

 $ar{d}$ metric of $M_k^{
m Riem}$, $rianglear{a}ar{b}ar{c}$ comparison triangle in $M_k^{
m Riem}$ (i.e., with the same side lengths)

no differential structure, curvature tensor etc. → *Lorentzian* setting? Causal relations and time separation function Alexander, Bishop 2008: *triangle comparison* characterizes semi-Riemannian *sectional curvature* bounds

 $k\in\mathbb{R},~M_k^{\rm Riem}$ 2D (Riemannian) model space of constant curvature k (X,d) a length space

Definition

(X,d) has curvature bounded from below by $k \ /$ from above by k if $\forall x \in X \exists$ nhd. U of X s.t. $\forall \triangle abc$ in U and any point p on the side \bar{ac}

$$d(p,b) \ge \bar{d}(\bar{p},\bar{b}) \quad / \quad d(p,b) \le \bar{d}(\bar{p},\bar{b})$$

 \bar{d} metric of $M_k^{\rm Riem}$, $\triangle \bar{a} \bar{b} \bar{c}$ comparison triangle in $M_k^{\rm Riem}$ (i.e., with the same side lengths)

no differential structure, curvature tensor etc.

 $k\in\mathbb{R},~M_k^{\rm Riem}$ 2D (Riemannian) model space of constant curvature k (X,d) a length space

Definition

(X,d) has curvature bounded from below by $k \ /$ from above by k if $\forall x \in X \exists$ nhd. U of X s.t. $\forall \triangle abc$ in U and any point p on the side \bar{ac}

$$d(p,b) \ge \bar{d}(\bar{p},\bar{b}) \quad / \quad d(p,b) \le \bar{d}(\bar{p},\bar{b})$$

 \bar{d} metric of $M_k^{\rm Riem}$, $\triangle \bar{a} \bar{b} \bar{c}$ comparison triangle in $M_k^{\rm Riem}$ (i.e., with the same side lengths)

no differential structure, curvature tensor etc.

 $k\in\mathbb{R},~M_k^{\rm Riem}$ 2D (Riemannian) model space of constant curvature k (X,d) a length space

Definition

(X,d) has curvature bounded from below by $k \ /$ from above by k if $\forall x \in X \exists$ nhd. U of X s.t. $\forall \triangle abc$ in U and any point p on the side \bar{ac}

$$d(p,b) \ge \bar{d}(\bar{p},\bar{b}) \quad / \quad d(p,b) \le \bar{d}(\bar{p},\bar{b})$$

 \bar{d} metric of $M_k^{\rm Riem}$, $\triangle \bar{a} \bar{b} \bar{c}$ comparison triangle in $M_k^{\rm Riem}$ (i.e., with the same side lengths)

no differential structure, curvature tensor etc.

 $k\in\mathbb{R},~M_k^{\rm Riem}$ 2D (Riemannian) model space of constant curvature k (X,d) a length space

Definition

(X,d) has curvature bounded from below by $k \ /$ from above by k if $\forall x \in X \exists$ nhd. U of X s.t. $\forall \triangle abc$ in U and any point p on the side \bar{ac}

$$d(p,b) \ge \bar{d}(\bar{p},\bar{b}) \quad / \quad d(p,b) \le \bar{d}(\bar{p},\bar{b})$$

 \bar{d} metric of $M_k^{\rm Riem}$, $\triangle \bar{a} \bar{b} \bar{c}$ comparison triangle in $M_k^{\rm Riem}$ (i.e., with the same side lengths)

no differential structure, curvature tensor etc.

 $k\in\mathbb{R},~M_k^{\rm Riem}$ 2D (Riemannian) model space of constant curvature k (X,d) a length space

Definition

(X,d) has curvature bounded from below by $k \ /$ from above by k if $\forall x \in X \exists$ nhd. U of X s.t. $\forall \triangle abc$ in U and any point p on the side \bar{ac}

$$d(p,b) \ge \bar{d}(\bar{p},\bar{b}) \quad / \quad d(p,b) \le \bar{d}(\bar{p},\bar{b})$$

 \bar{d} metric of $M_k^{\rm Riem}$, $\triangle \bar{a} \bar{b} \bar{c}$ comparison triangle in $M_k^{\rm Riem}$ (i.e., with the same side lengths)

no differential structure, curvature tensor etc.

Review of Lorentzian causality in spacetimes (1/2)

Definition

(M,g) Lorentzian manifold, M smooth, connected manifold, g Lorentzian metric, i.e., a symmetric, non-degenerate (0,2) tensor with signature $(-,+,+,+,\ldots)$, usually g smooth

Definition

```
(M,g) spacetime, v\in T_pM is
```

 $\begin{cases} timelike \\ null \\ causal \\ spacelike \end{cases} \quad if \quad g_p(v,v) \\ g_p(v,v) \\ f = 0 \text{ and } v \\ \leq 0 \text{ and } v \\ > 0 \text{ or } v = 0 \end{cases}$

analogously for curves into M of sufficient regularity length of a curve γ : $L_g(\gamma) := \int_a^b \sqrt{|g_{\gamma(s)}(\dot{\gamma}(s),\dot{\gamma}(s))|} \, \mathrm{d}s$

Clemens Sämann, University of Vienna

Working Seminar "Mathematical Physics"

Review of Lorentzian causality in spacetimes (1/2)

Definition

(M,g) Lorentzian manifold, M smooth, connected manifold, g Lorentzian metric, i.e., a symmetric, non-degenerate (0,2) tensor with signature $(-,+,+,+,\ldots)$, usually g smooth

Definition

```
(M,g) spacetime, v\in T_pM is
```

timelike	if	$g_p(v,v)$	$\int < 0$
null			$= 0$ and $v \neq 0$
causal			≤ 0 and $v \neq 0$
spacelike			> 0 or v = 0

analogously for curves into M of sufficient regularity length of a curve γ : $L_g(\gamma) := \int_a^b \sqrt{|g_{\gamma(s)}(\dot{\gamma}(s), \dot{\gamma}(s))|} \, \mathrm{d}s$

Clemens Sämann, University of Vienna

Review of Lorentzian causality in spacetimes (1/2)

Definition

(M,g) Lorentzian manifold, M smooth, connected manifold, g Lorentzian metric, i.e., a symmetric, non-degenerate (0,2) tensor with signature $(-,+,+,+,\ldots)$, usually g smooth

Definition

```
(M,g) spacetime, v\in T_pM is
```

	timelike	if	$g_p(v,v)$	$\int < 0$
J	null			$= 0$ and $v \neq 0$
١	causal			≤ 0 and $v \neq 0$
	spacelike			> 0 or $v = 0$

analogously for curves into M of sufficient regularity length of a curve γ : $L_p(\gamma) := \int_{-\infty}^{b} \sqrt{[a_{2}(\gamma)(\dot{\gamma}(s),\dot{\gamma}(s))]} ds$

Definition

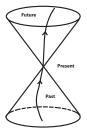
(M,g) Lorentzian manifold, M smooth, connected manifold, g Lorentzian metric, i.e., a symmetric, non-degenerate (0,2) tensor with signature $(-,+,+,+,\ldots)$, usually g smooth

Definition

```
(M,g) spacetime, v\in T_pM is
```

timelike	if	$g_p(v,v)$	$\int < 0$
null			$= 0$ and $v \neq 0$
causal			≤ 0 and $v \neq 0$
spacelike			> 0 or $v = 0$

analogously for curves into M of sufficient regularity *length* of a curve γ : $L_g(\gamma) := \int_a^b \sqrt{|g_{\gamma(s)}(\dot{\gamma}(s),\dot{\gamma}(s))|} \, \mathrm{d}s$



Definition

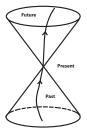
(M,g) spacetime: (M,g) Lorentzian manifold, time-oriented, i.e., \exists timelike vectorfield T

Definition

 $v \in T_pM$ is future directed if $g_p(v,T(p)) < 0$

analogously for curves

Causal relations: $p \ll q : \Leftrightarrow \exists$ f.d. timelike curve from p to q $p \leq q : \Leftrightarrow \exists$ f.d. causal curve from p to q or p = q



Definition

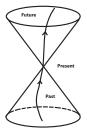
(M,g) spacetime: (M,g) Lorentzian manifold, time-oriented, i.e., \exists timelike vectorfield T

Definition

 $v \in T_pM$ is future directed if $g_p(v, T(p)) < 0$

analogously for curves

Causal relations: $p \ll q :\Leftrightarrow \exists$ f.d. timelike curve from p to q $p \leq q :\Leftrightarrow \exists$ f.d. causal curve from p to q or p = q



Definition

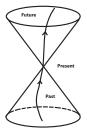
(M,g) spacetime: (M,g) Lorentzian manifold, time-oriented, i.e., \exists timelike vectorfield T

Definition

 $v \in T_pM$ is future directed if $g_p(v, T(p)) < 0$

analogously for curves

Causal relations: $p \ll q :\Leftrightarrow \exists$ f.d. timelike curve from p to q $p \leq q :\Leftrightarrow \exists$ f.d. causal curve from p to q or p = q



Definition

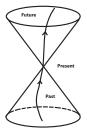
(M,g) spacetime: (M,g) Lorentzian manifold, time-oriented, i.e., \exists timelike vectorfield T

Definition

 $v \in T_pM$ is future directed if $g_p(v,T(p)) < 0$

analogously for curves

Causal relations: $p \ll q :\Leftrightarrow \exists$ f.d. timelike curve from p to q $p \leq q :\Leftrightarrow \exists$ f.d. causal curve from p to q or p = q



Definition

(M,g) spacetime: (M,g) Lorentzian manifold, time-oriented, i.e., \exists timelike vectorfield T

Definition

 $v \in T_pM$ is future directed if $g_p(v,T(p)) < 0$

analogously for curves

Causal relations: $p \ll q : \Leftrightarrow \exists$ f.d. timelike curve from p to q $p \leq q : \Leftrightarrow \exists$ f.d. causal curve from p to q or p = q

slight generalization of Kronheimer and Penrose (1967)

Definition

 (X,\ll,\leq) is a $causal\ space$ if X is a set, \leq preorder on X and \ll transitive relation contained in \leq

no "causality conditions" implicit

for $x, y \in X$

- $x < y : \Leftrightarrow x \leq y$ and $x \neq y$
- $I^+(x) := \{z \in X : x \ll z\}$ and $I^-(x) := \{z \in X : z \ll x\}$
- $J^+(x) := \{z \in X : x \le z\}$ and $J^-(x) := \{z \in X : z \le x\}$

slight generalization of Kronheimer and Penrose (1967)

Definition

 (X,\ll,\leq) is a $\it causal \ space$ if X is a set, \leq preorder on X and \ll transitive relation contained in \leq

no "causality conditions" implicit

for $x, y \in X$

- $x < y : \Leftrightarrow x \leq y$ and $x \neq y$
- $I^+(x) := \{ z \in X : x \ll z \}$ and $I^-(x) := \{ z \in X : z \ll x \}$
- $J^+(x) := \{z \in X : x \le z\}$ and $J^-(x) := \{z \in X : z \le x\}$

slight generalization of Kronheimer and Penrose (1967)

Definition

 (X,\ll,\leq) is a $\it causal \ space$ if X is a set, \leq preorder on X and \ll transitive relation contained in \leq

no "causality conditions" implicit

for $x, y \in X$

- $x < y : \Leftrightarrow x \leq y$ and $x \neq y$
- $I^+(x) := \{z \in X : x \ll z\}$ and $I^-(x) := \{z \in X : z \ll x\}$
- $J^+(x) := \{z \in X : x \le z\}$ and $J^-(x) := \{z \in X : z \le x\}$

slight generalization of Kronheimer and Penrose (1967)

Definition

 (X,\ll,\leq) is a $\it causal\ space$ if X is a set, \leq preorder on X and \ll transitive relation contained in \leq

no "causality conditions" implicit

for $x, y \in X$

- $x < y : \Leftrightarrow x \le y$ and $x \ne y$
- $I^+(x) := \{z \in X : x \ll z\}$ and $I^-(x) := \{z \in X : z \ll x\}$
- $J^+(x) := \{z \in X : x \le z\}$ and $J^-(x) := \{z \in X : z \le x\}$

slight generalization of Kronheimer and Penrose (1967)

Definition

 (X,\ll,\leq) is a $\it causal \ space$ if X is a set, \leq preorder on X and \ll transitive relation contained in \leq

no "causality conditions" implicit

for $x, y \in X$

•
$$x < y :\Leftrightarrow x \le y$$
 and $x \ne y$

• $I^+(x) := \{z \in X : x \ll z\}$ and $I^-(x) := \{z \in X : z \ll x\}$

• $J^+(x) := \{z \in X : x \le z\}$ and $J^-(x) := \{z \in X : z \le x\}$

slight generalization of Kronheimer and Penrose (1967)

Definition

 (X,\ll,\leq) is a $\it causal \ space$ if X is a set, \leq preorder on X and \ll transitive relation contained in \leq

no "causality conditions" implicit

for $x, y \in X$

•
$$x < y : \Leftrightarrow x \leq y$$
 and $x \neq y$
• $I^+(x) := \{z \in X : x \ll z\}$ and $I^-(x) := \{z \in X : z \ll x\}$
• $J^+(x) := \{z \in X : x \leq z\}$ and $J^-(x) := \{z \in X : z \leq x\}$

slight generalization of Kronheimer and Penrose (1967)

Definition

 (X,\ll,\leq) is a $causal \; space \; {\rm if} \; X$ is a set, \leq preorder on X and \ll transitive relation contained in \leq

no "causality conditions" implicit

for $x, y \in X$

•
$$x < y :\Leftrightarrow x \le y \text{ and } x \ne y$$

• $I^+(x) := \{z \in X : x \ll z\} \text{ and } I^-(x) := \{z \in X : z \ll x\}$
• $J^+(x) := \{z \in X : x \le z\} \text{ and } J^-(x) := \{z \in X : z \le x\}$

 (X,\ll,\leq) a causal space, d metric on $X,\,\tau\colon X\times X\to [0,\infty]$ lower semicontinuous (with respect to d)

Definition

 (X, d, \ll, \leq, τ) is a Lorentzian pre-length space if

 $\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$

and $\tau(x,y) = 0$ if $x \leq y$ and $\tau(x,y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

• smooth spacetimes (M,g) with usual time separation function $\tau(p,q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\}$

finite directed graphs

 (X,\ll,\leq) a causal space, d metric on $X,\,\tau\colon X\times X\to [0,\infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$$

and $\tau(x, y) = 0$ if $x \nleq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

• smooth spacetimes (M, g) with usual time separation function $\tau(p, q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\}$

finite directed graphs

 (X,\ll,\leq) a causal space, d metric on $X,\,\tau\colon X\times X\to [0,\infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$$

and $\tau(x, y) = 0$ if $x \nleq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

- smooth spacetimes (M,g) with usual time separation function $\tau(p,q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\}$
- finite directed graphs

 (X,\ll,\leq) a causal space, d metric on $X,\,\tau\colon X\times X\to [0,\infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$$

and $\tau(x, y) = 0$ if $x \nleq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

- smooth spacetimes (M,g) with usual time separation function $\tau(p,q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\}$
- finite directed graphs

Properties of Lorentzian pre length spaces

 (X,d,\ll,\leq,τ) Lorentzian pre length space, then

- $I^{\pm}(x)$ open for all $x \in X$
- \ll open in $X \times X$
- for every $x\in X$ either au(x,x)=0 or $au(x,x)=\infty$
- ullet the metric topology of d is finer than the Alexandrov topology

Properties of Lorentzian pre length spaces

 (X,d,\ll,\leq,τ) Lorentzian pre length space, then

- $I^{\pm}(x)$ open for all $x \in X$
- $\bullet \ll {\rm open} \ {\rm in} \ X \times X$
- for every $x \in X$ either $\tau(x,x) = 0$ or $\tau(x,x) = \infty$
- ullet the metric topology of d is finer than the Alexandrov topology

Properties of Lorentzian pre length spaces

 (X,d,\ll,\leq,τ) Lorentzian pre length space, then

- $I^{\pm}(x)$ open for all $x \in X$
- \ll open in $X \times X$
- \bullet for every $x\in X$ either $\tau(x,x)=0$ or $\tau(x,x)=\infty$

ullet the metric topology of d is finer than the Alexandrov topology

Properties of Lorentzian pre length spaces

 (X,d,\ll,\leq,τ) Lorentzian pre length space, then

- $I^{\pm}(x)$ open for all $x \in X$
- \ll open in $X \times X$
- \bullet for every $x\in X$ either $\tau(x,x)=0$ or $\tau(x,x)=\infty$
- $\bullet\,$ the metric topology of d is finer than the Alexandrov topology

Properties of Lorentzian pre length spaces

 (X,d,\ll,\leq,τ) Lorentzian pre length space, then

- $I^{\pm}(x)$ open for all $x \in X$
- \ll open in $X \times X$
- \bullet for every $x\in X$ either $\tau(x,x)=0$ or $\tau(x,x)=\infty$
- $\bullet\,$ the metric topology of d is finer than the Alexandrov topology

Definition

 $I \subseteq \mathbb{R}$ interval, $\gamma: I \to X$ non-constant is *future directed causal (timelike)* if γ locally Lipschitz continuous (wrt. d) and for $t_1, t_2 \in I$, $t_1 < t_2$: $\gamma(t_1) \leq \gamma(t_2) \ (\gamma(t_1) \ll \gamma(t_2))$; analogously for *null* $(\gamma(t_1) \leq \gamma(t_2)$ and $\gamma(t_1) \ll \gamma(t_2)$) and *past directed* curves

- Lorentz cylinder $S_1^1 \times \mathbb{R}$: every non-constant locally Lipschitz curve is timelike and causal \rightsquigarrow need causality conditions
- Minkowski spacetime \mathbb{R}^3_1 : $t \mapsto (t, \cos(t), \sin(t))$ has null tangent but is timelike

Proposition (M. Kunzinger, C.S. 2018)

Definition

 $I \subseteq \mathbb{R}$ interval, $\gamma: I \to X$ non-constant is *future directed causal (timelike)* if γ locally Lipschitz continuous (wrt. d) and for $t_1, t_2 \in I$, $t_1 < t_2$: $\gamma(t_1) \leq \gamma(t_2) \ (\gamma(t_1) \ll \gamma(t_2))$; analogously for *null* $(\gamma(t_1) \leq \gamma(t_2)$ and $\gamma(t_1) \ll \gamma(t_2)$) and *past directed* curves

• Lorentz cylinder $S_1^1 \times \mathbb{R}$: every non-constant locally Lipschitz curve is timelike and causal \rightsquigarrow need causality conditions

• Minkowski spacetime $\mathbb{R}^3_1 : t \mapsto (t, \cos(t), \sin(t))$ has null tangent but is timelike

Proposition (M. Kunzinger, C.S. 2018)

Definition

 $I \subseteq \mathbb{R}$ interval, $\gamma: I \to X$ non-constant is *future directed causal (timelike)* if γ locally Lipschitz continuous (wrt. d) and for $t_1, t_2 \in I$, $t_1 < t_2$: $\gamma(t_1) \leq \gamma(t_2) \ (\gamma(t_1) \ll \gamma(t_2))$; analogously for *null* $(\gamma(t_1) \leq \gamma(t_2)$ and $\gamma(t_1) \ll \gamma(t_2)$) and *past directed* curves

- Lorentz cylinder $S_1^1 \times \mathbb{R}$: every non-constant locally Lipschitz curve is timelike and causal \rightsquigarrow need causality conditions
- Minkowski spacetime $\mathbb{R}^3_1 : t \mapsto (t, \cos(t), \sin(t))$ has null tangent but is timelike

Proposition (M. Kunzinger, C.S. 2018)

Definition

 $I \subseteq \mathbb{R}$ interval, $\gamma: I \to X$ non-constant is *future directed causal (timelike)* if γ locally Lipschitz continuous (wrt. d) and for $t_1, t_2 \in I$, $t_1 < t_2$: $\gamma(t_1) \leq \gamma(t_2) \ (\gamma(t_1) \ll \gamma(t_2))$; analogously for *null* $(\gamma(t_1) \leq \gamma(t_2)$ and $\gamma(t_1) \ll \gamma(t_2)$) and *past directed* curves

- Lorentz cylinder $S_1^1 \times \mathbb{R}$: every non-constant locally Lipschitz curve is timelike and causal \rightsquigarrow need causality conditions
- Minkowski spacetime $\mathbb{R}^3_1 : t \mapsto (t, \cos(t), \sin(t))$ has null tangent but is timelike

Proposition (M. Kunzinger, C.S. 2018)

Definition

$$\begin{split} \gamma \colon [a,b] \to X \text{ f.d. causal, } \tau\text{-length} \text{ defined by} \\ L_{\tau}(\gamma) &:= \inf \{ \sum_{i=0}^{N-1} \tau(\gamma(t_i), \gamma(t_{i+1})) : a = t_0 < t_1 < \ldots < t_N = b \} \end{split}$$

- L_τ additive and invariant under continuous and strictly increasing reparametrizations
- $\gamma : [a,b] \to X$ f.d. causal is *rectifiable* if $L_{\tau}(\gamma|_{[t_1,t_2]}) > 0$ for all $a \le t_1 < t_2 \le b$
- a rectifiable causal curve is timelike
- $t \mapsto (t, \cos(t), \sin(t))$ timelike but τ -length zero \Rightarrow *non-rectifiable*

Proposition (M. Kunzinger, C.S. 2018)

Definition

$$\begin{split} \gamma \colon [a,b] \to X \text{ f.d. causal, } \tau\text{-length} \text{ defined by} \\ L_{\tau}(\gamma) &:= \inf \{ \sum_{i=0}^{N-1} \tau(\gamma(t_i), \gamma(t_{i+1})) : a = t_0 < t_1 < \ldots < t_N = b \} \end{split}$$

- L_{τ} additive and invariant under continuous and strictly increasing reparametrizations
- $\gamma : [a,b] \to X$ f.d. causal is *rectifiable* if $L_{\tau}(\gamma|_{[t_1,t_2]}) > 0$ for all $a \le t_1 < t_2 \le b$
- a rectifiable causal curve is timelike
- $t \mapsto (t, \cos(t), \sin(t))$ timelike but τ -length zero \Rightarrow *non-rectifiable*

Proposition (M. Kunzinger, C.S. 2018)

Definition

$$\begin{split} \gamma \colon [a,b] \to X \text{ f.d. causal, } \tau\text{-length} \text{ defined by} \\ L_{\tau}(\gamma) &:= \inf \{ \sum_{i=0}^{N-1} \tau(\gamma(t_i), \gamma(t_{i+1})) : a = t_0 < t_1 < \ldots < t_N = b \} \end{split}$$

- L_{τ} additive and invariant under continuous and strictly increasing reparametrizations
- $\gamma \colon [a,b] \to X$ f.d. causal is *rectifiable* if $L_{\tau}(\gamma|_{[t_1,t_2]}) > 0$ for all $a \le t_1 < t_2 \le b$

a rectifiable causal curve is timelike

• $t \mapsto (t, \cos(t), \sin(t))$ timelike but τ -length zero \Rightarrow *non-rectifiable*

Proposition (M. Kunzinger, C.S. 2018)

Definition

$$\begin{split} \gamma \colon [a,b] \to X \text{ f.d. causal, } \tau\text{-length} \text{ defined by} \\ L_{\tau}(\gamma) &:= \inf \{ \sum_{i=0}^{N-1} \tau(\gamma(t_i), \gamma(t_{i+1})) : a = t_0 < t_1 < \ldots < t_N = b \} \end{split}$$

- L_{τ} additive and invariant under continuous and strictly increasing reparametrizations
- $\gamma \colon [a,b] \to X$ f.d. causal is *rectifiable* if $L_{\tau}(\gamma|_{[t_1,t_2]}) > 0$ for all $a \le t_1 < t_2 \le b$
- a rectifiable causal curve is timelike
- $t \mapsto (t, \cos(t), \sin(t))$ timelike but τ -length zero \Rightarrow *non-rectifiable*

Proposition (M. Kunzinger, C.S. 2018)

Definition

$$\begin{split} \gamma \colon [a,b] \to X \text{ f.d. causal, } \tau\text{-length} \text{ defined by} \\ L_{\tau}(\gamma) &:= \inf \{ \sum_{i=0}^{N-1} \tau(\gamma(t_i), \gamma(t_{i+1})) : a = t_0 < t_1 < \ldots < t_N = b \} \end{split}$$

- L_{τ} additive and invariant under continuous and strictly increasing reparametrizations
- $\gamma \colon [a,b] \to X$ f.d. causal is *rectifiable* if $L_{\tau}(\gamma|_{[t_1,t_2]}) > 0$ for all $a \le t_1 < t_2 \le b$
- a rectifiable causal curve is timelike
- $t \mapsto (t, \cos(t), \sin(t))$ timelike but τ -length zero \Rightarrow *non-rectifiable*

Proposition (M. Kunzinger, C.S. 2018)

Definition

$$\begin{split} \gamma \colon [a,b] \to X \text{ f.d. causal, } \tau\text{-length} \text{ defined by} \\ L_{\tau}(\gamma) &:= \inf \{ \sum_{i=0}^{N-1} \tau(\gamma(t_i), \gamma(t_{i+1})) : a = t_0 < t_1 < \ldots < t_N = b \} \end{split}$$

- L_{τ} additive and invariant under continuous and strictly increasing reparametrizations
- $\gamma \colon [a,b] \to X$ f.d. causal is *rectifiable* if $L_{\tau}(\gamma|_{[t_1,t_2]}) > 0$ for all $a \le t_1 < t_2 \le b$
- a rectifiable causal curve is timelike
- $t \mapsto (t, \cos(t), \sin(t))$ timelike but τ -length zero \Rightarrow *non-rectifiable*

Proposition (M. Kunzinger, C.S. 2018)

intrinsic notion of geodesics? ~> maximal causal curves

 (X, d, \ll, \leq, τ) Lorentzian pre-length space

Definition

 $\gamma \colon [a,b] o X$ f.d. causal is *maximal* if $L_{ au}(\gamma) = au(\gamma(a),\gamma(b))$

null curves are maximal

maximal curves are maximal on any subinterval

• maximal and timelike implies rectifiable

intrinsic notion of geodesics? \rightsquigarrow maximal causal curves

 (X,d,\ll,\leq,τ) Lorentzian pre-length space

Definition

 $\gamma\colon [a,b]\to X$ f.d. causal is maximal if $L_\tau(\gamma)=\tau(\gamma(a),\gamma(b))$

- null curves are maximal
- maximal curves are maximal on any subinterval
- maximal and timelike implies rectifiable

intrinsic notion of geodesics? \rightsquigarrow maximal causal curves

 (X,d,\ll,\leq,τ) Lorentzian pre-length space

Definition

 $\gamma \colon [a,b] \to X$ f.d. causal is *maximal* if $L_{\tau}(\gamma) = \tau(\gamma(a),\gamma(b))$

• null curves are maximal

maximal curves are maximal on any subinterval

• maximal and timelike implies rectifiable

intrinsic notion of geodesics? \rightsquigarrow maximal causal curves

 (X,d,\ll,\leq,τ) Lorentzian pre-length space

Definition

 $\gamma \colon [a,b] \to X$ f.d. causal is *maximal* if $L_{\tau}(\gamma) = \tau(\gamma(a),\gamma(b))$

- null curves are maximal
- maximal curves are maximal on any subinterval
- maximal and timelike implies rectifiable

Maximal causal curves

intrinsic notion of geodesics? \rightsquigarrow maximal causal curves

 (X,d,\ll,\leq,τ) Lorentzian pre-length space

Definition

 $\gamma \colon [a,b] \to X$ f.d. causal is *maximal* if $L_{\tau}(\gamma) = \tau(\gamma(a),\gamma(b))$

- null curves are maximal
- maximal curves are maximal on any subinterval
- maximal and timelike implies rectifiable

geodesic: locally maximizing curve (precise notion uses *localizability*)

Maximal causal curves

intrinsic notion of geodesics? \rightsquigarrow maximal causal curves

 (X,d,\ll,\leq,τ) Lorentzian pre-length space

Definition

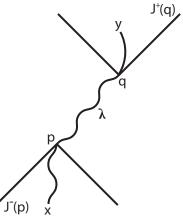
 $\gamma \colon [a,b] \to X$ f.d. causal is *maximal* if $L_{\tau}(\gamma) = \tau(\gamma(a),\gamma(b))$

- null curves are maximal
- maximal curves are maximal on any subinterval
- maximal and timelike implies rectifiable

geodesic: locally maximizing curve (precise notion uses localizability)

Causal character of maximal curves

Minkowski space \mathbb{R}_1^n , λ f.d. causal connecting p, q; $X = J^-(p) \cup J^+(q) \cup \lambda \rightsquigarrow$ Lorentzian pre-length space

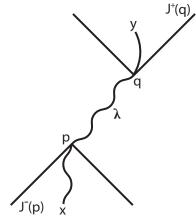


 λ null, $x \ll p, \, q \leq y \Rightarrow$ maximal curve from x to y changes causal character

Clemens Sämann, University of Vienna

Causal character of maximal curves

Minkowski space \mathbb{R}_1^n , λ f.d. causal connecting p, q; $X = J^-(p) \cup J^+(q) \cup \lambda \rightsquigarrow$ Lorentzian pre-length space



 λ null, $x \ll p, \, q \leq y \Rightarrow$ maximal curve from x to y changes causal character

Definition

causal space (X, \ll, \leq) is

- chronological if \ll is irreflexive, i.e., $x \not\ll x$ for all $x \in X$
- ullet causal if \leq is a partial order, i.e., $x\leq y$ and $y\leq x$ implies x=y

Definition

Lorentzian pre-length space (X, d, \ll, \leq, τ) is

- non-totally imprisoning if for every compact set K ⊆ X ∃C > 0 s.t. the d-arclength of all causal curves contained in K is bounded by C
- *strongly causal* if the Alexandrov topology agrees with the metric topology
- globally hyperbolic if X is non-totally imprisoning and for every $x, y \in X$ the set $J^+(x) \cap J^-(y)$ is compact in X

Definition

causal space (X, \ll, \leq) is

- *chronological* if \ll is irreflexive, i.e., $x \not\ll x$ for all $x \in X$
- causal if \leq is a partial order, i.e., $x \leq y$ and $y \leq x$ implies x = y

Definition

Lorentzian pre-length space (X, d, \ll, \leq, τ) is

- non-totally imprisoning if for every compact set K ⊆ X ∃C > 0 s.t. the d-arclength of all causal curves contained in K is bounded by C
- *strongly causal* if the Alexandrov topology agrees with the metric topology
- globally hyperbolic if X is non-totally imprisoning and for every $x, y \in X$ the set $J^+(x) \cap J^-(y)$ is compact in X

Definition

causal space (X, \ll, \leq) is

- chronological if \ll is irreflexive, i.e., $x \not\ll x$ for all $x \in X$
- *causal* if \leq is a partial order, i.e., $x \leq y$ and $y \leq x$ implies x = y

Definition

Lorentzian pre-length space (X,d,\ll,\leq,τ) is

- non-totally imprisoning if for every compact set K ⊆ X ∃C > 0 s.t. the d-arclength of all causal curves contained in K is bounded by C
- strongly causal if the Alexandrov topology agrees with the metric topology
- globally hyperbolic if X is non-totally imprisoning and for every $x, y \in X$ the set $J^+(x) \cap J^-(y)$ is compact in X

Definition

causal space (X, \ll, \leq) is

- chronological if \ll is irreflexive, i.e., $x \not\ll x$ for all $x \in X$
- *causal* if \leq is a partial order, i.e., $x \leq y$ and $y \leq x$ implies x = y

Definition

Lorentzian pre-length space (X,d,\ll,\leq,τ) is

- non-totally imprisoning if for every compact set K ⊆ X ∃C > 0 s.t. the d-arclength of all causal curves contained in K is bounded by C
- strongly causal if the Alexandrov topology agrees with the metric topology
- globally hyperbolic if X is non-totally imprisoning and for every $x, y \in X$ the set $J^+(x) \cap J^-(y)$ is compact in X

Definition

causal space (X, \ll, \leq) is

- chronological if \ll is irreflexive, i.e., $x \not\ll x$ for all $x \in X$
- causal if \leq is a partial order, i.e., $x \leq y$ and $y \leq x$ implies x = y

Definition

Lorentzian pre-length space (X,d,\ll,\leq,τ) is

- non-totally imprisoning if for every compact set K ⊆ X ∃C > 0 s.t. the d-arclength of all causal curves contained in K is bounded by C
- strongly causal if the Alexandrov topology agrees with the metric topology
- globally hyperbolic if X is non-totally imprisoning and for every $x, y \in X$ the set $J^+(x) \cap J^-(y)$ is compact in X

Definition

causal space (X, \ll, \leq) is *interpolative* if $x \ll y \Rightarrow \exists z \in X: x \ll z \ll y$ and $x \neq z \neq y$

Lemma

- (X, d, \ll, \leq, τ) a Lorentzian pre-length space
 - X causal and interpolative then chronological
 - X chronological then τ is zero on the diagonal, i.e., $\tau(x,x)=0$ for all $x\in X$
 - X strongly causal, then $\forall x \in X$, for every nhd. U of x, $\exists V \subseteq U$ nhd. of x s.t. every causal curve with endpoints in V is contained in U (i.e., the usual definition of strong causality)

Definition

causal space (X, \ll, \leq) is *interpolative* if $x \ll y \Rightarrow \exists z \in X: x \ll z \ll y$ and $x \neq z \neq y$

Lemma

 (X,d,\ll,\leq,τ) a Lorentzian pre-length space

- X causal and interpolative then chronological
- X chronological then τ is zero on the diagonal, i.e., $\tau(x,x)=0$ for all $x\in X$
- X strongly causal, then ∀x ∈ X, for every nhd. U of x, ∃V ⊆ U nhd. of x s.t. every causal curve with endpoints in V is contained in U (i.e., the usual definition of strong causality)

Definition

causal space (X, \ll, \leq) is *interpolative* if $x \ll y \Rightarrow \exists z \in X: x \ll z \ll y$ and $x \neq z \neq y$

Lemma

 (X,d,\ll,\leq,τ) a Lorentzian pre-length space

- X causal and interpolative then chronological
- X chronological then τ is zero on the diagonal, i.e., $\tau(x,x)=0$ for all $x\in X$
- X strongly causal, then ∀x ∈ X, for every nhd. U of x, ∃V ⊆ U nhd. of x s.t. every causal curve with endpoints in V is contained in U (i.e., the usual definition of strong causality)

Definition

causal space (X, \ll, \leq) is *interpolative* if $x \ll y \Rightarrow \exists z \in X: x \ll z \ll y$ and $x \neq z \neq y$

Lemma

 (X,d,\ll,\leq,τ) a Lorentzian pre-length space

- X causal and interpolative then chronological
- X chronological then τ is zero on the diagonal, i.e., $\tau(x,x)=0$ for all $x\in X$
- X strongly causal, then ∀x ∈ X, for every nhd. U of x, ∃V ⊆ U nhd. of x s.t. every causal curve with endpoints in V is contained in U (i.e., the usual definition of strong causality)

Definition

Lorentzian pre-length space (X, d, \ll, \leq, τ) is *causally path connected* if for $x \ll y \exists$ f.d. timelike curve from x to y and for $x < y \exists$ f.d. causal curve from x to y

Lemma

 (X, d, \ll, \leq, τ) a causally path connected Lorentzian pre-length space

- X interpolative
- causal if and only if there are no closed causal curves
- chronological if and only if there are no closed timelike curves

Definition

Lorentzian pre-length space (X, d, \ll, \leq, τ) is *causally path connected* if for $x \ll y \exists$ f.d. timelike curve from x to y and for $x < y \exists$ f.d. causal curve from x to y

Lemma

 (X,d,\ll,\leq,τ) a causally path connected Lorentzian pre-length space

- X interpolative
- causal if and only if there are no closed causal curves
- chronological if and only if there are no closed timelike curves

Definition

Lorentzian pre-length space (X, d, \ll, \leq, τ) is *causally path connected* if for $x \ll y \exists$ f.d. timelike curve from x to y and for $x < y \exists$ f.d. causal curve from x to y

Lemma

 (X,d,\ll,\leq,τ) a causally path connected Lorentzian pre-length space

- X interpolative
- causal if and only if there are no closed causal curves

• chronological if and only if there are no closed timelike curves

Definition

Lorentzian pre-length space (X, d, \ll, \leq, τ) is *causally path connected* if for $x \ll y \exists$ f.d. timelike curve from x to y and for $x < y \exists$ f.d. causal curve from x to y

Lemma

 (X,d,\ll,\leq,τ) a causally path connected Lorentzian pre-length space

- X interpolative
- causal if and only if there are no closed causal curves
- chronological if and only if there are no closed timelike curves

 (X,d,\ll,\leq,τ) Lorentzian pre-length space, $x\in X$

Definition

nhd. U of x is causally closed if \leq is closed in $\overline{U} \times \overline{U}$, i.e., $p_n, q_n \in U$ with $p_n \leq q_n$ and $p_n \to p \in \overline{U}$, $q_n \to q \in \overline{U}$, then $p \leq q$; X is locally causally closed if every point has a causally closed nhd.

Example: strongly causal spacetimes with continuous metrics

Theorem

 $(\gamma_n)_n$ sequence of uniformly Lipschitz continuous, f.d. causal curves $\gamma_n \colon [a,b] \to X$; if d is proper and $(\gamma_n)_n$ accumulating at some point or $\gamma_n([a,b]) \subseteq K$, $K \subseteq X$ compact, then \exists subsequence $(\gamma_{n_k})_k$ and a curve $\gamma \colon [a,b] \to X$ s.t. $\gamma_{n_k} \to \gamma$ uniformly, which is f.d. causal if non-constant

 (X,d,\ll,\leq,τ) Lorentzian pre-length space, $x\in X$

Definition

nhd. U of x is *causally closed* if \leq is closed in $\overline{U} \times \overline{U}$, i.e., $p_n, q_n \in U$ with $p_n \leq q_n$ and $p_n \to p \in \overline{U}$, $q_n \to q \in \overline{U}$, then $p \leq q$; X is *locally causally closed* if every point has a causally closed nhd.

Example: strongly causal spacetimes with continuous metrics

Theorem

 $(\gamma_n)_n$ sequence of uniformly Lipschitz continuous, f.d. causal curves $\gamma_n \colon [a,b] \to X$; if d is proper and $(\gamma_n)_n$ accumulating at some point or $\gamma_n([a,b]) \subseteq K$, $K \subseteq X$ compact, then \exists subsequence $(\gamma_{n_k})_k$ and a curve $\gamma \colon [a,b] \to X$ s.t. $\gamma_{n_k} \to \gamma$ uniformly, which is f.d. causal if non-constant

 (X,d,\ll,\leq,τ) Lorentzian pre-length space, $x\in X$

Definition

nhd. U of x is causally closed if \leq is closed in $\overline{U} \times \overline{U}$, i.e., $p_n, q_n \in U$ with $p_n \leq q_n$ and $p_n \to p \in \overline{U}$, $q_n \to q \in \overline{U}$, then $p \leq q$; X is locally causally closed if every point has a causally closed nhd.

Example: strongly causal spacetimes with continuous metrics

Theorem

 $(\gamma_n)_n$ sequence of uniformly Lipschitz continuous, f.d. causal curves $\gamma_n \colon [a,b] \to X$; if d is proper and $(\gamma_n)_n$ accumulating at some point or $\gamma_n([a,b]) \subseteq K$, $K \subseteq X$ compact, then \exists subsequence $(\gamma_{n_k})_k$ and a curve $\gamma \colon [a,b] \to X$ s.t. $\gamma_{n_k} \to \gamma$ uniformly, which is f.d. causal if non-constant

 (X,d,\ll,\leq,τ) Lorentzian pre-length space, $x\in X$

Definition

nhd. U of x is causally closed if \leq is closed in $\overline{U} \times \overline{U}$, i.e., $p_n, q_n \in U$ with $p_n \leq q_n$ and $p_n \to p \in \overline{U}$, $q_n \to q \in \overline{U}$, then $p \leq q$; X is locally causally closed if every point has a causally closed nhd.

Example: strongly causal spacetimes with continuous metrics

Theorem

 $(\gamma_n)_n$ sequence of uniformly Lipschitz continuous, f.d. causal curves $\gamma_n \colon [a,b] \to X$; if d is proper and $(\gamma_n)_n$ accumulating at some point or $\gamma_n([a,b]) \subseteq K$, $K \subseteq X$ compact, then \exists subsequence $(\gamma_{n_k})_k$ and a curve $\gamma \colon [a,b] \to X$ s.t. $\gamma_{n_k} \to \gamma$ uniformly, which is f.d. causal if non-constant

Definition

Lorentzian pre-length space (X, d, \ll, \leq, τ) is *localizable* if $\forall x \in X \exists$ open nhd. (*localizing nhd.*) Ω_x of x with the following properties:

- $\ \ \, \blacksquare C>0 \ \, {\rm s.t.} \ \, L^d(\gamma)\leq C \ \, {\rm for \ all \ \, causal \ \, curves \ \, \gamma \ in \ \, \Omega_x }$
- $\begin{array}{l} \displaystyle \textcircled{\textbf{3}} & \exists \omega_x \colon \Omega_x \times \Omega_x \to [0,\infty) \text{ continuous s.t.} \\ & (\Omega_x,d|_{\Omega_x \times \Omega_x}, \ll |_{\Omega_x \times \Omega_x}, \leq |_{\Omega_x \times \Omega_x}, \omega_x) \text{ is a Lorentzian pre-length} \\ & \text{space with } I^{\pm}(y) \cap \Omega_x \neq \emptyset \ \forall y \in \Omega_x \end{array}$
- $\forall p,q \in \Omega_x$ with $p < q \; \exists \; \Omega_x\text{-maximal f.d. causal curve } \gamma_{p,q} \; \text{from } p \; \text{to} \; q \; \text{with}$

 $L_{\tau}(\gamma_{p,q}) = \omega_x(p,q) \le \tau(p,q)$

Definition

Lorentzian pre-length space (X, d, \ll, \leq, τ) is *localizable* if $\forall x \in X \exists$ open nhd. (*localizing nhd.*) Ω_x of x with the following properties:

- $\ \ \, {\bf \bigcirc} \ \ \, \exists C>0 \ \, {\rm s.t.} \ \ L^d(\gamma)\leq C \ \, {\rm for \ \, all \ \, causal \ \, curves \ \ \gamma \ in \ \ \Omega_x }$
- $\begin{array}{l} \textcircled{3} \exists \omega_x \colon \Omega_x \times \Omega_x \to [0,\infty) \text{ continuous s.t.} \\ (\Omega_x,d|_{\Omega_x \times \Omega_x}, \ll |_{\Omega_x \times \Omega_x}, \leq |_{\Omega_x \times \Omega_x}, \omega_x) \text{ is a Lorentzian pre-length} \\ \text{space with } I^{\pm}(y) \cap \Omega_x \neq \emptyset \ \forall y \in \Omega_x \end{array}$
- (a) $\forall p,q \in \Omega_x$ with $p < q \exists \Omega_x$ -maximal f.d. causal curve $\gamma_{p,q}$ from p to q with

$$L_{\tau}(\gamma_{p,q}) = \omega_x(p,q) \le \tau(p,q)$$

Definition

Lorentzian pre-length space (X, d, \ll, \leq, τ) is *localizable* if $\forall x \in X \exists$ open nhd. (*localizing nhd.*) Ω_x of x with the following properties:

- $\ \ \, { \exists C>0 \ {\rm s.t.} \ } L^d(\gamma) \leq C \ {\rm for \ all \ causal \ curves \ } \gamma \ {\rm in \ } \Omega_x$
- $\begin{array}{l} \textcircled{O} \hspace{0.1cm} \exists \omega_{x} \colon \Omega_{x} \times \Omega_{x} \to [0,\infty) \hspace{0.1cm} \text{continuous s.t.} \\ (\Omega_{x},d|_{\Omega_{x} \times \Omega_{x}}, \ll |_{\Omega_{x} \times \Omega_{x}}, \leq |_{\Omega_{x} \times \Omega_{x}}, \omega_{x}) \hspace{0.1cm} \text{is a Lorentzian pre-length} \\ \text{space with} \hspace{0.1cm} I^{\pm}(y) \cap \Omega_{x} \neq \emptyset \hspace{0.1cm} \forall y \in \Omega_{x} \end{array}$
- ● $\forall p,q \in \Omega_x$ with $p < q \exists \Omega_x$ -maximal f.d. causal curve $\gamma_{p,q}$ from p to q with

 $L_{\tau}(\gamma_{p,q}) = \omega_x(p,q) \le \tau(p,q)$

Definition

Lorentzian pre-length space (X, d, \ll, \leq, τ) is *localizable* if $\forall x \in X \exists$ open nhd. (*localizing nhd.*) Ω_x of x with the following properties:

- $\ \ \, { \exists C>0 \ {\rm s.t.} \ } L^d(\gamma) \leq C \ {\rm for \ all \ causal \ curves \ } \gamma \ {\rm in \ } \Omega_x$
- $\begin{array}{l} \textcircled{2} \quad \exists \omega_x \colon \Omega_x \times \Omega_x \to [0,\infty) \text{ continuous s.t.} \\ (\Omega_x,d|_{\Omega_x \times \Omega_x}, \ll |_{\Omega_x \times \Omega_x}, \leq |_{\Omega_x \times \Omega_x}, \omega_x) \text{ is a Lorentzian pre-length} \\ \text{space with } I^{\pm}(y) \cap \Omega_x \neq \emptyset \ \forall y \in \Omega_x \end{array}$
- Solution ⇒ $\forall p,q \in \Omega_x$ with $p < q ∃ Ω_x$ -maximal f.d. causal curve $\gamma_{p,q}$ from p to q with

$$L_{\tau}(\gamma_{p,q}) = \omega_x(p,q) \le \tau(p,q)$$

Definition

Lorentzian pre-length space (X, d, \ll, \leq, τ) is *localizable* if $\forall x \in X \exists$ open nhd. (*localizing nhd.*) Ω_x of x with the following properties:

- $\ \ \, {\bf \bigcirc} \ \ \, \exists C>0 \ \, {\rm s.t.} \ \ L^d(\gamma)\leq C \ \, {\rm for \ \, all \ \, causal \ \, curves \ \ \gamma \ in \ \ \Omega_x }$
- $\begin{array}{l} \textcircled{2} \quad \exists \omega_x \colon \Omega_x \times \Omega_x \to [0,\infty) \text{ continuous s.t.} \\ (\Omega_x,d|_{\Omega_x \times \Omega_x}, \ll |_{\Omega_x \times \Omega_x}, \leq |_{\Omega_x \times \Omega_x}, \omega_x) \text{ is a Lorentzian pre-length} \\ \text{space with } I^{\pm}(y) \cap \Omega_x \neq \emptyset \ \forall y \in \Omega_x \end{array}$

$$L_{\tau}(\gamma_{p,q}) = \omega_x(p,q) \le \tau(p,q)$$

Proposition

 (X, d, \ll, \leq, τ) strongly causal, localizable Lorentzian pre-length space, then L_{τ} is upper semicontinuous, i.e., $(\gamma_n)_n$ sequence of f.d. causal curves on [a, b] converging uniformly to a f.d. causal curve $\gamma : [a, b] \to X$, then

$$L_{\tau}(\gamma) \ge \limsup_{n} L_{\tau}(\gamma_n)$$

Theorem

 (X, d, \ll, \leq, τ) regularly localizable Lorentzian pre-length space, then maximal causal curves have a causal character and (length increasing) push-up holds

Proposition

 (X, d, \ll, \leq, τ) strongly causal, localizable Lorentzian pre-length space, then L_{τ} is upper semicontinuous, i.e., $(\gamma_n)_n$ sequence of f.d. causal curves on [a, b] converging uniformly to a f.d. causal curve $\gamma : [a, b] \to X$, then

$$L_{\tau}(\gamma) \ge \limsup_{n} L_{\tau}(\gamma_n)$$

Theorem

 (X, d, \ll, \leq, τ) regularly localizable Lorentzian pre-length space, then maximal causal curves have a causal character and (length increasing) push-up holds

Definition

 (X,d,\ll,\leq,τ) locally causally closed, causally path connected, localizable Lorentzian pre-length space; for $x,y\in X$ define

 $\mathcal{T}(x,y) := \sup\{L_{\tau}(\gamma) : \gamma \text{ f.d. causal from } x \text{ to } y\},\$

if the set is not empty, otherwise $\mathcal{T}(x,y):=0$

X is a Lorentzian length space if $\mathcal{T} = \tau$; if, in addition X is regularly localizing, then X is a regular Lorentzian length space

 $(M, d^h, \ll, \leq, \tau)$ the Lorentzian pre-length space induced by a smooth and strongly causal spacetime (M, g) (since $L_{\tau} = L_g$) is a regular LLS

Theorem (M. Kunzinger, C.S. 2018)

Definition

 (X,d,\ll,\leq,τ) locally causally closed, causally path connected, localizable Lorentzian pre-length space; for $x,y\in X$ define

 $\mathcal{T}(x,y) := \sup\{L_{\tau}(\gamma) : \gamma \text{ f.d. causal from } x \text{ to } y\},\$

if the set is not empty, otherwise $\mathcal{T}(x, y) := 0$ X is a Lorentzian length space if $\mathcal{T} = \tau$; if, in addition X is regularly localizing, then X is a regular Lorentzian length space

 $(M, d^h, \ll, \leq, \tau)$ the Lorentzian pre-length space induced by a smooth and strongly causal spacetime (M, g) (since $L_{\tau} = L_g$) is a regular LLS

Theorem (M. Kunzinger, C.S. 2018)

Definition

 (X,d,\ll,\leq,τ) locally causally closed, causally path connected, localizable Lorentzian pre-length space; for $x,y\in X$ define

 $\mathcal{T}(x,y) := \sup\{L_{\tau}(\gamma) : \gamma \text{ f.d. causal from } x \text{ to } y\},\$

if the set is not empty, otherwise $\mathcal{T}(x, y) := 0$ X is a Lorentzian length space if $\mathcal{T} = \tau$; if, in addition X is regularly localizing, then X is a regular Lorentzian length space

 (M,d^h,\ll,\leq,τ) the Lorentzian pre-length space induced by a smooth and strongly causal spacetime (M,g) (since $L_\tau=L_g)$ is a regular LLS

Theorem (M. Kunzinger, C.S. 2018)

Definition

 (X,d,\ll,\leq,τ) locally causally closed, causally path connected, localizable Lorentzian pre-length space; for $x,y\in X$ define

 $\mathcal{T}(x,y) := \sup\{L_{\tau}(\gamma) : \gamma \text{ f.d. causal from } x \text{ to } y\},\$

if the set is not empty, otherwise $\mathcal{T}(x, y) := 0$ X is a Lorentzian length space if $\mathcal{T} = \tau$; if, in addition X is regularly localizing, then X is a regular Lorentzian length space

 (M,d^h,\ll,\leq,τ) the Lorentzian pre-length space induced by a smooth and strongly causal spacetime (M,g) (since $L_\tau=L_g)$ is a regular LLS

Theorem (M. Kunzinger, C.S. 2018)

Definition

timelike geodesic triangle in Lorentzian pre-length space (X,d,\ll,\leq,τ) is triple $(x,y,z)\in X^3$ with $x\ll y\ll z$, $\tau(x,z)<\infty$ and s.t. sides are realized by f.d. causal curves

i.e., \exists f.d. causal curves α, β, γ s.t. $L_{\tau}(\alpha) = \tau(x, y)$, $L_{\tau}(\beta) = \tau(y, z)$ and $L_{\tau}(\gamma) = \tau(x, z)$ $\Rightarrow \tau(x, y), \tau(y, z) < \infty$ and α, β, γ maximal

Definition

timelike geodesic triangle in Lorentzian pre-length space (X,d,\ll,\leq,τ) is triple $(x,y,z)\in X^3$ with $x\ll y\ll z$, $\tau(x,z)<\infty$ and s.t. sides are realized by f.d. causal curves

i.e., \exists f.d. causal curves α, β, γ s.t. $L_{\tau}(\alpha) = \tau(x, y)$, $L_{\tau}(\beta) = \tau(y, z)$ and $L_{\tau}(\gamma) = \tau(x, z)$ $\sim \tau(x, y), \tau(y, z) < \infty$ and α, β, γ maximal

Definition

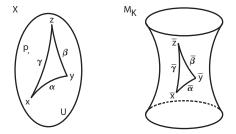
timelike geodesic triangle in Lorentzian pre-length space (X,d,\ll,\leq,τ) is triple $(x,y,z)\in X^3$ with $x\ll y\ll z$, $\tau(x,z)<\infty$ and s.t. sides are realized by f.d. causal curves

i.e., \exists f.d. causal curves α, β, γ s.t. $L_{\tau}(\alpha) = \tau(x, y)$, $L_{\tau}(\beta) = \tau(y, z)$ and $L_{\tau}(\gamma) = \tau(x, z)$ $\rightsquigarrow \tau(x, y), \tau(y, z) < \infty$ and α, β, γ maximal

Definition

timelike geodesic triangle in Lorentzian pre-length space (X,d,\ll,\leq,τ) is triple $(x,y,z)\in X^3$ with $x\ll y\ll z$, $\tau(x,z)<\infty$ and s.t. sides are realized by f.d. causal curves

i.e., \exists f.d. causal curves α, β, γ s.t. $L_{\tau}(\alpha) = \tau(x, y)$, $L_{\tau}(\beta) = \tau(y, z)$ and $L_{\tau}(\gamma) = \tau(x, z)$ $\rightsquigarrow \tau(x, y), \tau(y, z) < \infty$ and α, β, γ maximal



$K \in \mathbb{R}$

$$M_K = \begin{cases} \tilde{S}_1^2(r) & K = \frac{1}{r^2} \\ \mathbb{R}_1^2 & K = 0 \\ \tilde{H}_1^2(r) & K = -\frac{1}{r^2} \end{cases}$$

 $\tilde{S}_1^2(r)$ simply connected covering manifold of 2D Lorentzian pseudosphere \mathbb{R}_1^2 2D Minkowski space $\tilde{H}_1^2(r)$ simply connected covering manifold of 2D Lorentzian pseudohyperbolic space

$K \in \mathbb{R}$

$$M_K = \begin{cases} \tilde{S}_1^2(r) & K = \frac{1}{r^2} \\ \mathbb{R}_1^2 & K = 0 \\ \tilde{H}_1^2(r) & K = -\frac{1}{r^2} \end{cases}$$

 $\tilde{S}_1^2(r)$ simply connected covering manifold of 2D Lorentzian pseudosphere \mathbb{R}_1^2 2D Minkowski space $\tilde{H}_1^2(r)$ simply connected covering manifold of 2D Lorentzian pseudohyperbolic space

$K \in \mathbb{R}$

$$M_K = \begin{cases} \tilde{S}_1^2(r) & K = \frac{1}{r^2} \\ \mathbb{R}_1^2 & K = 0 \\ \tilde{H}_1^2(r) & K = -\frac{1}{r^2} \end{cases}$$

 $\tilde{S}_1^2(r)$ simply connected covering manifold of 2D Lorentzian pseudosphere \mathbb{R}_1^2 2D Minkowski space

 $\dot{H}_{1}^{2}(r)$ simply connected covering manifold of 2D Lorentzian pseudohyperbolic space

$K \in \mathbb{R}$

$$M_K = \begin{cases} \tilde{S}_1^2(r) & K = \frac{1}{r^2} \\ \mathbb{R}_1^2 & K = 0 \\ \tilde{H}_1^2(r) & K = -\frac{1}{r^2} \end{cases}$$

 $\tilde{S}_1^2(r)$ simply connected covering manifold of 2D Lorentzian pseudosphere \mathbb{R}_1^2 2D Minkowski space $\tilde{H}_1^2(r)$ simply connected covering manifold of 2D Lorentzian pseudohyperbolic space

$K \in \mathbb{R}$

$$M_K = \begin{cases} \tilde{S}_1^2(r) & K = \frac{1}{r^2} \\ \mathbb{R}_1^2 & K = 0 \\ \tilde{H}_1^2(r) & K = -\frac{1}{r^2} \end{cases}$$

 $\tilde{S}_1^2(r)$ simply connected covering manifold of 2D Lorentzian pseudosphere \mathbb{R}_1^2 2D Minkowski space $\tilde{H}_1^2(r)$ simply connected covering manifold of 2D Lorentzian pseudohyperbolic space

Definition

Lorentzian pre-length space X has timelike curvature bounded below (above) by $K \in \mathbb{R}$ if all points in X have nhd. U s.t.:

- $\tau|_{U \times U}$ finite and continuous
- ② $x, y \in U$ with $x \ll y \Rightarrow \exists$ f.d. *maximal causal curve* in U from x to y

(*x*, *y*, *z*) small timelike geodesic triangle in *U*, $(\bar{x}, \bar{y}, \bar{z})$ comparison triangle of (x, y, z) in M_K , then for p, q points on the sides of (x, y, z) and \bar{p}, \bar{q} corresponding points $(\bar{x}, \bar{y}, \bar{z})$:

 $\tau(p,q) \leq \bar{\tau}(\bar{p},\bar{q}) \quad (\text{respectively } \tau(p,q) \geq \bar{\tau}(\bar{p},\bar{q}))$

Definition

Lorentzian pre-length space X has timelike curvature bounded below (above) by $K \in \mathbb{R}$ if all points in X have nhd. U s.t.:

- $\tau|_{U \times U}$ finite and continuous
- **2** $x, y \in U$ with $x \ll y \Rightarrow \exists$ f.d. *maximal causal curve* in U from x to y

(*x*, *y*, *z*) small timelike geodesic triangle in U, $(\bar{x}, \bar{y}, \bar{z})$ comparison triangle of (x, y, z) in M_K , then for p, q points on the sides of (x, y, z) and \bar{p}, \bar{q} corresponding points $(\bar{x}, \bar{y}, \bar{z})$:

 $\tau(p,q) \leq \bar{\tau}(\bar{p},\bar{q}) \quad (\text{respectively } \tau(p,q) \geq \bar{\tau}(\bar{p},\bar{q}))$

Definition

Lorentzian pre-length space X has *timelike curvature bounded below* (above) by $K \in \mathbb{R}$ if all points in X have nhd. U s.t.:

- $\tau|_{U \times U}$ finite and continuous
- **2** $x, y \in U$ with $x \ll y \Rightarrow \exists$ f.d. *maximal causal curve* in U from x to y
- (x, y, z) small timelike geodesic triangle in U, (x̄, ȳ, z̄) comparison triangle of (x, y, z) in M_K, then for p, q points on the sides of (x, y, z) and p̄, q̄ corresponding points (x̄, ȳ, z̄):

 $\tau(p,q) \leq \bar{\tau}(\bar{p},\bar{q}) \quad (\text{respectively } \tau(p,q) \geq \bar{\tau}(\bar{p},\bar{q}))$

Definition

Lorentzian pre-length space X has *timelike curvature bounded below* (above) by $K \in \mathbb{R}$ if all points in X have nhd. U s.t.:

- $\tau|_{U \times U}$ finite and continuous
- $\ensuremath{ @ } x,y \in U \text{ with } x \ll y \Rightarrow \exists \text{ f.d. } \textit{maximal causal curve in } U \text{ from } x \text{ to } y$
- (x, y, z) small timelike geodesic triangle in U, (x̄, ȳ, z̄) comparison triangle of (x, y, z) in M_K, then for p, q points on the sides of (x, y, z) and p̄, q̄ corresponding points (x̄, ȳ, z̄):

 $\tau(p,q) \leq \bar{\tau}(\bar{p},\bar{q}) \quad (\text{respectively } \tau(p,q) \geq \bar{\tau}(\bar{p},\bar{q}))$

Alexandrov spaces with curvature bounded below: geodesics do not branch

Definition

X Lorentzian pre-length space, $\gamma : [a, b] \to X$ maximal curve; $x := \gamma(t)$, $t \in (a, b)$ is *branching point* of γ if \exists maximal curves $\alpha, \beta : [a, c] \to X$ with c > b and $\alpha|_{[a,t]} = \beta|_{[a,t]} = \gamma|_{[a,t]}$, $\alpha([t, c]) \cap \beta([t, c]) = \{x\}$

causal funnel: every maximal causal curve from $J^-(p)$ to $J^+(q)$ has q as branching point

Theorem (M. Kunzinger, C.S. 2018)

Alexandrov spaces with curvature bounded below: geodesics do not branch

Definition

 $\begin{array}{l} X \text{ Lorentzian pre-length space, } \gamma \colon [a,b] \to X \text{ maximal curve; } x := \gamma(t), \\ t \in (a,b) \text{ is } \textit{branching point } \text{of } \gamma \text{ if } \exists \text{ maximal curves } \alpha,\beta \colon [a,c] \to X \text{ with } \\ c > b \text{ and } \alpha|_{[a,t]} = \beta|_{[a,t]} = \gamma|_{[a,t]}, \ \alpha([t,c]) \cap \beta([t,c]) = \{x\} \end{array}$

causal funnel: every maximal causal curve from $J^-(p)$ to $J^+(q)$ has q as branching point

Theorem (M. Kunzinger, C.S. 2018)

Alexandrov spaces with curvature bounded below: geodesics do not branch

Definition

 $\begin{array}{l} X \text{ Lorentzian pre-length space, } \gamma \colon [a,b] \to X \text{ maximal curve; } x := \gamma(t), \\ t \in (a,b) \text{ is } \textit{branching point } \text{of } \gamma \text{ if } \exists \text{ maximal curves } \alpha,\beta \colon [a,c] \to X \text{ with } \\ c > b \text{ and } \alpha|_{[a,t]} = \beta|_{[a,t]} = \gamma|_{[a,t]}, \ \alpha([t,c]) \cap \beta([t,c]) = \{x\} \end{array}$

causal funnel: every maximal causal curve from $J^-(p)$ to $J^+(q)$ has q as branching point

Theorem (M. Kunzinger, C.S. 2018)

Alexandrov spaces with curvature bounded below: geodesics do not branch

Definition

 $\begin{array}{l} X \text{ Lorentzian pre-length space, } \gamma \colon [a,b] \to X \text{ maximal curve; } x := \gamma(t), \\ t \in (a,b) \text{ is } \textit{branching point } \text{of } \gamma \text{ if } \exists \text{ maximal curves } \alpha,\beta \colon [a,c] \to X \text{ with } \\ c > b \text{ and } \alpha|_{[a,t]} = \beta|_{[a,t]} = \gamma|_{[a,t]}, \ \alpha([t,c]) \cap \beta([t,c]) = \{x\} \end{array}$

causal funnel: every maximal causal curve from $J^-(p)$ to $J^+(q)$ has q as branching point

Theorem (M. Kunzinger, C.S. 2018)

Curvature singularities

Definition

Lorentzian pre-length space X has timelike (respectively causal) curvature unbounded below/above if $\forall p \in X \exists$ nhd. U s.t. τ finite and continuous on U and maximal timelike/causal curves exist in U but triangle comparison fails for every $K \in \mathbb{R} \rightsquigarrow X$ has curvature singularity

Curvature singularities

Definition

Lorentzian pre-length space X has timelike (respectively causal) curvature unbounded below/above if $\forall p \in X \exists$ nhd. U s.t. τ finite and continuous on U and maximal timelike/causal curves exist in U but triangle comparison fails for every $K \in \mathbb{R} \rightsquigarrow X$ has curvature singularity

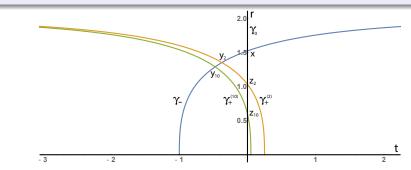


Figure: Schwarzschild has timelike curvature unbounded below

To be continued tomorrow...

References

S. B. Alexander and R. L. Bishop.

Lorentz and semi-Riemannian spaces with Alexandrov curvature bounds. <u>Comm.</u> Anal. Geom., 16(2):251–282, 2008.

H. Busemann.

Timelike spaces. Dissertationes Math. Rozprawy Mat., vol. 53, 1967.

S. G. Harris.

A triangle comparison theorem for Lorentz manifolds. Indiana Univ. Math. J., 31(3):289–308, 1982.

E. H. Kronheimer and R. Penrose.

On the structure of causal spaces. <u>Proc. Cambridge Philos. Soc.</u>, 63:481–501, 1967.

M. Kunzinger and S.

Lorentzian length spaces. Ann. Global Anal. Geom. 54, no. 3, 399-447, 2018.